123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675 |
- /**
- * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- // Various helper functions and utilities
- #pragma once
- #include "llama-cpp.h"
- #include <string>
- #include <vector>
- #include <sstream>
- #ifdef _WIN32
- #define DIRECTORY_SEPARATOR '\\'
- #else
- #define DIRECTORY_SEPARATOR '/'
- #endif // _WIN32
- #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
- #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
- #define print_build_info() do { \
- fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
- fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
- } while(0)
- #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
- struct common_lora_adapter_info {
- std::string path;
- float scale;
- struct llama_lora_adapter * ptr;
- };
- using llama_tokens = std::vector<llama_token>;
- // build info
- extern int LLAMA_BUILD_NUMBER;
- extern const char * LLAMA_COMMIT;
- extern const char * LLAMA_COMPILER;
- extern const char * LLAMA_BUILD_TARGET;
- struct common_control_vector_load_info;
- //
- // CPU utils
- //
- struct cpu_params {
- int n_threads = -1;
- bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
- bool mask_valid = false; // Default: any CPU
- enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
- bool strict_cpu = false; // Use strict CPU placement
- uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
- };
- int32_t cpu_get_num_physical_cores();
- int32_t cpu_get_num_math();
- //
- // Common params
- //
- enum llama_example {
- LLAMA_EXAMPLE_COMMON,
- LLAMA_EXAMPLE_SPECULATIVE,
- LLAMA_EXAMPLE_MAIN,
- LLAMA_EXAMPLE_INFILL,
- LLAMA_EXAMPLE_EMBEDDING,
- LLAMA_EXAMPLE_PERPLEXITY,
- LLAMA_EXAMPLE_RETRIEVAL,
- LLAMA_EXAMPLE_PASSKEY,
- LLAMA_EXAMPLE_IMATRIX,
- LLAMA_EXAMPLE_BENCH,
- LLAMA_EXAMPLE_SERVER,
- LLAMA_EXAMPLE_CVECTOR_GENERATOR,
- LLAMA_EXAMPLE_EXPORT_LORA,
- LLAMA_EXAMPLE_LLAVA,
- LLAMA_EXAMPLE_LOOKUP,
- LLAMA_EXAMPLE_PARALLEL,
- LLAMA_EXAMPLE_TTS,
- LLAMA_EXAMPLE_COUNT,
- };
- enum common_sampler_type {
- COMMON_SAMPLER_TYPE_NONE = 0,
- COMMON_SAMPLER_TYPE_DRY = 1,
- COMMON_SAMPLER_TYPE_TOP_K = 2,
- COMMON_SAMPLER_TYPE_TOP_P = 3,
- COMMON_SAMPLER_TYPE_MIN_P = 4,
- //COMMON_SAMPLER_TYPE_TFS_Z = 5,
- COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
- COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
- COMMON_SAMPLER_TYPE_XTC = 8,
- COMMON_SAMPLER_TYPE_INFILL = 9,
- COMMON_SAMPLER_TYPE_PENALTIES = 10,
- };
- // dimensionality reduction methods, used by cvector-generator
- enum dimre_method {
- DIMRE_METHOD_PCA,
- DIMRE_METHOD_MEAN,
- };
- // sampling parameters
- struct common_params_sampling {
- uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
- int32_t n_prev = 64; // number of previous tokens to remember
- int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
- int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
- int32_t top_k = 40; // <= 0 to use vocab size
- float top_p = 0.95f; // 1.0 = disabled
- float min_p = 0.05f; // 0.0 = disabled
- float xtc_probability = 0.00f; // 0.0 = disabled
- float xtc_threshold = 0.10f; // > 0.5 disables XTC
- float typ_p = 1.00f; // typical_p, 1.0 = disabled
- float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
- float dynatemp_range = 0.00f; // 0.0 = disabled
- float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
- int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
- float penalty_repeat = 1.00f; // 1.0 = disabled
- float penalty_freq = 0.00f; // 0.0 = disabled
- float penalty_present = 0.00f; // 0.0 = disabled
- float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
- float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
- int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
- int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
- int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
- float mirostat_tau = 5.00f; // target entropy
- float mirostat_eta = 0.10f; // learning rate
- bool ignore_eos = false;
- bool no_perf = false; // disable performance metrics
- bool timing_per_token = false;
- std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
- std::vector<enum common_sampler_type> samplers = {
- COMMON_SAMPLER_TYPE_PENALTIES,
- COMMON_SAMPLER_TYPE_DRY,
- COMMON_SAMPLER_TYPE_TOP_K,
- COMMON_SAMPLER_TYPE_TYPICAL_P,
- COMMON_SAMPLER_TYPE_TOP_P,
- COMMON_SAMPLER_TYPE_MIN_P,
- COMMON_SAMPLER_TYPE_XTC,
- COMMON_SAMPLER_TYPE_TEMPERATURE,
- };
- std::string grammar; // optional BNF-like grammar to constrain sampling
- std::vector<llama_logit_bias> logit_bias; // logit biases to apply
- // print the parameters into a string
- std::string print() const;
- };
- struct common_params_speculative {
- std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
- int32_t n_ctx = 0; // draft context size
- int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
- int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
- int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
- float p_split = 0.1f; // speculative decoding split probability
- float p_min = 0.9f; // minimum speculative decoding probability (greedy)
- struct cpu_params cpuparams;
- struct cpu_params cpuparams_batch;
- std::string model = ""; // draft model for speculative decoding // NOLINT
- };
- struct common_params_vocoder {
- std::string hf_repo = ""; // HF repo // NOLINT
- std::string hf_file = ""; // HF file // NOLINT
- std::string model = ""; // model path // NOLINT
- std::string model_url = ""; // model url to download // NOLINT
- };
- struct common_params {
- int32_t n_predict = -1; // new tokens to predict
- int32_t n_ctx = 4096; // context size
- int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
- int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
- int32_t n_keep = 0; // number of tokens to keep from initial prompt
- int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
- int32_t n_parallel = 1; // number of parallel sequences to decode
- int32_t n_sequences = 1; // number of sequences to decode
- int32_t grp_attn_n = 1; // group-attention factor
- int32_t grp_attn_w = 512; // group-attention width
- int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
- float rope_freq_base = 0.0f; // RoPE base frequency
- float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
- float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
- float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
- float yarn_beta_fast = 32.0f; // YaRN low correction dim
- float yarn_beta_slow = 1.0f; // YaRN high correction dim
- int32_t yarn_orig_ctx = 0; // YaRN original context length
- float defrag_thold = 0.1f; // KV cache defragmentation threshold
- // offload params
- std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
- int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
- int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
- float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
- enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
- struct cpu_params cpuparams;
- struct cpu_params cpuparams_batch;
- ggml_backend_sched_eval_callback cb_eval = nullptr;
- void * cb_eval_user_data = nullptr;
- ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
- enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
- enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
- enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
- struct common_params_sampling sampling;
- struct common_params_speculative speculative;
- struct common_params_vocoder vocoder;
- std::string model = ""; // model path // NOLINT
- std::string model_alias = ""; // model alias // NOLINT
- std::string model_url = ""; // model url to download // NOLINT
- std::string hf_token = ""; // HF token // NOLINT
- std::string hf_repo = ""; // HF repo // NOLINT
- std::string hf_file = ""; // HF file // NOLINT
- std::string prompt = ""; // NOLINT
- std::string prompt_file = ""; // store the external prompt file name // NOLINT
- std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
- std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
- std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
- std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
- std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
- std::string logits_file = ""; // file for saving *all* logits // NOLINT
- std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
- std::vector<std::string> in_files; // all input files
- std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
- std::vector<llama_model_kv_override> kv_overrides;
- bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
- std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
- std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
- int32_t verbosity = 0;
- int32_t control_vector_layer_start = -1; // layer range for control vector
- int32_t control_vector_layer_end = -1; // layer range for control vector
- int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
- int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
- // (which is more convenient to use for plotting)
- //
- bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
- size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
- bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
- size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
- bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
- size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
- bool kl_divergence = false; // compute KL divergence
- bool usage = false; // print usage
- bool use_color = false; // use color to distinguish generations and inputs
- bool special = false; // enable special token output
- bool interactive = false; // interactive mode
- bool interactive_first = false; // wait for user input immediately
- bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
- bool prompt_cache_all = false; // save user input and generations to prompt cache
- bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
- bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
- bool multiline_input = false; // reverse the usage of `\`
- bool simple_io = false; // improves compatibility with subprocesses and limited consoles
- bool cont_batching = true; // insert new sequences for decoding on-the-fly
- bool flash_attn = false; // flash attention
- bool no_perf = false; // disable performance metrics
- bool ctx_shift = true; // context shift on inifinite text generation
- bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
- bool logits_all = false; // return logits for all tokens in the batch
- bool use_mmap = true; // use mmap for faster loads
- bool use_mlock = false; // use mlock to keep model in memory
- bool verbose_prompt = false; // print prompt tokens before generation
- bool display_prompt = true; // print prompt before generation
- bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
- bool no_kv_offload = false; // disable KV offloading
- bool warmup = true; // warmup run
- bool check_tensors = false; // validate tensor data
- ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
- ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
- // multimodal models (see examples/llava)
- std::string mmproj = ""; // path to multimodal projector // NOLINT
- std::vector<std::string> image; // path to image file(s)
- // embedding
- bool embedding = false; // get only sentence embedding
- int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
- std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
- std::string embd_sep = "\n"; // separator of embeddings
- bool reranking = false; // enable reranking support on server
- // server params
- int32_t port = 8080; // server listens on this network port
- int32_t timeout_read = 600; // http read timeout in seconds
- int32_t timeout_write = timeout_read; // http write timeout in seconds
- int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
- int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
- std::string hostname = "127.0.0.1";
- std::string public_path = ""; // NOLINT
- std::string chat_template = ""; // NOLINT
- bool enable_chat_template = true;
- std::vector<std::string> api_keys;
- std::string ssl_file_key = ""; // NOLINT
- std::string ssl_file_cert = ""; // NOLINT
- // "advanced" endpoints are disabled by default for better security
- bool webui = true;
- bool endpoint_slots = false;
- bool endpoint_props = false; // only control POST requests, not GET
- bool endpoint_metrics = false;
- bool log_json = false;
- std::string slot_save_path;
- float slot_prompt_similarity = 0.5f;
- // batched-bench params
- bool is_pp_shared = false;
- std::vector<int32_t> n_pp;
- std::vector<int32_t> n_tg;
- std::vector<int32_t> n_pl;
- // retrieval params
- std::vector<std::string> context_files; // context files to embed
- int32_t chunk_size = 64; // chunk size for context embedding
- std::string chunk_separator = "\n"; // chunk separator for context embedding
- // passkey params
- int32_t n_junk = 250; // number of times to repeat the junk text
- int32_t i_pos = -1; // position of the passkey in the junk text
- // imatrix params
- std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
- int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
- int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
- int32_t i_chunk = 0; // start processing from this chunk
- bool process_output = false; // collect data for the output tensor
- bool compute_ppl = true; // whether to compute perplexity
- // cvector-generator params
- int n_pca_batch = 100;
- int n_pca_iterations = 1000;
- dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
- std::string cvector_outfile = "control_vector.gguf";
- std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
- std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
- bool spm_infill = false; // suffix/prefix/middle pattern for infill
- std::string lora_outfile = "ggml-lora-merged-f16.gguf";
- // batched-bench params
- bool batched_bench_output_jsonl = false;
- };
- // call once at the start of a program if it uses libcommon
- // initializes the logging system and prints info about the build
- void common_init();
- std::string common_params_get_system_info(const common_params & params);
- bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
- bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
- void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
- bool set_process_priority(enum ggml_sched_priority prio);
- //
- // String utils
- //
- #ifdef __GNUC__
- #ifdef __MINGW32__
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
- #else
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
- #endif
- #else
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
- #endif
- LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
- std::string string_format(const char * fmt, ...);
- std::string string_strip(const std::string & str);
- std::string string_get_sortable_timestamp();
- void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
- template<class T>
- static std::vector<T> string_split(const std::string & str, char delim) {
- static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
- std::vector<T> values;
- std::istringstream str_stream(str);
- std::string token;
- while (std::getline(str_stream, token, delim)) {
- T value;
- std::istringstream token_stream(token);
- token_stream >> value;
- values.push_back(value);
- }
- return values;
- }
- template<>
- std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
- {
- std::vector<std::string> parts;
- size_t begin_pos = 0;
- size_t separator_pos = input.find(separator);
- while (separator_pos != std::string::npos) {
- std::string part = input.substr(begin_pos, separator_pos - begin_pos);
- parts.emplace_back(part);
- begin_pos = separator_pos + 1;
- separator_pos = input.find(separator, begin_pos);
- }
- parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
- return parts;
- }
- static bool string_starts_with(const std::string & str,
- const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
- return str.rfind(prefix, 0) == 0;
- }
- bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
- void string_process_escapes(std::string & input);
- std::string string_from(bool value);
- std::string string_from(const std::vector<int> & values);
- std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
- std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
- //
- // Filesystem utils
- //
- bool fs_validate_filename(const std::string & filename);
- bool fs_create_directory_with_parents(const std::string & path);
- std::string fs_get_cache_directory();
- std::string fs_get_cache_file(const std::string & filename);
- //
- // Model utils
- //
- // note: defines object's lifetime
- struct common_init_result {
- llama_model_ptr model;
- llama_context_ptr context;
- std::vector<llama_lora_adapter_ptr> lora;
- };
- struct common_init_result common_init_from_params(common_params & params);
- struct llama_model_params common_model_params_to_llama ( common_params & params);
- struct llama_context_params common_context_params_to_llama(const common_params & params);
- struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
- struct llama_model * common_load_model_from_url(
- const std::string & model_url,
- const std::string & local_path,
- const std::string & hf_token,
- const struct llama_model_params & params);
- struct llama_model * common_load_model_from_hf(
- const std::string & repo,
- const std::string & remote_path,
- const std::string & local_path,
- const std::string & hf_token,
- const struct llama_model_params & params);
- // clear LoRA adapters from context, then apply new list of adapters
- void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_info> & lora);
- //
- // Batch utils
- //
- void common_batch_clear(struct llama_batch & batch);
- void common_batch_add(
- struct llama_batch & batch,
- llama_token id,
- llama_pos pos,
- const std::vector<llama_seq_id> & seq_ids,
- bool logits);
- //
- // Token utils
- //
- // longest common prefix
- size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
- // longet common subsequence
- size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
- //
- // Vocab utils
- //
- // tokenizes a string into a vector of tokens
- // should work similar to Python's `tokenizer.encode`
- std::vector<llama_token> common_tokenize(
- const struct llama_context * ctx,
- const std::string & text,
- bool add_special,
- bool parse_special = false);
- std::vector<llama_token> common_tokenize(
- const struct llama_model * model,
- const std::string & text,
- bool add_special,
- bool parse_special = false);
- // tokenizes a token into a piece, optionally renders special/control tokens
- // should work similar to Python's `tokenizer.id_to_piece`
- std::string common_token_to_piece(
- const struct llama_context * ctx,
- llama_token token,
- bool special = true);
- // detokenizes a vector of tokens into a string
- // should work similar to Python's `tokenizer.decode`
- // optionally renders special/control tokens
- std::string common_detokenize(
- llama_context * ctx,
- const std::vector<llama_token> & tokens,
- bool special = true);
- //
- // Chat template utils
- //
- // same with llama_chat_message, but uses std::string
- struct common_chat_msg {
- std::string role;
- std::string content;
- };
- // Get the built-in chat template for the model. Return empty string if not present.
- std::string common_get_builtin_chat_template(const struct llama_model * model);
- // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
- bool common_chat_verify_template(const std::string & tmpl);
- // CPP wrapper for llama_chat_apply_template
- // If the built-in template is not supported, we default to chatml
- // If the custom "tmpl" is not supported, we throw an error
- std::string common_chat_apply_template(const struct llama_model * model,
- const std::string & tmpl,
- const std::vector<common_chat_msg> & chat,
- bool add_ass);
- // Format single message, while taking into account the position of that message in chat history
- std::string common_chat_format_single(const struct llama_model * model,
- const std::string & tmpl,
- const std::vector<common_chat_msg> & past_msg,
- const common_chat_msg & new_msg,
- bool add_ass);
- // Returns an example of formatted chat
- std::string common_chat_format_example(const struct llama_model * model,
- const std::string & tmpl);
- //
- // KV cache utils
- //
- // Dump the KV cache view with the number of sequences per cell.
- void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
- // Dump the KV cache view showing individual sequences in each cell (long output).
- void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
- //
- // Embedding utils
- //
- // TODO: repace embd_norm with an enum
- void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
- float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
- //
- // Control vector utils
- //
- struct common_control_vector_data {
- int n_embd;
- // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
- std::vector<float> data;
- };
- struct common_control_vector_load_info {
- float strength;
- std::string fname;
- };
- // Load control vectors, scale each by strength, and add them together.
- // On error, returns {-1, empty}
- common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
- //
- // Split utils
- //
- namespace {
- const char * const LLM_KV_SPLIT_NO = "split.no";
- const char * const LLM_KV_SPLIT_COUNT = "split.count";
- const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
- }
|