123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357 |
- //go:build linux || windows
- package gpu
- /*
- #cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
- #cgo windows LDFLAGS: -lpthread
- #include "gpu_info.h"
- */
- import "C"
- import (
- "fmt"
- "log/slog"
- "os"
- "path/filepath"
- "runtime"
- "strconv"
- "strings"
- "sync"
- "unsafe"
- "github.com/ollama/ollama/format"
- )
- type handles struct {
- nvml *C.nvml_handle_t
- cudart *C.cudart_handle_t
- }
- const (
- cudaMinimumMemory = 457 * format.MebiByte
- rocmMinimumMemory = 457 * format.MebiByte
- )
- var gpuMutex sync.Mutex
- // With our current CUDA compile flags, older than 5.0 will not work properly
- var CudaComputeMin = [2]C.int{5, 0}
- // Possible locations for the nvidia-ml library
- var NvmlLinuxGlobs = []string{
- "/usr/local/cuda/lib64/libnvidia-ml.so*",
- "/usr/lib/x86_64-linux-gnu/nvidia/current/libnvidia-ml.so*",
- "/usr/lib/x86_64-linux-gnu/libnvidia-ml.so*",
- "/usr/lib/wsl/lib/libnvidia-ml.so*",
- "/usr/lib/wsl/drivers/*/libnvidia-ml.so*",
- "/opt/cuda/lib64/libnvidia-ml.so*",
- "/usr/lib*/libnvidia-ml.so*",
- "/usr/lib/aarch64-linux-gnu/nvidia/current/libnvidia-ml.so*",
- "/usr/lib/aarch64-linux-gnu/libnvidia-ml.so*",
- "/usr/local/lib*/libnvidia-ml.so*",
- // TODO: are these stubs ever valid?
- "/opt/cuda/targets/x86_64-linux/lib/stubs/libnvidia-ml.so*",
- }
- var NvmlWindowsGlobs = []string{
- "c:\\Windows\\System32\\nvml.dll",
- }
- var CudartLinuxGlobs = []string{
- "/usr/local/cuda/lib64/libcudart.so*",
- "/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
- "/usr/lib/x86_64-linux-gnu/libcudart.so*",
- "/usr/lib/wsl/lib/libcudart.so*",
- "/usr/lib/wsl/drivers/*/libcudart.so*",
- "/opt/cuda/lib64/libcudart.so*",
- "/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
- "/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
- "/usr/lib/aarch64-linux-gnu/libcudart.so*",
- "/usr/local/cuda/lib*/libcudart.so*",
- "/usr/lib*/libcudart.so*",
- "/usr/local/lib*/libcudart.so*",
- }
- var CudartWindowsGlobs = []string{
- "c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
- }
- // Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
- // Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
- var CudaTegra string = os.Getenv("JETSON_JETPACK")
- // Note: gpuMutex must already be held
- func initGPUHandles() *handles {
- // TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
- gpuHandles := &handles{nil, nil}
- var nvmlMgmtName string
- var nvmlMgmtPatterns []string
- var cudartMgmtName string
- var cudartMgmtPatterns []string
- tmpDir, _ := PayloadsDir()
- switch runtime.GOOS {
- case "windows":
- nvmlMgmtName = "nvml.dll"
- nvmlMgmtPatterns = make([]string, len(NvmlWindowsGlobs))
- copy(nvmlMgmtPatterns, NvmlWindowsGlobs)
- cudartMgmtName = "cudart64_*.dll"
- localAppData := os.Getenv("LOCALAPPDATA")
- cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)}
- cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...)
- case "linux":
- nvmlMgmtName = "libnvidia-ml.so"
- nvmlMgmtPatterns = make([]string, len(NvmlLinuxGlobs))
- copy(nvmlMgmtPatterns, NvmlLinuxGlobs)
- cudartMgmtName = "libcudart.so*"
- if tmpDir != "" {
- // TODO - add "payloads" for subprocess
- cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)}
- }
- cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
- default:
- return gpuHandles
- }
- slog.Info("Detecting GPU type")
- cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns)
- if len(cudartLibPaths) > 0 {
- cudart := LoadCUDARTMgmt(cudartLibPaths)
- if cudart != nil {
- slog.Info("Nvidia GPU detected via cudart")
- gpuHandles.cudart = cudart
- return gpuHandles
- }
- }
- // TODO once we build confidence, remove this and the gpu_info_nvml.[ch] files
- nvmlLibPaths := FindGPULibs(nvmlMgmtName, nvmlMgmtPatterns)
- if len(nvmlLibPaths) > 0 {
- nvml := LoadNVMLMgmt(nvmlLibPaths)
- if nvml != nil {
- slog.Info("Nvidia GPU detected via nvidia-ml")
- gpuHandles.nvml = nvml
- return gpuHandles
- }
- }
- return gpuHandles
- }
- func GetGPUInfo() GpuInfo {
- // TODO - consider exploring lspci (and equivalent on windows) to check for
- // GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
- gpuMutex.Lock()
- defer gpuMutex.Unlock()
- gpuHandles := initGPUHandles()
- defer func() {
- if gpuHandles.nvml != nil {
- C.nvml_release(*gpuHandles.nvml)
- }
- if gpuHandles.cudart != nil {
- C.cudart_release(*gpuHandles.cudart)
- }
- }()
- // All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX
- cpuVariant := GetCPUVariant()
- if cpuVariant == "" && runtime.GOARCH == "amd64" {
- slog.Warn("CPU does not have AVX or AVX2, disabling GPU support.")
- }
- var memInfo C.mem_info_t
- resp := GpuInfo{}
- if gpuHandles.nvml != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") {
- C.nvml_check_vram(*gpuHandles.nvml, &memInfo)
- if memInfo.err != nil {
- slog.Info(fmt.Sprintf("[nvidia-ml] error looking up NVML GPU memory: %s", C.GoString(memInfo.err)))
- C.free(unsafe.Pointer(memInfo.err))
- } else if memInfo.count > 0 {
- // Verify minimum compute capability
- var cc C.nvml_compute_capability_t
- C.nvml_compute_capability(*gpuHandles.nvml, &cc)
- if cc.err != nil {
- slog.Info(fmt.Sprintf("[nvidia-ml] error looking up NVML GPU compute capability: %s", C.GoString(cc.err)))
- C.free(unsafe.Pointer(cc.err))
- } else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) {
- slog.Info(fmt.Sprintf("[nvidia-ml] NVML CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
- resp.Library = "cuda"
- resp.MinimumMemory = cudaMinimumMemory
- } else {
- slog.Info(fmt.Sprintf("[nvidia-ml] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
- }
- }
- } else if gpuHandles.cudart != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") {
- C.cudart_check_vram(*gpuHandles.cudart, &memInfo)
- if memInfo.err != nil {
- slog.Info(fmt.Sprintf("[cudart] error looking up CUDART GPU memory: %s", C.GoString(memInfo.err)))
- C.free(unsafe.Pointer(memInfo.err))
- } else if memInfo.count > 0 {
- // Verify minimum compute capability
- var cc C.cudart_compute_capability_t
- C.cudart_compute_capability(*gpuHandles.cudart, &cc)
- if cc.err != nil {
- slog.Info(fmt.Sprintf("[cudart] error looking up CUDA compute capability: %s", C.GoString(cc.err)))
- C.free(unsafe.Pointer(cc.err))
- } else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) {
- slog.Info(fmt.Sprintf("[cudart] CUDART CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
- resp.Library = "cuda"
- resp.MinimumMemory = cudaMinimumMemory
- } else {
- slog.Info(fmt.Sprintf("[cudart] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
- }
- }
- } else {
- AMDGetGPUInfo(&resp)
- if resp.Library != "" {
- resp.MinimumMemory = rocmMinimumMemory
- return resp
- }
- }
- if resp.Library == "" {
- C.cpu_check_ram(&memInfo)
- resp.Library = "cpu"
- resp.Variant = cpuVariant
- }
- if memInfo.err != nil {
- slog.Info(fmt.Sprintf("error looking up CPU memory: %s", C.GoString(memInfo.err)))
- C.free(unsafe.Pointer(memInfo.err))
- return resp
- }
- resp.DeviceCount = uint32(memInfo.count)
- resp.FreeMemory = uint64(memInfo.free)
- resp.TotalMemory = uint64(memInfo.total)
- return resp
- }
- func getCPUMem() (memInfo, error) {
- var ret memInfo
- var info C.mem_info_t
- C.cpu_check_ram(&info)
- if info.err != nil {
- defer C.free(unsafe.Pointer(info.err))
- return ret, fmt.Errorf(C.GoString(info.err))
- }
- ret.FreeMemory = uint64(info.free)
- ret.TotalMemory = uint64(info.total)
- return ret, nil
- }
- func CheckVRAM() (int64, error) {
- userLimit := os.Getenv("OLLAMA_MAX_VRAM")
- if userLimit != "" {
- avail, err := strconv.ParseInt(userLimit, 10, 64)
- if err != nil {
- return 0, fmt.Errorf("Invalid OLLAMA_MAX_VRAM setting %s: %s", userLimit, err)
- }
- slog.Info(fmt.Sprintf("user override OLLAMA_MAX_VRAM=%d", avail))
- return avail, nil
- }
- gpuInfo := GetGPUInfo()
- if gpuInfo.FreeMemory > 0 && (gpuInfo.Library == "cuda" || gpuInfo.Library == "rocm") {
- return int64(gpuInfo.FreeMemory), nil
- }
- return 0, fmt.Errorf("no GPU detected") // TODO - better handling of CPU based memory determiniation
- }
- func FindGPULibs(baseLibName string, patterns []string) []string {
- // Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
- var ldPaths []string
- gpuLibPaths := []string{}
- slog.Info(fmt.Sprintf("Searching for GPU management library %s", baseLibName))
- switch runtime.GOOS {
- case "windows":
- ldPaths = strings.Split(os.Getenv("PATH"), ";")
- case "linux":
- ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
- default:
- return gpuLibPaths
- }
- // Start with whatever we find in the PATH/LD_LIBRARY_PATH
- for _, ldPath := range ldPaths {
- d, err := filepath.Abs(ldPath)
- if err != nil {
- continue
- }
- patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
- }
- slog.Debug(fmt.Sprintf("gpu management search paths: %v", patterns))
- for _, pattern := range patterns {
- // Ignore glob discovery errors
- matches, _ := filepath.Glob(pattern)
- for _, match := range matches {
- // Resolve any links so we don't try the same lib multiple times
- // and weed out any dups across globs
- libPath := match
- tmp := match
- var err error
- for ; err == nil; tmp, err = os.Readlink(libPath) {
- if !filepath.IsAbs(tmp) {
- tmp = filepath.Join(filepath.Dir(libPath), tmp)
- }
- libPath = tmp
- }
- new := true
- for _, cmp := range gpuLibPaths {
- if cmp == libPath {
- new = false
- break
- }
- }
- if new {
- gpuLibPaths = append(gpuLibPaths, libPath)
- }
- }
- }
- slog.Info(fmt.Sprintf("Discovered GPU libraries: %v", gpuLibPaths))
- return gpuLibPaths
- }
- func LoadNVMLMgmt(nvmlLibPaths []string) *C.nvml_handle_t {
- var resp C.nvml_init_resp_t
- resp.ch.verbose = getVerboseState()
- for _, libPath := range nvmlLibPaths {
- lib := C.CString(libPath)
- defer C.free(unsafe.Pointer(lib))
- C.nvml_init(lib, &resp)
- if resp.err != nil {
- slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
- C.free(unsafe.Pointer(resp.err))
- } else {
- return &resp.ch
- }
- }
- return nil
- }
- func LoadCUDARTMgmt(cudartLibPaths []string) *C.cudart_handle_t {
- var resp C.cudart_init_resp_t
- resp.ch.verbose = getVerboseState()
- for _, libPath := range cudartLibPaths {
- lib := C.CString(libPath)
- defer C.free(unsafe.Pointer(lib))
- C.cudart_init(lib, &resp)
- if resp.err != nil {
- slog.Info(fmt.Sprintf("Unable to load cudart CUDA management library %s: %s", libPath, C.GoString(resp.err)))
- C.free(unsafe.Pointer(resp.err))
- } else {
- return &resp.ch
- }
- }
- return nil
- }
- func getVerboseState() C.uint16_t {
- if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
- return C.uint16_t(1)
- }
- return C.uint16_t(0)
- }
|