ggml.go 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633
  1. package ggml
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "log/slog"
  8. "slices"
  9. "strings"
  10. "github.com/ollama/ollama/fs/util/bufioutil"
  11. )
  12. type GGML struct {
  13. container
  14. model
  15. }
  16. type model interface {
  17. KV() KV
  18. Tensors() Tensors
  19. }
  20. type KV map[string]any
  21. func (kv KV) Architecture() string {
  22. return kv.String("general.architecture", "unknown")
  23. }
  24. func (kv KV) Kind() string {
  25. return kv.String("general.type", "unknown")
  26. }
  27. func (kv KV) ParameterCount() uint64 {
  28. return keyValue[uint64](kv, "general.parameter_count")
  29. }
  30. func (kv KV) FileType() fileType {
  31. if t := kv.Uint("general.file_type"); t > 0 {
  32. return fileType(t)
  33. }
  34. return fileTypeUnknown
  35. }
  36. func (kv KV) BlockCount() uint64 {
  37. return uint64(kv.Uint("block_count"))
  38. }
  39. func (kv KV) EmbeddingLength() uint64 {
  40. return uint64(kv.Uint("embedding_length"))
  41. }
  42. func (kv KV) HeadCount() uint64 {
  43. return uint64(kv.Uint("attention.head_count"))
  44. }
  45. func (kv KV) HeadCountKV() uint64 {
  46. return uint64(kv.Uint("attention.head_count_kv", 1))
  47. }
  48. func (kv KV) EmbeddingHeadCount() uint64 {
  49. if heads := kv.HeadCount(); heads > 0 {
  50. return kv.EmbeddingLength() / heads
  51. }
  52. return 0
  53. }
  54. func (kv KV) EmbeddingHeadCountK() uint64 {
  55. return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
  56. }
  57. func (kv KV) EmbeddingHeadCountV() uint64 {
  58. return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
  59. }
  60. func (kv KV) GQA() uint64 {
  61. return kv.HeadCount() / kv.HeadCountKV()
  62. }
  63. func (kv KV) ContextLength() uint64 {
  64. return uint64(kv.Uint("context_length"))
  65. }
  66. func (kv KV) ChatTemplate() string {
  67. return kv.String("tokenizer.chat_template")
  68. }
  69. func (kv KV) String(key string, defaultValue ...string) string {
  70. return keyValue(kv, key, append(defaultValue, "")...)
  71. }
  72. func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
  73. return keyValue(kv, key, append(defaultValue, 0)...)
  74. }
  75. func (kv KV) Float(key string, defaultValue ...float32) float32 {
  76. return keyValue(kv, key, append(defaultValue, 0)...)
  77. }
  78. func (kv KV) Bool(key string, defaultValue ...bool) bool {
  79. return keyValue(kv, key, append(defaultValue, false)...)
  80. }
  81. func (kv KV) Strings(key string, defaultValue ...[]string) []string {
  82. r := keyValue(kv, key, &array{})
  83. s := make([]string, r.size)
  84. for i := range r.size {
  85. s[i] = r.values[i].(string)
  86. }
  87. return s
  88. }
  89. func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
  90. r := keyValue(kv, key, &array{})
  91. s := make([]uint32, r.size)
  92. for i := range r.size {
  93. s[i] = uint32(r.values[i].(int32))
  94. }
  95. return s
  96. }
  97. func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
  98. if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
  99. key = kv.Architecture() + "." + key
  100. }
  101. if val, ok := kv[key]; ok {
  102. return val.(T)
  103. }
  104. slog.Warn("key not found", "key", key, "default", defaultValue[0])
  105. return defaultValue[0]
  106. }
  107. type Tensors struct {
  108. items []*Tensor
  109. Offset uint64
  110. }
  111. func (s Tensors) Items(prefix ...string) []*Tensor {
  112. if len(prefix) == 0 {
  113. return s.items
  114. }
  115. var items []*Tensor
  116. for _, t := range s.items {
  117. if strings.HasPrefix(t.Name, prefix[0]) {
  118. items = append(items, t)
  119. }
  120. }
  121. return items
  122. }
  123. func (ts Tensors) GroupLayers() map[string]Layer {
  124. layers := make(map[string]Layer)
  125. for _, t := range ts.items {
  126. parts := strings.Split(t.Name, ".")
  127. if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
  128. if len(parts) > index+2 {
  129. // blk and mm should have a number after them, join it
  130. parts = append(
  131. []string{strings.Join(parts[:index+2], ".")},
  132. parts[index+2:]...)
  133. }
  134. }
  135. if _, ok := layers[parts[0]]; !ok {
  136. layers[parts[0]] = make(Layer)
  137. }
  138. layers[parts[0]][strings.Join(parts[1:], ".")] = t
  139. }
  140. return layers
  141. }
  142. type Layer map[string]*Tensor
  143. func (l Layer) Size() (size uint64) {
  144. for _, t := range l {
  145. size += t.Size()
  146. }
  147. return size
  148. }
  149. type Tensor struct {
  150. Name string `json:"name"`
  151. Kind uint32 `json:"kind"`
  152. Offset uint64 `json:"-"`
  153. // Shape is the number of elements in each dimension
  154. Shape []uint64 `json:"shape"`
  155. io.WriterTo `json:"-"`
  156. }
  157. func (t Tensor) block() (n int) {
  158. if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
  159. return -1
  160. }
  161. return
  162. }
  163. func (t Tensor) blockSize() uint64 {
  164. switch t.Kind {
  165. case
  166. 0, // F32
  167. 1, // F16
  168. 24, // I8
  169. 25, // I16
  170. 26, // I32
  171. 27, // I64
  172. 28, // F64
  173. 30: // BF16
  174. return 1
  175. case
  176. 2, // Q4_0
  177. 3, // Q4_1
  178. 6, // Q5_0
  179. 7, // Q5_1
  180. 8, // Q8_0
  181. 9, // Q8_1
  182. 20: // IQ4_NL
  183. return 32
  184. default:
  185. return 256
  186. }
  187. }
  188. func (t Tensor) typeSize() uint64 {
  189. blockSize := t.blockSize()
  190. switch t.Kind {
  191. case 0: // FP32
  192. return 4
  193. case 1: // FP16
  194. return 2
  195. case 2: // Q4_0
  196. return 2 + blockSize/2
  197. case 3: // Q4_1
  198. return 2 + 2 + blockSize/2
  199. case 6: // Q5_0
  200. return 2 + 4 + blockSize/2
  201. case 7: // Q5_1
  202. return 2 + 2 + 4 + blockSize/2
  203. case 8: // Q8_0
  204. return 2 + blockSize
  205. case 9: // Q8_1
  206. return 2 + 2 + blockSize
  207. case 10: // Q2_K
  208. return blockSize/16 + blockSize/4 + 2 + 2
  209. case 11: // Q3_K
  210. return blockSize/8 + blockSize/4 + 12 + 2
  211. case 12: // Q4_K
  212. return 2 + 2 + 12 + blockSize/2
  213. case 13: // Q5_K
  214. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  215. case 14: // Q6_K
  216. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  217. case 15: // Q8_K
  218. return 4 + blockSize + 2*blockSize/16
  219. case 16: // IQ2_XXS
  220. return 2 + 2*blockSize/8
  221. case 17: // IQ2_XS
  222. return 2 + 2*blockSize/8 + blockSize/32
  223. case 18: // IQ3_XXS
  224. return 2 + blockSize/4 + blockSize/8
  225. case 19: // IQ1_S
  226. return 2 + blockSize/8 + blockSize/16
  227. case 20: // IQ4_NL
  228. return 2 + blockSize/2
  229. case 21: // IQ3_S
  230. return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
  231. case 22: // IQ2_S
  232. return 2 + blockSize/4 + blockSize/16
  233. case 23: // IQ4_XS
  234. return 2 + 2 + blockSize/2 + blockSize/64
  235. case 24: // I8
  236. return 1
  237. case 25: // I16
  238. return 2
  239. case 26: // I32
  240. return 4
  241. case 27: // I64
  242. return 8
  243. case 28: // F64
  244. return 8
  245. case 29: // IQ1_M
  246. return blockSize/8 + blockSize/16 + blockSize/32
  247. case 30: // BF16
  248. return 2
  249. default:
  250. return 0
  251. }
  252. }
  253. func (t Tensor) parameters() uint64 {
  254. var count uint64 = 1
  255. for _, n := range t.Shape {
  256. count *= n
  257. }
  258. return count
  259. }
  260. func (t Tensor) Size() uint64 {
  261. return t.parameters() * t.typeSize() / t.blockSize()
  262. }
  263. type container interface {
  264. Name() string
  265. Decode(io.ReadSeeker) (model, error)
  266. }
  267. const (
  268. // Magic constant for `ggml` files (unversioned).
  269. FILE_MAGIC_GGML = 0x67676d6c
  270. // Magic constant for `ggml` files (versioned, ggmf).
  271. FILE_MAGIC_GGMF = 0x67676d66
  272. // Magic constant for `ggml` files (versioned, ggjt).
  273. FILE_MAGIC_GGJT = 0x67676a74
  274. // Magic constant for `ggla` files (LoRA adapter).
  275. FILE_MAGIC_GGLA = 0x67676C61
  276. // Magic constant for `gguf` files (versioned, gguf)
  277. FILE_MAGIC_GGUF_LE = 0x46554747
  278. FILE_MAGIC_GGUF_BE = 0x47475546
  279. )
  280. var ErrUnsupportedFormat = errors.New("unsupported model format")
  281. func DetectContentType(b []byte) string {
  282. switch binary.LittleEndian.Uint32(b[:4]) {
  283. case FILE_MAGIC_GGML:
  284. return "ggml"
  285. case FILE_MAGIC_GGMF:
  286. return "ggmf"
  287. case FILE_MAGIC_GGJT:
  288. return "ggjt"
  289. case FILE_MAGIC_GGLA:
  290. return "ggla"
  291. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  292. return "gguf"
  293. default:
  294. return ""
  295. }
  296. }
  297. // Decode decodes a GGML model from the given reader.
  298. //
  299. // It collects array values for arrays with a size less than or equal to
  300. // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
  301. // the maxArraySize is negative, all arrays are collected.
  302. func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
  303. if maxArraySize == 0 {
  304. maxArraySize = 1024
  305. }
  306. rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
  307. var magic uint32
  308. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  309. return nil, 0, err
  310. }
  311. var c container
  312. switch magic {
  313. case FILE_MAGIC_GGUF_LE:
  314. c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
  315. case FILE_MAGIC_GGUF_BE:
  316. c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
  317. default:
  318. return nil, 0, errors.New("invalid file magic")
  319. }
  320. model, err := c.Decode(rs)
  321. if err != nil {
  322. return nil, 0, err
  323. }
  324. offset, err := rs.Seek(0, io.SeekCurrent)
  325. if err != nil {
  326. return nil, 0, err
  327. }
  328. // final model type
  329. return &GGML{
  330. container: c,
  331. model: model,
  332. }, offset, nil
  333. }
  334. func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
  335. embedding := f.KV().EmbeddingLength()
  336. heads := f.KV().HeadCount()
  337. headsKV := f.KV().HeadCountKV()
  338. vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
  339. embeddingHeads := f.KV().EmbeddingHeadCount()
  340. embeddingHeadsK := f.KV().EmbeddingHeadCountK()
  341. embeddingHeadsV := f.KV().EmbeddingHeadCountV()
  342. layers := f.Tensors().GroupLayers()
  343. bytesPerElement := kvCacheBytesPerElement(kvCacheType)
  344. kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
  345. switch f.KV().Architecture() {
  346. case "llama":
  347. fullOffload = max(
  348. 4*batch*(1+4*embedding+context*(1+heads)),
  349. 4*batch*(embedding+vocab),
  350. )
  351. partialOffload = 4 * batch * embedding
  352. partialOffload += max(
  353. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
  354. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  355. )
  356. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  357. // mixtral 8x22b
  358. ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
  359. partialOffload = max(
  360. 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
  361. 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
  362. )
  363. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  364. // mixtral 8x7b
  365. ffnGateWeight1 := ffnGateWeight.Shape[1]
  366. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  367. partialOffload = max(
  368. 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  369. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  370. )
  371. }
  372. case "mllama":
  373. var visionTokens, tiles uint64 = 1601, 4
  374. if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
  375. kv = headsKV *
  376. (embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
  377. (2* // sizeof(float16)
  378. (f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
  379. context +
  380. 4* // sizeof(float32)
  381. uint64(crossAttentionLayers.size)* // num cross attention layers
  382. visionTokens*
  383. tiles)
  384. }
  385. fullOffload = max(
  386. 4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
  387. // vocab graph
  388. 4*batch*(embedding+vocab),
  389. )
  390. var ropeFreqsCount uint64
  391. if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
  392. if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
  393. ropeFreqsCount = ropeFreqsWeights.parameters()
  394. }
  395. }
  396. partialOffload = max(
  397. 4*(batch*
  398. (2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
  399. ropeFreqsCount+
  400. embeddingHeadsK*context*headsKV),
  401. // vocab graph
  402. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  403. )
  404. case "gemma", "gemma2":
  405. fullOffload = max(
  406. 4*batch*(embedding+vocab),
  407. 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
  408. )
  409. partialOffload = max(
  410. 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
  411. 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
  412. 4*embeddingHeadsK*context*8+
  413. embedding*embeddingHeadsK*heads*9/16,
  414. )
  415. case "command-r":
  416. fullOffload = max(
  417. 4*batch*(embedding+vocab),
  418. 4*batch*(2+4*embedding+context*(1+heads)),
  419. )
  420. partialOffload = max(
  421. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  422. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  423. )
  424. case "qwen2":
  425. fullOffload = max(
  426. 4*batch*(embedding+vocab),
  427. 4*batch*(1+2*embedding+context+context*heads),
  428. )
  429. partialOffload = max(
  430. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  431. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  432. )
  433. case "phi2":
  434. fullOffload = max(
  435. 4*batch*(embedding+vocab),
  436. 4*batch*(1+4*embedding+context+context*heads),
  437. )
  438. partialOffload = max(
  439. 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
  440. 4*batch*(2+3*embedding+context+context*heads),
  441. )
  442. case "stablelm":
  443. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  444. partialOffload = max(
  445. 4*batch*(vocab+2*embedding),
  446. fullOffload,
  447. )
  448. case "deepseek2":
  449. fullOffload = max(
  450. 4*batch*(3*embedding+vocab),
  451. 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
  452. )
  453. partialOffload = max(
  454. 4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
  455. 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
  456. )
  457. case "chatglm":
  458. fullOffload = 4 * batch * (embedding + vocab)
  459. partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
  460. if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
  461. fullOffload = max(
  462. fullOffload,
  463. 4*batch*(2+
  464. 2*embedding+
  465. context+
  466. context*heads+
  467. embeddingHeadsK*heads+
  468. qkvBias.Shape[0]),
  469. )
  470. partialOffload = max(
  471. partialOffload,
  472. 4*batch*(1+
  473. 2*embedding+
  474. embeddingHeadsK*heads+
  475. context+
  476. context*heads)+
  477. 4*embeddingHeadsK*context+
  478. 4*context*embeddingHeadsK+
  479. 4*qkvBias.Shape[0],
  480. )
  481. }
  482. }
  483. return
  484. }
  485. func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
  486. switch llm.KV().Architecture() {
  487. case "mllama":
  488. for _, layer := range llm.Tensors().GroupLayers()["v"] {
  489. weights += layer.Size()
  490. }
  491. kv := func(n string) uint64 {
  492. if v, ok := llm.KV()["mllama.vision."+n].(uint32); ok {
  493. return uint64(v)
  494. }
  495. return 0
  496. }
  497. imageSize := kv("image_size")
  498. maxNumTiles := kv("max_num_tiles")
  499. embeddingLength := kv("embedding_length")
  500. headCount := kv("attention.head_count")
  501. numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
  502. if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
  503. numPatches++
  504. }
  505. numPaddedPatches := numPatches + 8 - (numPatches%8)%8
  506. graphSize = 4 * (8 +
  507. imageSize*imageSize*kv("num_channels")*maxNumTiles +
  508. embeddingLength*numPatches*maxNumTiles +
  509. 9*embeddingLength*numPaddedPatches*maxNumTiles +
  510. numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
  511. }
  512. return weights, graphSize
  513. }
  514. // SupportsKVCacheType checks if the requested cache type is supported
  515. func (f GGML) SupportsKVCacheType(cacheType string) bool {
  516. return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
  517. }
  518. // SupportsFlashAttention checks if the model supports flash attention
  519. func (f GGML) SupportsFlashAttention() bool {
  520. _, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
  521. if isEmbedding {
  522. return false
  523. }
  524. // Check head counts match and are non-zero
  525. headCountK := f.KV().EmbeddingHeadCountK()
  526. headCountV := f.KV().EmbeddingHeadCountV()
  527. return headCountK != 0 && headCountV != 0 && headCountK == headCountV
  528. }
  529. // kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
  530. func kvCacheBytesPerElement(cacheType string) float64 {
  531. switch cacheType {
  532. case "q8_0":
  533. return 1 // 1/2 of fp16
  534. case "q4_0":
  535. return 0.5 // 1/4 of fp16
  536. default:
  537. return 2 // f16 (default)
  538. }
  539. }