llama.go 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. package llama
  2. // #cgo CFLAGS: -std=c11 -DNDEBUG -DLOG_DISABLE_LOGS
  3. // #cgo CXXFLAGS: -std=c++11 -DNDEBUG -DLOG_DISABLE_LOGS
  4. // #cgo darwin,arm64 CFLAGS: -DGGML_USE_METAL -DGGML_METAL_EMBED_LIBRARY -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  5. // #cgo darwin,arm64 CXXFLAGS: -DGGML_USE_METAL -DGGML_METAL_EMBED_LIBRARY -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  6. // #cgo darwin,arm64 LDFLAGS: ${SRCDIR}/ggml-metal.o -framework Foundation -framework Metal -framework MetalKit -framework Accelerate
  7. // #cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
  8. // #cgo darwin,amd64 CXXFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
  9. // #cgo darwin,amd64 LDFLAGS: -framework Foundation
  10. // #cgo darwin,amd64,avx2 CFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  11. // #cgo darwin,amd64,avx2 CXXFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  12. // #cgo darwin,amd64,avx2 LDFLAGS: -framework Accelerate
  13. // #cgo linux CFLAGS: -D_GNU_SOURCE
  14. // #cgo linux CXXFLAGS: -D_GNU_SOURCE
  15. // #cgo windows LDFLAGS: -lmsvcrt
  16. // #cgo avx CFLAGS: -mavx
  17. // #cgo avx CXXFLAGS: -mavx
  18. // #cgo avx2 CFLAGS: -mavx2 -mfma
  19. // #cgo avx2 CXXFLAGS: -mavx2 -mfma
  20. // #cgo cuda CFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  21. // #cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  22. // #cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  23. // #cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  24. // #cgo rocm LDFLAGS: -L${SRCDIR} -lggml_hipblas -lhipblas -lamdhip64 -lrocblas
  25. // #cgo windows,cuda LDFLAGS: -L. -L"C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.3/lib/x64" -lggml_cuda -lcuda -lcudart -lcublas -lcublasLt
  26. // #cgo windows,rocm LDFLAGS: -L. -L"C:/Program Files/AMD/ROCm/5.7/lib"
  27. // #cgo linux,cuda LDFLAGS: -L${SRCDIR} -L/usr/local/cuda/lib64 -lggml_cuda -lcuda -lcudart -lcublas -lcublasLt -lpthread -ldl -lrt
  28. // #cgo linux,rocm LDFLAGS: -L/opt/rocm/lib
  29. // #include <stdlib.h>
  30. // #include "llama.h"
  31. // #include "clip.h"
  32. // #include "llava.h"
  33. // #include "sampling_ext.h"
  34. //
  35. // bool llamaProgressCallback(float progress, void *user_data);
  36. import "C"
  37. import (
  38. "errors"
  39. "fmt"
  40. "runtime"
  41. "runtime/cgo"
  42. "strings"
  43. "unsafe"
  44. )
  45. func BackendInit() {
  46. C.llama_backend_init()
  47. }
  48. func PrintSystemInfo() string {
  49. return C.GoString(C.llama_print_system_info())
  50. }
  51. type ContextParams struct {
  52. c C.struct_llama_context_params
  53. }
  54. func NewContextParams(numCtx int, threads int, flashAttention bool) ContextParams {
  55. params := C.llama_context_default_params()
  56. params.n_ctx = C.uint(numCtx)
  57. params.n_threads = C.uint(runtime.NumCPU())
  58. params.n_threads_batch = params.n_threads
  59. params.embeddings = C.bool(true)
  60. params.flash_attn = C.bool(flashAttention)
  61. params.n_threads = C.uint(threads)
  62. return ContextParams{c: params}
  63. }
  64. type ModelParams struct {
  65. c C.struct_llama_model_params
  66. }
  67. //export llamaProgressCallback
  68. func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
  69. handle := cgo.Handle(userData)
  70. callback := handle.Value().(func(float32))
  71. callback(float32(progress))
  72. return true
  73. }
  74. func NewModelParams(numGpuLayers int, mainGpu int, callback func(float32)) ModelParams {
  75. params := C.llama_model_default_params()
  76. params.n_gpu_layers = C.int(numGpuLayers)
  77. params.main_gpu = C.int32_t(mainGpu)
  78. handle := cgo.NewHandle(callback)
  79. params.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
  80. params.progress_callback_user_data = unsafe.Pointer(handle)
  81. runtime.SetFinalizer(&params, func(p *C.struct_llama_model_params) {
  82. handle.Delete()
  83. })
  84. return ModelParams{c: params}
  85. }
  86. type Context struct {
  87. c *C.struct_llama_context
  88. }
  89. func (c *Context) KvCacheClear() {
  90. C.llama_kv_cache_clear(c.c)
  91. }
  92. func (c *Context) Decode(batch Batch) error {
  93. // Positive return values does not mean a fatal error, but rather a warning.
  94. // 0 - success
  95. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  96. // < 0 - error
  97. code := int(C.llama_decode(c.c, batch.c))
  98. if code < 0 {
  99. return fmt.Errorf("llama_decode failed with code %d", code)
  100. }
  101. if code > 0 {
  102. return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d", code)
  103. }
  104. return nil
  105. }
  106. func (c *Context) Model() *Model {
  107. return &Model{c: C.llama_get_model(c.c)}
  108. }
  109. func (c *Context) GetLogitsIth(i int) []float32 {
  110. return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_logits_ith(c.c, C.int(i)))), c.Model().NumVocab())
  111. }
  112. func (c *Context) SampleTokenGreedy(logits []float32) int {
  113. candidates := (*C.struct_llama_token_data)(C.malloc(C.size_t(len(logits)) * C.size_t(unsafe.Sizeof(C.struct_llama_token_data{}))))
  114. defer C.free(unsafe.Pointer(candidates))
  115. for i, logit := range logits {
  116. ptr := (*C.struct_llama_token_data)(unsafe.Pointer(uintptr(unsafe.Pointer(candidates)) + uintptr(i)*unsafe.Sizeof(C.struct_llama_token_data{})))
  117. ptr.id = C.int(i)
  118. ptr.logit = C.float(logit)
  119. ptr.p = 0.0
  120. }
  121. return int(C.llama_sample_token_greedy(c.c, &C.llama_token_data_array{
  122. data: candidates,
  123. size: C.size_t(len(logits)),
  124. sorted: C.bool(false),
  125. }))
  126. }
  127. func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
  128. return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
  129. }
  130. // Get the embeddings for a sequence id
  131. func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
  132. embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
  133. if embeddings == nil {
  134. return nil
  135. }
  136. return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
  137. }
  138. func (c *Context) GetEmbeddingsIth(i int) []float32 {
  139. return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))), c.Model().NEmbd())
  140. }
  141. func LoadModelFromFile(modelPath string, params ModelParams) *Model {
  142. return &Model{c: C.llama_load_model_from_file(C.CString(modelPath), params.c)}
  143. }
  144. func NewContextWithModel(model *Model, params ContextParams) *Context {
  145. return &Context{c: C.llama_new_context_with_model(model.c, params.c)}
  146. }
  147. func (m *Model) NumVocab() int {
  148. return int(C.llama_n_vocab(m.c))
  149. }
  150. func (m *Model) TokenIsEog(token int) bool {
  151. return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
  152. }
  153. func (m *Model) ApplyLoraFromFile(loraPath string, scale float32, baseModelPath string, threads int) error {
  154. cLoraPath := C.CString(loraPath)
  155. defer C.free(unsafe.Pointer(cLoraPath))
  156. var cBaseModelPath *C.char
  157. if baseModelPath != "" {
  158. cBaseModelPath = C.CString(baseModelPath)
  159. }
  160. code := int(C.llama_model_apply_lora_from_file(m.c, cLoraPath, C.float(scale), cBaseModelPath, C.int32_t(threads)))
  161. if code != 0 {
  162. return errors.New("error applying lora from file")
  163. }
  164. return nil
  165. }
  166. type Batch struct {
  167. c C.struct_llama_batch
  168. }
  169. func NewBatch(nTokens int, embd int, maxSeq int) Batch {
  170. return Batch{c: C.llama_batch_init(C.int(nTokens), C.int(embd), C.int(maxSeq))}
  171. }
  172. func (b *Batch) NumTokens() int {
  173. return int(b.c.n_tokens)
  174. }
  175. // Add adds a token to the batch with the given position for the given
  176. // sequence ids, and optionally instructs to include logits.
  177. func (b *Batch) Add(token int, pos int, seqIds []int, logits bool) {
  178. unsafe.Slice(b.c.token, 512)[b.c.n_tokens] = C.llama_token(token)
  179. unsafe.Slice(b.c.pos, 512)[b.c.n_tokens] = C.llama_pos(pos)
  180. unsafe.Slice(b.c.n_seq_id, 512)[b.c.n_tokens] = C.int(len(seqIds))
  181. for i, s := range seqIds {
  182. unsafe.Slice((unsafe.Slice(b.c.seq_id, 512)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
  183. }
  184. if logits {
  185. unsafe.Slice(b.c.logits, 512)[b.c.n_tokens] = 1
  186. }
  187. b.c.n_tokens += 1
  188. }
  189. func (b *Batch) Clear() {
  190. b.c.n_tokens = 0
  191. }
  192. func (b *Batch) Free() {
  193. C.llama_batch_free(b.c)
  194. }
  195. func BatchGetOne(tokens []int, pos0 int, seqId int) Batch {
  196. return Batch{c: C.llama_batch_get_one((*C.int)(unsafe.Pointer(&tokens[0])), C.int32_t(len(tokens)), C.int(pos0), C.int(seqId))}
  197. }
  198. type Model struct {
  199. c *C.struct_llama_model
  200. }
  201. func (m *Model) TokenToPiece(token int) string {
  202. buf := make([]byte, 12)
  203. C.llama_token_to_piece(
  204. m.c,
  205. C.int32_t(token),
  206. (*C.char)(unsafe.Pointer(&buf[0])),
  207. C.int32_t(12),
  208. C.bool(true),
  209. )
  210. return strings.TrimRight(string(buf), "\x00")
  211. }
  212. func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
  213. maxTokens := len(text) + 2
  214. cTokens := make([]C.llama_token, maxTokens)
  215. cText := C.CString(text)
  216. defer C.free(unsafe.Pointer(cText))
  217. result := C.llama_tokenize(
  218. m.c,
  219. cText,
  220. C.int32_t(len(text)),
  221. &cTokens[0],
  222. C.int32_t(maxTokens),
  223. C.bool(addSpecial),
  224. C.bool(parseSpecial),
  225. )
  226. if result < 0 {
  227. return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
  228. }
  229. tokens := make([]int, result)
  230. for i := 0; i < int(result); i++ {
  231. tokens[i] = int(cTokens[i])
  232. }
  233. return tokens, nil
  234. }
  235. func (m *Model) NEmbd() int {
  236. return int(C.llama_n_embd(m.c))
  237. }
  238. func Quantize(infile, outfile string, ftype uint32) error {
  239. cinfile := C.CString(infile)
  240. defer C.free(unsafe.Pointer(cinfile))
  241. coutfile := C.CString(outfile)
  242. defer C.free(unsafe.Pointer(coutfile))
  243. params := C.llama_model_quantize_default_params()
  244. params.nthread = -1
  245. params.ftype = ftype
  246. if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
  247. return fmt.Errorf("llama_model_quantize: %d", rc)
  248. }
  249. return nil
  250. }
  251. // llava
  252. type ClipContext struct {
  253. c *C.struct_clip_ctx
  254. }
  255. func NewClipContext(modelPath string) *ClipContext {
  256. mp := C.CString(modelPath)
  257. defer C.free(unsafe.Pointer(mp))
  258. cc := C.clip_model_load(mp, 1)
  259. return &ClipContext{c: cc}
  260. }
  261. type LlavaContext struct {
  262. c *C.struct_llava_context
  263. }
  264. type LlavaImageEmbed struct {
  265. c *C.struct_llava_image_embed
  266. }
  267. func NewLlavaImageEmbed(clipContext *ClipContext, data []byte) *LlavaImageEmbed {
  268. return &LlavaImageEmbed{c: C.llava_image_embed_make_with_bytes(clipContext.c, C.int(runtime.NumCPU()), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))}
  269. }
  270. func LlavaEvalImageEmbed(llamaContext *Context, embed *LlavaImageEmbed, nBatch int, nPast *int) {
  271. C.llava_eval_image_embed(llamaContext.c, embed.c, C.int(nBatch), (*C.int)(unsafe.Pointer(nPast)))
  272. }
  273. // sampling
  274. // TODO: this is a temporary wrapper to allow calling C++ code from CGo
  275. type SamplingContext struct {
  276. c *C.struct_llama_sampling_context
  277. }
  278. type SamplingParams struct {
  279. TopK int
  280. TopP float32
  281. TfsZ float32
  282. TypicalP float32
  283. Temp float32
  284. PenaltyRepeat float32
  285. PenaltyFreq float32
  286. PenaltyPresent float32
  287. Mirostat int
  288. MirostatTau float32
  289. MirostatEta float32
  290. PenalizeNl bool
  291. Seed uint32
  292. Grammar string
  293. }
  294. func NewSamplingContext(params SamplingParams) *SamplingContext {
  295. var cparams C.struct_llama_sampling_cparams
  296. cparams.top_k = C.int32_t(params.TopK)
  297. cparams.top_p = C.float(params.TopP)
  298. cparams.tfs_z = C.float(params.TfsZ)
  299. cparams.typical_p = C.float(params.TypicalP)
  300. cparams.temp = C.float(params.Temp)
  301. cparams.penalty_repeat = C.float(params.PenaltyRepeat)
  302. cparams.penalty_freq = C.float(params.PenaltyFreq)
  303. cparams.penalty_present = C.float(params.PenaltyFreq)
  304. cparams.mirostat = C.int32_t(params.Mirostat)
  305. cparams.mirostat_tau = C.float(params.MirostatTau)
  306. cparams.mirostat_eta = C.float(params.MirostatEta)
  307. cparams.penalize_nl = C.bool(params.PenalizeNl)
  308. cparams.seed = C.uint32_t(params.Seed)
  309. grammar := C.CString(params.Grammar)
  310. defer C.free(unsafe.Pointer(grammar))
  311. cparams.grammar = grammar
  312. return &SamplingContext{c: C.llama_sampling_cinit(&cparams)}
  313. }
  314. func (s *SamplingContext) Free() {
  315. C.llama_sampling_cfree(s.c)
  316. }
  317. func (s *SamplingContext) Reset() {
  318. C.llama_sampling_creset(s.c)
  319. }
  320. func (s *SamplingContext) Sample(ctxMain *Context, ctxConfig *Context, idx int) int {
  321. // TODO (jmorganca): handle nil for all args
  322. if ctxConfig == nil {
  323. return int(C.llama_sampling_csample(s.c, ctxMain.c, nil, C.int(idx)))
  324. }
  325. return int(C.llama_sampling_csample(s.c, ctxMain.c, ctxConfig.c, C.int(idx)))
  326. }
  327. func (s *SamplingContext) Accept(ctxMain *Context, id int, applyGrammar bool) {
  328. C.llama_sampling_caccept(s.c, ctxMain.c, C.llama_token(id), C.bool(applyGrammar))
  329. }