Без опису

Blake Mizerany 2099e2d267 CONTRIBUTING: provide clarity on good commit messages, and bad (#9405) 2 місяців тому
.github 76e903cf9d .github/workflows: swap order of go test and golangci-lint (#9389) 2 місяців тому
api be2ac1ed93 docs: fix api examples link (#9360) 2 місяців тому
app b901a712c6 docs: improve syntax highlighting in code blocks (#8854) 2 місяців тому
auth b732beba6a lint 9 місяців тому
cmd d721a02e7d test: add test cases for ListHandler (#9146) 2 місяців тому
convert 58245413f4 next ollama runner (#7913) 2 місяців тому
discover a499390648 build: support Compute Capability 5.0, 5.2 and 5.3 for CUDA 12.x (#8567) 2 місяців тому
docs 688925aca9 Windows ARM build (#9120) 2 місяців тому
envconfig dc13813a03 server: allow vscode-file origins (#9313) 2 місяців тому
format 716e365615 test: add test cases for HumanNumber (#9108) 2 місяців тому
fs 53d2990d9b model: add bos token if configured 2 місяців тому
integration abfdc4710f all: fix typos in documentation, code, and comments (#7021) 4 місяців тому
kvcache 8b194b7520 kvcache: update tests 2 місяців тому
llama a59f665235 ml/backend/ggml: fix debug logging 2 місяців тому
llm 314573bfe8 config: allow setting context length through env var (#8938) 2 місяців тому
macapp b901a712c6 docs: improve syntax highlighting in code blocks (#8854) 2 місяців тому
ml 3e8b8a1933 ml: update Context.Forward interface 2 місяців тому
model 3e8b8a1933 ml: update Context.Forward interface 2 місяців тому
openai 10d59d5f90 openai: finish_reason as tool_calls for streaming with tools (#7963) 2 місяців тому
parser 58245413f4 next ollama runner (#7913) 2 місяців тому
progress 78f403ff45 address code review comments 2 місяців тому
readline cb40d60469 chore: upgrade to gods v2 4 місяців тому
runner 0c1041ad85 runner: default to greedy sampler for performance (#9407) 2 місяців тому
sample c245b0406f sample: remove transforms from greedy sampling (#9377) 2 місяців тому
scripts 688925aca9 Windows ARM build (#9120) 2 місяців тому
server 41dc280491 server/internal/registry: implement CloseNotify and Flush (for now) (#9402) 2 місяців тому
template 58245413f4 next ollama runner (#7913) 2 місяців тому
types b1fd7fef86 server: more support for mixed-case model names (#8017) 4 місяців тому
version 2c7f956b38 add version 1 рік тому
.dockerignore dcfb7a105c next build (#8539) 3 місяців тому
.gitattributes 5b446cc815 chore: update gitattributes (#8860) 2 місяців тому
.gitignore 348b3e0983 server/internal: copy bmizerany/ollama-go to internal package (#9294) 2 місяців тому
.golangci.yaml 348b3e0983 server/internal: copy bmizerany/ollama-go to internal package (#9294) 2 місяців тому
CMakeLists.txt 08a299e1d0 cmake: avoid building intel backends on linux 2 місяців тому
CMakePresets.json e12af460ed Add cuda Blackwell architecture for v12 (#9350) 2 місяців тому
CONTRIBUTING.md 2099e2d267 CONTRIBUTING: provide clarity on good commit messages, and bad (#9405) 2 місяців тому
Dockerfile e91ae3d47d Update ROCm (6.3 linux, 6.2 windows) and CUDA v12.8 (#9304) 2 місяців тому
LICENSE df5fdd6647 `proto` -> `ollama` 1 рік тому
Makefile.sync d7d7e99662 llama: update llama.cpp vendor code to commit d7cfe1ff (#9356) 2 місяців тому
README.md 2db96c18e7 readme: add Nichey to community integrations (#9370) 2 місяців тому
SECURITY.md 463a8aa273 Create SECURITY.md 9 місяців тому
go.mod e185c08ad9 go.mod: Use full version for go 1.24.0 2 місяців тому
go.sum 2412adf42b server/internal: replace model delete API with new registry handler. (#9347) 2 місяців тому
main.go b732beba6a lint 9 місяців тому

README.md

  ollama

Ollama

Get up and running with large language models.

macOS

Download

Windows

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Community

Quickstart

To run and chat with Llama 3.2:

ollama run llama3.2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
DeepSeek-R1 7B 4.7GB ollama run deepseek-r1
DeepSeek-R1 671B 404GB ollama run deepseek-r1:671b
Llama 3.3 70B 43GB ollama run llama3.3
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.2 Vision 11B 7.9GB ollama run llama3.2-vision
Llama 3.2 Vision 90B 55GB ollama run llama3.2-vision:90b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 4 14B 9.1GB ollama run phi4
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Gemma 2 2B 1.6GB ollama run gemma2:2b
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.2 model:

ollama pull llama3.2

Create a Modelfile:

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.2

Copy a model

ollama cp llama3.2 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"

Output: The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

ollama run llama3.2 "Summarize this file: $(cat README.md)"

Output: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.2

List models on your computer

ollama list

List which models are currently loaded

ollama ps

Stop a model which is currently running

ollama stop llama3.2

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Cloud

Terminal

Apple Vision Pro

Database

  • pgai - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
  • MindsDB (Connects Ollama models with nearly 200 data platforms and apps)
  • chromem-go with example
  • Kangaroo (AI-powered SQL client and admin tool for popular databases)

Package managers

Libraries

Mobile

  • Enchanted
  • Maid
  • Ollama App (Modern and easy-to-use multi-platform client for Ollama)
  • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.

Observability

  • Lunary is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
  • OpenLIT is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
  • HoneyHive is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
  • Langfuse is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
  • MLflow Tracing is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.