sched.go 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813
  1. package server
  2. import (
  3. "context"
  4. "errors"
  5. "fmt"
  6. "log/slog"
  7. "os"
  8. "reflect"
  9. "runtime"
  10. "sort"
  11. "strconv"
  12. "strings"
  13. "sync"
  14. "time"
  15. "github.com/ollama/ollama/api"
  16. "github.com/ollama/ollama/envconfig"
  17. "github.com/ollama/ollama/format"
  18. "github.com/ollama/ollama/gpu"
  19. "github.com/ollama/ollama/llm"
  20. )
  21. type LlmRequest struct {
  22. ctx context.Context //nolint:containedctx
  23. model *Model
  24. opts api.Options
  25. origNumCtx int // Track the initial ctx request
  26. sessionDuration *api.Duration
  27. successCh chan *runnerRef
  28. errCh chan error
  29. schedAttempts uint
  30. }
  31. type Scheduler struct {
  32. pendingReqCh chan *LlmRequest
  33. finishedReqCh chan *LlmRequest
  34. expiredCh chan *runnerRef
  35. unloadedCh chan interface{}
  36. loaded map[string]*runnerRef
  37. loadedMu sync.Mutex
  38. loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int)
  39. newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
  40. getGpuFn func() gpu.GpuInfoList
  41. getCpuFn func() gpu.GpuInfoList
  42. reschedDelay time.Duration
  43. whisperLoaded map[string]*int
  44. whisperMu sync.Mutex
  45. }
  46. // Default automatic value for number of models we allow per GPU
  47. // Model will still need to fit in VRAM, but loading many small models
  48. // on a large GPU can cause stalling
  49. var defaultModelsPerGPU = 3
  50. // Default automatic value for parallel setting
  51. // Model will still need to fit in VRAM. If this setting wont fit
  52. // we'll back off down to 1 to try to get it to fit
  53. var defaultParallel = 4
  54. var ErrMaxQueue = errors.New("server busy, please try again. maximum pending requests exceeded")
  55. func InitScheduler(ctx context.Context) *Scheduler {
  56. maxQueue := envconfig.MaxQueue()
  57. sched := &Scheduler{
  58. pendingReqCh: make(chan *LlmRequest, maxQueue),
  59. finishedReqCh: make(chan *LlmRequest, maxQueue),
  60. expiredCh: make(chan *runnerRef, maxQueue),
  61. unloadedCh: make(chan interface{}, maxQueue),
  62. loaded: make(map[string]*runnerRef),
  63. newServerFn: llm.NewLlamaServer,
  64. getGpuFn: gpu.GetGPUInfo,
  65. getCpuFn: gpu.GetCPUInfo,
  66. reschedDelay: 250 * time.Millisecond,
  67. }
  68. sched.loadFn = sched.load
  69. return sched
  70. }
  71. // context must be canceled to decrement ref count and release the runner
  72. func (s *Scheduler) GetRunner(c context.Context, model *Model, opts api.Options, sessionDuration *api.Duration) (chan *runnerRef, chan error) {
  73. if opts.NumCtx < 4 {
  74. opts.NumCtx = 4
  75. }
  76. req := &LlmRequest{
  77. ctx: c,
  78. model: model,
  79. opts: opts,
  80. sessionDuration: sessionDuration,
  81. successCh: make(chan *runnerRef),
  82. errCh: make(chan error, 1),
  83. }
  84. select {
  85. case s.pendingReqCh <- req:
  86. default:
  87. req.errCh <- ErrMaxQueue
  88. }
  89. return req.successCh, req.errCh
  90. }
  91. // Returns immediately, spawns go routines for the scheduler which will shutdown when ctx is done
  92. func (s *Scheduler) Run(ctx context.Context) {
  93. slog.Debug("starting llm scheduler")
  94. go func() {
  95. s.processPending(ctx)
  96. }()
  97. go func() {
  98. s.processCompleted(ctx)
  99. }()
  100. }
  101. func (s *Scheduler) processPending(ctx context.Context) {
  102. for {
  103. select {
  104. case <-ctx.Done():
  105. slog.Debug("shutting down scheduler pending loop")
  106. return
  107. case pending := <-s.pendingReqCh:
  108. // Block other requests until we get this pending request running
  109. pending.schedAttempts++
  110. if pending.origNumCtx == 0 {
  111. pending.origNumCtx = pending.opts.NumCtx
  112. }
  113. if pending.ctx.Err() != nil {
  114. slog.Debug("pending request cancelled or timed out, skipping scheduling")
  115. continue
  116. }
  117. numParallel := int(envconfig.NumParallel())
  118. // TODO (jmorganca): multimodal models don't support parallel yet
  119. // see https://github.com/ollama/ollama/issues/4165
  120. if len(pending.model.ProjectorPaths) > 0 && numParallel != 1 {
  121. numParallel = 1
  122. slog.Warn("multimodal models don't support parallel requests yet")
  123. }
  124. for {
  125. var runnerToExpire *runnerRef
  126. s.loadedMu.Lock()
  127. runner := s.loaded[pending.model.ModelPath]
  128. loadedCount := len(s.loaded)
  129. s.loadedMu.Unlock()
  130. if runner != nil {
  131. if runner.needsReload(ctx, pending) {
  132. runnerToExpire = runner
  133. } else {
  134. // Runner is usable, return it
  135. pending.useLoadedRunner(runner, s.finishedReqCh)
  136. break
  137. }
  138. } else if envconfig.MaxRunners() > 0 && loadedCount >= int(envconfig.MaxRunners()) {
  139. slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount)
  140. runnerToExpire = s.findRunnerToUnload()
  141. } else {
  142. // Either no models are loaded or below envconfig.MaxRunners
  143. // Get a refreshed GPU list
  144. var gpus gpu.GpuInfoList
  145. if pending.opts.NumGPU == 0 {
  146. gpus = s.getCpuFn()
  147. } else {
  148. gpus = s.getGpuFn()
  149. }
  150. if envconfig.MaxRunners() <= 0 {
  151. // No user specified MaxRunners, so figure out what automatic setting to use
  152. // If all GPUs have reliable free memory reporting, defaultModelsPerGPU * the number of GPUs
  153. // if any GPU has unreliable free memory reporting, 1x the number of GPUs
  154. allReliable := true
  155. for _, gpu := range gpus {
  156. if gpu.UnreliableFreeMemory {
  157. allReliable = false
  158. break
  159. }
  160. }
  161. if allReliable {
  162. // HACK
  163. os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(defaultModelsPerGPU*len(gpus)))
  164. slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", envconfig.MaxRunners, "gpu_count", len(gpus))
  165. } else {
  166. // HACK
  167. os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(len(gpus)))
  168. slog.Info("one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency")
  169. }
  170. }
  171. // Load model for fitting
  172. ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
  173. if err != nil {
  174. pending.errCh <- err
  175. break
  176. }
  177. // Evaluate if the model will fit in the available system memory, or if we should unload a model first
  178. if len(gpus) == 1 && gpus[0].Library == "cpu" {
  179. // simplifying assumption of defaultParallel when in CPU mode
  180. if numParallel <= 0 {
  181. numParallel = defaultParallel
  182. }
  183. pending.opts.NumCtx = pending.origNumCtx * numParallel
  184. if loadedCount == 0 {
  185. slog.Debug("cpu mode with first model, loading")
  186. s.loadFn(pending, ggml, gpus, numParallel)
  187. break
  188. }
  189. runnerToExpire = s.maybeFindCPURunnerToUnload(pending, ggml, gpus)
  190. if runnerToExpire == nil {
  191. slog.Debug("cpu mode with available system memory or first model, loading")
  192. s.loadFn(pending, ggml, gpus, numParallel)
  193. break
  194. }
  195. // else we need to expire a runner
  196. } else if loadedCount == 0 {
  197. // No models loaded. Load the model but prefer the best fit.
  198. slog.Debug("loading first model", "model", pending.model.ModelPath)
  199. g := pickBestFullFitByLibrary(pending, ggml, gpus, &numParallel)
  200. if g != nil {
  201. gpus = g
  202. } else {
  203. // Only allow partial loads when this is the first model
  204. gpus = pickBestPartialFitByLibrary(pending, ggml, gpus, &numParallel)
  205. }
  206. s.loadFn(pending, ggml, gpus, numParallel)
  207. break
  208. }
  209. if runnerToExpire == nil {
  210. // More than one loaded model, so we have to see if the
  211. // new one fits
  212. //
  213. // We want to avoid loading on any GPUs that have other
  214. // models still loading on them to avoid potential races
  215. // with VRAM consumption ramping up during load
  216. availGpus := s.filterGPUsWithoutLoadingModels(gpus)
  217. // Update free memory from currently loaded models
  218. s.updateFreeSpace(availGpus)
  219. fitGpus := pickBestFullFitByLibrary(pending, ggml, availGpus, &numParallel)
  220. if fitGpus != nil {
  221. slog.Debug("new model fits with existing models, loading")
  222. s.loadFn(pending, ggml, fitGpus, numParallel)
  223. break
  224. }
  225. // We couldn't find a set of GPUs to fully load the new
  226. // model. If no other models are loading (both GPU lists
  227. // are the same) then we need to unload another model to
  228. // make room
  229. if len(availGpus) < len(gpus) {
  230. // There are other requests pending, and this one
  231. // needs more time, so put it on the back of the
  232. // queue so that we might satisfy other pending
  233. // requests that aren't blocked
  234. go func() {
  235. // Process in a go routine to avoid deadlocking
  236. // the scheduler if our queue is full
  237. slog.Debug("delaying scheduling while other models finish loading", "attempts", pending.schedAttempts, "model", pending.model.ModelPath)
  238. time.Sleep(s.reschedDelay)
  239. s.pendingReqCh <- pending
  240. }()
  241. break
  242. }
  243. runnerToExpire = s.findRunnerToUnload()
  244. }
  245. }
  246. if runnerToExpire == nil {
  247. // Shouildn't happen
  248. slog.Error("runner to expire was nil!")
  249. continue
  250. }
  251. // Trigger an expiration to unload once it's done
  252. runnerToExpire.refMu.Lock()
  253. slog.Debug("resetting model to expire immediately to make room", "modelPath", runnerToExpire.modelPath, "refCount", runnerToExpire.refCount)
  254. if runnerToExpire.expireTimer != nil {
  255. runnerToExpire.expireTimer.Stop()
  256. runnerToExpire.expireTimer = nil
  257. }
  258. runnerToExpire.sessionDuration = 0
  259. if runnerToExpire.refCount <= 0 {
  260. s.expiredCh <- runnerToExpire
  261. }
  262. runnerToExpire.refMu.Unlock()
  263. // Wait for the unload to happen
  264. // Note: at this point we're queueing up all incoming requests, even if they were for
  265. // a different model that's loaded and not scheduled to be removed.
  266. slog.Debug("waiting for pending requests to complete and unload to occur", "modelPath", runnerToExpire.modelPath)
  267. select {
  268. case <-ctx.Done():
  269. slog.Debug("shutting down scheduler pending loop")
  270. return
  271. case <-s.unloadedCh:
  272. slog.Debug("unload completed", "modelPath", runnerToExpire.modelPath)
  273. continue
  274. }
  275. }
  276. case <-s.unloadedCh:
  277. // An unload request when there are no pending request can be ignored
  278. slog.Debug("ignoring unload event with no pending requests")
  279. }
  280. }
  281. }
  282. func (s *Scheduler) processCompleted(ctx context.Context) {
  283. // Process completed requests, expired timers, and unloading models
  284. for {
  285. select {
  286. case <-ctx.Done():
  287. slog.Debug("shutting down scheduler completed loop")
  288. return
  289. case finished := <-s.finishedReqCh:
  290. s.loadedMu.Lock()
  291. runner := s.loaded[finished.model.ModelPath]
  292. s.loadedMu.Unlock()
  293. if runner == nil {
  294. slog.Error("finished request signal received after model unloaded", "modelPath", finished.model.ModelPath)
  295. continue
  296. }
  297. runner.refMu.Lock()
  298. runner.refCount--
  299. if runner.refCount <= 0 {
  300. if runner.sessionDuration <= 0 {
  301. slog.Debug("runner with zero duration has gone idle, expiring to unload", "modelPath", runner.modelPath)
  302. if runner.expireTimer != nil {
  303. runner.expireTimer.Stop()
  304. runner.expireTimer = nil
  305. }
  306. s.expiredCh <- runner
  307. } else if runner.expireTimer == nil {
  308. slog.Debug("runner with non-zero duration has gone idle, adding timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
  309. runner.expireTimer = time.AfterFunc(runner.sessionDuration, func() {
  310. slog.Debug("timer expired, expiring to unload", "modelPath", runner.modelPath)
  311. runner.refMu.Lock()
  312. defer runner.refMu.Unlock()
  313. if runner.expireTimer != nil {
  314. runner.expireTimer.Stop()
  315. runner.expireTimer = nil
  316. }
  317. s.expiredCh <- runner
  318. })
  319. runner.expiresAt = time.Now().Add(runner.sessionDuration)
  320. } else {
  321. slog.Debug("runner with non-zero duration has gone idle, resetting timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
  322. runner.expireTimer.Reset(runner.sessionDuration)
  323. runner.expiresAt = time.Now().Add(runner.sessionDuration)
  324. }
  325. }
  326. slog.Debug("after processing request finished event", "modelPath", runner.modelPath, "refCount", runner.refCount)
  327. runner.refMu.Unlock()
  328. case runner := <-s.expiredCh:
  329. slog.Debug("runner expired event received", "modelPath", runner.modelPath)
  330. runner.refMu.Lock()
  331. if runner.refCount > 0 {
  332. // Shouldn't happen, but safeguard to ensure no leaked runners
  333. slog.Debug("expired event with positive ref count, retrying", "modelPath", runner.modelPath, "refCount", runner.refCount)
  334. go func(runner *runnerRef) {
  335. // We can't unload yet, but want to as soon as the current request completes
  336. // So queue up another expired event
  337. time.Sleep(10 * time.Millisecond)
  338. s.expiredCh <- runner
  339. }(runner)
  340. runner.refMu.Unlock()
  341. continue
  342. }
  343. s.loadedMu.Lock()
  344. slog.Debug("got lock to unload", "modelPath", runner.modelPath)
  345. finished := runner.waitForVRAMRecovery()
  346. runner.unload()
  347. delete(s.loaded, runner.modelPath)
  348. s.loadedMu.Unlock()
  349. slog.Debug("runner released", "modelPath", runner.modelPath)
  350. runner.refMu.Unlock()
  351. <-finished
  352. slog.Debug("sending an unloaded event", "modelPath", runner.modelPath)
  353. s.unloadedCh <- struct{}{}
  354. }
  355. }
  356. }
  357. // Complete the pending request and send the runner back to the requester
  358. // Wires up a finished event after the request context is completed
  359. // Updates session duration, and resets expiration timer
  360. func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *LlmRequest) {
  361. runner.refMu.Lock()
  362. defer runner.refMu.Unlock()
  363. runner.refCount++
  364. if runner.expireTimer != nil {
  365. runner.expireTimer.Stop()
  366. runner.expireTimer = nil
  367. }
  368. if pending.sessionDuration != nil {
  369. runner.sessionDuration = pending.sessionDuration.Duration
  370. }
  371. pending.successCh <- runner
  372. go func() {
  373. <-pending.ctx.Done()
  374. slog.Debug("context for request finished")
  375. finished <- pending
  376. }()
  377. }
  378. func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
  379. if numParallel < 1 {
  380. numParallel = 1
  381. }
  382. sessionDuration := envconfig.KeepAlive()
  383. if req.sessionDuration != nil {
  384. sessionDuration = req.sessionDuration.Duration
  385. }
  386. llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
  387. if err != nil {
  388. // some older models are not compatible with newer versions of llama.cpp
  389. // show a generalized compatibility error until there is a better way to
  390. // check for model compatibility
  391. if errors.Is(llm.ErrUnsupportedFormat, err) || strings.Contains(err.Error(), "failed to load model") {
  392. err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName)
  393. }
  394. slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err)
  395. req.errCh <- err
  396. return
  397. }
  398. runner := &runnerRef{
  399. model: req.model,
  400. modelPath: req.model.ModelPath,
  401. llama: llama,
  402. Options: &req.opts,
  403. sessionDuration: sessionDuration,
  404. gpus: gpus,
  405. estimatedVRAM: llama.EstimatedVRAM(),
  406. estimatedTotal: llama.EstimatedTotal(),
  407. loading: true,
  408. refCount: 1,
  409. }
  410. runner.numParallel = numParallel
  411. runner.refMu.Lock()
  412. s.loadedMu.Lock()
  413. s.loaded[req.model.ModelPath] = runner
  414. slog.Info("loaded runners", "count", len(s.loaded))
  415. s.loadedMu.Unlock()
  416. go func() {
  417. defer runner.refMu.Unlock()
  418. if err = llama.WaitUntilRunning(req.ctx); err != nil {
  419. slog.Error("error loading llama server", "error", err)
  420. runner.refCount--
  421. req.errCh <- err
  422. slog.Debug("triggering expiration for failed load", "model", runner.modelPath)
  423. s.expiredCh <- runner
  424. return
  425. }
  426. slog.Debug("finished setting up runner", "model", req.model.ModelPath)
  427. runner.loading = false
  428. go func() {
  429. <-req.ctx.Done()
  430. slog.Debug("context for request finished")
  431. s.finishedReqCh <- req
  432. }()
  433. req.successCh <- runner
  434. }()
  435. }
  436. func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
  437. type predKey struct {
  438. Library string
  439. ID string
  440. }
  441. predMap := map[predKey]uint64{} // Sum up the total predicted usage per GPU for all runners
  442. s.loadedMu.Lock()
  443. for _, r := range s.loaded {
  444. r.refMu.Lock()
  445. if r.llama != nil {
  446. for _, gpu := range allGpus {
  447. predMap[predKey{gpu.Library, gpu.ID}] += r.llama.EstimatedVRAMByGPU(gpu.ID)
  448. }
  449. } else {
  450. slog.Warn("unexpected nil runner reference, memory prediction may be incorrect")
  451. }
  452. r.refMu.Unlock()
  453. }
  454. s.loadedMu.Unlock()
  455. // Now that we've summed up all the GPU usage predictions across all the loaded runners, update the gpu list
  456. for i := range allGpus {
  457. if p, ok := predMap[predKey{allGpus[i].Library, allGpus[i].ID}]; ok {
  458. slog.Debug("gpu reported", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "available", format.HumanBytes2(allGpus[i].FreeMemory))
  459. if p > allGpus[i].TotalMemory {
  460. // Shouldn't happen
  461. slog.Warn("predicted usage exceeds VRAM", "gpu", allGpus[i].ID, "totalMemory", allGpus[i].TotalMemory, "predicted", p)
  462. allGpus[i].FreeMemory = 0
  463. } else if (allGpus[i].TotalMemory - p) < allGpus[i].FreeMemory { // predicted free is smaller than reported free, use it
  464. // TODO maybe we should just always trust our numbers, since cuda's free memory reporting is laggy
  465. // and we might unload models we didn't actually need to. The risk is if some other GPU intensive app is loaded
  466. // after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent.
  467. allGpus[i].FreeMemory = allGpus[i].TotalMemory - p
  468. }
  469. slog.Info("updated VRAM based on existing loaded models", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory))
  470. }
  471. }
  472. }
  473. // While models are loading the VRAM consumption numbers will be indeterminate, so we have
  474. // to avoid scheduling another model on the same GPU(s) that haven't stabilized.
  475. // This routine returns the set of GPUs that do not have an active loading model.
  476. // If all GPUs have loading models, an empty list will be returned (not a single CPU entry)
  477. func (s *Scheduler) filterGPUsWithoutLoadingModels(allGpus gpu.GpuInfoList) gpu.GpuInfoList {
  478. ret := append(gpu.GpuInfoList{}, allGpus...)
  479. s.loadedMu.Lock()
  480. defer s.loadedMu.Unlock()
  481. for _, runner := range s.loaded {
  482. if runner.loading {
  483. slog.Debug("overlapping loads detected", "gpus", runner.gpus, "model", runner.modelPath)
  484. for _, busyGPU := range runner.gpus {
  485. for i := range ret {
  486. if ret[i].ID == busyGPU.ID {
  487. ret = append(ret[:i], ret[i+1:]...)
  488. break
  489. }
  490. }
  491. }
  492. }
  493. }
  494. return ret
  495. }
  496. // TODO consolidate sched_types.go
  497. type runnerRef struct {
  498. refMu sync.Mutex
  499. // refCond sync.Cond // Signaled on transition from 1 -> 0 refCount
  500. refCount uint // prevent unloading if > 0
  501. // unloading bool // set to true when we are trying to unload the runner
  502. llama llm.LlamaServer
  503. loading bool // True only during initial load, then false forever
  504. gpus gpu.GpuInfoList // Recorded at time of provisioning
  505. estimatedVRAM uint64
  506. estimatedTotal uint64
  507. sessionDuration time.Duration
  508. expireTimer *time.Timer
  509. expiresAt time.Time
  510. model *Model
  511. modelPath string
  512. numParallel int
  513. *api.Options
  514. }
  515. // The refMu must already be held when calling unload
  516. func (runner *runnerRef) unload() {
  517. if runner.expireTimer != nil {
  518. runner.expireTimer.Stop()
  519. runner.expireTimer = nil
  520. }
  521. if runner.llama != nil {
  522. runner.llama.Close()
  523. }
  524. runner.model = nil
  525. runner.llama = nil
  526. runner.Options = nil
  527. runner.gpus = nil
  528. }
  529. func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool {
  530. slog.Debug("evaluating already loaded", "model", req.model.ModelPath)
  531. runner.refMu.Lock()
  532. defer runner.refMu.Unlock()
  533. timeout := 10 * time.Second
  534. if runner.loading {
  535. timeout = 2 * time.Minute // Initial load can take a long time for big models on slow systems...
  536. }
  537. if runner.Options == nil {
  538. return true
  539. }
  540. // Don't reload runner if num_gpu=-1 was provided
  541. optsExisting := runner.Options.Runner
  542. optsNew := req.opts.Runner
  543. if optsNew.NumGPU < 0 {
  544. optsExisting.NumGPU = -1
  545. optsNew.NumGPU = -1
  546. }
  547. // Normalize the NumCtx for parallelism
  548. optsExisting.NumCtx = optsExisting.NumCtx / runner.numParallel
  549. ctx, cancel := context.WithTimeout(ctx, timeout)
  550. defer cancel()
  551. if !reflect.DeepEqual(runner.model.AdapterPaths, req.model.AdapterPaths) || // have the adapters changed?
  552. !reflect.DeepEqual(runner.model.ProjectorPaths, req.model.ProjectorPaths) || // have the projectors changed?
  553. !reflect.DeepEqual(optsExisting, optsNew) || // have the runner options changed?
  554. runner.llama.Ping(ctx) != nil {
  555. return true
  556. }
  557. return false
  558. }
  559. // Free memory reporting on GPUs can lag for a while even after the runner
  560. // exits, so we have to keep checking until we see the available memory recover,
  561. // otherwise subsequent model loads will get far less layers loaded or worse
  562. // case, may completely fall back to CPU mode.
  563. // This routine must be called before the runner unloads so it can establish
  564. // a before and after GPU memory allocation. The returned channel
  565. // will be notified when we're done waiting, or have timed out and should
  566. // proceed anyway
  567. func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
  568. finished := make(chan interface{}, 1)
  569. // CPU or Metal don't need checking, so no waiting required
  570. // windows can page VRAM, only cuda currently can report accurate used vram usage
  571. if len(runner.gpus) == 0 ||
  572. (len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) ||
  573. (runtime.GOOS == "windows" && runner.gpus[0].Library != "cuda") {
  574. finished <- struct{}{}
  575. return finished
  576. }
  577. start := time.Now()
  578. // Establish a baseline before we unload
  579. gpusBefore := gpu.GetGPUInfo()
  580. var totalMemoryBefore, freeMemoryBefore uint64
  581. for _, gpu := range gpusBefore {
  582. totalMemoryBefore += gpu.TotalMemory
  583. freeMemoryBefore += gpu.FreeMemory
  584. }
  585. go func() {
  586. expiresAt := start.Add(5 * time.Second) // typical convergence is 0.5-1.5s
  587. ticker := time.NewTicker(250 * time.Millisecond)
  588. defer ticker.Stop()
  589. for {
  590. <-ticker.C
  591. if time.Now().After(expiresAt) {
  592. slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds(), "model", runner.modelPath)
  593. finished <- struct{}{}
  594. }
  595. // Query GPUs, look for free to go back up
  596. gpusNow := gpu.GetGPUInfo()
  597. var totalMemoryNow, freeMemoryNow uint64
  598. for _, gpu := range gpusNow {
  599. totalMemoryNow += gpu.TotalMemory
  600. freeMemoryNow += gpu.FreeMemory
  601. }
  602. // If we're within ~80% of the estimated memory usage recovered, bail out
  603. if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 {
  604. slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()), "model", runner.modelPath)
  605. finished <- struct{}{}
  606. return
  607. }
  608. }
  609. }()
  610. return finished
  611. }
  612. type ByDuration []*runnerRef
  613. func (a ByDuration) Len() int { return len(a) }
  614. func (a ByDuration) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
  615. func (a ByDuration) Less(i, j int) bool {
  616. // uint64 to turn negative time (never unload) to largest
  617. return uint64(a[i].sessionDuration) < uint64(a[j].sessionDuration)
  618. }
  619. // TODO - future consideration to pick runners based on size
  620. // type BySize []*runnerRef
  621. // func (a BySize) Len() int { return len(a) }
  622. // func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
  623. // func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM }
  624. // pickBestFullFitByLibrary will try to find the optimal placement of the model in the available GPUs where the model fully fits
  625. // The list of GPUs returned will always be the same brand (library)
  626. // If the model can not be fit fully within the available GPU(s) nil is returned
  627. // If numParallel is <= 0, this will attempt try to optimize parallism based on available VRAM, and adjust
  628. // opts.NumCtx accordingly
  629. func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
  630. var estimatedVRAM uint64
  631. var numParallelToTry []int
  632. if *numParallel <= 0 {
  633. // If no specific parallel setting was provided, try larger then smaller, always end with 1
  634. numParallelToTry = append(numParallelToTry, defaultParallel, 1)
  635. } else {
  636. numParallelToTry = []int{*numParallel}
  637. }
  638. for _, gl := range gpus.ByLibrary() {
  639. var ok bool
  640. sgl := append(make(gpu.GpuInfoList, 0, len(gl)), gl...)
  641. // TODO - potentially sort by performance capability, existing models loaded, etc.
  642. // TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them
  643. // Note: at present, this will favor more VRAM over faster GPU speed in mixed setups
  644. sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl)))
  645. // First attempt to fit the model into a single GPU
  646. for _, p := range numParallelToTry {
  647. req.opts.NumCtx = req.origNumCtx * p
  648. if !envconfig.SchedSpread() {
  649. for _, g := range sgl {
  650. if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
  651. slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
  652. *numParallel = p
  653. return []gpu.GpuInfo{g}
  654. }
  655. }
  656. }
  657. }
  658. // TODO future refinements
  659. // - if multiple Libraries, see if any single GPU in any Library will fit
  660. // - try subsets of GPUs instead of just falling back to 1 or all in a family
  661. // Now try all the GPUs
  662. for _, p := range numParallelToTry {
  663. req.opts.NumCtx = req.origNumCtx * p
  664. if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
  665. slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
  666. *numParallel = p
  667. return sgl
  668. }
  669. }
  670. }
  671. return nil
  672. }
  673. // If multiple Libraries are detected, pick the Library which loads the most layers for the model
  674. func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
  675. *numParallel = 1
  676. byLibrary := gpus.ByLibrary()
  677. if len(byLibrary) <= 1 {
  678. return gpus
  679. }
  680. var bestEstimate uint64
  681. var bestFit int
  682. for i, gl := range byLibrary {
  683. _, estimatedVRAM := llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
  684. if estimatedVRAM > bestEstimate {
  685. bestEstimate = estimatedVRAM
  686. bestFit = i
  687. }
  688. }
  689. return byLibrary[bestFit]
  690. }
  691. // findRunnerToUnload finds a runner to unload to make room for a new model
  692. func (s *Scheduler) findRunnerToUnload() *runnerRef {
  693. s.loadedMu.Lock()
  694. runnerList := make([]*runnerRef, 0, len(s.loaded))
  695. for _, r := range s.loaded {
  696. runnerList = append(runnerList, r)
  697. }
  698. s.loadedMu.Unlock()
  699. if len(runnerList) == 0 {
  700. slog.Debug("no loaded runner to unload")
  701. return nil
  702. }
  703. // In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
  704. // e.g., if we have multiple options, will one make room for the request?
  705. sort.Sort(ByDuration(runnerList))
  706. // First try to find a runner that's already idle
  707. for _, runner := range runnerList {
  708. runner.refMu.Lock()
  709. rc := runner.refCount
  710. runner.refMu.Unlock()
  711. if rc == 0 {
  712. slog.Debug("found an idle runner to unload")
  713. return runner
  714. }
  715. }
  716. // None appear idle, just wait for the one with the shortest duration
  717. slog.Debug("no idle runners, picking the shortest duration", "count", len(runnerList))
  718. return runnerList[0]
  719. }
  720. func (s *Scheduler) unloadAllRunners() {
  721. s.loadedMu.Lock()
  722. defer s.loadedMu.Unlock()
  723. for model, runner := range s.loaded {
  724. if runner.llama != nil {
  725. slog.Debug("shutting down runner", "model", model)
  726. runner.llama.Close()
  727. }
  728. }
  729. }
  730. // If other runners are loaded, make sure the pending request will fit in system memory
  731. // If not, pick a runner to unload, else return nil and the request can be loaded
  732. func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) *runnerRef {
  733. slog.Debug("evaluating if CPU model load will fit in available system memory")
  734. estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts)
  735. if estimate.TotalSize <= gpus[0].FreeMemory {
  736. slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
  737. return nil
  738. }
  739. // TODO - optimization: try to find CPU only runners first, or partial offloads with enough in system memory to make room
  740. return s.findRunnerToUnload()
  741. }