llama.go 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487
  1. package llm
  2. /*
  3. #cgo CFLAGS: -Ofast -std=c11 -fPIC
  4. #cgo CPPFLAGS: -Ofast -Wall -Wextra -Wno-unused-function -Wno-unused-variable -DNDEBUG -DGGML_USE_K_QUANTS
  5. #cgo CXXFLAGS: -std=c++11 -fPIC
  6. #cgo darwin CPPFLAGS: -DGGML_USE_ACCELERATE
  7. #cgo darwin,arm64 CPPFLAGS: -DGGML_USE_METAL -DGGML_METAL_NDEBUG
  8. #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
  9. #include <stdlib.h>
  10. #include "llama.h"
  11. struct llama_sample_options
  12. {
  13. float repeat_penalty;
  14. float frequency_penalty;
  15. float presence_penalty;
  16. float temperature;
  17. int32_t top_k;
  18. float top_p;
  19. float tfs_z;
  20. float typical_p;
  21. int mirostat;
  22. float mirostat_tau;
  23. float mirostat_eta;
  24. bool penalize_newline;
  25. };
  26. llama_token llama_sample(
  27. struct llama_context *ctx,
  28. struct llama_token_data *candidates,
  29. size_t n_candidates,
  30. const llama_token *last_tokens,
  31. size_t n_last_tokens,
  32. struct llama_sample_options *opts)
  33. {
  34. llama_token_data_array candidates_p = {
  35. candidates,
  36. n_candidates,
  37. false,
  38. };
  39. struct llama_token_data newline = candidates_p.data[llama_token_nl()];
  40. llama_sample_repetition_penalty(
  41. ctx, &candidates_p,
  42. last_tokens, n_last_tokens,
  43. opts->repeat_penalty);
  44. llama_sample_frequency_and_presence_penalties(
  45. ctx, &candidates_p,
  46. last_tokens, n_last_tokens,
  47. opts->frequency_penalty, opts->presence_penalty);
  48. if (!opts->penalize_newline) {
  49. candidates_p.data[llama_token_nl()] = newline;
  50. }
  51. if (opts->temperature <= 0) {
  52. return llama_sample_token_greedy(ctx, &candidates_p);
  53. }
  54. if (opts->mirostat == 1) {
  55. int mirostat_m = 100;
  56. float mirostat_mu = 2.0f * opts->mirostat_tau;
  57. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  58. return llama_sample_token_mirostat(
  59. ctx, &candidates_p,
  60. opts->mirostat_tau, opts->mirostat_eta,
  61. mirostat_m, &mirostat_mu);
  62. } else if (opts->mirostat == 2) {
  63. float mirostat_mu = 2.0f * opts->mirostat_tau;
  64. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  65. return llama_sample_token_mirostat_v2(
  66. ctx, &candidates_p,
  67. opts->mirostat_tau, opts->mirostat_eta,
  68. &mirostat_mu);
  69. } else {
  70. llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
  71. llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
  72. llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
  73. llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
  74. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  75. return llama_sample_token(ctx, &candidates_p);
  76. }
  77. }
  78. */
  79. import "C"
  80. import (
  81. "bytes"
  82. "embed"
  83. "errors"
  84. "fmt"
  85. "io"
  86. "log"
  87. "os"
  88. "strings"
  89. "sync"
  90. "unicode/utf8"
  91. "unsafe"
  92. "github.com/jmorganca/ollama/api"
  93. )
  94. //go:embed ggml-metal.metal
  95. var fs embed.FS
  96. type llama struct {
  97. params *C.struct_llama_context_params
  98. model *C.struct_llama_model
  99. ctx *C.struct_llama_context
  100. last []C.llama_token
  101. embd []C.llama_token
  102. cursor int
  103. mu sync.Mutex
  104. gc bool
  105. api.Options
  106. }
  107. type llamaHyperparameters struct {
  108. // NumVocab is the size of the model's vocabulary.
  109. NumVocab uint32
  110. // NumEmbd is the size of the model's embedding layer.
  111. NumEmbd uint32
  112. NumMult uint32
  113. NumHead uint32
  114. // NumLayer is the number of layers in the model.
  115. NumLayer uint32
  116. NumRot uint32
  117. // FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
  118. FileType
  119. }
  120. func newLlama(model string, adapters []string, opts api.Options) (*llama, error) {
  121. if _, err := os.Stat(model); err != nil {
  122. return nil, err
  123. }
  124. llm := llama{Options: opts}
  125. C.llama_backend_init(C.bool(llm.UseNUMA))
  126. params := C.llama_context_default_params()
  127. params.seed = C.uint(llm.Seed)
  128. params.n_ctx = C.int(llm.NumCtx)
  129. params.n_batch = C.int(llm.NumBatch)
  130. params.n_gqa = C.int(llm.NumGQA)
  131. params.n_gpu_layers = C.int(llm.NumGPU)
  132. params.main_gpu = C.int(llm.MainGPU)
  133. params.low_vram = C.bool(llm.LowVRAM)
  134. params.f16_kv = C.bool(llm.F16KV)
  135. params.logits_all = C.bool(llm.LogitsAll)
  136. params.vocab_only = C.bool(llm.VocabOnly)
  137. params.use_mmap = C.bool(llm.UseMMap)
  138. params.use_mlock = C.bool(llm.UseMLock)
  139. params.embedding = C.bool(llm.EmbeddingOnly)
  140. params.rope_freq_base = C.float(llm.RopeFrequencyBase)
  141. params.rope_freq_scale = C.float(llm.RopeFrequencyScale)
  142. if len(adapters) > 0 && llm.UseMMap {
  143. log.Printf("must disable mmap to use lora adapters")
  144. params.use_mmap = C.bool(false)
  145. }
  146. llm.params = &params
  147. cModel := C.CString(model)
  148. defer C.free(unsafe.Pointer(cModel))
  149. llm.model = C.llama_load_model_from_file(cModel, params)
  150. if llm.model == nil {
  151. return nil, errors.New("failed to load model")
  152. }
  153. llm.ctx = C.llama_new_context_with_model(llm.model, params)
  154. if llm.ctx == nil {
  155. return nil, errors.New("failed to create context")
  156. }
  157. for _, adapter := range adapters {
  158. cAdapter := C.CString(adapter)
  159. defer C.free(unsafe.Pointer(cAdapter))
  160. if retval := C.llama_model_apply_lora_from_file(llm.model, cAdapter, nil, C.int(llm.NumThread)); retval != 0 {
  161. return nil, fmt.Errorf("failed to load adapter %s", adapter)
  162. }
  163. }
  164. // warm up the model
  165. bos := []C.llama_token{C.llama_token_bos()}
  166. C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
  167. C.llama_reset_timings(llm.ctx)
  168. return &llm, nil
  169. }
  170. func (llm *llama) Close() {
  171. llm.gc = true
  172. llm.mu.Lock()
  173. defer llm.mu.Unlock()
  174. defer C.llama_free_model(llm.model)
  175. defer C.llama_free(llm.ctx)
  176. C.llama_print_timings(llm.ctx)
  177. }
  178. func (llm *llama) SetOptions(opts api.Options) {
  179. llm.Options = opts
  180. }
  181. var errNeedMoreData = errors.New("need more data")
  182. func (llm *llama) Predict(ctx []int, prompt string, fn func(api.GenerateResponse)) error {
  183. C.llama_reset_timings(llm.ctx)
  184. llm.marshalPrompt(ctx, prompt)
  185. C.llama_set_rng_seed(llm.ctx, C.uint(llm.Seed))
  186. var b bytes.Buffer
  187. for {
  188. token, err := llm.next()
  189. if llm.gc {
  190. return nil
  191. } else if errors.Is(err, io.EOF) {
  192. break
  193. } else if err != nil {
  194. return err
  195. }
  196. b.WriteString(llm.Decode(int(token)))
  197. if err := llm.checkStopConditions(b); err != nil {
  198. if errors.Is(err, io.EOF) {
  199. break
  200. } else if errors.Is(err, errNeedMoreData) {
  201. continue
  202. }
  203. return err
  204. }
  205. if utf8.Valid(b.Bytes()) || b.Len() >= utf8.UTFMax {
  206. fn(api.GenerateResponse{Response: b.String()})
  207. b.Reset()
  208. }
  209. }
  210. embd := make([]int, len(llm.embd))
  211. for i := range llm.embd {
  212. embd[i] = int(llm.embd[i])
  213. }
  214. timings := C.llama_get_timings(llm.ctx)
  215. fn(api.GenerateResponse{
  216. Done: true,
  217. Context: embd,
  218. SampleCount: int(timings.n_sample),
  219. SampleDuration: parseDurationMs(float64(timings.t_sample_ms)),
  220. PromptEvalCount: int(timings.n_p_eval),
  221. PromptEvalDuration: parseDurationMs(float64(timings.t_p_eval_ms)),
  222. EvalCount: int(timings.n_eval),
  223. EvalDuration: parseDurationMs(float64(timings.t_eval_ms)),
  224. })
  225. return nil
  226. }
  227. func (llm *llama) checkStopConditions(b bytes.Buffer) error {
  228. for _, stopCondition := range llm.Stop {
  229. if stopCondition == strings.TrimSpace(b.String()) {
  230. return io.EOF
  231. } else if strings.HasPrefix(stopCondition, strings.TrimSpace(b.String())) {
  232. return errNeedMoreData
  233. }
  234. }
  235. return nil
  236. }
  237. func (llm *llama) marshalPrompt(ctx []int, prompt string) []C.llama_token {
  238. tokens := append(ctx, llm.Encode(prompt)...)
  239. if llm.NumKeep < 0 {
  240. llm.NumKeep = len(tokens)
  241. }
  242. cTokens := make([]C.llama_token, len(tokens))
  243. for i := range tokens {
  244. cTokens[i] = C.llama_token(tokens[i])
  245. }
  246. // min(llm.NumCtx - 4, llm.NumKeep)
  247. if llm.NumCtx-4 < llm.NumKeep {
  248. llm.NumKeep = llm.NumCtx - 4
  249. }
  250. if len(tokens) >= llm.NumCtx {
  251. // truncate input
  252. numLeft := (llm.NumCtx - llm.NumKeep) / 2
  253. truncated := cTokens[:llm.NumKeep]
  254. erasedBlocks := (len(cTokens) - llm.NumKeep - numLeft - 1) / numLeft
  255. truncated = append(truncated, cTokens[llm.NumKeep+erasedBlocks*numLeft:]...)
  256. copy(llm.last, cTokens[len(cTokens)-llm.NumCtx:])
  257. cTokens = truncated
  258. log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated))
  259. } else {
  260. llm.last = make([]C.llama_token, llm.NumCtx-len(cTokens))
  261. llm.last = append(llm.last, cTokens...)
  262. }
  263. var i int
  264. for i = 0; i < len(llm.embd) && i < len(cTokens) && llm.embd[i] == cTokens[i]; i++ {
  265. // noop
  266. }
  267. llm.embd = cTokens
  268. if i == len(cTokens) {
  269. // evaluate at least one token to generate logits
  270. i--
  271. }
  272. llm.cursor = i
  273. log.Printf("prompt: num_past=%d cached=%v eval=%v", i, len(llm.embd[:i]), len(llm.embd[i:]))
  274. return cTokens
  275. }
  276. func (llm *llama) Encode(prompt string) []int {
  277. cPrompt := C.CString(prompt)
  278. defer C.free(unsafe.Pointer(cPrompt))
  279. cTokens := make([]C.llama_token, len(prompt)+1)
  280. if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(cTokens), C.int(len(cTokens)), true); n > 0 {
  281. tokens := make([]int, n)
  282. for i := range cTokens[:n] {
  283. tokens[i] = int(cTokens[i])
  284. }
  285. return tokens
  286. }
  287. return nil
  288. }
  289. func (llm *llama) Decode(tokens ...int) string {
  290. var sb strings.Builder
  291. for _, token := range tokens {
  292. sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, C.llama_token(token))))
  293. }
  294. return sb.String()
  295. }
  296. func (llm *llama) next() (C.llama_token, error) {
  297. llm.mu.Lock()
  298. defer llm.mu.Unlock()
  299. if len(llm.embd) >= llm.NumCtx {
  300. numLeft := (llm.NumCtx - llm.NumKeep) / 2
  301. truncated := llm.embd[:llm.NumKeep]
  302. truncated = append(truncated, llm.embd[len(llm.embd)-numLeft:]...)
  303. llm.embd = truncated
  304. llm.cursor = llm.NumKeep
  305. log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d cursor=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated), llm.cursor)
  306. }
  307. for {
  308. if llm.gc {
  309. return 0, io.EOF
  310. }
  311. if llm.cursor >= len(llm.embd) {
  312. break
  313. }
  314. numEval := len(llm.embd) - llm.cursor
  315. if numEval > llm.NumBatch {
  316. numEval = llm.NumBatch
  317. }
  318. if retval := C.llama_eval(llm.ctx, unsafe.SliceData(llm.embd[llm.cursor:]), C.int(numEval), C.int(llm.cursor), C.int(llm.NumThread)); retval != 0 {
  319. return 0, fmt.Errorf("llama_eval: %d", retval)
  320. }
  321. llm.cursor += numEval
  322. }
  323. var sampleOpts C.struct_llama_sample_options
  324. sampleOpts.repeat_penalty = C.float(llm.RepeatPenalty)
  325. sampleOpts.frequency_penalty = C.float(llm.FrequencyPenalty)
  326. sampleOpts.presence_penalty = C.float(llm.PresencePenalty)
  327. sampleOpts.temperature = C.float(llm.Temperature)
  328. sampleOpts.top_k = C.int(llm.TopK)
  329. sampleOpts.top_p = C.float(llm.TopP)
  330. sampleOpts.tfs_z = C.float(llm.TFSZ)
  331. sampleOpts.typical_p = C.float(llm.TypicalP)
  332. sampleOpts.mirostat = C.int(llm.Mirostat)
  333. sampleOpts.mirostat_tau = C.float(llm.MirostatTau)
  334. sampleOpts.mirostat_eta = C.float(llm.MirostatEta)
  335. sampleOpts.penalize_newline = C.bool(llm.PenalizeNewline)
  336. numVocab := C.llama_n_vocab(llm.ctx)
  337. logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
  338. // TODO: logit bias
  339. candidates := make([]C.llama_token_data, numVocab)
  340. for i := range logits {
  341. candidates[i] = C.llama_token_data{
  342. id: C.int(i),
  343. logit: logits[i],
  344. p: 0,
  345. }
  346. }
  347. repeatLastN := llm.RepeatLastN
  348. if len(llm.last) < repeatLastN {
  349. repeatLastN = len(llm.last)
  350. }
  351. if llm.NumCtx < repeatLastN {
  352. repeatLastN = llm.NumCtx
  353. }
  354. lastN := llm.last[len(llm.last)-repeatLastN:]
  355. token := C.llama_sample(
  356. llm.ctx,
  357. unsafe.SliceData(candidates), C.size_t(len(candidates)),
  358. unsafe.SliceData(lastN), C.size_t(len(lastN)),
  359. &sampleOpts,
  360. )
  361. llm.last = append(llm.last, token)
  362. llm.embd = append(llm.embd, token)
  363. if token == C.llama_token_eos() {
  364. return 0, io.EOF
  365. }
  366. return token, nil
  367. }
  368. func (llm *llama) Embedding(input string) ([]float64, error) {
  369. if !llm.EmbeddingOnly {
  370. return nil, errors.New("llama: embedding not enabled")
  371. }
  372. tokens := llm.Encode(input)
  373. if tokens == nil {
  374. return nil, errors.New("llama: tokenize embedding")
  375. }
  376. cTokens := make([]C.llama_token, len(tokens))
  377. for i := range tokens {
  378. cTokens[i] = C.llama_token(tokens[i])
  379. }
  380. retval := C.llama_eval(llm.ctx, unsafe.SliceData(cTokens), C.int(len(tokens)), 0, C.int(llm.NumThread))
  381. if retval != 0 {
  382. return nil, errors.New("llama: eval")
  383. }
  384. C.llama_print_timings(llm.ctx)
  385. n := C.llama_n_embd(llm.ctx)
  386. if n <= 0 {
  387. return nil, errors.New("llama: no embeddings generated")
  388. }
  389. cEmbeddings := unsafe.Slice(C.llama_get_embeddings(llm.ctx), n)
  390. embeddings := make([]float64, len(cEmbeddings))
  391. for i, v := range cEmbeddings {
  392. embeddings[i] = float64(v)
  393. }
  394. return embeddings, nil
  395. }