12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497 |
- /**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include <cstddef>
- #include <cstdint>
- #include <limits>
- #include <stdint.h>
- #include <stdio.h>
- #include <atomic>
- #include <assert.h>
- #include <cuda_runtime.h>
- #include <cublas_v2.h>
- #include <cuda_fp16.h>
- #include "ggml-cuda.h"
- #include "ggml.h"
- #define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
- #define CC_TURING 700
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
- #define CUDA_CHECK(err) \
- do { \
- cudaError_t err_ = (err); \
- if (err_ != cudaSuccess) { \
- fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
- cudaGetErrorString(err_)); \
- exit(1); \
- } \
- } while (0)
- #if CUDART_VERSION >= 12000
- #define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \
- err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \
- exit(1); \
- } \
- } while (0)
- #else
- #define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
- exit(1); \
- } \
- } while (0)
- #endif // CUDART_VERSION >= 11
- #ifdef GGML_CUDA_F16
- typedef half dfloat; // dequantize float
- typedef half2 dfloat2;
- #else
- typedef float dfloat; // dequantize float
- typedef float2 dfloat2;
- #endif //GGML_CUDA_F16
- static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
- const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
- return x32;
- }
- static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
- const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
- return x32;
- }
- static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
- return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
- }
- static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
- return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
- }
- typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
- typedef void (*to_fp32_cuda_t)(const void * __restrict__ x, float * __restrict__ y, int k, cudaStream_t stream);
- typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
- typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
- typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- typedef void (*ggml_cuda_op_t)(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i,
- float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main);
- // QK = number of values after dequantization
- // QR = QK / number of values before dequantization
- // QI = number of 32 bit integers before dequantization
- #define QK4_0 32
- #define QR4_0 2
- #define QI4_0 (QK4_0 / (4 * QR4_0))
- typedef struct {
- half d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
- #define QK4_1 32
- #define QR4_1 2
- #define QI4_1 (QK4_1 / (4 * QR4_1))
- typedef struct {
- half2 dm; // dm.x = delta, dm.y = min
- uint8_t qs[QK4_1 / 2]; // nibbles / quants
- } block_q4_1;
- static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
- #define QK5_0 32
- #define QR5_0 2
- #define QI5_0 (QK5_0 / (4 * QR5_0))
- typedef struct {
- half d; // delta
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_0 / 2]; // nibbles / quants
- } block_q5_0;
- static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
- #define QK5_1 32
- #define QR5_1 2
- #define QI5_1 (QK5_1 / (4 * QR5_1))
- typedef struct {
- half2 dm; // dm.x = delta, dm.y = min
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_1 / 2]; // nibbles / quants
- } block_q5_1;
- static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
- #define QK8_0 32
- #define QR8_0 1
- #define QI8_0 (QK8_0 / (4 * QR8_0))
- typedef struct {
- half d; // delta
- int8_t qs[QK8_0]; // quants
- } block_q8_0;
- static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
- #define QK8_1 32
- #define QR8_1 1
- #define QI8_1 (QK8_1 / (4 * QR8_1))
- typedef struct {
- half2 ds; // ds.x = delta, ds.y = sum
- int8_t qs[QK8_0]; // quants
- } block_q8_1;
- static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");
- typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
- typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
- typedef void (*load_tiles_cuda_t)(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
- typedef float (*vec_dot_q_mul_mat_cuda_t)(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
- //================================= k-quants
- #ifdef GGML_QKK_64
- #define QK_K 64
- #define K_SCALE_SIZE 4
- #else
- #define QK_K 256
- #define K_SCALE_SIZE 12
- #endif
- #define QR2_K 4
- #define QI2_K (QK_K / (4*QR2_K))
- typedef struct {
- uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
- uint8_t qs[QK_K/4]; // quants
- half2 dm; // super-block scale for quantized scales/mins
- } block_q2_K;
- static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
- #define QR3_K 4
- #define QI3_K (QK_K / (4*QR3_K))
- typedef struct {
- uint8_t hmask[QK_K/8]; // quants - high bit
- uint8_t qs[QK_K/4]; // quants - low 2 bits
- #ifdef GGML_QKK_64
- uint8_t scales[2]; // scales, quantized with 8 bits
- #else
- uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
- #endif
- half d; // super-block scale
- } block_q3_K;
- //static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
- #define QR4_K 2
- #define QI4_K (QK_K / (4*QR4_K))
- #ifdef GGML_QKK_64
- typedef struct {
- half d[2]; // super-block scales/mins
- uint8_t scales[2]; // 4-bit block scales/mins
- uint8_t qs[QK_K/2]; // 4--bit quants
- } block_q4_K;
- static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
- #else
- typedef struct {
- half2 dm; // super-block scale for quantized scales/mins
- uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
- uint8_t qs[QK_K/2]; // 4--bit quants
- } block_q4_K;
- static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
- #endif
- #define QR5_K 2
- #define QI5_K (QK_K / (4*QR5_K))
- #ifdef GGML_QKK_64
- typedef struct {
- half d; // super-block scale
- int8_t scales[QK_K/16]; // block scales
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
- } block_q5_K;
- static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
- #else
- typedef struct {
- half2 dm; // super-block scale for quantized scales/mins
- uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
- } block_q5_K;
- static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
- #endif
- #define QR6_K 2
- #define QI6_K (QK_K / (4*QR6_K))
- typedef struct {
- uint8_t ql[QK_K/2]; // quants, lower 4 bits
- uint8_t qh[QK_K/4]; // quants, upper 2 bits
- int8_t scales[QK_K/16]; // scales
- half d; // delta
- } block_q6_K;
- static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
- #define WARP_SIZE 32
- #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
- #define CUDA_ADD_BLOCK_SIZE 256
- #define CUDA_MUL_BLOCK_SIZE 256
- #define CUDA_GELU_BLOCK_SIZE 256
- #define CUDA_SILU_BLOCK_SIZE 256
- #define CUDA_CPY_BLOCK_SIZE 32
- #define CUDA_SCALE_BLOCK_SIZE 256
- #define CUDA_ROPE_BLOCK_SIZE 256
- #define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
- #define CUDA_QUANTIZE_BLOCK_SIZE 256
- #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
- // dmmv = dequantize_mul_mat_vec
- #ifndef GGML_CUDA_DMMV_X
- #define GGML_CUDA_DMMV_X 32
- #endif
- #ifndef GGML_CUDA_MMV_Y
- #define GGML_CUDA_MMV_Y 1
- #endif
- #ifndef K_QUANTS_PER_ITERATION
- #define K_QUANTS_PER_ITERATION 2
- #else
- static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
- #endif
- struct ggml_tensor_extra_gpu {
- void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
- cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs
- };
- static int g_device_count = -1;
- static int g_main_device = 0;
- static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
- static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
- static bool g_mul_mat_q = false;
- static void * g_scratch_buffer = nullptr;
- static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
- static size_t g_scratch_offset = 0;
- static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
- static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES] = { nullptr };
- static __global__ void add_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= kx) {
- return;
- }
- dst[i] = x[i] + y[i%ky];
- }
- static __global__ void add_f16_f32_f16(const half * x, const float * y, half * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = __hadd(x[i], __float2half(y[i]));
- }
- static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= kx) {
- return;
- }
- dst[i] = x[i] * y[i%ky];
- }
- static __global__ void gelu_f32(const float * x, float * dst, const int k) {
- const float GELU_COEF_A = 0.044715f;
- const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- float xi = x[i];
- dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
- }
- static __global__ void silu_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] / (1.0f + expf(-x[i]));
- }
- static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- const float eps = 1e-5f;
- float mean = 0.0f;
- float var = 0.0f;
- for (int col = tid; col < ncols; col += WARP_SIZE) {
- const float xi = x[row*ncols + col];
- mean += xi;
- var += xi * xi;
- }
- // sum up partial sums
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- mean += __shfl_xor_sync(0xffffffff, mean, mask, 32);
- var += __shfl_xor_sync(0xffffffff, var, mask, 32);
- }
- mean /= ncols;
- var = var / ncols - mean * mean;
- const float inv_var = rsqrtf(var + eps);
- for (int col = tid; col < ncols; col += WARP_SIZE) {
- dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_var;
- }
- }
- static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- float tmp = 0.0f; // partial sum for thread in warp
- for (int col = tid; col < ncols; col += WARP_SIZE) {
- const float xi = x[row*ncols + col];
- tmp += xi * xi;
- }
- // sum up partial sums
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- const float mean = tmp / ncols;
- const float scale = rsqrtf(mean + eps);
- for (int col = tid; col < ncols; col += WARP_SIZE) {
- dst[row*ncols + col] = scale * x[row*ncols + col];
- }
- }
- static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q4_0 * x = (const block_q4_0 *) vx;
- const dfloat d = x[ib].d;
- const int vui = x[ib].qs[iqs];
- v.x = vui & 0xF;
- v.y = vui >> 4;
- #ifdef GGML_CUDA_F16
- v = __hsub2(v, {8.0f, 8.0f});
- v = __hmul2(v, {d, d});
- #else
- v.x = (v.x - 8.0f) * d;
- v.y = (v.y - 8.0f) * d;
- #endif // GGML_CUDA_F16
- }
- static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q4_1 * x = (const block_q4_1 *) vx;
- const dfloat d = x[ib].dm.x;
- const dfloat m = x[ib].dm.y;
- const int vui = x[ib].qs[iqs];
- v.x = vui & 0xF;
- v.y = vui >> 4;
- #ifdef GGML_CUDA_F16
- v = __hmul2(v, {d, d});
- v = __hadd2(v, {m, m});
- #else
- v.x = (v.x * d) + m;
- v.y = (v.y * d) + m;
- #endif // GGML_CUDA_F16
- }
- static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q5_0 * x = (const block_q5_0 *) vx;
- const dfloat d = x[ib].d;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
- #ifdef GGML_CUDA_F16
- v = __hsub2(v, {16.0f, 16.0f});
- v = __hmul2(v, {d, d});
- #else
- v.x = (v.x - 16.0f) * d;
- v.y = (v.y - 16.0f) * d;
- #endif // GGML_CUDA_F16
- }
- static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q5_1 * x = (const block_q5_1 *) vx;
- const dfloat d = x[ib].dm.x;
- const dfloat m = x[ib].dm.y;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
- #ifdef GGML_CUDA_F16
- v = __hmul2(v, {d, d});
- v = __hadd2(v, {m, m});
- #else
- v.x = (v.x * d) + m;
- v.y = (v.y * d) + m;
- #endif // GGML_CUDA_F16
- }
- static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q8_0 * x = (const block_q8_0 *) vx;
- const dfloat d = x[ib].d;
- v.x = x[ib].qs[iqs + 0];
- v.y = x[ib].qs[iqs + 1];
- #ifdef GGML_CUDA_F16
- v = __hmul2(v, {d, d});
- #else
- v.x *= d;
- v.y *= d;
- #endif // GGML_CUDA_F16
- }
- //================================== k-quants
- static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_q2_K * x = (const block_q2_K *) vx;
- const int tid = threadIdx.x;
- #if QK_K == 256
- const int n = tid/32;
- const int l = tid - 32*n;
- const int is = 8*n + l/16;
- const uint8_t q = x[i].qs[32*n + l];
- float * y = yy + i*QK_K + 128*n;
- float dall = x[i].dm.x;
- float dmin = x[i].dm.y;
- y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
- y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
- y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
- #else
- const int is = tid/16; // 0 or 1
- const int il = tid%16; // 0...15
- const uint8_t q = x[i].qs[il] >> (2*is);
- float * y = yy + i*QK_K + 16*is + il;
- float dall = x[i].dm.x;
- float dmin = x[i].dm.y;
- y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
- #endif
- }
- static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, float * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_q3_K * x = (const block_q3_K *) vx;
- #if QK_K == 256
- const int r = threadIdx.x/4;
- const int tid = r/2;
- const int is0 = r%2;
- const int l0 = 16*is0 + 4*(threadIdx.x%4);
- const int n = tid / 4;
- const int j = tid - 4*n;
- uint8_t m = 1 << (4*n + j);
- int is = 8*n + 2*j + is0;
- int shift = 2*j;
- int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
- is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
- is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
- (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
- float d_all = x[i].d;
- float dl = d_all * (us - 32);
- float * y = yy + i*QK_K + 128*n + 32*j;
- const uint8_t * q = x[i].qs + 32*n;
- const uint8_t * hm = x[i].hmask;
- for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
- #else
- const int tid = threadIdx.x;
- const int is = tid/16; // 0 or 1
- const int il = tid%16; // 0...15
- const int im = il/8; // 0...1
- const int in = il%8; // 0...7
- float * y = yy + i*QK_K + 16*is + il;
- const uint8_t q = x[i].qs[il] >> (2*is);
- const uint8_t h = x[i].hmask[in] >> (2*is + im);
- const float d = (float)x[i].d;
- if (is == 0) {
- y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
- y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
- } else {
- y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
- y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
- }
- #endif
- }
- #if QK_K == 256
- static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
- if (j < 4) {
- d = q[j] & 63; m = q[j + 4] & 63;
- } else {
- d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
- }
- }
- #endif
- static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float * __restrict__ yy) {
- const block_q4_K * x = (const block_q4_K *) vx;
- const int i = blockIdx.x;
- #if QK_K == 256
- // assume 32 threads
- const int tid = threadIdx.x;
- const int il = tid/8;
- const int ir = tid%8;
- const int is = 2*il;
- const int n = 4;
- float * y = yy + i*QK_K + 64*il + n*ir;
- const float dall = x[i].dm.x;
- const float dmin = x[i].dm.y;
- const uint8_t * q = x[i].qs + 32*il + n*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- for (int l = 0; l < n; ++l) {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l +32] = d2 * (q[l] >> 4) - m2;
- }
- #else
- const int tid = threadIdx.x;
- const uint8_t * q = x[i].qs;
- float * y = yy + i*QK_K;
- const float d = (float)x[i].d[0];
- const float m = (float)x[i].d[1];
- y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
- y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
- #endif
- }
- static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float * __restrict__ yy) {
- const block_q5_K * x = (const block_q5_K *) vx;
- const int i = blockIdx.x;
- #if QK_K == 256
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int il = tid/16; // il is in 0...3
- const int ir = tid%16; // ir is in 0...15
- const int is = 2*il; // is is in 0...6
- float * y = yy + i*QK_K + 64*il + 2*ir;
- const float dall = x[i].dm.x;
- const float dmin = x[i].dm.y;
- const uint8_t * ql = x[i].qs + 32*il + 2*ir;
- const uint8_t * qh = x[i].qh + 2*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- uint8_t hm = 1 << (2*il);
- y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
- y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
- hm <<= 1;
- y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
- y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
- #else
- const int tid = threadIdx.x;
- const uint8_t q = x[i].qs[tid];
- const int im = tid/8; // 0...3
- const int in = tid%8; // 0...7
- const int is = tid/16; // 0 or 1
- const uint8_t h = x[i].qh[in] >> im;
- const float d = x[i].d;
- float * y = yy + i*QK_K + tid;
- y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
- y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
- #endif
- }
- static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, float * __restrict__ yy) {
- const block_q6_K * x = (const block_q6_K *) vx;
- const int i = blockIdx.x;
- #if QK_K == 256
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int ip = tid/32; // ip is 0 or 1
- const int il = tid - 32*ip; // 0...32
- const int is = 8*ip + il/16;
- float * y = yy + i*QK_K + 128*ip + il;
- const float d = x[i].d;
- const uint8_t * ql = x[i].ql + 64*ip + il;
- const uint8_t qh = x[i].qh[32*ip + il];
- const int8_t * sc = x[i].scales + is;
- y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
- y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
- #else
- // assume 32 threads
- const int tid = threadIdx.x;
- const int ip = tid/16; // 0 or 1
- const int il = tid - 16*ip; // 0...15
- float * y = yy + i*QK_K + 16*ip + il;
- const float d = x[i].d;
- const uint8_t ql = x[i].ql[16*ip + il];
- const uint8_t qh = x[i].qh[il] >> (2*ip);
- const int8_t * sc = x[i].scales;
- y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- #endif
- }
- static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q2_K * x = (const block_q2_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int s_offset = 8*im;
- const int y_offset = 128*im + l0;
- uint32_t aux[4];
- const uint8_t * d = (const uint8_t *)aux;
- const uint8_t * m = (const uint8_t *)(aux + 2);
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const float dall = x[i].dm.x;
- const float dmin = x[i].dm.y;
- const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
- aux[0] = a[0] & 0x0f0f0f0f;
- aux[1] = a[1] & 0x0f0f0f0f;
- aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
- aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
- + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
- + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
- + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
- + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
- + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
- + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
- +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
- sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
- + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
- }
- tmp += dall * sum1 - dmin * sum2;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
- const int offset = tid * K_QUANTS_PER_ITERATION;
- uint32_t uaux[2];
- const uint8_t * d = (const uint8_t *)uaux;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + offset;
- const uint8_t * q = x[i].qs + offset;
- const uint32_t * s = (const uint32_t *)x[i].scales;
- uaux[0] = s[0] & 0x0f0f0f0f;
- uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
- const float2 dall = __half22float2(x[i].dm);
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- const uint8_t ql = q[l];
- sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
- + y[l+16] * d[1] * ((ql >> 2) & 3)
- + y[l+32] * d[2] * ((ql >> 4) & 3)
- + y[l+48] * d[3] * ((ql >> 6) & 3);
- sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
- }
- tmp += dall.x * sum1 - dall.y * sum2;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q3_K * x = (const block_q3_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const uint16_t kmask1 = 0x0303;
- const uint16_t kmask2 = 0x0f0f;
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0....15 or 0...7
- const uint8_t m = 1 << (4*im);
- const int l0 = n*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int y_offset = 128*im + l0;
- uint16_t utmp[4];
- const int8_t * s = (const int8_t *)utmp;
- const uint16_t s_shift = 4*im;
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const uint8_t * h = x[i].hmask + l0;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
- utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
- utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
- utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
- const float d = x[i].d;
- float sum = 0;
- for (int l = 0; l < n; ++l) {
- sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
- + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
- + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
- + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
- sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
- + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
- + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
- + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
- }
- tmp += d * sum;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
- const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
- const int in = offset/8; // 0 or 1
- const int im = offset%8; // 0...7
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + offset;
- const uint8_t * q = x[i].qs + offset;
- const uint8_t * s = x[i].scales;
- const float dall = (float)x[i].d;
- float sum = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- const uint8_t hl = x[i].hmask[im+l] >> in;
- const uint8_t ql = q[l];
- sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
- + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
- + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
- + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q4_K * x = (const block_q4_K *)vx + ib0;
- #if QK_K == 256
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
- const int il = tid/step; // 0...3
- const int ir = tid - step*il; // 0...7 or 0...3
- const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- #if K_QUANTS_PER_ITERATION == 2
- uint32_t q32[4];
- const uint8_t * q4 = (const uint8_t *)q32;
- #else
- uint16_t q16[4];
- const uint8_t * q4 = (const uint8_t *)q16;
- #endif
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
- const float dall = x[i].dm.x;
- const float dmin = x[i].dm.y;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- #if K_QUANTS_PER_ITERATION == 2
- const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
- const uint32_t * q2 = q1 + 16;
- q32[0] = q1[0] & 0x0f0f0f0f;
- q32[1] = q1[0] & 0xf0f0f0f0;
- q32[2] = q2[0] & 0x0f0f0f0f;
- q32[3] = q2[0] & 0xf0f0f0f0;
- float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 4; ++l) {
- s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
- s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
- #else
- const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
- const uint16_t * q2 = q1 + 32;
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[0] & 0xf0f0;
- q16[2] = q2[0] & 0x0f0f;
- q16[3] = q2[0] & 0xf0f0;
- float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 2; ++l) {
- s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
- s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
- #endif
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
- const int step = tid * K_QUANTS_PER_ITERATION;
- uint16_t aux16[2];
- const uint8_t * s = (const uint8_t *)aux16;
- float tmp = 0;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const uint8_t * q = x[i].qs + step;
- const float * y = yy + i*QK_K + step;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux16[0] = a[0] & 0x0f0f;
- aux16[1] = (a[0] >> 4) & 0x0f0f;
- const float d = (float)x[i].d[0];
- const float m = (float)x[i].d[1];
- float sum = 0.f;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
- + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
- + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
- + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
- const int row = blockIdx.x;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q5_K * x = (const block_q5_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int tid = threadIdx.x/2; // 0...15
- const int ix = threadIdx.x%2;
- const int il = tid/4; // 0...3
- const int ir = tid - 4*il;// 0...3
- const int n = 2;
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- const uint8_t hm1 = 1 << (2*im);
- const uint8_t hm2 = hm1 << 4;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- uint16_t q16[8];
- const uint8_t * q4 = (const uint8_t *)q16;
- for (int i = ix; i < num_blocks_per_row; i += 2) {
- const uint8_t * ql1 = x[i].qs + q_offset;
- const uint8_t * qh = x[i].qh + l0;
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
- const float dall = x[i].dm.x;
- const float dmin = x[i].dm.y;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- float4 sum = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- const uint16_t * q1 = (const uint16_t *)ql1;
- const uint16_t * q2 = q1 + 32;
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[8] & 0x0f0f;
- q16[2] = (q1[0] >> 4) & 0x0f0f;
- q16[3] = (q1[8] >> 4) & 0x0f0f;
- q16[4] = q2[0] & 0x0f0f;
- q16[5] = q2[8] & 0x0f0f;
- q16[6] = (q2[0] >> 4) & 0x0f0f;
- q16[7] = (q2[8] >> 4) & 0x0f0f;
- for (int l = 0; l < n; ++l) {
- sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
- + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
- sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
- + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
- sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
- + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
- sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
- + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
- smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
- + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
- }
- tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
- const int step = tid * K_QUANTS_PER_ITERATION;
- const int im = step/8;
- const int in = step%8;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const uint8_t * q = x[i].qs + step;
- const int8_t * s = x[i].scales;
- const float * y = yy + i*QK_K + step;
- const float d = x[i].d;
- float sum = 0.f;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- const uint8_t h = x[i].qh[in+j] >> im;
- sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
- + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
- + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
- + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q6_K * x = (const block_q6_K *)vx + ib0;
- #if QK_K == 256
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
- const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- #if K_QUANTS_PER_ITERATION == 1
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
- const int is = 0;
- #else
- const int l0 = 4 * in; // 0, 4, 8, ..., 28
- const int is = in / 4;
- #endif
- const int ql_offset = 64*im + l0;
- const int qh_offset = 32*im + l0;
- const int s_offset = 8*im + is;
- const int y_offset = 128*im + l0;
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * ql = x[i].ql + ql_offset;
- const uint8_t * qh = x[i].qh + qh_offset;
- const int8_t * s = x[i].scales + s_offset;
- const float d = x[i].d;
- #if K_QUANTS_PER_ITERATION == 1
- float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
- + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
- + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
- + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
- + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
- + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
- + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
- +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
- tmp += sum;
- #else
- float sum = 0;
- for (int l = 0; l < 4; ++l) {
- sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
- + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
- + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
- + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
- }
- tmp += sum;
- #endif
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
- const int step = tid * K_QUANTS_PER_ITERATION;
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + step;
- const uint8_t * ql = x[i].ql + step;
- const uint8_t * qh = x[i].qh + step;
- const int8_t * s = x[i].scales;
- const float d = x[i+0].d;
- float sum = 0;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
- + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
- + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
- + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const half * x = (const half *) vx;
- // automatic half -> float type cast if dfloat == float
- v.x = x[ib + iqs + 0];
- v.y = x[ib + iqs + 1];
- }
- static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
- const int ix = blockDim.x*blockIdx.x + threadIdx.x;
- if (ix >= kx_padded) {
- return;
- }
- const int iy = blockDim.y*blockIdx.y + threadIdx.y;
- const int i_padded = iy*kx_padded + ix;
- block_q8_1 * y = (block_q8_1 *) vy;
- const int ib = i_padded / QK8_1; // block index
- const int iqs = i_padded % QK8_1; // quant index
- const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
- float amax = fabsf(xi);
- float sum = xi;
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32));
- sum += __shfl_xor_sync(0xffffffff, sum, mask, 32);
- }
- const float d = amax / 127;
- const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
- y[ib].qs[iqs] = q;
- if (iqs > 0) {
- return;
- }
- y[ib].ds.x = d;
- y[ib].ds.y = sum;
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_block(const void * __restrict__ vx, float * __restrict__ y, const int k) {
- const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
- if (i >= k) {
- return;
- }
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs, v);
- y[iybs + iqs + 0] = v.x;
- y[iybs + iqs + y_offset] = v.y;
- }
- // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
- // MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
- #define VDR_Q4_0_Q8_1_MMVQ 2
- #define VDR_Q4_0_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
- const int * v, const int * u, const float & d4, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- sumi = __dp4a(vi0, u[2*i+0], sumi);
- sumi = __dp4a(vi1, u[2*i+1], sumi);
- }
- const float2 ds8f = __half22float2(ds8);
- // second part effectively subtracts 8 from each quant value
- return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q4_1_Q8_1_MMVQ 2
- #define VDR_Q4_1_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
- const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- sumi = __dp4a(vi0, u[2*i+0], sumi);
- sumi = __dp4a(vi1, u[2*i+1], sumi);
- }
- #ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm4, ds8));
- const float d4d8 = tmp.x;
- const float m4s8 = tmp.y;
- #else
- const float2 dm4f = __half22float2(dm4);
- const float2 ds8f = __half22float2(ds8);
- const float d4d8 = dm4f.x * ds8f.x;
- const float m4s8 = dm4f.y * ds8f.y;
- #endif // GGML_CUDA_F16
- // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
- return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q5_0_Q8_1_MMVQ 2
- #define VDR_Q5_0_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
- const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
- }
- const float2 ds8f = __half22float2(ds8);
- // second part effectively subtracts 16 from each quant value
- return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q5_1_Q8_1_MMVQ 2
- #define VDR_Q5_1_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
- const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
- }
- #ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm5, ds8));
- const float d5d8 = tmp.x;
- const float m5s8 = tmp.y;
- #else
- const float2 dm5f = __half22float2(dm5);
- const float2 ds8f = __half22float2(ds8);
- const float d5d8 = dm5f.x * ds8f.x;
- const float m5s8 = dm5f.y * ds8f.y;
- #endif // GGML_CUDA_F16
- // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
- return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q8_0_Q8_1_MMVQ 2
- #define VDR_Q8_0_Q8_1_MMQ 8
- template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
- const int * v, const int * u, const float & d8_0, const float & d8_1) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = __dp4a(v[i], u[i], sumi);
- }
- return d8_0*d8_1 * sumi;
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
- const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = __dp4a(v[i], u[i], sumi);
- }
- #ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm8, ds8));
- const float d8d8 = tmp.x;
- const float m8s8 = tmp.y;
- #else
- const float2 dm8f = __half22float2(dm8);
- const float2 ds8f = __half22float2(ds8);
- const float d8d8 = dm8f.x * ds8f.x;
- const float m8s8 = dm8f.y * ds8f.y;
- #endif // GGML_CUDA_F16
- // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
- return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q2_K_Q8_1_MMVQ 1
- #define VDR_Q2_K_Q8_1_MMQ 2
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
- const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const half2 & dm2, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR2_K; ++i) {
- const int sc = scales[2*i];
- const int vi = (v >> (2*i)) & 0x03030303;
- sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
- }
- const float2 dm2f = __half22float2(dm2);
- return dm2f.x*sumf_d - dm2f.y*sumf_m;
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const half2 & dm2, const float & d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi_d = 0;
- int sumi_m = 0;
- #pragma unroll
- for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
- int sumi_d_sc = 0;
- const int sc = scales[i0 / (QI8_1/2)];
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- #pragma unroll
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
- sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
- }
- sumi_d += sumi_d_sc * (sc & 0xF);
- }
- const float2 dm2f = __half22float2(dm2);
- return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q3_K_Q8_1_MMVQ 1
- #define VDR_Q3_K_Q8_1_MMQ 2
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
- const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const int & scale_offset, const float & d3, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- const int isc = scale_offset + 2*i;
- const int isc_low = isc % (QK_K/32);
- const int sc_shift_low = 4 * (isc / (QK_K/32));
- const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
- const int isc_high = isc % (QK_K/64);
- const int sc_shift_high = 2 * (isc / (QK_K/64));
- const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
- const int sc = (sc_low | sc_high) - 32;
- const int vil = (vl >> (2*i)) & 0x03030303;
- const int vih = ((vh >> i) << 2) & 0x04040404;
- const int vi = __vsubss4(vil, vih);
- sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
- return d3 * sumf;
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
- const float & d3, const float & d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
- int sumi_sc = 0;
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
- }
- sumi += sumi_sc * scales[i0 / (QI8_1/2)];
- }
- return d3*d8 * sumi;
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q4_K_Q8_1_MMVQ 2
- #define VDR_Q4_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR4_K; ++i) {
- const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
- const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
- const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
- const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
- }
- const float2 dm4f = __half22float2(dm4);
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
- #pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
- }
- const float2 ds8f = __half22float2(ds8[i]);
- sumf_d += ds8f.x * (sc[i] * sumi_d);
- sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
- }
- const float2 dm4f = __half22float2(dm4);
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q5_K_Q8_1_MMVQ 2
- #define VDR_Q5_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
- const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
- const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
- const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
- const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
- const int v0i = vl0i | vh0i;
- const int v1i = vl1i | vh1i;
- const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
- const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]);
- }
- const float2 dm5f = __half22float2(dm5);
- return dm5f.x*sumf_d - dm5f.y*sumf_m;
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
- #pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
- }
- const float2 ds8f = __half22float2(ds8[i]);
- sumf_d += ds8f.x * (sc[i] * sumi_d);
- sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
- }
- const float2 dm4f = __half22float2(dm4);
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q6_K_Q8_1_MMVQ 1
- #define VDR_Q6_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
- const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
- const float & d, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- const int sc = scales[4*i];
- const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
- const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
- const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
- sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
- return d*sumf;
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
- const float & d6, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- #pragma unroll
- for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
- int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
- #pragma unroll
- for (int i = i0; i < i0 + 2; ++i) {
- sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
- sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
- sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
- sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
- }
- sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
- }
- return d6 * sumf_d;
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
- int v[VDR_Q4_0_Q8_1_MMVQ];
- int u[2*VDR_Q4_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
- }
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
- *x_ql = tile_x_qs;
- *x_dm = (half2 *) tile_x_d;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- __builtin_assume(i_offset >= 0);
- __builtin_assume(i_offset < nwarps);
- __builtin_assume(k >= 0);
- __builtin_assume(k < WARP_SIZE);
- const int kbx = k / QI4_0;
- const int kqsx = k % QI4_0;
- const block_q4_0 * bx0 = (block_q4_0 *) vx;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
- int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
- }
- }
- static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const float * x_dmf = (float *) x_dm;
- int u[2*VDR_Q4_0_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
- }
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
- int v[VDR_Q4_1_Q8_1_MMVQ];
- int u[2*VDR_Q4_1_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
- }
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
- *x_ql = tile_x_qs;
- *x_dm = tile_x_dm;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- __builtin_assume(i_offset >= 0);
- __builtin_assume(i_offset < nwarps);
- __builtin_assume(k >= 0);
- __builtin_assume(k < WARP_SIZE);
- const int kbx = k / QI4_1;
- const int kqsx = k % QI4_1;
- const block_q4_1 * bx0 = (block_q4_1 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
- int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
- }
- }
- static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- int u[2*VDR_Q4_1_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
- }
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
- int vl[VDR_Q5_0_Q8_1_MMVQ];
- int vh[VDR_Q5_0_Q8_1_MMVQ];
- int u[2*VDR_Q5_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
- vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
- }
- return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
- *x_ql = tile_x_ql;
- *x_dm = (half2 *) tile_x_d;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- __builtin_assume(i_offset >= 0);
- __builtin_assume(i_offset < nwarps);
- __builtin_assume(k >= 0);
- __builtin_assume(k < WARP_SIZE);
- const int kbx = k / QI5_0;
- const int kqsx = k % QI5_0;
- const block_q5_0 * bx0 = (block_q5_0 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
- const int ql = get_int_from_uint8(bxi->qs, kqsx);
- const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
- int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
- }
- }
- static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- int u[2*VDR_Q5_0_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
- }
- return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
- int vl[VDR_Q5_1_Q8_1_MMVQ];
- int vh[VDR_Q5_1_Q8_1_MMVQ];
- int u[2*VDR_Q5_1_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
- vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
- }
- return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- __builtin_assume(i_offset >= 0);
- __builtin_assume(i_offset < nwarps);
- __builtin_assume(k >= 0);
- __builtin_assume(k < WARP_SIZE);
- const int kbx = k / QI5_1;
- const int kqsx = k % QI5_1;
- const block_q5_1 * bx0 = (block_q5_1 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
- int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
- }
- }
- static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
- int u[2*VDR_Q5_1_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
- }
- return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
- int v[VDR_Q8_0_Q8_1_MMVQ];
- int u[VDR_Q8_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
- u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- }
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, bq8_1->ds.x);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
- *x_ql = tile_x_qs;
- *x_dm = (half2 *) tile_x_d;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- __builtin_assume(i_offset >= 0);
- __builtin_assume(i_offset < nwarps);
- __builtin_assume(k >= 0);
- __builtin_assume(k < WARP_SIZE);
- const int kbx = k / QI8_0;
- const int kqsx = k % QI8_0;
- float * x_dmf = (float *) x_dm;
- const block_q8_0 * bx0 = (block_q8_0 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
- int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
- }
- }
- static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
- y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q2_K * bq2_K = (const block_q2_K *) vbq;
- const int bq8_offset = QR2_K * (iqs / QI8_1);
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- const uint8_t * scales = bq2_K->scales + scale_offset;
- const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
- int u[QR2_K];
- float d8[QR2_K];
- #pragma unroll
- for (int i = 0; i < QR2_K; ++ i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = bq8_1[bq8_offset + i].ds.x;
- }
- return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- __builtin_assume(i_offset >= 0);
- __builtin_assume(i_offset < nwarps);
- __builtin_assume(k >= 0);
- __builtin_assume(k < WARP_SIZE);
- const int kbx = k / QI2_K;
- const int kqsx = k % QI2_K;
- const block_q2_K * bx0 = (block_q2_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
- int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
- }
- }
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- const int kbx = k / QI2_K;
- const int ky = (k % QI2_K) * QR2_K;
- const float * y_df = (const float *) y_ds;
- int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
- const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
- #pragma unroll
- for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
- v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
- }
- const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
- const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
- return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q3_K * bq3_K = (const block_q3_K *) vbq;
- const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- const float d = bq3_K->d;
- const int vl = get_int_from_uint8(bq3_K->qs, iqs);
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
- int u[QR3_K];
- float d8[QR3_K];
- #pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = bq8_1[bq8_offset + i].ds.x;
- }
- return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
- __shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_qh = tile_x_qh;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- __builtin_assume(i_offset >= 0);
- __builtin_assume(i_offset < nwarps);
- __builtin_assume(k >= 0);
- __builtin_assume(k < WARP_SIZE);
- const int kbx = k / QI3_K;
- const int kqsx = k % QI3_K;
- const block_q3_K * bx0 = (block_q3_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
- int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
- int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
- const int ksc = k % (QI3_K/4);
- const int ksc_low = ksc % (QI3_K/8);
- const int shift_low = 4 * (ksc / (QI3_K/8));
- const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
- const int ksc_high = QI3_K/8;
- const int shift_high = 2 * ksc;
- const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
- const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
- }
- }
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- const int kbx = k / QI3_K;
- const int ky = (k % QI3_K) * QR3_K;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- const int8_t * scales = ((int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
- int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
- const int shift = 2 * ((ky % 32) / 8);
- const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
- const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
- const int vlh = (vh << 2) & 0x04040404;
- v[l] = __vsubss4(vll, vlh);
- }
- const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
- return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #ifndef GGML_QKK_64
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
- int v[2];
- int u[2*QR4_K];
- float d8[QR4_K];
- // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
- const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
- // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
- // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
- // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
- // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
- const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- v[0] = q4[0];
- v[1] = q4[4];
- const uint16_t * scales = (const uint16_t *)bq4_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
- for (int i = 0; i < QR4_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = bq8i->ds.x;
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
- return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
- #else
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- uint16_t aux16[2];
- const uint8_t * s = (const uint8_t *)aux16;
- const uint16_t * a = (const uint16_t *)bq4_K->scales;
- aux16[0] = a[0] & 0x0f0f;
- aux16[1] = (a[0] >> 4) & 0x0f0f;
- const float dall = bq4_K->d[0];
- const float dmin = bq4_K->d[1];
- const float d8_1 = bq8_1[0].ds.x;
- const float d8_2 = bq8_1[1].ds.x;
- const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
- const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
- const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
- const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
- const int * q4 = (const int *)bq4_K->qs + (iqs/2);
- const int v1 = q4[0];
- const int v2 = q4[4];
- const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
- const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
- const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
- const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
- sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
- sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
- return dall * sumf_d - dmin * sumf_m;
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- #endif
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- __builtin_assume(i_offset >= 0);
- __builtin_assume(i_offset < nwarps);
- __builtin_assume(k >= 0);
- __builtin_assume(k < WARP_SIZE);
- const int kbx = k / QI4_K; // == 0 if QK_K == 256
- const int kqsx = k % QI4_K; // == k if QK_K == 256
- const block_q4_K * bx0 = (block_q4_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
- int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
- const int * scales = (int *) bxi->scales;
- const int ksc = k % (WARP_SIZE/8);
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
- }
- }
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
- const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
- return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #ifndef GGML_QKK_64
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- int vl[2];
- int vh[2];
- int u[2*QR5_K];
- float d8[QR5_K];
- const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
- const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
- vl[0] = ql[0];
- vl[1] = ql[4];
- vh[0] = qh[0] >> bq8_offset;
- vh[1] = qh[4] >> bq8_offset;
- const uint16_t * scales = (const uint16_t *)bq5_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
- #pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = bq8i->ds.x;
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
- return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
- #else
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- const int8_t * s = bq5_K->scales;
- const float d = bq5_K->d;
- const float d8_1 = bq8_1[0].ds.x;
- const float d8_2 = bq8_1[1].ds.x;
- const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
- const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
- const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
- const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
- const int * ql = (const int *)bq5_K->qs + (iqs/2);
- const int vl1 = ql[0];
- const int vl2 = ql[4];
- const int step = 4 * (iqs/2); // 0, 4, 8, 12
- const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
- const int in = step%8; // 0, 4, 0, 4
- const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
- const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
- const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
- const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
- const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
- const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
- + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
- return d * sumf_d;
- #else
- assert(false);
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- #endif
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- __builtin_assume(i_offset >= 0);
- __builtin_assume(i_offset < nwarps);
- __builtin_assume(k >= 0);
- __builtin_assume(k < WARP_SIZE);
- const int kbx = k / QI5_K; // == 0 if QK_K == 256
- const int kqsx = k % QI5_K; // == k if QK_K == 256
- const block_q5_K * bx0 = (block_q5_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR5_K*kqsx;
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
- const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
- const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
- const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
- const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
- x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
- x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
- int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
- const int * scales = (int *) bxi->scales;
- const int ksc = k % (WARP_SIZE/8);
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
- }
- }
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
- const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
- const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
- return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q6_K * bq6_K = (const block_q6_K *) vbq;
- const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
- const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
- const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
- const int vl = get_int_from_uint8(bq6_K->ql, iqs);
- const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
- const int8_t * scales = bq6_K->scales + scale_offset;
- int u[QR6_K];
- float d8[QR6_K];
- #pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
- d8[i] = bq8_1[bq8_offset + 2*i].ds.x;
- }
- return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- __builtin_assume(i_offset >= 0);
- __builtin_assume(i_offset < nwarps);
- __builtin_assume(k >= 0);
- __builtin_assume(k < WARP_SIZE);
- const int kbx = k / QI6_K; // == 0 if QK_K == 256
- const int kqsx = k % QI6_K; // == k if QK_K == 256
- const block_q6_K * bx0 = (block_q6_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR6_K*kqsx;
- const int ql = get_int_from_uint8(bxi->ql, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
- const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
- const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
- const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
- const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
- x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
- x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
- int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
- x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
- }
- }
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
- const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
- const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
- return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
- }
- template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
- allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
- static __device__ __forceinline__ void mul_mat_q(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- const int blocks_per_row_x = ncols_x / qk;
- const int blocks_per_col_y = nrows_y / QK8_1;
- const int blocks_per_warp = WARP_SIZE / qi;
- const int & ncols_dst = ncols_y;
- const int row_dst_0 = blockIdx.x*mmq_y;
- const int & row_x_0 = row_dst_0;
- const int col_dst_0 = blockIdx.y*mmq_x;
- const int & col_y_0 = col_dst_0;
- int * tile_x_ql = nullptr;
- half2 * tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
- __shared__ int tile_y_qs[mmq_x * WARP_SIZE];
- __shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
- float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {0.0f};
- for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
- load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
- threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
- #pragma unroll
- for (int ir = 0; ir < qr; ++ir) {
- const int kqs = ir*WARP_SIZE + threadIdx.x;
- const int kbxd = kqs / QI8_1;
- #pragma unroll
- for (int i = 0; i < mmq_x; i += nwarps) {
- const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
- const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
- const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
- tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
- }
- #pragma unroll
- for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
- const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
- const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
- const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
- // if the sum is not needed it's faster to transform the scale to f32 ahead of time
- const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
- half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
- if (need_sum) {
- *dsi_dst = *dsi_src;
- } else {
- float * dfi_dst = (float *) dsi_dst;
- *dfi_dst = (*dsi_src).x;
- }
- }
- __syncthreads();
- // #pragma unroll // unrolling this loop causes too much register pressure
- for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
- #pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
- #pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- sum[i/WARP_SIZE][j/nwarps] += vec_dot(
- tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
- threadIdx.x + i, threadIdx.y + j, k);
- }
- }
- }
- __syncthreads();
- }
- }
- #pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
- const int col_dst = col_dst_0 + j + threadIdx.y;
- if (col_dst >= ncols_dst) {
- return;
- }
- #pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- const int row_dst = row_dst_0 + threadIdx.x + i;
- if (row_dst >= nrows_dst) {
- continue;
- }
- dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
- }
- }
- }
- #define MMQ_X_Q4_0_AMPERE 64
- #define MMQ_Y_Q4_0_AMPERE 128
- #define NWARPS_Q4_0_AMPERE 4
- #define MMQ_X_Q4_0_PASCAL 64
- #define MMQ_Y_Q4_0_PASCAL 64
- #define NWARPS_Q4_0_PASCAL 8
- template <bool need_check> static __global__ void mul_mat_q4_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if __CUDA_ARCH__ >= CC_TURING
- const int mmq_x = MMQ_X_Q4_0_AMPERE;
- const int mmq_y = MMQ_Y_Q4_0_AMPERE;
- const int nwarps = NWARPS_Q4_0_AMPERE;
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q4_0_PASCAL;
- const int mmq_y = MMQ_Y_Q4_0_PASCAL;
- const int nwarps = NWARPS_Q4_0_PASCAL;
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q4_0_q8_1_mul_mat;
- assert(false);
- #endif // __CUDA_ARCH__ >= CC_TURING
- }
- #define MMQ_X_Q4_1_AMPERE 64
- #define MMQ_Y_Q4_1_AMPERE 128
- #define NWARPS_Q4_1_AMPERE 4
- #define MMQ_X_Q4_1_PASCAL 64
- #define MMQ_Y_Q4_1_PASCAL 64
- #define NWARPS_Q4_1_PASCAL 8
- template <bool need_check> static __global__ void
- #if __CUDA_ARCH__ < CC_TURING
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
- #endif // __CUDA_ARCH__ < CC_TURING
- mul_mat_q4_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if __CUDA_ARCH__ >= CC_TURING
- const int mmq_x = MMQ_X_Q4_1_AMPERE;
- const int mmq_y = MMQ_Y_Q4_1_AMPERE;
- const int nwarps = NWARPS_Q4_1_AMPERE;
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q4_1_PASCAL;
- const int mmq_y = MMQ_Y_Q4_1_PASCAL;
- const int nwarps = NWARPS_Q4_1_PASCAL;
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q4_1_q8_1_mul_mat;
- assert(false);
- #endif // __CUDA_ARCH__ >= CC_TURING
- }
- #define MMQ_X_Q5_0_AMPERE 128
- #define MMQ_Y_Q5_0_AMPERE 64
- #define NWARPS_Q5_0_AMPERE 4
- #define MMQ_X_Q5_0_PASCAL 64
- #define MMQ_Y_Q5_0_PASCAL 64
- #define NWARPS_Q5_0_PASCAL 8
- template <bool need_check> static __global__ void mul_mat_q5_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if __CUDA_ARCH__ >= CC_TURING
- const int mmq_x = MMQ_X_Q5_0_AMPERE;
- const int mmq_y = MMQ_Y_Q5_0_AMPERE;
- const int nwarps = NWARPS_Q5_0_AMPERE;
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q5_0_PASCAL;
- const int mmq_y = MMQ_Y_Q5_0_PASCAL;
- const int nwarps = NWARPS_Q5_0_PASCAL;
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q5_0_q8_1_mul_mat;
- assert(false);
- #endif // __CUDA_ARCH__ >= CC_TURING
- }
- #define MMQ_X_Q5_1_AMPERE 128
- #define MMQ_Y_Q5_1_AMPERE 64
- #define NWARPS_Q5_1_AMPERE 4
- #define MMQ_X_Q5_1_PASCAL 64
- #define MMQ_Y_Q5_1_PASCAL 64
- #define NWARPS_Q5_1_PASCAL 8
- template <bool need_check> static __global__ void mul_mat_q5_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if __CUDA_ARCH__ >= CC_TURING
- const int mmq_x = MMQ_X_Q5_1_AMPERE;
- const int mmq_y = MMQ_Y_Q5_1_AMPERE;
- const int nwarps = NWARPS_Q5_1_AMPERE;
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q5_1_PASCAL;
- const int mmq_y = MMQ_Y_Q5_1_PASCAL;
- const int nwarps = NWARPS_Q5_1_PASCAL;
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q5_1_q8_1_mul_mat;
- assert(false);
- #endif // __CUDA_ARCH__ >= CC_TURING
- }
- #define MMQ_X_Q8_0_AMPERE 128
- #define MMQ_Y_Q8_0_AMPERE 64
- #define NWARPS_Q8_0_AMPERE 4
- #define MMQ_X_Q8_0_PASCAL 64
- #define MMQ_Y_Q8_0_PASCAL 64
- #define NWARPS_Q8_0_PASCAL 8
- template <bool need_check> static __global__ void mul_mat_q8_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if __CUDA_ARCH__ >= CC_TURING
- const int mmq_x = MMQ_X_Q8_0_AMPERE;
- const int mmq_y = MMQ_Y_Q8_0_AMPERE;
- const int nwarps = NWARPS_Q8_0_AMPERE;
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q8_0_PASCAL;
- const int mmq_y = MMQ_Y_Q8_0_PASCAL;
- const int nwarps = NWARPS_Q8_0_PASCAL;
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q8_0_q8_1_mul_mat;
- assert(false);
- #endif // __CUDA_ARCH__ >= CC_TURING
- }
- #define MMQ_X_Q2_K_AMPERE 64
- #define MMQ_Y_Q2_K_AMPERE 128
- #define NWARPS_Q2_K_AMPERE 4
- #define MMQ_X_Q2_K_PASCAL 64
- #define MMQ_Y_Q2_K_PASCAL 64
- #define NWARPS_Q2_K_PASCAL 8
- template <bool need_check> static __global__ void mul_mat_q2_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if __CUDA_ARCH__ >= CC_TURING
- const int mmq_x = MMQ_X_Q2_K_AMPERE;
- const int mmq_y = MMQ_Y_Q2_K_AMPERE;
- const int nwarps = NWARPS_Q2_K_AMPERE;
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q2_K_PASCAL;
- const int mmq_y = MMQ_Y_Q2_K_PASCAL;
- const int nwarps = NWARPS_Q2_K_PASCAL;
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q2_K_q8_1_mul_mat;
- assert(false);
- #endif // __CUDA_ARCH__ >= CC_TURING
- }
- #define MMQ_X_Q3_K_AMPERE 128
- #define MMQ_Y_Q3_K_AMPERE 128
- #define NWARPS_Q3_K_AMPERE 4
- #define MMQ_X_Q3_K_PASCAL 64
- #define MMQ_Y_Q3_K_PASCAL 64
- #define NWARPS_Q3_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if __CUDA_ARCH__ < CC_TURING
- __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
- #endif // __CUDA_ARCH__ < CC_TURING
- mul_mat_q3_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if __CUDA_ARCH__ >= CC_TURING
- const int mmq_x = MMQ_X_Q3_K_AMPERE;
- const int mmq_y = MMQ_Y_Q3_K_AMPERE;
- const int nwarps = NWARPS_Q3_K_AMPERE;
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q3_K_PASCAL;
- const int mmq_y = MMQ_Y_Q3_K_PASCAL;
- const int nwarps = NWARPS_Q3_K_PASCAL;
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q3_K_q8_1_mul_mat;
- assert(false);
- #endif // __CUDA_ARCH__ >= CC_TURING
- }
- #define MMQ_X_Q4_K_AMPERE 64
- #define MMQ_Y_Q4_K_AMPERE 128
- #define NWARPS_Q4_K_AMPERE 4
- #define MMQ_X_Q4_K_PASCAL 64
- #define MMQ_Y_Q4_K_PASCAL 64
- #define NWARPS_Q4_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if __CUDA_ARCH__ < CC_TURING
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
- #endif // __CUDA_ARCH__ < CC_TURING
- mul_mat_q4_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if __CUDA_ARCH__ >= CC_TURING
- const int mmq_x = MMQ_X_Q4_K_AMPERE;
- const int mmq_y = MMQ_Y_Q4_K_AMPERE;
- const int nwarps = NWARPS_Q4_K_AMPERE;
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q4_K_PASCAL;
- const int mmq_y = MMQ_Y_Q4_K_PASCAL;
- const int nwarps = NWARPS_Q4_K_PASCAL;
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q4_K_q8_1_mul_mat;
- assert(false);
- #endif // __CUDA_ARCH__ >= CC_TURING
- }
- #define MMQ_X_Q5_K_AMPERE 64
- #define MMQ_Y_Q5_K_AMPERE 128
- #define NWARPS_Q5_K_AMPERE 4
- #define MMQ_X_Q5_K_PASCAL 64
- #define MMQ_Y_Q5_K_PASCAL 64
- #define NWARPS_Q5_K_PASCAL 8
- template <bool need_check> static __global__ void mul_mat_q5_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if __CUDA_ARCH__ >= CC_TURING
- const int mmq_x = MMQ_X_Q5_K_AMPERE;
- const int mmq_y = MMQ_Y_Q5_K_AMPERE;
- const int nwarps = NWARPS_Q5_K_AMPERE;
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q5_K_PASCAL;
- const int mmq_y = MMQ_Y_Q5_K_PASCAL;
- const int nwarps = NWARPS_Q5_K_PASCAL;
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q5_K_q8_1_mul_mat;
- assert(false);
- #endif // __CUDA_ARCH__ >= CC_TURING
- }
- #define MMQ_X_Q6_K_AMPERE 64
- #define MMQ_Y_Q6_K_AMPERE 64
- #define NWARPS_Q6_K_AMPERE 4
- #define MMQ_X_Q6_K_PASCAL 64
- #define MMQ_Y_Q6_K_PASCAL 64
- #define NWARPS_Q6_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if __CUDA_ARCH__ < CC_TURING
- __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
- #endif // __CUDA_ARCH__ < CC_TURING
- mul_mat_q6_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if __CUDA_ARCH__ >= CC_TURING
- const int mmq_x = MMQ_X_Q6_K_AMPERE;
- const int mmq_y = MMQ_Y_Q6_K_AMPERE;
- const int nwarps = NWARPS_Q6_K_AMPERE;
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q6_K_PASCAL;
- const int mmq_y = MMQ_Y_Q6_K_PASCAL;
- const int nwarps = NWARPS_Q6_K_PASCAL;
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q6_K_q8_1_mul_mat;
- assert(false);
- #endif // __CUDA_ARCH__ >= CC_TURING
- }
- template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
- static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) {
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i + threadIdx.x / (qi/vdr); // x block index
- const int iby = (i + threadIdx.x / (qi/vdr)) * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
- // qk = quantized weights per x block
- // qr = number of quantized weights per data value in x block
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row >= nrows) {
- return;
- }
- const int tid = threadIdx.x;
- const int iter_stride = 2*GGML_CUDA_DMMV_X;
- const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
- const int y_offset = qr == 1 ? 1 : qk/2;
- // partial sum for each thread
- #ifdef GGML_CUDA_F16
- half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
- #else
- float tmp = 0.0f;
- #endif // GGML_CUDA_F16
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = (row*ncols + col)/qk; // x block index
- const int iqs = (col%qk)/qr; // x quant index
- const int iybs = col - col%qk; // y block start index
- // processing >2 values per i iter is faster for fast GPUs
- #pragma unroll
- for (int j = 0; j < vals_per_iter; j += 2) {
- // process 2 vals per j iter
- // dequantize
- // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs + j/qr, v);
- // matrix multiplication
- // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
- #ifdef GGML_CUDA_F16
- tmp += __hmul2(v, {
- y[iybs + iqs + j/qr + 0],
- y[iybs + iqs + j/qr + y_offset]
- });
- #else
- tmp += v.x * y[iybs + iqs + j/qr + 0];
- tmp += v.y * y[iybs + iqs + j/qr + y_offset];
- #endif // GGML_CUDA_F16
- }
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- #ifdef GGML_CUDA_F16
- dst[row] = tmp.x + tmp.y;
- #else
- dst[row] = tmp;
- #endif // GGML_CUDA_F16
- }
- }
- static __global__ void mul_mat_p021_f16_f32(
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
- const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int channel_x = channel / (nchannels_y / nchannels_x);
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- // x is transposed and permuted
- const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
- const float xi = __half2float(x[ix]);
- const int row_y = col_x;
- // y is not transposed but permuted
- const int iy = channel*nrows_y + row_y;
- tmp += xi * y[iy];
- }
- // dst is not transposed and not permuted
- const int idst = channel*nrows_dst + row_dst;
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
- const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
- const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int channel_x = channel / channel_x_divisor;
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- const int idst = channel*nrows_dst + row_dst;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
- const float xi = __half2float(x[ix]);
- const int row_y = col_x;
- const int iy = channel*nrows_y + row_y;
- tmp += xi * y[iy];
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- float * dsti = (float *) cdsti;
- *dsti = *xi;
- }
- static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- half * dsti = (half *) cdsti;
- *dsti = __float2half(*xi);
- }
- template <cpy_kernel_t cpy_1>
- static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= ne) {
- return;
- }
- // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
- // then combine those indices with the corresponding byte offsets to get the total offsets
- const int i02 = i / (ne00*ne01);
- const int i01 = (i - i02*ne01*ne00) / ne00;
- const int i00 = i - i02*ne01*ne00 - i01*ne00;
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
- const int i12 = i / (ne10*ne11);
- const int i11 = (i - i12*ne10*ne11) / ne10;
- const int i10 = i - i12*ne10*ne11 - i11*ne10;
- const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
- cpy_1(cx + x_offset, cdst + dst_offset);
- }
- // rope == RoPE == rotary positional embedding
- static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0,
- const float p_delta, const int p_delta_rows, const float theta_scale) {
- const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
- if (col >= ncols) {
- return;
- }
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int i = row*ncols + col;
- const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + 1];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + 1] = x0*sin_theta + x1*cos_theta;
- }
- static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) {
- const int col = blockDim.x*blockIdx.x + threadIdx.x;
- const int half_n_dims = ncols/4;
- if (col >= half_n_dims) {
- return;
- }
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int i = row*ncols + col;
- const float col_theta_scale = powf(theta_scale, col);
- const float theta = p*col_theta_scale;
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + half_n_dims];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
- const float block_theta = block_p*col_theta_scale;
- const float sin_block_theta = sinf(block_theta);
- const float cos_block_theta = cosf(block_theta);
- const float x2 = x[i + half_n_dims * 2];
- const float x3 = x[i + half_n_dims * 3];
- dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
- dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
- }
- static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
- const int col = blockDim.x*blockIdx.x + threadIdx.x;
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- if (col >= ncols) {
- return;
- }
- const int i = row*ncols + col;
- // dst[i] = col > n_past + row ? -INFINITY : x[i];
- dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
- }
- // the CUDA soft max implementation differs from the CPU implementation
- // instead of doubles floats are used
- // values are also not normalized to the maximum value by subtracting it in the exponential function
- // theoretically these changes could cause problems with rounding error and arithmetic overflow but for LLaMa it seems to be fine
- static __global__ void soft_max_f32(const float * x, float * dst, const int ncols) {
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int block_size = blockDim.x;
- const int tid = threadIdx.x;
- float tmp = 0.0;
- for (int block_start = 0; block_start < ncols; block_start += block_size) {
- const int col = block_start + tid;
- if (col >= ncols) {
- break;
- }
- const int i = row*ncols + col;
- const float val = expf(x[i]);
- tmp += val;
- dst[i] = val;
- }
- // sum up partial sums
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- for (int block_start = 0; block_start < ncols; block_start += block_size) {
- const int col = block_start + tid;
- if (col >= ncols) {
- break;
- }
- const int i = row*ncols + col;
- dst[i] /= tmp;
- }
- }
- static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = scale * x[i];
- }
- static void add_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
- const int num_blocks = (kx + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
- add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
- }
- static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
- add_f16_f32_f16<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
- }
- static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
- const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
- mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
- }
- static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
- gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
- silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
- }
- static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
- }
- static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
- const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
- const dim3 num_blocks(block_num_x, ky, 1);
- const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
- quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
- }
- static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 1, 1);
- dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK4_0 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK4_1 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK5_0 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK5_1 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK8_0 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<1, 1, convert_f16>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_cuda;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_cuda;
- case GGML_TYPE_Q5_0:
- return dequantize_row_q5_0_cuda;
- case GGML_TYPE_Q5_1:
- return dequantize_row_q5_1_cuda;
- case GGML_TYPE_Q8_0:
- return dequantize_row_q8_0_cuda;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_cuda;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_cuda;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_cuda;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_cuda;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_cuda;
- case GGML_TYPE_F16:
- return convert_fp16_to_fp32_cuda;
- default:
- return nullptr;
- }
- }
- static void ggml_mul_mat_q4_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_TURING) {
- mmq_x = MMQ_X_Q4_0_AMPERE;
- mmq_y = MMQ_Y_Q4_0_AMPERE;
- nwarps = NWARPS_Q4_0_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q4_0_PASCAL;
- mmq_y = MMQ_Y_Q4_0_PASCAL;
- nwarps = NWARPS_Q4_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q4_1_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_TURING) {
- mmq_x = MMQ_X_Q4_1_AMPERE;
- mmq_y = MMQ_Y_Q4_1_AMPERE;
- nwarps = NWARPS_Q4_1_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q4_1_PASCAL;
- mmq_y = MMQ_Y_Q4_1_PASCAL;
- nwarps = NWARPS_Q4_1_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q5_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_TURING) {
- mmq_x = MMQ_X_Q5_0_AMPERE;
- mmq_y = MMQ_Y_Q5_0_AMPERE;
- nwarps = NWARPS_Q5_0_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q5_0_PASCAL;
- mmq_y = MMQ_Y_Q5_0_PASCAL;
- nwarps = NWARPS_Q5_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q5_1_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_TURING) {
- mmq_x = MMQ_X_Q5_1_AMPERE;
- mmq_y = MMQ_Y_Q5_1_AMPERE;
- nwarps = NWARPS_Q5_1_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q5_1_PASCAL;
- mmq_y = MMQ_Y_Q5_1_PASCAL;
- nwarps = NWARPS_Q5_1_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q8_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_TURING) {
- mmq_x = MMQ_X_Q8_0_AMPERE;
- mmq_y = MMQ_Y_Q8_0_AMPERE;
- nwarps = NWARPS_Q8_0_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q8_0_PASCAL;
- mmq_y = MMQ_Y_Q8_0_PASCAL;
- nwarps = NWARPS_Q8_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q2_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_TURING) {
- mmq_x = MMQ_X_Q2_K_AMPERE;
- mmq_y = MMQ_Y_Q2_K_AMPERE;
- nwarps = NWARPS_Q2_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q2_K_PASCAL;
- mmq_y = MMQ_Y_Q2_K_PASCAL;
- nwarps = NWARPS_Q2_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q3_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_TURING) {
- mmq_x = MMQ_X_Q3_K_AMPERE;
- mmq_y = MMQ_Y_Q3_K_AMPERE;
- nwarps = NWARPS_Q3_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q3_K_PASCAL;
- mmq_y = MMQ_Y_Q3_K_PASCAL;
- nwarps = NWARPS_Q3_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q4_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_TURING) {
- mmq_x = MMQ_X_Q4_K_AMPERE;
- mmq_y = MMQ_Y_Q4_K_AMPERE;
- nwarps = NWARPS_Q4_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q4_K_PASCAL;
- mmq_y = MMQ_Y_Q4_K_PASCAL;
- nwarps = NWARPS_Q4_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q5_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_TURING) {
- mmq_x = MMQ_X_Q5_K_AMPERE;
- mmq_y = MMQ_Y_Q5_K_AMPERE;
- nwarps = NWARPS_Q5_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q5_K_PASCAL;
- mmq_y = MMQ_Y_Q5_K_PASCAL;
- nwarps = NWARPS_Q5_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q6_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_compute_capabilities[id];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_TURING) {
- mmq_x = MMQ_X_Q6_K_AMPERE;
- mmq_y = MMQ_Y_Q6_K_AMPERE;
- nwarps = NWARPS_Q6_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q6_K_PASCAL;
- mmq_y = MMQ_Y_Q6_K_PASCAL;
- nwarps = NWARPS_Q6_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_p021_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
- const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_y);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
- }
- static void ggml_mul_mat_vec_nc_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
- const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_y);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
- (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
- }
- static void ggml_cpy_f32_f32_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
- }
- static void ggml_cpy_f32_f16_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
- }
- static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
- scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
- }
- static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
- const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
- GGML_ASSERT(nrows % 2 == 0);
- const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
- const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
- const dim3 block_nums(num_blocks_x, nrows, 1);
- rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
- }
- static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
- GGML_ASSERT(nrows % 4 == 0);
- const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1);
- const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE);
- const dim3 block_nums(num_blocks_x, nrows, 1);
- rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, block_p, theta_scale);
- }
- static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
- const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1);
- const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
- const dim3 block_nums(block_num_x, nrows_x, 1);
- diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
- }
- static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, cudaStream_t stream) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- const dim3 block_nums(1, nrows_x, 1);
- soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
- }
- // buffer pool for cuda
- #define MAX_CUDA_BUFFERS 256
- struct scoped_spin_lock {
- std::atomic_flag& lock;
- scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
- while (lock.test_and_set(std::memory_order_acquire)) {
- ; // spin
- }
- }
- ~scoped_spin_lock() {
- lock.clear(std::memory_order_release);
- }
- scoped_spin_lock(const scoped_spin_lock&) = delete;
- scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
- };
- struct cuda_buffer {
- void * ptr = nullptr;
- size_t size = 0;
- };
- static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
- static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
- static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- #ifdef DEBUG_CUDA_MALLOC
- int nnz = 0;
- size_t max_size = 0, tot_size = 0;
- #endif
- size_t best_diff = 1ull << 36;
- int ibest = -1;
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[id][i];
- if (b.ptr != nullptr) {
- #ifdef DEBUG_CUDA_MALLOC
- ++nnz;
- tot_size += b.size;
- if (b.size > max_size) max_size = b.size;
- #endif
- if (b.size >= size) {
- size_t diff = b.size - size;
- if (diff < best_diff) {
- best_diff = diff;
- ibest = i;
- if (!best_diff) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- }
- }
- }
- }
- if (ibest >= 0) {
- cuda_buffer& b = g_cuda_buffer_pool[id][ibest];
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- #ifdef DEBUG_CUDA_MALLOC
- fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
- (uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
- #endif
- void * ptr;
- size_t look_ahead_size = (size_t) (1.05 * size);
- look_ahead_size = 256 * ((look_ahead_size + 255)/256);
- CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
- *actual_size = look_ahead_size;
- return ptr;
- }
- static void ggml_cuda_pool_free(void * ptr, size_t size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[id][i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
- CUDA_CHECK(cudaFree(ptr));
- }
- void ggml_init_cublas() {
- static bool initialized = false;
- if (!initialized) {
- CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
- GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
- int64_t total_vram = 0;
- fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count);
- for (int id = 0; id < g_device_count; ++id) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
- fprintf(stderr, " Device %d: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor);
- g_tensor_split[id] = total_vram;
- total_vram += prop.totalGlobalMem;
- g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
- }
- for (int id = 0; id < g_device_count; ++id) {
- g_tensor_split[id] /= total_vram;
- }
- for (int id = 0; id < g_device_count; ++id) {
- CUDA_CHECK(cudaSetDevice(id));
- // create main stream
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id], cudaStreamNonBlocking));
- // create cublas handle
- CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
- CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
- }
- // configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
- initialized = true;
- }
- }
- void ggml_cuda_set_tensor_split(const float * tensor_split) {
- if (tensor_split == nullptr) {
- return;
- }
- bool all_zero = true;
- for (int i = 0; i < g_device_count; ++i) {
- if (tensor_split[i] != 0.0f) {
- all_zero = false;
- break;
- }
- }
- if (all_zero) {
- return;
- }
- float split_sum = 0.0f;
- for (int i = 0; i < g_device_count; ++i) {
- g_tensor_split[i] = split_sum;
- split_sum += tensor_split[i];
- }
- for (int i = 0; i < g_device_count; ++i) {
- g_tensor_split[i] /= split_sum;
- }
- }
- void * ggml_cuda_host_malloc(size_t size) {
- if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
- return nullptr;
- }
- void * ptr = nullptr;
- cudaError_t err = cudaMallocHost((void **) &ptr, size);
- if (err != cudaSuccess) {
- // The allocation error can be bypassed. A null ptr will assigned out of this function.
- // This can fixed the OOM error in WSL.
- cudaGetLastError();
- fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
- size/1024.0/1024.0, cudaGetErrorString(err));
- return nullptr;
- }
- return ptr;
- }
- void ggml_cuda_host_free(void * ptr) {
- CUDA_CHECK(cudaFreeHost(ptr));
- }
- static cudaError_t ggml_cuda_cpy_tensor_2d(
- void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
- cudaMemcpyKind kind;
- char * src_ptr;
- if (src->backend == GGML_BACKEND_CPU) {
- kind = cudaMemcpyHostToDevice;
- src_ptr = (char *) src->data;
- } else if (src->backend == GGML_BACKEND_GPU) {
- kind = cudaMemcpyDeviceToDevice;
- struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- src_ptr = (char *) extra->data_device[id];
- } else {
- GGML_ASSERT(false);
- }
- char * dst_ptr = (char *) dst;
- const int64_t ne0 = src->ne[0];
- const int64_t nb0 = src->nb[0];
- const int64_t nb1 = src->nb[1];
- const int64_t nb2 = src->nb[2];
- const int64_t nb3 = src->nb[3];
- const enum ggml_type type = src->type;
- const int64_t ts = ggml_type_size(type);
- const int64_t bs = ggml_blck_size(type);
- int64_t i1_diff = i1_high - i1_low;
- const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
- } else if (nb0 == ts) {
- return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
- } else {
- for (int64_t i1 = 0; i1 < i1_diff; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
- if (r != cudaSuccess) return r;
- }
- return cudaSuccess;
- }
- }
- inline void ggml_cuda_op_add(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddq_i != nullptr || src0_ddf_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- // compute
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne00*i01_diff, cudaStream_main);
- } else {
- GGML_ASSERT(false);
- }
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_mul(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- mul_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
- (void) dst;
- (void) src0_ddq_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_gelu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- gelu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_silu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_rms_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- // compute
- rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, eps, cudaStream_main);
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_mul_mat_q(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddq_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- GGML_ASSERT(ne10 % QK8_1 == 0);
- const int64_t ne0 = dst->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
- const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;
- const int64_t padded_row_size = ne10 % MATRIX_ROW_PADDING == 0 ?
- ne10 : ne10 - ne10 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
- size_t as;
- void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*ne11*sizeof(block_q8_1)/QK8_1, &as);
- quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne10, ne11, padded_row_size, cudaStream_main);
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- ggml_mul_mat_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
- break;
- case GGML_TYPE_Q4_1:
- ggml_mul_mat_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
- break;
- case GGML_TYPE_Q5_0:
- ggml_mul_mat_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
- break;
- case GGML_TYPE_Q5_1:
- ggml_mul_mat_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
- break;
- case GGML_TYPE_Q8_0:
- ggml_mul_mat_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
- break;
- case GGML_TYPE_Q2_K:
- ggml_mul_mat_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
- break;
- case GGML_TYPE_Q3_K:
- ggml_mul_mat_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
- break;
- case GGML_TYPE_Q4_K:
- ggml_mul_mat_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
- break;
- case GGML_TYPE_Q5_K:
- ggml_mul_mat_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
- break;
- case GGML_TYPE_Q6_K:
- ggml_mul_mat_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- ggml_cuda_pool_free(src1_q8_1, as);
- (void) src1;
- (void) dst;
- (void) src0_ddf_i;
- (void) i02;
- (void) i1;
- }
- static int64_t get_row_rounding(ggml_type type) {
- int max_compute_capability = INT_MIN;
- for (int id = 0; id < g_device_count; ++id) {
- if (max_compute_capability < g_compute_capabilities[id]
- && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
- max_compute_capability = g_compute_capabilities[id];
- }
- }
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- return max_compute_capability >= CC_TURING ? 128 : 64;
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return 64;
- case GGML_TYPE_F16:
- return 1;
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- return max_compute_capability >= CC_TURING ? 128 : 64;
- case GGML_TYPE_Q6_K:
- return 64;
- default:
- GGML_ASSERT(false);
- }
- }
- inline void ggml_cuda_op_mul_mat_vec(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddq_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = i01_high - i01_low;
- #ifdef GGML_CUDA_FORCE_DMMV
- const bool use_mul_mat_vec_q = false;
- (void) g_compute_capabilities[0];
- #else
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- bool mul_mat_vec_q_implemented =
- src0->type == GGML_TYPE_Q4_0 ||
- src0->type == GGML_TYPE_Q4_1 ||
- src0->type == GGML_TYPE_Q5_0 ||
- src0->type == GGML_TYPE_Q5_1 ||
- src0->type == GGML_TYPE_Q8_0;
- #if QK_K == 256
- mul_mat_vec_q_implemented = mul_mat_vec_q_implemented ||
- src0->type == GGML_TYPE_Q2_K ||
- src0->type == GGML_TYPE_Q3_K ||
- src0->type == GGML_TYPE_Q4_K ||
- src0->type == GGML_TYPE_Q5_K ||
- src0->type == GGML_TYPE_Q6_K;
- #endif // QK_K == 256
- const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= MIN_CC_DP4A && mul_mat_vec_q_implemented;
- #endif
- if (use_mul_mat_vec_q) {
- const int64_t padded_row_size = ne00 % MATRIX_ROW_PADDING == 0 ?
- ne00 : ne00 - ne00 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
- size_t as;
- void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
- quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, 1, padded_row_size, cudaStream_main);
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- mul_mat_vec_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q4_1:
- mul_mat_vec_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_0:
- mul_mat_vec_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_1:
- mul_mat_vec_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q8_0:
- mul_mat_vec_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q2_K:
- mul_mat_vec_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q3_K:
- mul_mat_vec_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q4_K:
- mul_mat_vec_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_K:
- mul_mat_vec_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q6_K:
- mul_mat_vec_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- ggml_cuda_pool_free(src1_q8_1, as);
- } else {
- // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
- #ifdef GGML_CUDA_F16
- size_t ash;
- dfloat * src1_dfloat = nullptr; // dfloat == half
- bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
- src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
- src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
- if (src1_convert_f16) {
- src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash);
- ggml_cpy_f32_f16_cuda((char *) src1_ddf_i, (char *) src1_dfloat, ne00,
- ne00, 1, sizeof(float), 0, 0,
- ne00, 1, sizeof(half), 0, 0, cudaStream_main);
- }
- #else
- dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion
- #endif // GGML_CUDA_F16
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q4_1:
- dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_0:
- dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_1:
- dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q8_0:
- dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q2_K:
- dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q3_K:
- dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q4_K:
- dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_K:
- dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q6_K:
- dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_F16:
- convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- #ifdef GGML_CUDA_F16
- if (src1_convert_f16) {
- ggml_cuda_pool_free(src1_dfloat, ash);
- }
- #endif // GGML_CUDA_F16
- }
- (void) src1;
- (void) dst;
- (void) src0_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_mul_mat_cublas(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne0 = dst->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // ldc == nrows of the matrix that cuBLAS writes into
- int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], cudaStream_main));
- CUBLAS_CHECK(
- cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
- i01_diff, ne11, ne10,
- &alpha, src0_ddf_i, ne00,
- src1_ddf_i, ne10,
- &beta, dst_ddf_i, ldc));
- (void) dst;
- (void) src0_ddq_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_rope(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t i01_diff = i01_high - i01_low;
- const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- const int n_ctx = ((int32_t *) dst->op_params)[3];
- // RoPE alteration for extended context
- float freq_base, freq_scale;
- memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const bool is_glm = mode & 4;
- // compute
- if (is_glm) {
- const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
- const float id_p = min(p, n_ctx - 2.f);
- const float block_p = max(p - (n_ctx - 2.f), 0.f);
- rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
- } else {
- const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
- rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
- }
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i1;
- }
- inline void ggml_cuda_op_diag_mask_inf(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t i01_diff = i01_high - i01_low;
- const int n_past = ((int32_t *) dst->op_params)[0];
- // compute
- diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_soft_max(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_scale(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const float scale = ((float *) src1->data)[0];
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- scale_f32_cuda(src0_ddf_i, dst_ddf_i, scale, ne00*i01_diff, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- ggml_cuda_op_t op, bool src0_needs_f32, bool flatten_rows) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t nrows0 = ggml_nrows(src0);
- const bool use_src1 = src1 != nullptr;
- const int64_t ne10 = use_src1 ? src1->ne[0] : 1;
- const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
- const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
- const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
- const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
- GGML_ASSERT(ne03 == ne13);
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
- // strides for iteration over dims 3 and 2
- const int64_t num_iters_0 = ne02 >= ne12 ? ne02*ne03 : ne12*ne13;
- const int64_t num_iters = flatten_rows ? 1 : num_iters_0;
- const int64_t stride_mod = flatten_rows ? num_iters_0 : 1;
- const int64_t src0_stride = ne00 * ne01 * stride_mod;
- const int64_t src1_stride = ne10 * ne11 * stride_mod;
- const int64_t dst_stride = ne0 * ne1 * stride_mod;
- const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
- const int64_t i03_max = flatten_rows ? 1 : ne03;
- const int64_t i02_max = flatten_rows ? 1 : (ne02 >= ne12 ? ne02 : ne12);
- const int64_t i02_divisor = ne02 >= ne12 ? 1 : ne12 / ne02;
- GGML_ASSERT(!(flatten_rows && ne02 < ne12));
- const size_t src0_ts = ggml_type_size(src0->type);
- const size_t src0_bs = ggml_blck_size(src0->type);
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
- struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
- const bool src0_is_contiguous = ggml_is_contiguous(src0);
- const bool src0_is_f32 = src0->type == GGML_TYPE_F32;
- const bool src1_is_contiguous = use_src1 && ggml_is_contiguous(src1);
- const bool src1_stays_on_host = use_src1 && (
- dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);
- const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
- GGML_ASSERT(!(split && ne02 < ne12));
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
- // dd = data device
- char * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized
- float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float
- float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
- float * dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
- // asq = actual size quantized, asf = actual size float
- size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0};
- size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0};
- size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
- size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0};
- // if multiple devices are used they need to wait for the main device
- // here an event is recorded that signifies that the main device has finished calculating the input data
- if (split && g_device_count > 1) {
- CUDA_CHECK(cudaSetDevice(g_main_device));
- CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device], g_cudaStreams_main[g_main_device]));
- }
- for (int id = 0; id < g_device_count; ++id) {
- if (!split && id != g_main_device) {
- continue;
- }
- const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU && id == g_main_device;
- const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
- int64_t row_low, row_high;
- if (split) {
- const int64_t rounding = get_row_rounding(src0->type);
- row_low = id == 0 ? 0 : nrows0*g_tensor_split[id];
- row_low -= row_low % rounding;
- if (id == g_device_count - 1) {
- row_high = nrows0;
- } else {
- row_high = nrows0*g_tensor_split[id + 1];
- row_high -= row_high % rounding;
- }
- } else {
- row_low = 0;
- row_high = nrows0*i02_divisor;
- }
- if (row_low == row_high) {
- continue;
- }
- int64_t row_diff = row_high - row_low;
- cudaSetDevice(id);
- cudaStream_t cudaStream_main = g_cudaStreams_main[id];
- // wait for main GPU data if necessary
- if (split && id != g_main_device) {
- CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, src0_extra->events[g_main_device]));
- }
- if (src0_on_device && src0_is_contiguous) {
- if (src0_is_f32) {
- src0_ddf[id] = (float *) src0_extra->data_device[id];
- } else {
- src0_ddq[id] = (char *) src0_extra->data_device[id];
- }
- } else {
- if (src0_is_f32) {
- src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
- } else {
- src0_ddq[id] = (char *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_asq[id]);
- }
- }
- if (src0_needs_f32 && !src0_is_f32) {
- src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
- }
- if (use_src1 && !src1_stays_on_host) {
- if (src1_on_device && src1_is_contiguous) {
- src1_ddf[id] = (float *) src1_extra->data_device[id];
- } else {
- src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]);
- }
- }
- if (dst_on_device) {
- dst_ddf[id] = (float *) dst_extra->data_device[id];
- } else {
- size_t size_dst_ddf = split ? row_diff*ne1 * sizeof(float) : num_iters*dst_stride * sizeof(float);
- dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
- }
- for (int64_t i03 = 0; i03 < i03_max; i03++) {
- const int64_t i13 = i03 % ne13;
- for (int64_t i02 = 0; i02 < i02_max; i02++) {
- const int64_t i12 = i02 % ne12;
- const int64_t i0 = i03*i02_max + i02;
- // i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
- const int64_t i0_offset_low = row_low/rows_per_iter;
- const int64_t i0_offset_high = row_high/rows_per_iter;
- int64_t i01_low = 0;
- int64_t i01_high = rows_per_iter;
- if (split) {
- if (i0 < i0_offset_low || i0 > i0_offset_high) {
- continue;
- }
- if (i0 == i0_offset_low) {
- i01_low = row_low % rows_per_iter;
- }
- if (i0 == i0_offset_high) {
- i01_high = row_high % rows_per_iter;
- }
- }
- // There is possibly a bug in the Windows nvcc compiler regarding instruction reordering or optimizing out local variables.
- // Removing the first assert or changing the order of the arguments causes the second assert to fail.
- // Removing both asserts results in i01_high becoming 0 which in turn results in garbage output.
- // The root cause seems to be a problem with i0_offset_high becoming 0 when it should always be >0 (for single GPU).
- GGML_ASSERT(i01_low == 0 || g_device_count > 1);
- GGML_ASSERT(i01_high == rows_per_iter || g_device_count > 1);
- const int64_t i01_diff = i01_high - i01_low;
- if (i01_diff == 0) {
- continue;
- }
- const int64_t i11 = i13*ne12 + i12;
- // for split tensors the data begins at i0 == i0_offset_low
- char * src0_ddq_i = src0_ddq[id] + (i0/i02_divisor - i0_offset_low)*src0_stride*src0_ts/src0_bs;
- float * src0_ddf_i = src0_ddf[id] + (i0/i02_divisor - i0_offset_low)*src0_stride;
- float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
- float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
- // for split tensors the data pointer needs to be rounded down
- // to the bin edge for i03, i02 bins beyond the first
- if (i0 - i0_offset_low > 0) {
- GGML_ASSERT(!flatten_rows);
- src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs;
- src0_ddf_i -= (row_low % ne01)*ne00;
- dst_ddf_i -= (row_low % ne0)*ne1;
- }
- // the main device memory buffer can be on VRAM scratch, with space for all partial results
- // in that case an offset on dst_ddf_i is needed
- if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
- dst_ddf_i += i01_low; // offset is 0 if no tensor split
- }
- // copy src0, src1 to device if necessary
- if (use_src1 && !src1_stays_on_host) {
- if (src1->backend == GGML_BACKEND_CPU) {
- GGML_ASSERT(!flatten_rows || nrows0 == ggml_nrows(src1));
- int64_t nrows1 = flatten_rows ? nrows0 : ne11;
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_main));
- } else if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
- if (id != g_main_device) {
- GGML_ASSERT(!flatten_rows);
- float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
- src1_ddf_i_source += i11*src1_stride;
- CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float),
- cudaMemcpyDeviceToDevice, cudaStream_main));
- }
- } else if (src1_on_device && !src1_is_contiguous) {
- GGML_ASSERT(!split);
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_main));
- } else {
- GGML_ASSERT(false);
- }
- }
- if ((!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
- if (src0_is_f32) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
- } else {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
- }
- }
- // convert src0 to f32 if it is necessary for the ggml_cuda_op
- if (src0_needs_f32 && !src0_is_f32) {
- to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- }
- // do the computation
- op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- // copy dst to host or other device if necessary
- if (!dst_on_device) {
- void * dst_off_device;
- cudaMemcpyKind kind;
- if (dst->backend == GGML_BACKEND_CPU) {
- dst_off_device = dst->data;
- kind = cudaMemcpyDeviceToHost;
- } else if (dst->backend == GGML_BACKEND_GPU) {
- dst_off_device = dst_extra->data_device[g_main_device];
- kind = cudaMemcpyDeviceToDevice;
- } else {
- GGML_ASSERT(false);
- }
- if (split) {
- // src0 = weight matrix is saved as a transposed matrix for better memory layout.
- // dst is NOT transposed.
- // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
- // Instead they need to be copied to the correct slice in ne0 = dst row index.
- // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i01_low*sizeof(float) + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), dst_ddf_i, i01_diff*sizeof(float),
- i01_diff*sizeof(float), ne1, kind, cudaStream_main));
- } else {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
- }
- }
- // signify to main device that other device is done
- if (split && g_device_count > 1 && id != g_main_device) {
- CUDA_CHECK(cudaEventRecord(src0_extra->events[id], cudaStream_main));
- }
- }
- }
- }
- // wait until each device is finished, then free their buffers
- for (int id = 0; id < g_device_count; ++id) {
- if (src0_asq[id] == 0 && src0_asf[id] == 0 && src1_asf[id] == 0 && dst_asf[id] == 0) {
- continue;
- }
- CUDA_CHECK(cudaSetDevice(id));
- if (src0_asq[id] > 0) {
- ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
- }
- if (src0_asf[id] > 0) {
- ggml_cuda_pool_free(src0_ddf[id], src0_asf[id]);
- }
- if (src1_asf[id] > 0) {
- ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
- }
- if (dst_asf[id] > 0) {
- ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]);
- }
- }
- // main device waits for all other devices to be finished
- if (split && g_device_count > 1) {
- CUDA_CHECK(cudaSetDevice(g_main_device));
- for (int id = 0; id < g_device_count; ++id) {
- if (id != g_main_device && src0_extra->events[id]) {
- CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams_main[g_main_device], src0_extra->events[id]));
- }
- }
- }
- if (dst->backend == GGML_BACKEND_CPU) {
- CUDA_CHECK(cudaSetDevice(g_main_device));
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- }
- void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- // ggml_cuda_add permits f16 dst even though this could in theory cause problems with the pointer arithmetic in ggml_cuda_op.
- // Due to flatten_rows == true this does in practice not make a difference however.
- // Better solution would be nice but right now that would require disproportionate changes.
- GGML_ASSERT(
- (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) &&
- src1->type == GGML_TYPE_F32 &&
- (dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16));
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, false, true);
- }
- void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten
- }
- void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_gelu, true, true);
- }
- void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true);
- }
- void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_norm, true, true);
- }
- void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true, true);
- }
- bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
- return true;
- }
- return false;
- }
- void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
- GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
- GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne12 = src1->ne[2];
- CUDA_CHECK(cudaSetDevice(g_main_device));
- cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, cudaStream_main);
- }
- void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
- GGML_ASSERT(!ggml_is_permuted(src0));
- GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne12 = src1->ne[2];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- CUDA_CHECK(cudaSetDevice(g_main_device));
- cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- const int row_stride_x = nb01 / sizeof(half);
- const int channel_stride_x = nb02 / sizeof(half);
- ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, cudaStream_main);
- }
- void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
- src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;
- if (all_on_device && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
- ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
- } else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) {
- ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
- }else if (src0->type == GGML_TYPE_F32) {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
- } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
- if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_vec, false, false);
- } else {
- int min_compute_capability = INT_MAX;
- for (int id = 0; id < g_device_count; ++id) {
- if (min_compute_capability > g_compute_capabilities[id]
- && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
- min_compute_capability = g_compute_capabilities[id];
- }
- }
- if (g_mul_mat_q && ggml_is_quantized(src0->type) && min_compute_capability >= MIN_CC_DP4A) {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_q, false, false);
- } else {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
- }
- }
- } else {
- GGML_ASSERT(false);
- }
- }
- void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_scale, true, true);
- }
- void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int64_t ne = ggml_nelements(src0);
- GGML_ASSERT(ne == ggml_nelements(src1));
- GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
- GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
- GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
- GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- GGML_ASSERT(src0->ne[3] == 1);
- const int64_t nb00 = src0->nb[0];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- GGML_ASSERT(src1->ne[3] == 1);
- const int64_t nb10 = src1->nb[0];
- const int64_t nb11 = src1->nb[1];
- const int64_t nb12 = src1->nb[2];
- CUDA_CHECK(cudaSetDevice(g_main_device));
- cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
- const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
- ne10, ne11, nb10, nb11, nb12, cudaStream_main);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
- ne10, ne11, nb10, nb11, nb12, cudaStream_main);
- } else {
- GGML_ASSERT(false);
- }
- (void) dst;
- }
- void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_cpy(src0, dst, nullptr);
- (void) src1;
- }
- void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true);
- }
- void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_soft_max, true, true);
- }
- void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- const int mode = ((int32_t *) dst->op_params)[2];
- const bool is_glm = mode & 4;
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm
- }
- void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- (void) src0;
- (void) src1;
- (void) dst;
- }
- void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
- int nrows = ggml_nrows(tensor);
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_backend backend = tensor->backend;
- struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
- memset(extra, 0, sizeof(*extra));
- for (int id = 0; id < g_device_count; ++id) {
- if (backend == GGML_BACKEND_GPU && id != g_main_device) {
- continue;
- }
- cudaSetDevice(id);
- int row_low, row_high;
- if (backend == GGML_BACKEND_GPU) {
- row_low = 0;
- row_high = nrows;
- } else if (backend == GGML_BACKEND_GPU_SPLIT) {
- const int64_t rounding = get_row_rounding(tensor->type);
- row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
- row_low -= row_low % rounding;
- if (id == g_device_count - 1) {
- row_high = nrows;
- } else {
- row_high = nrows*g_tensor_split[id + 1];
- row_high -= row_high % rounding;
- }
- } else {
- GGML_ASSERT(false);
- }
- if (row_low == row_high) {
- continue;
- }
- int64_t nrows_split = row_high - row_low;
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
- * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
- }
- char * buf;
- CUDA_CHECK(cudaMalloc(&buf, size));
- char * buf_host = (char*)data + offset_split;
- // set padding to 0 to avoid possible NaN values
- if (size > original_size) {
- CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
- }
- CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice));
- extra->data_device[id] = buf;
- if (backend == GGML_BACKEND_GPU_SPLIT) {
- CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id], cudaEventDisableTiming));
- }
- }
- tensor->extra = extra;
- }
- void ggml_cuda_free_data(struct ggml_tensor * tensor) {
- if (!tensor || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
- return;
- }
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
- for (int id = 0; id < g_device_count; ++id) {
- if (extra->data_device[id] != nullptr) {
- CUDA_CHECK(cudaSetDevice(id));
- CUDA_CHECK(cudaFree(extra->data_device[id]));
- }
- if (extra->events[id] != nullptr) {
- CUDA_CHECK(cudaSetDevice(id));
- CUDA_CHECK(cudaEventDestroy(extra->events[id]));
- }
- }
- delete extra;
- }
- static struct ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
- static size_t g_temp_tensor_extra_index = 0;
- static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
- if (g_temp_tensor_extras == nullptr) {
- g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES];
- }
- size_t alloc_index = g_temp_tensor_extra_index;
- g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_MAX_NODES;
- struct ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
- memset(extra, 0, sizeof(*extra));
- return extra;
- }
- void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace) {
- if (scratch && g_scratch_size == 0) {
- return;
- }
- // recursively assign CUDA buffers until a compute tensor is found
- if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
- const ggml_op src0_op = tensor->src[0]->op;
- if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
- ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace);
- }
- }
- if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
- ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace);
- }
- tensor->backend = GGML_BACKEND_GPU;
- struct ggml_tensor_extra_gpu * extra;
- const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
- tensor->op == GGML_OP_VIEW ||
- force_inplace;
- const size_t size = ggml_nbytes(tensor);
- CUDA_CHECK(cudaSetDevice(g_main_device));
- if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- size_t offset = 0;
- if (tensor->op == GGML_OP_VIEW) {
- memcpy(&offset, tensor->op_params, sizeof(size_t));
- }
- extra = ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = src0_ddc + offset;
- } else if (tensor->op == GGML_OP_CPY) {
- struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
- void * src1_ddv = src1_extra->data_device[g_main_device];
- extra = ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = src1_ddv;
- } else if (scratch) {
- GGML_ASSERT(size <= g_scratch_size);
- if (g_scratch_offset + size > g_scratch_size) {
- g_scratch_offset = 0;
- }
- char * data = (char *) g_scratch_buffer;
- if (data == nullptr) {
- CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
- g_scratch_buffer = data;
- }
- extra = ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = data + g_scratch_offset;
- g_scratch_offset += size;
- GGML_ASSERT(g_scratch_offset <= g_scratch_size);
- } else { // allocate new buffers outside of scratch
- void * data;
- CUDA_CHECK(cudaMalloc(&data, size));
- CUDA_CHECK(cudaMemset(data, 0, size));
- extra = new ggml_tensor_extra_gpu;
- memset(extra, 0, sizeof(*extra));
- extra->data_device[g_main_device] = data;
- }
- tensor->extra = extra;
- }
- void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, true, false);
- }
- void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, false, false);
- }
- void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, false, true);
- }
- void ggml_cuda_set_main_device(int main_device) {
- if (main_device >= g_device_count) {
- fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
- main_device, g_device_count, g_main_device);
- return;
- }
- g_main_device = main_device;
- if (g_device_count > 1) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
- fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
- }
- }
- void ggml_cuda_set_mul_mat_q(bool mul_mat_q) {
- g_mul_mat_q = mul_mat_q;
- }
- void ggml_cuda_set_scratch_size(size_t scratch_size) {
- g_scratch_size = scratch_size;
- }
- void ggml_cuda_free_scratch() {
- if (g_scratch_buffer == nullptr) {
- return;
- }
- CUDA_CHECK(cudaFree(g_scratch_buffer));
- g_scratch_buffer = nullptr;
- }
- bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){
- ggml_cuda_func_t func;
- const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
- || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
- || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
- switch (tensor->op) {
- case GGML_OP_DUP:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_dup;
- break;
- case GGML_OP_ADD:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_add;
- break;
- case GGML_OP_MUL:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_mul;
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_GELU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_gelu;
- break;
- case GGML_UNARY_OP_SILU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_silu;
- break;
- default:
- return false;
- } break;
- case GGML_OP_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_norm;
- break;
- case GGML_OP_RMS_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_rms_norm;
- break;
- case GGML_OP_MUL_MAT:
- if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
- return false;
- }
- func = ggml_cuda_mul_mat;
- break;
- case GGML_OP_SCALE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_scale;
- break;
- case GGML_OP_CPY:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_cpy;
- break;
- case GGML_OP_CONT:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_dup;
- break;
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_nop;
- break;
- case GGML_OP_DIAG_MASK_INF:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_diag_mask_inf;
- break;
- case GGML_OP_SOFT_MAX:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_soft_max;
- break;
- case GGML_OP_ROPE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_rope;
- break;
- default:
- return false;
- }
- if (params->ith != 0) {
- return true;
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return true;
- }
- func(tensor->src[0], tensor->src[1], tensor);
- return true;
- }
|