ggml.c 601 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722
  1. /**
  2. * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023 Georgi Gerganov
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  27. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  28. #include "ggml.h"
  29. #ifdef GGML_USE_K_QUANTS
  30. #include "k_quants.h"
  31. #endif
  32. #if defined(_MSC_VER) || defined(__MINGW32__)
  33. #include <malloc.h> // using malloc.h with MSC/MINGW
  34. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  35. #include <alloca.h>
  36. #endif
  37. #include <assert.h>
  38. #include <errno.h>
  39. #include <time.h>
  40. #include <math.h>
  41. #include <stdlib.h>
  42. #include <string.h>
  43. #include <stdint.h>
  44. #include <inttypes.h>
  45. #include <stdio.h>
  46. #include <float.h>
  47. #include <limits.h>
  48. #include <stdarg.h>
  49. #include <signal.h>
  50. #ifdef GGML_USE_METAL
  51. #include <unistd.h>
  52. #endif
  53. // static_assert should be a #define, but if it's not,
  54. // fall back to the _Static_assert C11 keyword.
  55. // if C99 - static_assert is noop
  56. // ref: https://stackoverflow.com/a/53923785/4039976
  57. #ifndef static_assert
  58. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  59. #define static_assert(cond, msg) _Static_assert(cond, msg)
  60. #else
  61. #define static_assert(cond, msg) struct global_scope_noop_trick
  62. #endif
  63. #endif
  64. #if defined(_MSC_VER)
  65. // disable "possible loss of data" to avoid hundreds of casts
  66. // we should just be careful :)
  67. #pragma warning(disable: 4244 4267)
  68. #endif
  69. #if defined(_WIN32)
  70. #include <windows.h>
  71. typedef volatile LONG atomic_int;
  72. typedef atomic_int atomic_bool;
  73. static void atomic_store(atomic_int * ptr, LONG val) {
  74. InterlockedExchange(ptr, val);
  75. }
  76. static LONG atomic_load(atomic_int * ptr) {
  77. return InterlockedCompareExchange(ptr, 0, 0);
  78. }
  79. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  80. return InterlockedExchangeAdd(ptr, inc);
  81. }
  82. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  83. return atomic_fetch_add(ptr, -(dec));
  84. }
  85. typedef HANDLE pthread_t;
  86. typedef DWORD thread_ret_t;
  87. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  88. (void) unused;
  89. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  90. if (handle == NULL)
  91. {
  92. return EAGAIN;
  93. }
  94. *out = handle;
  95. return 0;
  96. }
  97. static int pthread_join(pthread_t thread, void * unused) {
  98. (void) unused;
  99. return (int) WaitForSingleObject(thread, INFINITE);
  100. }
  101. static int sched_yield (void) {
  102. Sleep (0);
  103. return 0;
  104. }
  105. #else
  106. #include <pthread.h>
  107. #include <stdatomic.h>
  108. typedef void * thread_ret_t;
  109. #include <sys/types.h>
  110. #include <sys/stat.h>
  111. #include <unistd.h>
  112. #endif
  113. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  114. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  115. #ifndef __FMA__
  116. #define __FMA__
  117. #endif
  118. #ifndef __F16C__
  119. #define __F16C__
  120. #endif
  121. #ifndef __SSE3__
  122. #define __SSE3__
  123. #endif
  124. #endif
  125. /*#define GGML_PERF*/
  126. #define GGML_DEBUG 0
  127. #define GGML_GELU_FP16
  128. #define GGML_GELU_QUICK_FP16
  129. #define GGML_SILU_FP16
  130. #define GGML_SOFT_MAX_UNROLL 4
  131. #define GGML_VEC_DOT_UNROLL 2
  132. //
  133. // logging
  134. //
  135. #if (GGML_DEBUG >= 1)
  136. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  137. #else
  138. #define GGML_PRINT_DEBUG(...)
  139. #endif
  140. #if (GGML_DEBUG >= 5)
  141. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  142. #else
  143. #define GGML_PRINT_DEBUG_5(...)
  144. #endif
  145. #if (GGML_DEBUG >= 10)
  146. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  147. #else
  148. #define GGML_PRINT_DEBUG_10(...)
  149. #endif
  150. #define GGML_PRINT(...) printf(__VA_ARGS__)
  151. #ifdef GGML_USE_ACCELERATE
  152. // uncomment to use vDSP for soft max computation
  153. // note: not sure if it is actually faster
  154. //#define GGML_SOFT_MAX_ACCELERATE
  155. #endif
  156. #if UINTPTR_MAX == 0xFFFFFFFF
  157. #define GGML_MEM_ALIGN 4
  158. #else
  159. #define GGML_MEM_ALIGN 16
  160. #endif
  161. //
  162. // logging
  163. //
  164. #if (GGML_DEBUG >= 1)
  165. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  166. #else
  167. #define GGML_PRINT_DEBUG(...)
  168. #endif
  169. #if (GGML_DEBUG >= 5)
  170. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  171. #else
  172. #define GGML_PRINT_DEBUG_5(...)
  173. #endif
  174. #if (GGML_DEBUG >= 10)
  175. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  176. #else
  177. #define GGML_PRINT_DEBUG_10(...)
  178. #endif
  179. #define GGML_PRINT(...) printf(__VA_ARGS__)
  180. //
  181. // end of logging block
  182. //
  183. #if defined(_MSC_VER) || defined(__MINGW32__)
  184. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  185. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  186. #else
  187. inline static void * ggml_aligned_malloc(size_t size) {
  188. void * aligned_memory = NULL;
  189. #ifdef GGML_USE_METAL
  190. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  191. #else
  192. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  193. #endif
  194. if (result != 0) {
  195. // Handle allocation failure
  196. const char *error_desc = "unknown allocation error";
  197. switch (result) {
  198. case EINVAL:
  199. error_desc = "invalid alignment value";
  200. break;
  201. case ENOMEM:
  202. error_desc = "insufficient memory";
  203. break;
  204. }
  205. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  206. __func__, error_desc, size/(1024.0*1024.0));
  207. return NULL;
  208. }
  209. return aligned_memory;
  210. }
  211. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  212. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  213. #endif
  214. #define UNUSED GGML_UNUSED
  215. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  216. //
  217. // tensor access macros
  218. //
  219. #define GGML_TENSOR_UNARY_OP_LOCALS \
  220. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  221. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  222. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  223. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  224. #define GGML_TENSOR_BINARY_OP_LOCALS \
  225. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  226. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  227. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  228. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  229. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  230. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  231. #if defined(GGML_USE_ACCELERATE)
  232. #include <Accelerate/Accelerate.h>
  233. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  234. #include "ggml-opencl.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #endif
  247. #undef MIN
  248. #undef MAX
  249. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  250. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. // 16-bit float
  254. // on Arm, we use __fp16
  255. // on x86, we use uint16_t
  256. #ifdef __ARM_NEON
  257. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  258. //
  259. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  260. //
  261. #include <arm_neon.h>
  262. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  263. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  264. #define GGML_FP16_TO_FP32(x) ((float) (x))
  265. #define GGML_FP32_TO_FP16(x) (x)
  266. #else
  267. #ifdef __wasm_simd128__
  268. #include <wasm_simd128.h>
  269. #else
  270. #ifdef __POWER9_VECTOR__
  271. #include <altivec.h>
  272. #undef bool
  273. #define bool _Bool
  274. #else
  275. #if defined(_MSC_VER) || defined(__MINGW32__)
  276. #include <intrin.h>
  277. #else
  278. #if !defined(__riscv)
  279. #include <immintrin.h>
  280. #endif
  281. #endif
  282. #endif
  283. #endif
  284. #ifdef __F16C__
  285. #ifdef _MSC_VER
  286. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  287. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  288. #else
  289. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  290. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  291. #endif
  292. #elif defined(__POWER9_VECTOR__)
  293. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  294. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  295. /* the inline asm below is about 12% faster than the lookup method */
  296. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  297. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  298. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  299. register float f;
  300. register double d;
  301. __asm__(
  302. "mtfprd %0,%2\n"
  303. "xscvhpdp %0,%0\n"
  304. "frsp %1,%0\n" :
  305. /* temp */ "=d"(d),
  306. /* out */ "=f"(f):
  307. /* in */ "r"(h));
  308. return f;
  309. }
  310. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  311. register double d;
  312. register ggml_fp16_t r;
  313. __asm__( /* xscvdphp can work on double or single precision */
  314. "xscvdphp %0,%2\n"
  315. "mffprd %1,%0\n" :
  316. /* temp */ "=d"(d),
  317. /* out */ "=r"(r):
  318. /* in */ "f"(f));
  319. return r;
  320. }
  321. #else
  322. // FP16 <-> FP32
  323. // ref: https://github.com/Maratyszcza/FP16
  324. static inline float fp32_from_bits(uint32_t w) {
  325. union {
  326. uint32_t as_bits;
  327. float as_value;
  328. } fp32;
  329. fp32.as_bits = w;
  330. return fp32.as_value;
  331. }
  332. static inline uint32_t fp32_to_bits(float f) {
  333. union {
  334. float as_value;
  335. uint32_t as_bits;
  336. } fp32;
  337. fp32.as_value = f;
  338. return fp32.as_bits;
  339. }
  340. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  341. const uint32_t w = (uint32_t) h << 16;
  342. const uint32_t sign = w & UINT32_C(0x80000000);
  343. const uint32_t two_w = w + w;
  344. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  345. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  346. const float exp_scale = 0x1.0p-112f;
  347. #else
  348. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  349. #endif
  350. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  351. const uint32_t magic_mask = UINT32_C(126) << 23;
  352. const float magic_bias = 0.5f;
  353. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  354. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  355. const uint32_t result = sign |
  356. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  357. return fp32_from_bits(result);
  358. }
  359. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  360. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  361. const float scale_to_inf = 0x1.0p+112f;
  362. const float scale_to_zero = 0x1.0p-110f;
  363. #else
  364. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  365. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  366. #endif
  367. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  368. const uint32_t w = fp32_to_bits(f);
  369. const uint32_t shl1_w = w + w;
  370. const uint32_t sign = w & UINT32_C(0x80000000);
  371. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  372. if (bias < UINT32_C(0x71000000)) {
  373. bias = UINT32_C(0x71000000);
  374. }
  375. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  376. const uint32_t bits = fp32_to_bits(base);
  377. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  378. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  379. const uint32_t nonsign = exp_bits + mantissa_bits;
  380. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  381. }
  382. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  383. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  384. #endif // __F16C__
  385. #endif // __ARM_NEON
  386. //
  387. // global data
  388. //
  389. // precomputed gelu table for f16 (128 KB)
  390. static ggml_fp16_t table_gelu_f16[1 << 16];
  391. // precomputed quick gelu table for f16 (128 KB)
  392. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  393. // precomputed silu table for f16 (128 KB)
  394. static ggml_fp16_t table_silu_f16[1 << 16];
  395. // precomputed exp table for f16 (128 KB)
  396. static ggml_fp16_t table_exp_f16[1 << 16];
  397. // precomputed f32 table for f16 (256 KB)
  398. static float table_f32_f16[1 << 16];
  399. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  400. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  401. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  402. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  403. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  404. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  405. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  406. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  407. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  408. // precomputed tables for expanding 8bits to 8 bytes:
  409. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  410. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  411. #endif
  412. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  413. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  414. // This is also true for POWER9.
  415. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  416. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  417. uint16_t s;
  418. memcpy(&s, &f, sizeof(uint16_t));
  419. return table_f32_f16[s];
  420. }
  421. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  422. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  423. #endif
  424. // note: do not use these inside ggml.c
  425. // these are meant to be used via the ggml.h API
  426. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  427. return (float) GGML_FP16_TO_FP32(x);
  428. }
  429. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  430. return GGML_FP32_TO_FP16(x);
  431. }
  432. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  433. for (int i = 0; i < n; i++) {
  434. y[i] = GGML_FP16_TO_FP32(x[i]);
  435. }
  436. }
  437. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  438. int i = 0;
  439. #if defined(__F16C__)
  440. for (; i + 7 < n; i += 8) {
  441. __m256 x_vec = _mm256_loadu_ps(x + i);
  442. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  443. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  444. }
  445. for(; i + 3 < n; i += 4) {
  446. __m128 x_vec = _mm_loadu_ps(x + i);
  447. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  448. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  449. }
  450. #endif
  451. for (; i < n; i++) {
  452. y[i] = GGML_FP32_TO_FP16(x[i]);
  453. }
  454. }
  455. //
  456. // timing
  457. //
  458. #if defined(_MSC_VER) || defined(__MINGW32__)
  459. static int64_t timer_freq, timer_start;
  460. void ggml_time_init(void) {
  461. LARGE_INTEGER t;
  462. QueryPerformanceFrequency(&t);
  463. timer_freq = t.QuadPart;
  464. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  465. // and the uptime is high enough.
  466. // We subtract the program start time to reduce the likelihood of that happening.
  467. QueryPerformanceCounter(&t);
  468. timer_start = t.QuadPart;
  469. }
  470. int64_t ggml_time_ms(void) {
  471. LARGE_INTEGER t;
  472. QueryPerformanceCounter(&t);
  473. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  474. }
  475. int64_t ggml_time_us(void) {
  476. LARGE_INTEGER t;
  477. QueryPerformanceCounter(&t);
  478. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  479. }
  480. #else
  481. void ggml_time_init(void) {}
  482. int64_t ggml_time_ms(void) {
  483. struct timespec ts;
  484. clock_gettime(CLOCK_MONOTONIC, &ts);
  485. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  486. }
  487. int64_t ggml_time_us(void) {
  488. struct timespec ts;
  489. clock_gettime(CLOCK_MONOTONIC, &ts);
  490. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  491. }
  492. #endif
  493. int64_t ggml_cycles(void) {
  494. return clock();
  495. }
  496. int64_t ggml_cycles_per_ms(void) {
  497. return CLOCKS_PER_SEC/1000;
  498. }
  499. #ifdef GGML_PERF
  500. #define ggml_perf_time_ms() ggml_time_ms()
  501. #define ggml_perf_time_us() ggml_time_us()
  502. #define ggml_perf_cycles() ggml_cycles()
  503. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  504. #else
  505. #define ggml_perf_time_ms() 0
  506. #define ggml_perf_time_us() 0
  507. #define ggml_perf_cycles() 0
  508. #define ggml_perf_cycles_per_ms() 0
  509. #endif
  510. //
  511. // cache line
  512. //
  513. #if defined(__cpp_lib_hardware_interference_size)
  514. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  515. #else
  516. #if defined(__POWER9_VECTOR__)
  517. #define CACHE_LINE_SIZE 128
  518. #else
  519. #define CACHE_LINE_SIZE 64
  520. #endif
  521. #endif
  522. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  523. //
  524. // quantization
  525. //
  526. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  527. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  528. // multiply int8_t, add results pairwise twice
  529. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  530. // Get absolute values of x vectors
  531. const __m128i ax = _mm_sign_epi8(x, x);
  532. // Sign the values of the y vectors
  533. const __m128i sy = _mm_sign_epi8(y, x);
  534. // Perform multiplication and create 16-bit values
  535. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  536. const __m128i ones = _mm_set1_epi16(1);
  537. return _mm_madd_epi16(ones, dot);
  538. }
  539. #if __AVX__ || __AVX2__ || __AVX512F__
  540. // horizontally add 8 floats
  541. static inline float hsum_float_8(const __m256 x) {
  542. __m128 res = _mm256_extractf128_ps(x, 1);
  543. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  544. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  545. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  546. return _mm_cvtss_f32(res);
  547. }
  548. // horizontally add 8 int32_t
  549. static inline int hsum_i32_8(const __m256i a) {
  550. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  551. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  552. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  553. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  554. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  555. }
  556. // horizontally add 4 int32_t
  557. static inline int hsum_i32_4(const __m128i a) {
  558. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  559. const __m128i sum64 = _mm_add_epi32(hi64, a);
  560. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  561. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  562. }
  563. #if defined(__AVX2__) || defined(__AVX512F__)
  564. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  565. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  566. uint32_t x32;
  567. memcpy(&x32, x, sizeof(uint32_t));
  568. const __m256i shuf_mask = _mm256_set_epi64x(
  569. 0x0303030303030303, 0x0202020202020202,
  570. 0x0101010101010101, 0x0000000000000000);
  571. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  572. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  573. bytes = _mm256_or_si256(bytes, bit_mask);
  574. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  575. }
  576. // Unpack 32 4-bit fields into 32 bytes
  577. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  578. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  579. {
  580. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  581. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  582. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  583. return _mm256_and_si256(lowMask, bytes);
  584. }
  585. // add int16_t pairwise and return as float vector
  586. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  587. const __m256i ones = _mm256_set1_epi16(1);
  588. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  589. return _mm256_cvtepi32_ps(summed_pairs);
  590. }
  591. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  592. #if __AVXVNNI__
  593. const __m256i zero = _mm256_setzero_si256();
  594. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  595. return _mm256_cvtepi32_ps(summed_pairs);
  596. #else
  597. // Perform multiplication and create 16-bit values
  598. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  599. return sum_i16_pairs_float(dot);
  600. #endif
  601. }
  602. // multiply int8_t, add results pairwise twice and return as float vector
  603. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  604. #if __AVXVNNIINT8__
  605. const __m256i zero = _mm256_setzero_si256();
  606. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  607. return _mm256_cvtepi32_ps(summed_pairs);
  608. #else
  609. // Get absolute values of x vectors
  610. const __m256i ax = _mm256_sign_epi8(x, x);
  611. // Sign the values of the y vectors
  612. const __m256i sy = _mm256_sign_epi8(y, x);
  613. return mul_sum_us8_pairs_float(ax, sy);
  614. #endif
  615. }
  616. static inline __m128i packNibbles( __m256i bytes )
  617. {
  618. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  619. #if __AVX512F__
  620. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  621. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  622. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  623. #else
  624. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  625. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  626. __m256i low = _mm256_and_si256( lowByte, bytes );
  627. high = _mm256_srli_epi16( high, 4 );
  628. bytes = _mm256_or_si256( low, high );
  629. // Compress uint16_t lanes into bytes
  630. __m128i r0 = _mm256_castsi256_si128( bytes );
  631. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  632. return _mm_packus_epi16( r0, r1 );
  633. #endif
  634. }
  635. #elif defined(__AVX__)
  636. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  637. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  638. uint32_t x32;
  639. memcpy(&x32, x, sizeof(uint32_t));
  640. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  641. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  642. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  643. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  644. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  645. bytesl = _mm_or_si128(bytesl, bit_mask);
  646. bytesh = _mm_or_si128(bytesh, bit_mask);
  647. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  648. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  649. return MM256_SET_M128I(bytesh, bytesl);
  650. }
  651. // Unpack 32 4-bit fields into 32 bytes
  652. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  653. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  654. {
  655. // Load 16 bytes from memory
  656. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  657. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  658. const __m128i lowMask = _mm_set1_epi8(0xF);
  659. tmpl = _mm_and_si128(lowMask, tmpl);
  660. tmph = _mm_and_si128(lowMask, tmph);
  661. return MM256_SET_M128I(tmph, tmpl);
  662. }
  663. // add int16_t pairwise and return as float vector
  664. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  665. const __m128i ones = _mm_set1_epi16(1);
  666. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  667. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  668. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  669. return _mm256_cvtepi32_ps(summed_pairs);
  670. }
  671. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  672. const __m128i axl = _mm256_castsi256_si128(ax);
  673. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  674. const __m128i syl = _mm256_castsi256_si128(sy);
  675. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  676. // Perform multiplication and create 16-bit values
  677. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  678. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  679. return sum_i16_pairs_float(doth, dotl);
  680. }
  681. // multiply int8_t, add results pairwise twice and return as float vector
  682. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  683. const __m128i xl = _mm256_castsi256_si128(x);
  684. const __m128i xh = _mm256_extractf128_si256(x, 1);
  685. const __m128i yl = _mm256_castsi256_si128(y);
  686. const __m128i yh = _mm256_extractf128_si256(y, 1);
  687. // Get absolute values of x vectors
  688. const __m128i axl = _mm_sign_epi8(xl, xl);
  689. const __m128i axh = _mm_sign_epi8(xh, xh);
  690. // Sign the values of the y vectors
  691. const __m128i syl = _mm_sign_epi8(yl, xl);
  692. const __m128i syh = _mm_sign_epi8(yh, xh);
  693. // Perform multiplication and create 16-bit values
  694. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  695. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  696. return sum_i16_pairs_float(doth, dotl);
  697. }
  698. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  699. {
  700. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  701. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  702. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  703. __m128i low = _mm_and_si128( lowByte, bytes1 );
  704. high = _mm_srli_epi16( high, 4 );
  705. bytes1 = _mm_or_si128( low, high );
  706. high = _mm_andnot_si128( lowByte, bytes2 );
  707. low = _mm_and_si128( lowByte, bytes2 );
  708. high = _mm_srli_epi16( high, 4 );
  709. bytes2 = _mm_or_si128( low, high );
  710. return _mm_packus_epi16( bytes1, bytes2);
  711. }
  712. #endif
  713. #elif defined(__SSSE3__)
  714. // horizontally add 4x4 floats
  715. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  716. __m128 res_0 =_mm_hadd_ps(a, b);
  717. __m128 res_1 =_mm_hadd_ps(c, d);
  718. __m128 res =_mm_hadd_ps(res_0, res_1);
  719. res =_mm_hadd_ps(res, res);
  720. res =_mm_hadd_ps(res, res);
  721. return _mm_cvtss_f32(res);
  722. }
  723. #endif // __AVX__ || __AVX2__ || __AVX512F__
  724. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  725. #if defined(__ARM_NEON)
  726. #if !defined(__aarch64__)
  727. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  728. return
  729. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  730. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  731. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  732. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  733. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  734. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  735. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  736. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  737. }
  738. inline static int16_t vaddvq_s8(int8x16_t v) {
  739. return
  740. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  741. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  742. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  743. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  744. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  745. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  746. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  747. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  748. }
  749. inline static int32_t vaddvq_s16(int16x8_t v) {
  750. return
  751. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  752. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  753. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  754. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  755. }
  756. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  757. return
  758. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  759. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  760. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  761. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  762. }
  763. inline static int32_t vaddvq_s32(int32x4_t v) {
  764. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  765. }
  766. inline static float vaddvq_f32(float32x4_t v) {
  767. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  768. }
  769. inline static float vminvq_f32(float32x4_t v) {
  770. return
  771. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  772. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  773. }
  774. inline static float vmaxvq_f32(float32x4_t v) {
  775. return
  776. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  777. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  778. }
  779. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  780. int32x4_t res;
  781. res[0] = roundf(vgetq_lane_f32(v, 0));
  782. res[1] = roundf(vgetq_lane_f32(v, 1));
  783. res[2] = roundf(vgetq_lane_f32(v, 2));
  784. res[3] = roundf(vgetq_lane_f32(v, 3));
  785. return res;
  786. }
  787. #endif
  788. #endif
  789. #define QK4_0 32
  790. typedef struct {
  791. ggml_fp16_t d; // delta
  792. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  793. } block_q4_0;
  794. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  795. #define QK4_1 32
  796. typedef struct {
  797. ggml_fp16_t d; // delta
  798. ggml_fp16_t m; // min
  799. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  800. } block_q4_1;
  801. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  802. #define QK5_0 32
  803. typedef struct {
  804. ggml_fp16_t d; // delta
  805. uint8_t qh[4]; // 5-th bit of quants
  806. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  807. } block_q5_0;
  808. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  809. #define QK5_1 32
  810. typedef struct {
  811. ggml_fp16_t d; // delta
  812. ggml_fp16_t m; // min
  813. uint8_t qh[4]; // 5-th bit of quants
  814. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  815. } block_q5_1;
  816. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  817. #define QK8_0 32
  818. typedef struct {
  819. ggml_fp16_t d; // delta
  820. int8_t qs[QK8_0]; // quants
  821. } block_q8_0;
  822. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  823. #define QK8_1 32
  824. typedef struct {
  825. float d; // delta
  826. float s; // d * sum(qs[i])
  827. int8_t qs[QK8_1]; // quants
  828. } block_q8_1;
  829. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  830. // reference implementation for deterministic creation of model files
  831. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  832. static const int qk = QK4_0;
  833. assert(k % qk == 0);
  834. const int nb = k / qk;
  835. for (int i = 0; i < nb; i++) {
  836. float amax = 0.0f; // absolute max
  837. float max = 0.0f;
  838. for (int j = 0; j < qk; j++) {
  839. const float v = x[i*qk + j];
  840. if (amax < fabsf(v)) {
  841. amax = fabsf(v);
  842. max = v;
  843. }
  844. }
  845. const float d = max / -8;
  846. const float id = d ? 1.0f/d : 0.0f;
  847. y[i].d = GGML_FP32_TO_FP16(d);
  848. for (int j = 0; j < qk/2; ++j) {
  849. const float x0 = x[i*qk + 0 + j]*id;
  850. const float x1 = x[i*qk + qk/2 + j]*id;
  851. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  852. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  853. y[i].qs[j] = xi0;
  854. y[i].qs[j] |= xi1 << 4;
  855. }
  856. }
  857. }
  858. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  859. quantize_row_q4_0_reference(x, y, k);
  860. }
  861. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  862. const int qk = QK4_1;
  863. assert(k % qk == 0);
  864. const int nb = k / qk;
  865. for (int i = 0; i < nb; i++) {
  866. float min = FLT_MAX;
  867. float max = -FLT_MAX;
  868. for (int j = 0; j < qk; j++) {
  869. const float v = x[i*qk + j];
  870. if (v < min) min = v;
  871. if (v > max) max = v;
  872. }
  873. const float d = (max - min) / ((1 << 4) - 1);
  874. const float id = d ? 1.0f/d : 0.0f;
  875. y[i].d = GGML_FP32_TO_FP16(d);
  876. y[i].m = GGML_FP32_TO_FP16(min);
  877. for (int j = 0; j < qk/2; ++j) {
  878. const float x0 = (x[i*qk + 0 + j] - min)*id;
  879. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  880. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  881. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  882. y[i].qs[j] = xi0;
  883. y[i].qs[j] |= xi1 << 4;
  884. }
  885. }
  886. }
  887. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  888. quantize_row_q4_1_reference(x, y, k);
  889. }
  890. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  891. static const int qk = QK5_0;
  892. assert(k % qk == 0);
  893. const int nb = k / qk;
  894. for (int i = 0; i < nb; i++) {
  895. float amax = 0.0f; // absolute max
  896. float max = 0.0f;
  897. for (int j = 0; j < qk; j++) {
  898. const float v = x[i*qk + j];
  899. if (amax < fabsf(v)) {
  900. amax = fabsf(v);
  901. max = v;
  902. }
  903. }
  904. const float d = max / -16;
  905. const float id = d ? 1.0f/d : 0.0f;
  906. y[i].d = GGML_FP32_TO_FP16(d);
  907. uint32_t qh = 0;
  908. for (int j = 0; j < qk/2; ++j) {
  909. const float x0 = x[i*qk + 0 + j]*id;
  910. const float x1 = x[i*qk + qk/2 + j]*id;
  911. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  912. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  913. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  914. // get the 5-th bit and store it in qh at the right position
  915. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  916. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  917. }
  918. memcpy(&y[i].qh, &qh, sizeof(qh));
  919. }
  920. }
  921. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  922. quantize_row_q5_0_reference(x, y, k);
  923. }
  924. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  925. const int qk = QK5_1;
  926. assert(k % qk == 0);
  927. const int nb = k / qk;
  928. for (int i = 0; i < nb; i++) {
  929. float min = FLT_MAX;
  930. float max = -FLT_MAX;
  931. for (int j = 0; j < qk; j++) {
  932. const float v = x[i*qk + j];
  933. if (v < min) min = v;
  934. if (v > max) max = v;
  935. }
  936. const float d = (max - min) / ((1 << 5) - 1);
  937. const float id = d ? 1.0f/d : 0.0f;
  938. y[i].d = GGML_FP32_TO_FP16(d);
  939. y[i].m = GGML_FP32_TO_FP16(min);
  940. uint32_t qh = 0;
  941. for (int j = 0; j < qk/2; ++j) {
  942. const float x0 = (x[i*qk + 0 + j] - min)*id;
  943. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  944. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  945. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  946. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  947. // get the 5-th bit and store it in qh at the right position
  948. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  949. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  950. }
  951. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  952. }
  953. }
  954. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  955. quantize_row_q5_1_reference(x, y, k);
  956. }
  957. // reference implementation for deterministic creation of model files
  958. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  959. assert(k % QK8_0 == 0);
  960. const int nb = k / QK8_0;
  961. for (int i = 0; i < nb; i++) {
  962. float amax = 0.0f; // absolute max
  963. for (int j = 0; j < QK8_0; j++) {
  964. const float v = x[i*QK8_0 + j];
  965. amax = MAX(amax, fabsf(v));
  966. }
  967. const float d = amax / ((1 << 7) - 1);
  968. const float id = d ? 1.0f/d : 0.0f;
  969. y[i].d = GGML_FP32_TO_FP16(d);
  970. for (int j = 0; j < QK8_0; ++j) {
  971. const float x0 = x[i*QK8_0 + j]*id;
  972. y[i].qs[j] = roundf(x0);
  973. }
  974. }
  975. }
  976. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  977. assert(QK8_0 == 32);
  978. assert(k % QK8_0 == 0);
  979. const int nb = k / QK8_0;
  980. block_q8_0 * restrict y = vy;
  981. #if defined(__ARM_NEON)
  982. for (int i = 0; i < nb; i++) {
  983. float32x4_t srcv [8];
  984. float32x4_t asrcv[8];
  985. float32x4_t amaxv[8];
  986. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  987. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  988. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  989. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  990. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  991. const float amax = vmaxvq_f32(amaxv[0]);
  992. const float d = amax / ((1 << 7) - 1);
  993. const float id = d ? 1.0f/d : 0.0f;
  994. y[i].d = GGML_FP32_TO_FP16(d);
  995. for (int j = 0; j < 8; j++) {
  996. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  997. const int32x4_t vi = vcvtnq_s32_f32(v);
  998. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  999. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1000. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1001. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1002. }
  1003. }
  1004. #elif defined(__wasm_simd128__)
  1005. for (int i = 0; i < nb; i++) {
  1006. v128_t srcv [8];
  1007. v128_t asrcv[8];
  1008. v128_t amaxv[8];
  1009. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1010. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1011. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1012. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1013. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1014. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1015. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1016. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1017. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1018. const float d = amax / ((1 << 7) - 1);
  1019. const float id = d ? 1.0f/d : 0.0f;
  1020. y[i].d = GGML_FP32_TO_FP16(d);
  1021. for (int j = 0; j < 8; j++) {
  1022. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1023. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1024. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1025. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1026. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1027. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1028. }
  1029. }
  1030. #elif defined(__AVX2__) || defined(__AVX__)
  1031. for (int i = 0; i < nb; i++) {
  1032. // Load elements into 4 AVX vectors
  1033. __m256 v0 = _mm256_loadu_ps( x );
  1034. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1035. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1036. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1037. x += 32;
  1038. // Compute max(abs(e)) for the block
  1039. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1040. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1041. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1042. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1043. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1044. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1045. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1046. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1047. const float maxScalar = _mm_cvtss_f32( max4 );
  1048. // Quantize these floats
  1049. const float d = maxScalar / 127.f;
  1050. y[i].d = GGML_FP32_TO_FP16(d);
  1051. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1052. const __m256 mul = _mm256_set1_ps( id );
  1053. // Apply the multiplier
  1054. v0 = _mm256_mul_ps( v0, mul );
  1055. v1 = _mm256_mul_ps( v1, mul );
  1056. v2 = _mm256_mul_ps( v2, mul );
  1057. v3 = _mm256_mul_ps( v3, mul );
  1058. // Round to nearest integer
  1059. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1060. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1061. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1062. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1063. // Convert floats to integers
  1064. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1065. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1066. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1067. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1068. #if defined(__AVX2__)
  1069. // Convert int32 to int16
  1070. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1071. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1072. // Convert int16 to int8
  1073. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1074. // We got our precious signed bytes, but the order is now wrong
  1075. // These AVX2 pack instructions process 16-byte pieces independently
  1076. // The following instruction is fixing the order
  1077. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1078. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1079. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1080. #else
  1081. // Since we don't have in AVX some necessary functions,
  1082. // we split the registers in half and call AVX2 analogs from SSE
  1083. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1084. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1085. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1086. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1087. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1088. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1089. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1090. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1091. // Convert int32 to int16
  1092. ni0 = _mm_packs_epi32( ni0, ni1 );
  1093. ni2 = _mm_packs_epi32( ni2, ni3 );
  1094. ni4 = _mm_packs_epi32( ni4, ni5 );
  1095. ni6 = _mm_packs_epi32( ni6, ni7 );
  1096. // Convert int16 to int8
  1097. ni0 = _mm_packs_epi16( ni0, ni2 );
  1098. ni4 = _mm_packs_epi16( ni4, ni6 );
  1099. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1100. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1101. #endif
  1102. }
  1103. #else
  1104. // scalar
  1105. quantize_row_q8_0_reference(x, y, k);
  1106. #endif
  1107. }
  1108. // reference implementation for deterministic creation of model files
  1109. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1110. assert(QK8_1 == 32);
  1111. assert(k % QK8_1 == 0);
  1112. const int nb = k / QK8_1;
  1113. for (int i = 0; i < nb; i++) {
  1114. float amax = 0.0f; // absolute max
  1115. for (int j = 0; j < QK8_1; j++) {
  1116. const float v = x[i*QK8_1 + j];
  1117. amax = MAX(amax, fabsf(v));
  1118. }
  1119. const float d = amax / ((1 << 7) - 1);
  1120. const float id = d ? 1.0f/d : 0.0f;
  1121. y[i].d = d;
  1122. int sum = 0;
  1123. for (int j = 0; j < QK8_1/2; ++j) {
  1124. const float v0 = x[i*QK8_1 + j]*id;
  1125. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1126. y[i].qs[ j] = roundf(v0);
  1127. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1128. sum += y[i].qs[ j];
  1129. sum += y[i].qs[QK8_1/2 + j];
  1130. }
  1131. y[i].s = sum*d;
  1132. }
  1133. }
  1134. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1135. assert(k % QK8_1 == 0);
  1136. const int nb = k / QK8_1;
  1137. block_q8_1 * restrict y = vy;
  1138. #if defined(__ARM_NEON)
  1139. for (int i = 0; i < nb; i++) {
  1140. float32x4_t srcv [8];
  1141. float32x4_t asrcv[8];
  1142. float32x4_t amaxv[8];
  1143. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1144. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1145. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1146. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1147. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1148. const float amax = vmaxvq_f32(amaxv[0]);
  1149. const float d = amax / ((1 << 7) - 1);
  1150. const float id = d ? 1.0f/d : 0.0f;
  1151. y[i].d = d;
  1152. int32x4_t accv = vdupq_n_s32(0);
  1153. for (int j = 0; j < 8; j++) {
  1154. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1155. const int32x4_t vi = vcvtnq_s32_f32(v);
  1156. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1157. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1158. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1159. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1160. accv = vaddq_s32(accv, vi);
  1161. }
  1162. y[i].s = d * vaddvq_s32(accv);
  1163. }
  1164. #elif defined(__wasm_simd128__)
  1165. for (int i = 0; i < nb; i++) {
  1166. v128_t srcv [8];
  1167. v128_t asrcv[8];
  1168. v128_t amaxv[8];
  1169. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1170. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1171. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1172. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1173. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1174. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1175. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1176. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1177. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1178. const float d = amax / ((1 << 7) - 1);
  1179. const float id = d ? 1.0f/d : 0.0f;
  1180. y[i].d = d;
  1181. v128_t accv = wasm_i32x4_splat(0);
  1182. for (int j = 0; j < 8; j++) {
  1183. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1184. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1185. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1186. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1187. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1188. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1189. accv = wasm_i32x4_add(accv, vi);
  1190. }
  1191. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1192. wasm_i32x4_extract_lane(accv, 1) +
  1193. wasm_i32x4_extract_lane(accv, 2) +
  1194. wasm_i32x4_extract_lane(accv, 3));
  1195. }
  1196. #elif defined(__AVX2__) || defined(__AVX__)
  1197. for (int i = 0; i < nb; i++) {
  1198. // Load elements into 4 AVX vectors
  1199. __m256 v0 = _mm256_loadu_ps( x );
  1200. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1201. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1202. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1203. x += 32;
  1204. // Compute max(abs(e)) for the block
  1205. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1206. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1207. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1208. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1209. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1210. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1211. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1212. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1213. const float maxScalar = _mm_cvtss_f32( max4 );
  1214. // Quantize these floats
  1215. const float d = maxScalar / 127.f;
  1216. y[i].d = d;
  1217. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1218. const __m256 mul = _mm256_set1_ps( id );
  1219. // Apply the multiplier
  1220. v0 = _mm256_mul_ps( v0, mul );
  1221. v1 = _mm256_mul_ps( v1, mul );
  1222. v2 = _mm256_mul_ps( v2, mul );
  1223. v3 = _mm256_mul_ps( v3, mul );
  1224. // Round to nearest integer
  1225. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1226. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1227. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1228. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1229. // Convert floats to integers
  1230. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1231. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1232. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1233. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1234. #if defined(__AVX2__)
  1235. // Compute the sum of the quants and set y[i].s
  1236. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1237. // Convert int32 to int16
  1238. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1239. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1240. // Convert int16 to int8
  1241. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1242. // We got our precious signed bytes, but the order is now wrong
  1243. // These AVX2 pack instructions process 16-byte pieces independently
  1244. // The following instruction is fixing the order
  1245. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1246. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1247. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1248. #else
  1249. // Since we don't have in AVX some necessary functions,
  1250. // we split the registers in half and call AVX2 analogs from SSE
  1251. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1252. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1253. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1254. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1255. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1256. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1257. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1258. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1259. // Compute the sum of the quants and set y[i].s
  1260. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1261. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1262. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1263. // Convert int32 to int16
  1264. ni0 = _mm_packs_epi32( ni0, ni1 );
  1265. ni2 = _mm_packs_epi32( ni2, ni3 );
  1266. ni4 = _mm_packs_epi32( ni4, ni5 );
  1267. ni6 = _mm_packs_epi32( ni6, ni7 );
  1268. // Convert int16 to int8
  1269. ni0 = _mm_packs_epi16( ni0, ni2 );
  1270. ni4 = _mm_packs_epi16( ni4, ni6 );
  1271. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1272. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1273. #endif
  1274. }
  1275. #else
  1276. // scalar
  1277. quantize_row_q8_1_reference(x, y, k);
  1278. #endif
  1279. }
  1280. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1281. static const int qk = QK4_0;
  1282. assert(k % qk == 0);
  1283. const int nb = k / qk;
  1284. for (int i = 0; i < nb; i++) {
  1285. const float d = GGML_FP16_TO_FP32(x[i].d);
  1286. for (int j = 0; j < qk/2; ++j) {
  1287. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1288. const int x1 = (x[i].qs[j] >> 4) - 8;
  1289. y[i*qk + j + 0 ] = x0*d;
  1290. y[i*qk + j + qk/2] = x1*d;
  1291. }
  1292. }
  1293. }
  1294. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1295. static const int qk = QK4_1;
  1296. assert(k % qk == 0);
  1297. const int nb = k / qk;
  1298. for (int i = 0; i < nb; i++) {
  1299. const float d = GGML_FP16_TO_FP32(x[i].d);
  1300. const float m = GGML_FP16_TO_FP32(x[i].m);
  1301. for (int j = 0; j < qk/2; ++j) {
  1302. const int x0 = (x[i].qs[j] & 0x0F);
  1303. const int x1 = (x[i].qs[j] >> 4);
  1304. y[i*qk + j + 0 ] = x0*d + m;
  1305. y[i*qk + j + qk/2] = x1*d + m;
  1306. }
  1307. }
  1308. }
  1309. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1310. static const int qk = QK5_0;
  1311. assert(k % qk == 0);
  1312. const int nb = k / qk;
  1313. for (int i = 0; i < nb; i++) {
  1314. const float d = GGML_FP16_TO_FP32(x[i].d);
  1315. uint32_t qh;
  1316. memcpy(&qh, x[i].qh, sizeof(qh));
  1317. for (int j = 0; j < qk/2; ++j) {
  1318. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1319. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1320. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1321. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1322. y[i*qk + j + 0 ] = x0*d;
  1323. y[i*qk + j + qk/2] = x1*d;
  1324. }
  1325. }
  1326. }
  1327. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1328. static const int qk = QK5_1;
  1329. assert(k % qk == 0);
  1330. const int nb = k / qk;
  1331. for (int i = 0; i < nb; i++) {
  1332. const float d = GGML_FP16_TO_FP32(x[i].d);
  1333. const float m = GGML_FP16_TO_FP32(x[i].m);
  1334. uint32_t qh;
  1335. memcpy(&qh, x[i].qh, sizeof(qh));
  1336. for (int j = 0; j < qk/2; ++j) {
  1337. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1338. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1339. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1340. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1341. y[i*qk + j + 0 ] = x0*d + m;
  1342. y[i*qk + j + qk/2] = x1*d + m;
  1343. }
  1344. }
  1345. }
  1346. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1347. static const int qk = QK8_0;
  1348. assert(k % qk == 0);
  1349. const int nb = k / qk;
  1350. const block_q8_0 * restrict x = vx;
  1351. for (int i = 0; i < nb; i++) {
  1352. const float d = GGML_FP16_TO_FP32(x[i].d);
  1353. for (int j = 0; j < qk; ++j) {
  1354. y[i*qk + j] = x[i].qs[j]*d;
  1355. }
  1356. }
  1357. }
  1358. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1359. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1360. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1361. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1362. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1363. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1364. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1365. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1366. [GGML_TYPE_F32] = {
  1367. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1368. .vec_dot_type = GGML_TYPE_F32,
  1369. },
  1370. [GGML_TYPE_F16] = {
  1371. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1372. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1373. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1374. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1375. .vec_dot_type = GGML_TYPE_F16,
  1376. },
  1377. [GGML_TYPE_Q4_0] = {
  1378. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1379. .from_float = quantize_row_q4_0,
  1380. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1381. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1382. .vec_dot_type = GGML_TYPE_Q8_0,
  1383. },
  1384. [GGML_TYPE_Q4_1] = {
  1385. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1386. .from_float = quantize_row_q4_1,
  1387. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1388. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1389. .vec_dot_type = GGML_TYPE_Q8_1,
  1390. },
  1391. [GGML_TYPE_Q5_0] = {
  1392. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1393. .from_float = quantize_row_q5_0,
  1394. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1395. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1396. .vec_dot_type = GGML_TYPE_Q8_0,
  1397. },
  1398. [GGML_TYPE_Q5_1] = {
  1399. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1400. .from_float = quantize_row_q5_1,
  1401. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1402. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1403. .vec_dot_type = GGML_TYPE_Q8_1,
  1404. },
  1405. [GGML_TYPE_Q8_0] = {
  1406. .to_float = dequantize_row_q8_0,
  1407. .from_float = quantize_row_q8_0,
  1408. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1409. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1410. .vec_dot_type = GGML_TYPE_Q8_0,
  1411. },
  1412. [GGML_TYPE_Q8_1] = {
  1413. .from_float = quantize_row_q8_1,
  1414. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1415. .vec_dot_type = GGML_TYPE_Q8_1,
  1416. },
  1417. #ifdef GGML_USE_K_QUANTS
  1418. [GGML_TYPE_Q2_K] = {
  1419. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1420. .from_float = quantize_row_q2_K,
  1421. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1422. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1423. .vec_dot_type = GGML_TYPE_Q8_K,
  1424. },
  1425. [GGML_TYPE_Q3_K] = {
  1426. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1427. .from_float = quantize_row_q3_K,
  1428. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1429. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1430. .vec_dot_type = GGML_TYPE_Q8_K,
  1431. },
  1432. [GGML_TYPE_Q4_K] = {
  1433. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1434. .from_float = quantize_row_q4_K,
  1435. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1436. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1437. .vec_dot_type = GGML_TYPE_Q8_K,
  1438. },
  1439. [GGML_TYPE_Q5_K] = {
  1440. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1441. .from_float = quantize_row_q5_K,
  1442. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1443. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1444. .vec_dot_type = GGML_TYPE_Q8_K,
  1445. },
  1446. [GGML_TYPE_Q6_K] = {
  1447. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1448. .from_float = quantize_row_q6_K,
  1449. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1450. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1451. .vec_dot_type = GGML_TYPE_Q8_K,
  1452. },
  1453. [GGML_TYPE_Q8_K] = {
  1454. .from_float = quantize_row_q8_K,
  1455. }
  1456. #endif
  1457. };
  1458. // For internal test use
  1459. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1460. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1461. return type_traits[i];
  1462. }
  1463. //
  1464. // simd mappings
  1465. //
  1466. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1467. // we then implement the fundamental computation operations below using only these macros
  1468. // adding support for new architectures requires to define the corresponding SIMD macros
  1469. //
  1470. // GGML_F32_STEP / GGML_F16_STEP
  1471. // number of elements to process in a single step
  1472. //
  1473. // GGML_F32_EPR / GGML_F16_EPR
  1474. // number of elements to fit in a single register
  1475. //
  1476. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1477. #define GGML_SIMD
  1478. // F32 NEON
  1479. #define GGML_F32_STEP 16
  1480. #define GGML_F32_EPR 4
  1481. #define GGML_F32x4 float32x4_t
  1482. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1483. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1484. #define GGML_F32x4_LOAD vld1q_f32
  1485. #define GGML_F32x4_STORE vst1q_f32
  1486. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1487. #define GGML_F32x4_ADD vaddq_f32
  1488. #define GGML_F32x4_MUL vmulq_f32
  1489. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1490. #define GGML_F32x4_REDUCE(res, x) \
  1491. { \
  1492. int offset = GGML_F32_ARR >> 1; \
  1493. for (int i = 0; i < offset; ++i) { \
  1494. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1495. } \
  1496. offset >>= 1; \
  1497. for (int i = 0; i < offset; ++i) { \
  1498. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1499. } \
  1500. offset >>= 1; \
  1501. for (int i = 0; i < offset; ++i) { \
  1502. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1503. } \
  1504. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1505. }
  1506. #define GGML_F32_VEC GGML_F32x4
  1507. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1508. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1509. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1510. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1511. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1512. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1513. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1514. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1515. // F16 NEON
  1516. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1517. #define GGML_F16_STEP 32
  1518. #define GGML_F16_EPR 8
  1519. #define GGML_F16x8 float16x8_t
  1520. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1521. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1522. #define GGML_F16x8_LOAD vld1q_f16
  1523. #define GGML_F16x8_STORE vst1q_f16
  1524. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1525. #define GGML_F16x8_ADD vaddq_f16
  1526. #define GGML_F16x8_MUL vmulq_f16
  1527. #define GGML_F16x8_REDUCE(res, x) \
  1528. { \
  1529. int offset = GGML_F16_ARR >> 1; \
  1530. for (int i = 0; i < offset; ++i) { \
  1531. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1532. } \
  1533. offset >>= 1; \
  1534. for (int i = 0; i < offset; ++i) { \
  1535. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1536. } \
  1537. offset >>= 1; \
  1538. for (int i = 0; i < offset; ++i) { \
  1539. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1540. } \
  1541. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1542. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1543. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1544. }
  1545. #define GGML_F16_VEC GGML_F16x8
  1546. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1547. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1548. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1549. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1550. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1551. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1552. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1553. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1554. #else
  1555. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1556. // and take advantage of the vcvt_ functions to convert to/from FP16
  1557. #define GGML_F16_STEP 16
  1558. #define GGML_F16_EPR 4
  1559. #define GGML_F32Cx4 float32x4_t
  1560. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1561. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1562. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1563. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1564. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1565. #define GGML_F32Cx4_ADD vaddq_f32
  1566. #define GGML_F32Cx4_MUL vmulq_f32
  1567. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1568. #define GGML_F16_VEC GGML_F32Cx4
  1569. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1570. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1571. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1572. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1573. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1574. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1575. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1576. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1577. #endif
  1578. #elif defined(__AVX__)
  1579. #define GGML_SIMD
  1580. // F32 AVX
  1581. #define GGML_F32_STEP 32
  1582. #define GGML_F32_EPR 8
  1583. #define GGML_F32x8 __m256
  1584. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1585. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1586. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1587. #define GGML_F32x8_STORE _mm256_storeu_ps
  1588. #if defined(__FMA__)
  1589. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1590. #else
  1591. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1592. #endif
  1593. #define GGML_F32x8_ADD _mm256_add_ps
  1594. #define GGML_F32x8_MUL _mm256_mul_ps
  1595. #define GGML_F32x8_REDUCE(res, x) \
  1596. { \
  1597. int offset = GGML_F32_ARR >> 1; \
  1598. for (int i = 0; i < offset; ++i) { \
  1599. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1600. } \
  1601. offset >>= 1; \
  1602. for (int i = 0; i < offset; ++i) { \
  1603. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1604. } \
  1605. offset >>= 1; \
  1606. for (int i = 0; i < offset; ++i) { \
  1607. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1608. } \
  1609. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1610. _mm256_extractf128_ps(x[0], 1)); \
  1611. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1612. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1613. }
  1614. // TODO: is this optimal ?
  1615. #define GGML_F32_VEC GGML_F32x8
  1616. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1617. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1618. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1619. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1620. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1621. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1622. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1623. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1624. // F16 AVX
  1625. #define GGML_F16_STEP 32
  1626. #define GGML_F16_EPR 8
  1627. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1628. #define GGML_F32Cx8 __m256
  1629. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1630. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1631. #if defined(__F16C__)
  1632. // the _mm256_cvt intrinsics require F16C
  1633. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1634. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1635. #else
  1636. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1637. float tmp[8];
  1638. for (int i = 0; i < 8; i++) {
  1639. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1640. }
  1641. return _mm256_loadu_ps(tmp);
  1642. }
  1643. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1644. float arr[8];
  1645. _mm256_storeu_ps(arr, y);
  1646. for (int i = 0; i < 8; i++)
  1647. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1648. }
  1649. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1650. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1651. #endif
  1652. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1653. #define GGML_F32Cx8_ADD _mm256_add_ps
  1654. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1655. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1656. #define GGML_F16_VEC GGML_F32Cx8
  1657. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1658. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1659. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1660. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1661. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1662. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1663. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1664. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1665. #elif defined(__POWER9_VECTOR__)
  1666. #define GGML_SIMD
  1667. // F32 POWER9
  1668. #define GGML_F32_STEP 32
  1669. #define GGML_F32_EPR 4
  1670. #define GGML_F32x4 vector float
  1671. #define GGML_F32x4_ZERO 0.0f
  1672. #define GGML_F32x4_SET1 vec_splats
  1673. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1674. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1675. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1676. #define GGML_F32x4_ADD vec_add
  1677. #define GGML_F32x4_MUL vec_mul
  1678. #define GGML_F32x4_REDUCE(res, x) \
  1679. { \
  1680. int offset = GGML_F32_ARR >> 1; \
  1681. for (int i = 0; i < offset; ++i) { \
  1682. x[i] = vec_add(x[i], x[offset+i]); \
  1683. } \
  1684. offset >>= 1; \
  1685. for (int i = 0; i < offset; ++i) { \
  1686. x[i] = vec_add(x[i], x[offset+i]); \
  1687. } \
  1688. offset >>= 1; \
  1689. for (int i = 0; i < offset; ++i) { \
  1690. x[i] = vec_add(x[i], x[offset+i]); \
  1691. } \
  1692. res = vec_extract(x[0], 0) + \
  1693. vec_extract(x[0], 1) + \
  1694. vec_extract(x[0], 2) + \
  1695. vec_extract(x[0], 3); \
  1696. }
  1697. #define GGML_F32_VEC GGML_F32x4
  1698. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1699. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1700. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1701. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1702. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1703. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1704. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1705. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1706. // F16 POWER9
  1707. #define GGML_F16_STEP GGML_F32_STEP
  1708. #define GGML_F16_EPR GGML_F32_EPR
  1709. #define GGML_F16_VEC GGML_F32x4
  1710. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1711. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1712. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1713. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1714. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1715. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1716. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1717. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1718. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1719. #define GGML_F16_VEC_STORE(p, r, i) \
  1720. if (i & 0x1) \
  1721. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1722. r[i - GGML_ENDIAN_BYTE(0)]), \
  1723. 0, p - GGML_F16_EPR)
  1724. #elif defined(__wasm_simd128__)
  1725. #define GGML_SIMD
  1726. // F32 WASM
  1727. #define GGML_F32_STEP 16
  1728. #define GGML_F32_EPR 4
  1729. #define GGML_F32x4 v128_t
  1730. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1731. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1732. #define GGML_F32x4_LOAD wasm_v128_load
  1733. #define GGML_F32x4_STORE wasm_v128_store
  1734. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1735. #define GGML_F32x4_ADD wasm_f32x4_add
  1736. #define GGML_F32x4_MUL wasm_f32x4_mul
  1737. #define GGML_F32x4_REDUCE(res, x) \
  1738. { \
  1739. int offset = GGML_F32_ARR >> 1; \
  1740. for (int i = 0; i < offset; ++i) { \
  1741. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1742. } \
  1743. offset >>= 1; \
  1744. for (int i = 0; i < offset; ++i) { \
  1745. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1746. } \
  1747. offset >>= 1; \
  1748. for (int i = 0; i < offset; ++i) { \
  1749. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1750. } \
  1751. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1752. wasm_f32x4_extract_lane(x[0], 1) + \
  1753. wasm_f32x4_extract_lane(x[0], 2) + \
  1754. wasm_f32x4_extract_lane(x[0], 3); \
  1755. }
  1756. #define GGML_F32_VEC GGML_F32x4
  1757. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1758. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1759. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1760. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1761. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1762. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1763. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1764. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1765. // F16 WASM
  1766. #define GGML_F16_STEP 16
  1767. #define GGML_F16_EPR 4
  1768. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1769. float tmp[4];
  1770. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1771. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1772. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1773. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1774. return wasm_v128_load(tmp);
  1775. }
  1776. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1777. float tmp[4];
  1778. wasm_v128_store(tmp, x);
  1779. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1780. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1781. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1782. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1783. }
  1784. #define GGML_F16x4 v128_t
  1785. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1786. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1787. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1788. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1789. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1790. #define GGML_F16x4_ADD wasm_f32x4_add
  1791. #define GGML_F16x4_MUL wasm_f32x4_mul
  1792. #define GGML_F16x4_REDUCE(res, x) \
  1793. { \
  1794. int offset = GGML_F16_ARR >> 1; \
  1795. for (int i = 0; i < offset; ++i) { \
  1796. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1797. } \
  1798. offset >>= 1; \
  1799. for (int i = 0; i < offset; ++i) { \
  1800. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1801. } \
  1802. offset >>= 1; \
  1803. for (int i = 0; i < offset; ++i) { \
  1804. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1805. } \
  1806. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1807. wasm_f32x4_extract_lane(x[0], 1) + \
  1808. wasm_f32x4_extract_lane(x[0], 2) + \
  1809. wasm_f32x4_extract_lane(x[0], 3); \
  1810. }
  1811. #define GGML_F16_VEC GGML_F16x4
  1812. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1813. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1814. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1815. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1816. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1817. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1818. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1819. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1820. #elif defined(__SSE3__)
  1821. #define GGML_SIMD
  1822. // F32 SSE
  1823. #define GGML_F32_STEP 32
  1824. #define GGML_F32_EPR 4
  1825. #define GGML_F32x4 __m128
  1826. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1827. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1828. #define GGML_F32x4_LOAD _mm_loadu_ps
  1829. #define GGML_F32x4_STORE _mm_storeu_ps
  1830. #if defined(__FMA__)
  1831. // TODO: Does this work?
  1832. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1833. #else
  1834. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1835. #endif
  1836. #define GGML_F32x4_ADD _mm_add_ps
  1837. #define GGML_F32x4_MUL _mm_mul_ps
  1838. #define GGML_F32x4_REDUCE(res, x) \
  1839. { \
  1840. int offset = GGML_F32_ARR >> 1; \
  1841. for (int i = 0; i < offset; ++i) { \
  1842. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1843. } \
  1844. offset >>= 1; \
  1845. for (int i = 0; i < offset; ++i) { \
  1846. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1847. } \
  1848. offset >>= 1; \
  1849. for (int i = 0; i < offset; ++i) { \
  1850. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1851. } \
  1852. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1853. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1854. }
  1855. // TODO: is this optimal ?
  1856. #define GGML_F32_VEC GGML_F32x4
  1857. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1858. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1859. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1860. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1861. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1862. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1863. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1864. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1865. // F16 SSE
  1866. #define GGML_F16_STEP 32
  1867. #define GGML_F16_EPR 4
  1868. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1869. float tmp[4];
  1870. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1871. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1872. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1873. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1874. return _mm_loadu_ps(tmp);
  1875. }
  1876. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1877. float arr[4];
  1878. _mm_storeu_ps(arr, y);
  1879. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1880. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1881. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1882. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1883. }
  1884. #define GGML_F32Cx4 __m128
  1885. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1886. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1887. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1888. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1889. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1890. #define GGML_F32Cx4_ADD _mm_add_ps
  1891. #define GGML_F32Cx4_MUL _mm_mul_ps
  1892. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1893. #define GGML_F16_VEC GGML_F32Cx4
  1894. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1895. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1896. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1897. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1898. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1899. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1900. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1901. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1902. #endif
  1903. // GGML_F32_ARR / GGML_F16_ARR
  1904. // number of registers to use per step
  1905. #ifdef GGML_SIMD
  1906. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1907. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1908. #endif
  1909. //
  1910. // fundamental operations
  1911. //
  1912. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1913. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1914. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1915. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1916. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1917. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1918. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1919. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1920. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1921. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1922. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1923. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1924. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1925. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1926. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1927. #ifdef GGML_SIMD
  1928. float sumf = 0.0f;
  1929. const int np = (n & ~(GGML_F32_STEP - 1));
  1930. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1931. GGML_F32_VEC ax[GGML_F32_ARR];
  1932. GGML_F32_VEC ay[GGML_F32_ARR];
  1933. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1934. for (int j = 0; j < GGML_F32_ARR; j++) {
  1935. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1936. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1937. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1938. }
  1939. }
  1940. // reduce sum0..sum3 to sum0
  1941. GGML_F32_VEC_REDUCE(sumf, sum);
  1942. // leftovers
  1943. for (int i = np; i < n; ++i) {
  1944. sumf += x[i]*y[i];
  1945. }
  1946. #else
  1947. // scalar
  1948. ggml_float sumf = 0.0;
  1949. for (int i = 0; i < n; ++i) {
  1950. sumf += (ggml_float)(x[i]*y[i]);
  1951. }
  1952. #endif
  1953. *s = sumf;
  1954. }
  1955. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1956. ggml_float sumf = 0.0;
  1957. #if defined(GGML_SIMD)
  1958. const int np = (n & ~(GGML_F16_STEP - 1));
  1959. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1960. GGML_F16_VEC ax[GGML_F16_ARR];
  1961. GGML_F16_VEC ay[GGML_F16_ARR];
  1962. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1963. for (int j = 0; j < GGML_F16_ARR; j++) {
  1964. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1965. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1966. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1967. }
  1968. }
  1969. // reduce sum0..sum3 to sum0
  1970. GGML_F16_VEC_REDUCE(sumf, sum);
  1971. // leftovers
  1972. for (int i = np; i < n; ++i) {
  1973. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1974. }
  1975. #else
  1976. for (int i = 0; i < n; ++i) {
  1977. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1978. }
  1979. #endif
  1980. *s = sumf;
  1981. }
  1982. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1983. const int qk = QK8_0;
  1984. const int nb = n / qk;
  1985. assert(n % qk == 0);
  1986. assert(nb % 2 == 0);
  1987. const block_q4_0 * restrict x = vx;
  1988. const block_q8_0 * restrict y = vy;
  1989. #if defined(__ARM_NEON)
  1990. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1991. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1992. for (int i = 0; i < nb; i += 2) {
  1993. const block_q4_0 * restrict x0 = &x[i + 0];
  1994. const block_q4_0 * restrict x1 = &x[i + 1];
  1995. const block_q8_0 * restrict y0 = &y[i + 0];
  1996. const block_q8_0 * restrict y1 = &y[i + 1];
  1997. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1998. const int8x16_t s8b = vdupq_n_s8(0x8);
  1999. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2000. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2001. // 4-bit -> 8-bit
  2002. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2003. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2004. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2005. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2006. // sub 8
  2007. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2008. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2009. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2010. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2011. // load y
  2012. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2013. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2014. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2015. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2016. #if defined(__ARM_FEATURE_DOTPROD)
  2017. // dot product into int32x4_t
  2018. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2019. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2020. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2021. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2022. #else
  2023. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2024. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2025. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2026. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2027. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2028. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2029. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2030. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2031. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2032. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2033. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2034. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2035. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2036. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2037. #endif
  2038. }
  2039. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2040. #elif defined(__AVX2__)
  2041. // Initialize accumulator with zeros
  2042. __m256 acc = _mm256_setzero_ps();
  2043. // Main loop
  2044. for (int i = 0; i < nb; ++i) {
  2045. /* Compute combined scale for the block */
  2046. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2047. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2048. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2049. const __m256i off = _mm256_set1_epi8( 8 );
  2050. bx = _mm256_sub_epi8( bx, off );
  2051. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2052. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2053. /* Multiply q with scale and accumulate */
  2054. acc = _mm256_fmadd_ps( d, q, acc );
  2055. }
  2056. *s = hsum_float_8(acc);
  2057. #elif defined(__AVX__)
  2058. // Initialize accumulator with zeros
  2059. __m256 acc = _mm256_setzero_ps();
  2060. // Main loop
  2061. for (int i = 0; i < nb; ++i) {
  2062. // Compute combined scale for the block
  2063. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2064. const __m128i lowMask = _mm_set1_epi8(0xF);
  2065. const __m128i off = _mm_set1_epi8(8);
  2066. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2067. __m128i bx = _mm_and_si128(lowMask, tmp);
  2068. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2069. bx = _mm_sub_epi8(bx, off);
  2070. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2071. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2072. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2073. bx = _mm_sub_epi8(bx, off);
  2074. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2075. // Convert int32_t to float
  2076. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2077. // Apply the scale, and accumulate
  2078. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2079. }
  2080. *s = hsum_float_8(acc);
  2081. #elif defined(__SSSE3__)
  2082. // set constants
  2083. const __m128i lowMask = _mm_set1_epi8(0xF);
  2084. const __m128i off = _mm_set1_epi8(8);
  2085. // Initialize accumulator with zeros
  2086. __m128 acc_0 = _mm_setzero_ps();
  2087. __m128 acc_1 = _mm_setzero_ps();
  2088. __m128 acc_2 = _mm_setzero_ps();
  2089. __m128 acc_3 = _mm_setzero_ps();
  2090. // First round without accumulation
  2091. {
  2092. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2093. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2094. // Compute combined scale for the block 0 and 1
  2095. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2096. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2097. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2098. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2099. bx_0 = _mm_sub_epi8(bx_0, off);
  2100. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2101. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2102. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2103. bx_1 = _mm_sub_epi8(bx_1, off);
  2104. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2105. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2106. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2107. // Compute combined scale for the block 2 and 3
  2108. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2109. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2110. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2111. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2112. bx_2 = _mm_sub_epi8(bx_2, off);
  2113. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2114. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2115. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2116. bx_3 = _mm_sub_epi8(bx_3, off);
  2117. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2118. // Convert int32_t to float
  2119. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2120. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2121. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2122. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2123. // Apply the scale
  2124. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2125. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2126. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2127. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2128. }
  2129. // Main loop
  2130. for (int i = 2; i < nb; i+=2) {
  2131. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2132. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2133. // Compute combined scale for the block 0 and 1
  2134. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2135. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2136. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2137. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2138. bx_0 = _mm_sub_epi8(bx_0, off);
  2139. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2140. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2141. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2142. bx_1 = _mm_sub_epi8(bx_1, off);
  2143. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2144. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2145. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2146. // Compute combined scale for the block 2 and 3
  2147. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2148. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2149. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2150. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2151. bx_2 = _mm_sub_epi8(bx_2, off);
  2152. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2153. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2154. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2155. bx_3 = _mm_sub_epi8(bx_3, off);
  2156. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2157. // Convert int32_t to float
  2158. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2159. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2160. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2161. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2162. // Apply the scale
  2163. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2164. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2165. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2166. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2167. // Acummulate
  2168. acc_0 = _mm_add_ps(p0_d, acc_0);
  2169. acc_1 = _mm_add_ps(p1_d, acc_1);
  2170. acc_2 = _mm_add_ps(p2_d, acc_2);
  2171. acc_3 = _mm_add_ps(p3_d, acc_3);
  2172. }
  2173. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2174. #else
  2175. // scalar
  2176. float sumf = 0.0;
  2177. for (int i = 0; i < nb; i++) {
  2178. int sumi = 0;
  2179. for (int j = 0; j < qk/2; ++j) {
  2180. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2181. const int v1 = (x[i].qs[j] >> 4) - 8;
  2182. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2183. }
  2184. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2185. }
  2186. *s = sumf;
  2187. #endif
  2188. }
  2189. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2190. const int qk = QK8_1;
  2191. const int nb = n / qk;
  2192. assert(n % qk == 0);
  2193. assert(nb % 2 == 0);
  2194. const block_q4_1 * restrict x = vx;
  2195. const block_q8_1 * restrict y = vy;
  2196. // TODO: add WASM SIMD
  2197. #if defined(__ARM_NEON)
  2198. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2199. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2200. float summs = 0;
  2201. for (int i = 0; i < nb; i += 2) {
  2202. const block_q4_1 * restrict x0 = &x[i + 0];
  2203. const block_q4_1 * restrict x1 = &x[i + 1];
  2204. const block_q8_1 * restrict y0 = &y[i + 0];
  2205. const block_q8_1 * restrict y1 = &y[i + 1];
  2206. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2207. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2208. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2209. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2210. // 4-bit -> 8-bit
  2211. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2212. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2213. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2214. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2215. // load y
  2216. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2217. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2218. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2219. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2220. #if defined(__ARM_FEATURE_DOTPROD)
  2221. // dot product into int32x4_t
  2222. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2223. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2224. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2225. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2226. #else
  2227. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2228. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2229. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2230. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2231. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2232. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2233. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2234. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2235. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2236. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2237. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2238. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2239. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2240. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2241. #endif
  2242. }
  2243. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2244. #elif defined(__AVX2__) || defined(__AVX__)
  2245. // Initialize accumulator with zeros
  2246. __m256 acc = _mm256_setzero_ps();
  2247. float summs = 0;
  2248. // Main loop
  2249. for (int i = 0; i < nb; ++i) {
  2250. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2251. const float d1 = y[i].d;
  2252. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2253. const __m256 d0v = _mm256_set1_ps( d0 );
  2254. const __m256 d1v = _mm256_set1_ps( d1 );
  2255. // Compute combined scales
  2256. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2257. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2258. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2259. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2260. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2261. // Accumulate d0*d1*x*y
  2262. #if defined(__AVX2__)
  2263. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2264. #else
  2265. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2266. #endif
  2267. }
  2268. *s = hsum_float_8(acc) + summs;
  2269. #else
  2270. // scalar
  2271. float sumf = 0.0;
  2272. for (int i = 0; i < nb; i++) {
  2273. int sumi = 0;
  2274. for (int j = 0; j < qk/2; ++j) {
  2275. const int v0 = (x[i].qs[j] & 0x0F);
  2276. const int v1 = (x[i].qs[j] >> 4);
  2277. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2278. }
  2279. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2280. }
  2281. *s = sumf;
  2282. #endif
  2283. }
  2284. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2285. const int qk = QK8_0;
  2286. const int nb = n / qk;
  2287. assert(n % qk == 0);
  2288. assert(nb % 2 == 0);
  2289. assert(qk == QK5_0);
  2290. const block_q5_0 * restrict x = vx;
  2291. const block_q8_0 * restrict y = vy;
  2292. #if defined(__ARM_NEON)
  2293. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2294. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2295. uint32_t qh0;
  2296. uint32_t qh1;
  2297. uint64_t tmp0[4];
  2298. uint64_t tmp1[4];
  2299. for (int i = 0; i < nb; i += 2) {
  2300. const block_q5_0 * restrict x0 = &x[i];
  2301. const block_q5_0 * restrict x1 = &x[i + 1];
  2302. const block_q8_0 * restrict y0 = &y[i];
  2303. const block_q8_0 * restrict y1 = &y[i + 1];
  2304. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2305. // extract the 5th bit via lookup table ((!b) << 4)
  2306. memcpy(&qh0, x0->qh, sizeof(qh0));
  2307. memcpy(&qh1, x1->qh, sizeof(qh1));
  2308. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2309. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2310. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2311. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2312. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2313. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2314. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2315. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2316. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2317. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2318. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2319. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2320. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2321. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2322. // 4-bit -> 8-bit
  2323. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2324. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2325. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2326. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2327. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2328. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2329. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2330. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2331. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2332. // load y
  2333. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2334. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2335. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2336. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2337. #if defined(__ARM_FEATURE_DOTPROD)
  2338. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2339. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2340. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2341. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2342. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2343. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2344. #else
  2345. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2346. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2347. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2348. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2349. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2350. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2351. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2352. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2353. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2354. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2355. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2356. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2357. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2358. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2359. #endif
  2360. }
  2361. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2362. #elif defined(__wasm_simd128__)
  2363. v128_t sumv = wasm_f32x4_splat(0.0f);
  2364. uint32_t qh;
  2365. uint64_t tmp[4];
  2366. // TODO: check if unrolling this is better
  2367. for (int i = 0; i < nb; ++i) {
  2368. const block_q5_0 * restrict x0 = &x[i];
  2369. const block_q8_0 * restrict y0 = &y[i];
  2370. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2371. // extract the 5th bit
  2372. memcpy(&qh, x0->qh, sizeof(qh));
  2373. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2374. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2375. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2376. tmp[3] = table_b2b_1[(qh >> 24) ];
  2377. const v128_t qhl = wasm_v128_load(tmp + 0);
  2378. const v128_t qhh = wasm_v128_load(tmp + 2);
  2379. const v128_t v0 = wasm_v128_load(x0->qs);
  2380. // 4-bit -> 8-bit
  2381. const v128_t v0l = wasm_v128_and (v0, m4b);
  2382. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2383. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2384. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2385. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2386. // load y
  2387. const v128_t v1l = wasm_v128_load(y0->qs);
  2388. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2389. // int8x16 -> int16x8
  2390. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2391. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2392. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2393. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2394. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2395. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2396. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2397. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2398. // dot product
  2399. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2400. wasm_i32x4_add(
  2401. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2402. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2403. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2404. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2405. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2406. }
  2407. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2408. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2409. #elif defined(__AVX2__)
  2410. // Initialize accumulator with zeros
  2411. __m256 acc = _mm256_setzero_ps();
  2412. // Main loop
  2413. for (int i = 0; i < nb; i++) {
  2414. /* Compute combined scale for the block */
  2415. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2416. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2417. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2418. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2419. bx = _mm256_or_si256(bx, bxhi);
  2420. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2421. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2422. /* Multiply q with scale and accumulate */
  2423. acc = _mm256_fmadd_ps(d, q, acc);
  2424. }
  2425. *s = hsum_float_8(acc);
  2426. #elif defined(__AVX__)
  2427. // Initialize accumulator with zeros
  2428. __m256 acc = _mm256_setzero_ps();
  2429. __m128i mask = _mm_set1_epi8((char)0xF0);
  2430. // Main loop
  2431. for (int i = 0; i < nb; i++) {
  2432. /* Compute combined scale for the block */
  2433. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2434. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2435. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2436. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2437. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2438. bxhil = _mm_andnot_si128(bxhil, mask);
  2439. bxhih = _mm_andnot_si128(bxhih, mask);
  2440. __m128i bxl = _mm256_castsi256_si128(bx);
  2441. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2442. bxl = _mm_or_si128(bxl, bxhil);
  2443. bxh = _mm_or_si128(bxh, bxhih);
  2444. bx = MM256_SET_M128I(bxh, bxl);
  2445. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2446. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2447. /* Multiply q with scale and accumulate */
  2448. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2449. }
  2450. *s = hsum_float_8(acc);
  2451. #else
  2452. // scalar
  2453. float sumf = 0.0;
  2454. for (int i = 0; i < nb; i++) {
  2455. uint32_t qh;
  2456. memcpy(&qh, x[i].qh, sizeof(qh));
  2457. int sumi = 0;
  2458. for (int j = 0; j < qk/2; ++j) {
  2459. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2460. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2461. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2462. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2463. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2464. }
  2465. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2466. }
  2467. *s = sumf;
  2468. #endif
  2469. }
  2470. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2471. const int qk = QK8_1;
  2472. const int nb = n / qk;
  2473. assert(n % qk == 0);
  2474. assert(nb % 2 == 0);
  2475. assert(qk == QK5_1);
  2476. const block_q5_1 * restrict x = vx;
  2477. const block_q8_1 * restrict y = vy;
  2478. #if defined(__ARM_NEON)
  2479. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2480. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2481. float summs0 = 0.0f;
  2482. float summs1 = 0.0f;
  2483. uint32_t qh0;
  2484. uint32_t qh1;
  2485. uint64_t tmp0[4];
  2486. uint64_t tmp1[4];
  2487. for (int i = 0; i < nb; i += 2) {
  2488. const block_q5_1 * restrict x0 = &x[i];
  2489. const block_q5_1 * restrict x1 = &x[i + 1];
  2490. const block_q8_1 * restrict y0 = &y[i];
  2491. const block_q8_1 * restrict y1 = &y[i + 1];
  2492. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2493. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2494. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2495. // extract the 5th bit via lookup table ((b) << 4)
  2496. memcpy(&qh0, x0->qh, sizeof(qh0));
  2497. memcpy(&qh1, x1->qh, sizeof(qh1));
  2498. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2499. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2500. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2501. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2502. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2503. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2504. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2505. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2506. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2507. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2508. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2509. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2510. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2511. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2512. // 4-bit -> 8-bit
  2513. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2514. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2515. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2516. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2517. // add high bit
  2518. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2519. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2520. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2521. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2522. // load y
  2523. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2524. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2525. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2526. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2527. #if defined(__ARM_FEATURE_DOTPROD)
  2528. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2529. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2530. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2531. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2532. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2533. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2534. #else
  2535. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2536. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2537. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2538. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2539. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2540. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2541. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2542. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2543. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2544. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2545. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2546. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2547. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2548. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2549. #endif
  2550. }
  2551. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2552. #elif defined(__wasm_simd128__)
  2553. v128_t sumv = wasm_f32x4_splat(0.0f);
  2554. float summs = 0.0f;
  2555. uint32_t qh;
  2556. uint64_t tmp[4];
  2557. // TODO: check if unrolling this is better
  2558. for (int i = 0; i < nb; ++i) {
  2559. const block_q5_1 * restrict x0 = &x[i];
  2560. const block_q8_1 * restrict y0 = &y[i];
  2561. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2562. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2563. // extract the 5th bit
  2564. memcpy(&qh, x0->qh, sizeof(qh));
  2565. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2566. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2567. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2568. tmp[3] = table_b2b_0[(qh >> 24) ];
  2569. const v128_t qhl = wasm_v128_load(tmp + 0);
  2570. const v128_t qhh = wasm_v128_load(tmp + 2);
  2571. const v128_t v0 = wasm_v128_load(x0->qs);
  2572. // 4-bit -> 8-bit
  2573. const v128_t v0l = wasm_v128_and (v0, m4b);
  2574. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2575. // add high bit
  2576. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2577. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2578. // load y
  2579. const v128_t v1l = wasm_v128_load(y0->qs);
  2580. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2581. // int8x16 -> int16x8
  2582. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2583. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2584. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2585. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2586. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2587. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2588. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2589. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2590. // dot product
  2591. sumv = wasm_f32x4_add(sumv,
  2592. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2593. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2594. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2595. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2596. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2597. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2598. }
  2599. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2600. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2601. #elif defined(__AVX2__)
  2602. // Initialize accumulator with zeros
  2603. __m256 acc = _mm256_setzero_ps();
  2604. float summs = 0.0f;
  2605. // Main loop
  2606. for (int i = 0; i < nb; i++) {
  2607. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2608. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2609. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2610. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2611. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2612. bx = _mm256_or_si256(bx, bxhi);
  2613. const __m256 dy = _mm256_set1_ps(y[i].d);
  2614. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2615. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2616. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2617. }
  2618. *s = hsum_float_8(acc) + summs;
  2619. #elif defined(__AVX__)
  2620. // Initialize accumulator with zeros
  2621. __m256 acc = _mm256_setzero_ps();
  2622. __m128i mask = _mm_set1_epi8(0x10);
  2623. float summs = 0.0f;
  2624. // Main loop
  2625. for (int i = 0; i < nb; i++) {
  2626. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2627. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2628. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2629. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2630. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2631. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2632. bxhil = _mm_and_si128(bxhil, mask);
  2633. bxhih = _mm_and_si128(bxhih, mask);
  2634. __m128i bxl = _mm256_castsi256_si128(bx);
  2635. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2636. bxl = _mm_or_si128(bxl, bxhil);
  2637. bxh = _mm_or_si128(bxh, bxhih);
  2638. bx = MM256_SET_M128I(bxh, bxl);
  2639. const __m256 dy = _mm256_set1_ps(y[i].d);
  2640. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2641. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2642. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2643. }
  2644. *s = hsum_float_8(acc) + summs;
  2645. #else
  2646. // scalar
  2647. float sumf = 0.0;
  2648. for (int i = 0; i < nb; i++) {
  2649. uint32_t qh;
  2650. memcpy(&qh, x[i].qh, sizeof(qh));
  2651. int sumi = 0;
  2652. for (int j = 0; j < qk/2; ++j) {
  2653. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2654. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2655. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2656. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2657. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2658. }
  2659. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2660. }
  2661. *s = sumf;
  2662. #endif
  2663. }
  2664. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2665. const int qk = QK8_0;
  2666. const int nb = n / qk;
  2667. assert(n % qk == 0);
  2668. assert(nb % 2 == 0);
  2669. const block_q8_0 * restrict x = vx;
  2670. const block_q8_0 * restrict y = vy;
  2671. #if defined(__ARM_NEON)
  2672. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2673. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2674. for (int i = 0; i < nb; i += 2) {
  2675. const block_q8_0 * restrict x0 = &x[i + 0];
  2676. const block_q8_0 * restrict x1 = &x[i + 1];
  2677. const block_q8_0 * restrict y0 = &y[i + 0];
  2678. const block_q8_0 * restrict y1 = &y[i + 1];
  2679. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2680. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2681. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2682. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2683. // load y
  2684. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2685. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2686. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2687. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2688. #if defined(__ARM_FEATURE_DOTPROD)
  2689. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2690. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2691. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2692. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2693. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2694. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2695. #else
  2696. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2697. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2698. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2699. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2700. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2701. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2702. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2703. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2704. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2705. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2706. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2707. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2708. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2709. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2710. #endif
  2711. }
  2712. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2713. #elif defined(__AVX2__) || defined(__AVX__)
  2714. // Initialize accumulator with zeros
  2715. __m256 acc = _mm256_setzero_ps();
  2716. // Main loop
  2717. for (int i = 0; i < nb; ++i) {
  2718. // Compute combined scale for the block
  2719. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2720. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2721. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2722. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2723. // Multiply q with scale and accumulate
  2724. #if defined(__AVX2__)
  2725. acc = _mm256_fmadd_ps( d, q, acc );
  2726. #else
  2727. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2728. #endif
  2729. }
  2730. *s = hsum_float_8(acc);
  2731. #else
  2732. // scalar
  2733. float sumf = 0.0;
  2734. for (int i = 0; i < nb; i++) {
  2735. int sumi = 0;
  2736. for (int j = 0; j < qk; j++) {
  2737. sumi += x[i].qs[j]*y[i].qs[j];
  2738. }
  2739. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2740. }
  2741. *s = sumf;
  2742. #endif
  2743. }
  2744. // compute GGML_VEC_DOT_UNROLL dot products at once
  2745. // xs - x row stride in bytes
  2746. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2747. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2748. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2749. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2750. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2751. }
  2752. #if defined(GGML_SIMD)
  2753. const int np = (n & ~(GGML_F16_STEP - 1));
  2754. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2755. GGML_F16_VEC ax[GGML_F16_ARR];
  2756. GGML_F16_VEC ay[GGML_F16_ARR];
  2757. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2758. for (int j = 0; j < GGML_F16_ARR; j++) {
  2759. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2760. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2761. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2762. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2763. }
  2764. }
  2765. }
  2766. // reduce sum0..sum3 to sum0
  2767. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2768. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2769. }
  2770. // leftovers
  2771. for (int i = np; i < n; ++i) {
  2772. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2773. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2774. }
  2775. }
  2776. #else
  2777. for (int i = 0; i < n; ++i) {
  2778. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2779. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2780. }
  2781. }
  2782. #endif
  2783. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2784. s[i] = sumf[i];
  2785. }
  2786. }
  2787. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2788. #if defined(GGML_SIMD)
  2789. const int np = (n & ~(GGML_F32_STEP - 1));
  2790. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2791. GGML_F32_VEC ax[GGML_F32_ARR];
  2792. GGML_F32_VEC ay[GGML_F32_ARR];
  2793. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2794. for (int j = 0; j < GGML_F32_ARR; j++) {
  2795. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2796. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2797. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2798. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2799. }
  2800. }
  2801. // leftovers
  2802. for (int i = np; i < n; ++i) {
  2803. y[i] += x[i]*v;
  2804. }
  2805. #else
  2806. // scalar
  2807. for (int i = 0; i < n; ++i) {
  2808. y[i] += x[i]*v;
  2809. }
  2810. #endif
  2811. }
  2812. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2813. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2814. #if defined(GGML_USE_ACCELERATE)
  2815. vDSP_vsmul(y, 1, &v, y, 1, n);
  2816. #elif defined(GGML_SIMD)
  2817. const int np = (n & ~(GGML_F32_STEP - 1));
  2818. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2819. GGML_F32_VEC ay[GGML_F32_ARR];
  2820. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2821. for (int j = 0; j < GGML_F32_ARR; j++) {
  2822. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2823. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2824. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2825. }
  2826. }
  2827. // leftovers
  2828. for (int i = np; i < n; ++i) {
  2829. y[i] *= v;
  2830. }
  2831. #else
  2832. // scalar
  2833. for (int i = 0; i < n; ++i) {
  2834. y[i] *= v;
  2835. }
  2836. #endif
  2837. }
  2838. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2839. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2840. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2841. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2842. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2843. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2844. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2845. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2846. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2847. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2848. static const float GELU_COEF_A = 0.044715f;
  2849. static const float GELU_QUICK_COEF = -1.702f;
  2850. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2851. inline static float ggml_gelu_f32(float x) {
  2852. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2853. }
  2854. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2855. const uint16_t * i16 = (const uint16_t *) x;
  2856. for (int i = 0; i < n; ++i) {
  2857. y[i] = table_gelu_f16[i16[i]];
  2858. }
  2859. }
  2860. #ifdef GGML_GELU_FP16
  2861. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2862. uint16_t t;
  2863. for (int i = 0; i < n; ++i) {
  2864. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2865. memcpy(&t, &fp16, sizeof(uint16_t));
  2866. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2867. }
  2868. }
  2869. #else
  2870. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2871. for (int i = 0; i < n; ++i) {
  2872. y[i] = ggml_gelu_f32(x[i]);
  2873. }
  2874. }
  2875. #endif
  2876. inline static float ggml_gelu_quick_f32(float x) {
  2877. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2878. }
  2879. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2880. // const uint16_t * i16 = (const uint16_t *) x;
  2881. // for (int i = 0; i < n; ++i) {
  2882. // y[i] = table_gelu_quick_f16[i16[i]];
  2883. // }
  2884. //}
  2885. #ifdef GGML_GELU_QUICK_FP16
  2886. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2887. uint16_t t;
  2888. for (int i = 0; i < n; ++i) {
  2889. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2890. memcpy(&t, &fp16, sizeof(uint16_t));
  2891. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2892. }
  2893. }
  2894. #else
  2895. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2896. for (int i = 0; i < n; ++i) {
  2897. y[i] = ggml_gelu_quick_f32(x[i]);
  2898. }
  2899. }
  2900. #endif
  2901. // Sigmoid Linear Unit (SiLU) function
  2902. inline static float ggml_silu_f32(float x) {
  2903. return x/(1.0f + expf(-x));
  2904. }
  2905. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2906. // const uint16_t * i16 = (const uint16_t *) x;
  2907. // for (int i = 0; i < n; ++i) {
  2908. // y[i] = table_silu_f16[i16[i]];
  2909. // }
  2910. //}
  2911. #ifdef GGML_SILU_FP16
  2912. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2913. uint16_t t;
  2914. for (int i = 0; i < n; ++i) {
  2915. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2916. memcpy(&t, &fp16, sizeof(uint16_t));
  2917. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2918. }
  2919. }
  2920. #else
  2921. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2922. for (int i = 0; i < n; ++i) {
  2923. y[i] = ggml_silu_f32(x[i]);
  2924. }
  2925. }
  2926. #endif
  2927. inline static float ggml_silu_backward_f32(float x, float dy) {
  2928. const float s = 1.0f/(1.0f + expf(-x));
  2929. return dy*s*(1.0f + x*(1.0f - s));
  2930. }
  2931. #ifdef GGML_SILU_FP16
  2932. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2933. for (int i = 0; i < n; ++i) {
  2934. // we did not use x[i] to compute forward silu but its f16 equivalent
  2935. // take derivative at f16 of x[i]:
  2936. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2937. float usedx = GGML_FP16_TO_FP32(fp16);
  2938. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2939. }
  2940. }
  2941. #else
  2942. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2943. for (int i = 0; i < n; ++i) {
  2944. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2945. }
  2946. }
  2947. #endif
  2948. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2949. #ifndef GGML_USE_ACCELERATE
  2950. ggml_float sum = 0.0;
  2951. for (int i = 0; i < n; ++i) {
  2952. sum += (ggml_float)x[i];
  2953. }
  2954. *s = sum;
  2955. #else
  2956. vDSP_sve(x, 1, s, n);
  2957. #endif
  2958. }
  2959. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2960. ggml_float sum = 0.0;
  2961. for (int i = 0; i < n; ++i) {
  2962. sum += (ggml_float)x[i];
  2963. }
  2964. *s = sum;
  2965. }
  2966. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2967. float sum = 0.0f;
  2968. for (int i = 0; i < n; ++i) {
  2969. sum += GGML_FP16_TO_FP32(x[i]);
  2970. }
  2971. *s = sum;
  2972. }
  2973. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2974. #ifndef GGML_USE_ACCELERATE
  2975. float max = -INFINITY;
  2976. for (int i = 0; i < n; ++i) {
  2977. max = MAX(max, x[i]);
  2978. }
  2979. *s = max;
  2980. #else
  2981. vDSP_maxv(x, 1, s, n);
  2982. #endif
  2983. }
  2984. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2985. ggml_vec_norm_f32(n, s, x);
  2986. *s = 1.f/(*s);
  2987. }
  2988. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2989. float max = -INFINITY;
  2990. int idx = 0;
  2991. for (int i = 0; i < n; ++i) {
  2992. max = MAX(max, x[i]);
  2993. if (max == x[i]) { idx = i; }
  2994. }
  2995. *s = idx;
  2996. }
  2997. //
  2998. // data types
  2999. //
  3000. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3001. [GGML_TYPE_F32] = 1,
  3002. [GGML_TYPE_F16] = 1,
  3003. [GGML_TYPE_Q4_0] = QK4_0,
  3004. [GGML_TYPE_Q4_1] = QK4_1,
  3005. [GGML_TYPE_Q5_0] = QK5_0,
  3006. [GGML_TYPE_Q5_1] = QK5_1,
  3007. [GGML_TYPE_Q8_0] = QK8_0,
  3008. [GGML_TYPE_Q8_1] = QK8_1,
  3009. #ifdef GGML_USE_K_QUANTS
  3010. [GGML_TYPE_Q2_K] = QK_K,
  3011. [GGML_TYPE_Q3_K] = QK_K,
  3012. [GGML_TYPE_Q4_K] = QK_K,
  3013. [GGML_TYPE_Q5_K] = QK_K,
  3014. [GGML_TYPE_Q6_K] = QK_K,
  3015. [GGML_TYPE_Q8_K] = QK_K,
  3016. #endif
  3017. [GGML_TYPE_I8] = 1,
  3018. [GGML_TYPE_I16] = 1,
  3019. [GGML_TYPE_I32] = 1,
  3020. };
  3021. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  3022. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3023. [GGML_TYPE_F32] = sizeof(float),
  3024. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3025. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3026. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3027. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3028. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3029. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3030. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3031. #ifdef GGML_USE_K_QUANTS
  3032. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  3033. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  3034. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  3035. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  3036. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  3037. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3038. #endif
  3039. [GGML_TYPE_I8] = sizeof(int8_t),
  3040. [GGML_TYPE_I16] = sizeof(int16_t),
  3041. [GGML_TYPE_I32] = sizeof(int32_t),
  3042. };
  3043. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3044. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3045. [GGML_TYPE_F32] = "f32",
  3046. [GGML_TYPE_F16] = "f16",
  3047. [GGML_TYPE_Q4_0] = "q4_0",
  3048. [GGML_TYPE_Q4_1] = "q4_1",
  3049. [GGML_TYPE_Q5_0] = "q5_0",
  3050. [GGML_TYPE_Q5_1] = "q5_1",
  3051. [GGML_TYPE_Q8_0] = "q8_0",
  3052. [GGML_TYPE_Q8_1] = "q8_1",
  3053. [GGML_TYPE_Q2_K] = "q2_K",
  3054. [GGML_TYPE_Q3_K] = "q3_K",
  3055. [GGML_TYPE_Q4_K] = "q4_K",
  3056. [GGML_TYPE_Q5_K] = "q5_K",
  3057. [GGML_TYPE_Q6_K] = "q6_K",
  3058. [GGML_TYPE_Q8_K] = "q8_K",
  3059. [GGML_TYPE_I8] = "i8",
  3060. [GGML_TYPE_I16] = "i16",
  3061. [GGML_TYPE_I32] = "i32",
  3062. };
  3063. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3064. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3065. [GGML_TYPE_F32] = false,
  3066. [GGML_TYPE_F16] = false,
  3067. [GGML_TYPE_Q4_0] = true,
  3068. [GGML_TYPE_Q4_1] = true,
  3069. [GGML_TYPE_Q5_0] = true,
  3070. [GGML_TYPE_Q5_1] = true,
  3071. [GGML_TYPE_Q8_0] = true,
  3072. [GGML_TYPE_Q8_1] = true,
  3073. [GGML_TYPE_Q2_K] = true,
  3074. [GGML_TYPE_Q3_K] = true,
  3075. [GGML_TYPE_Q4_K] = true,
  3076. [GGML_TYPE_Q5_K] = true,
  3077. [GGML_TYPE_Q6_K] = true,
  3078. [GGML_TYPE_Q8_K] = true,
  3079. [GGML_TYPE_I8] = false,
  3080. [GGML_TYPE_I16] = false,
  3081. [GGML_TYPE_I32] = false,
  3082. };
  3083. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3084. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3085. "NONE",
  3086. "DUP",
  3087. "ADD",
  3088. "ADD1",
  3089. "ACC",
  3090. "SUB",
  3091. "MUL",
  3092. "DIV",
  3093. "SQR",
  3094. "SQRT",
  3095. "LOG",
  3096. "SUM",
  3097. "SUM_ROWS",
  3098. "MEAN",
  3099. "ARGMAX",
  3100. "REPEAT",
  3101. "REPEAT_BACK",
  3102. "SILU_BACK",
  3103. "NORM",
  3104. "RMS_NORM",
  3105. "RMS_NORM_BACK",
  3106. "MUL_MAT",
  3107. "OUT_PROD",
  3108. "SCALE",
  3109. "SET",
  3110. "CPY",
  3111. "CONT",
  3112. "RESHAPE",
  3113. "VIEW",
  3114. "PERMUTE",
  3115. "TRANSPOSE",
  3116. "GET_ROWS",
  3117. "GET_ROWS_BACK",
  3118. "DIAG",
  3119. "DIAG_MASK_INF",
  3120. "DIAG_MASK_ZERO",
  3121. "SOFT_MAX",
  3122. "SOFT_MAX_BACK",
  3123. "ROPE",
  3124. "ROPE_BACK",
  3125. "ALIBI",
  3126. "CLAMP",
  3127. "CONV_1D",
  3128. "CONV_2D",
  3129. "POOL_1D",
  3130. "POOL_2D",
  3131. "FLASH_ATTN",
  3132. "FLASH_FF",
  3133. "FLASH_ATTN_BACK",
  3134. "WIN_PART",
  3135. "WIN_UNPART",
  3136. "UNARY",
  3137. "MAP_UNARY",
  3138. "MAP_BINARY",
  3139. "MAP_CUSTOM1",
  3140. "MAP_CUSTOM2",
  3141. "MAP_CUSTOM3",
  3142. "CROSS_ENTROPY_LOSS",
  3143. "CROSS_ENTROPY_LOSS_BACK",
  3144. };
  3145. static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
  3146. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3147. "none",
  3148. "x",
  3149. "x+y",
  3150. "x+y",
  3151. "view(x,nb,offset)+=y->x",
  3152. "x-y",
  3153. "x*y",
  3154. "x/y",
  3155. "x^2",
  3156. "√x",
  3157. "log(x)",
  3158. "Σx",
  3159. "Σx_k",
  3160. "Σx/n",
  3161. "argmax(x)",
  3162. "repeat(x)",
  3163. "repeat_back(x)",
  3164. "silu_back(x)",
  3165. "norm(x)",
  3166. "rms_norm(x)",
  3167. "rms_norm_back(x)",
  3168. "X*Y",
  3169. "X*Y",
  3170. "x*v",
  3171. "y-\\>view(x)",
  3172. "x-\\>y",
  3173. "cont(x)",
  3174. "reshape(x)",
  3175. "view(x)",
  3176. "permute(x)",
  3177. "transpose(x)",
  3178. "get_rows(x)",
  3179. "get_rows_back(x)",
  3180. "diag(x)",
  3181. "diag_mask_inf(x)",
  3182. "diag_mask_zero(x)",
  3183. "soft_max(x)",
  3184. "soft_max_back(x)",
  3185. "rope(x)",
  3186. "rope_back(x)",
  3187. "alibi(x)",
  3188. "clamp(x)",
  3189. "conv_1d(x)",
  3190. "conv_2d(x)",
  3191. "pool_1d(x)",
  3192. "pool_2d(x)",
  3193. "flash_attn(x)",
  3194. "flash_ff(x)",
  3195. "flash_attn_back(x)",
  3196. "win_part(x)",
  3197. "win_unpart(x)",
  3198. "unary(x)",
  3199. "f(x)",
  3200. "f(x,y)",
  3201. "custom(x)",
  3202. "custom(x,y)",
  3203. "custom(x,y,z)",
  3204. "cross_entropy_loss(x,y)",
  3205. "cross_entropy_loss_back(x,y)",
  3206. };
  3207. static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
  3208. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3209. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3210. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3211. // WARN:
  3212. // Mis-confguration can lead to problem that's hard to reason about:
  3213. // * At best it crash or talks nosense.
  3214. // * At worst it talks slightly difference but hard to perceive.
  3215. //
  3216. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3217. // Take care about compile options (e.g., GGML_USE_xxx).
  3218. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3219. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3220. static void ggml_setup_op_has_task_pass(void) {
  3221. { // INIT
  3222. bool * p = GGML_OP_HAS_INIT;
  3223. p[GGML_OP_ACC ] = true;
  3224. p[GGML_OP_MUL_MAT ] = true;
  3225. p[GGML_OP_OUT_PROD ] = true;
  3226. p[GGML_OP_SET ] = true;
  3227. p[GGML_OP_GET_ROWS_BACK ] = true;
  3228. p[GGML_OP_DIAG_MASK_INF ] = true;
  3229. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3230. p[GGML_OP_CONV_1D ] = true;
  3231. p[GGML_OP_CONV_2D ] = true;
  3232. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3233. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3234. }
  3235. { // FINALIZE
  3236. bool * p = GGML_OP_HAS_FINALIZE;
  3237. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3238. }
  3239. }
  3240. //
  3241. // ggml context
  3242. //
  3243. struct ggml_context {
  3244. size_t mem_size;
  3245. void * mem_buffer;
  3246. bool mem_buffer_owned;
  3247. bool no_alloc;
  3248. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3249. int n_objects;
  3250. struct ggml_object * objects_begin;
  3251. struct ggml_object * objects_end;
  3252. struct ggml_scratch scratch;
  3253. struct ggml_scratch scratch_save;
  3254. };
  3255. struct ggml_context_container {
  3256. bool used;
  3257. struct ggml_context context;
  3258. };
  3259. //
  3260. // NUMA support
  3261. //
  3262. #define GGML_NUMA_MAX_NODES 8
  3263. #define GGML_NUMA_MAX_CPUS 512
  3264. struct ggml_numa_node {
  3265. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3266. uint32_t n_cpus;
  3267. };
  3268. struct ggml_numa_nodes {
  3269. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3270. uint32_t n_nodes;
  3271. uint32_t total_cpus; // hardware threads on system
  3272. };
  3273. //
  3274. // ggml state
  3275. //
  3276. struct ggml_state {
  3277. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3278. struct ggml_numa_nodes numa;
  3279. };
  3280. // global state
  3281. static struct ggml_state g_state;
  3282. static atomic_int g_state_barrier = 0;
  3283. // barrier via spin lock
  3284. inline static void ggml_critical_section_start(void) {
  3285. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3286. while (processing > 0) {
  3287. // wait for other threads to finish
  3288. atomic_fetch_sub(&g_state_barrier, 1);
  3289. sched_yield(); // TODO: reconsider this
  3290. processing = atomic_fetch_add(&g_state_barrier, 1);
  3291. }
  3292. }
  3293. // TODO: make this somehow automatically executed
  3294. // some sort of "sentry" mechanism
  3295. inline static void ggml_critical_section_end(void) {
  3296. atomic_fetch_sub(&g_state_barrier, 1);
  3297. }
  3298. void ggml_numa_init(void) {
  3299. if (g_state.numa.n_nodes > 0) {
  3300. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3301. return;
  3302. }
  3303. #ifdef __linux__
  3304. struct stat st;
  3305. char path[256];
  3306. int rv;
  3307. // enumerate nodes
  3308. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3309. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3310. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3311. if (stat(path, &st) != 0) { break; }
  3312. ++g_state.numa.n_nodes;
  3313. }
  3314. // enumerate CPUs
  3315. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3316. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3317. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3318. if (stat(path, &st) != 0) { break; }
  3319. ++g_state.numa.total_cpus;
  3320. }
  3321. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3322. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3323. g_state.numa.n_nodes = 0;
  3324. return;
  3325. }
  3326. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3327. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3328. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3329. node->n_cpus = 0;
  3330. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3331. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3332. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3333. if (stat(path, &st) == 0) {
  3334. node->cpus[node->n_cpus++] = c;
  3335. GGML_PRINT_DEBUG(" %u", c);
  3336. }
  3337. }
  3338. GGML_PRINT_DEBUG("\n");
  3339. }
  3340. if (ggml_is_numa()) {
  3341. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3342. if (fptr != NULL) {
  3343. char buf[42];
  3344. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3345. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3346. }
  3347. fclose(fptr);
  3348. }
  3349. }
  3350. #else
  3351. // TODO
  3352. #endif
  3353. }
  3354. bool ggml_is_numa(void) {
  3355. return g_state.numa.n_nodes > 1;
  3356. }
  3357. ////////////////////////////////////////////////////////////////////////////////
  3358. void ggml_print_object(const struct ggml_object * obj) {
  3359. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3360. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3361. }
  3362. void ggml_print_objects(const struct ggml_context * ctx) {
  3363. struct ggml_object * obj = ctx->objects_begin;
  3364. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3365. while (obj != NULL) {
  3366. ggml_print_object(obj);
  3367. obj = obj->next;
  3368. }
  3369. GGML_PRINT("%s: --- end ---\n", __func__);
  3370. }
  3371. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3372. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3373. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3374. }
  3375. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3376. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3377. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3378. }
  3379. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3380. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3381. // this should handle cases where the tensor is not contiguous in memory
  3382. // probaby just:
  3383. //
  3384. // return tensor->ne[3]*tensor->nb[3]
  3385. //
  3386. // is enough, but just in case, adding the second part
  3387. return GGML_PAD(MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]), GGML_MEM_ALIGN);
  3388. }
  3389. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3390. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3391. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3392. }
  3393. int ggml_blck_size(enum ggml_type type) {
  3394. return GGML_BLCK_SIZE[type];
  3395. }
  3396. size_t ggml_type_size(enum ggml_type type) {
  3397. return GGML_TYPE_SIZE[type];
  3398. }
  3399. float ggml_type_sizef(enum ggml_type type) {
  3400. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3401. }
  3402. const char * ggml_type_name(enum ggml_type type) {
  3403. return GGML_TYPE_NAME[type];
  3404. }
  3405. const char * ggml_op_name(enum ggml_op op) {
  3406. return GGML_OP_NAME[op];
  3407. }
  3408. const char * ggml_op_symbol(enum ggml_op op) {
  3409. return GGML_OP_SYMBOL[op];
  3410. }
  3411. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3412. return GGML_TYPE_SIZE[tensor->type];
  3413. }
  3414. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3415. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3416. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3417. }
  3418. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3419. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3420. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3421. }
  3422. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3423. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3424. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3425. }
  3426. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3427. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3428. return (t0->ne[0] == t1->ne[0]) &&
  3429. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3430. (t1->ne[3]%t0->ne[3] == 0);
  3431. }
  3432. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3433. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3434. return
  3435. (t0->ne[1] == t1->ne[1]) &&
  3436. (t0->ne[2] == t1->ne[2]) &&
  3437. (t0->ne[3] == t1->ne[3]);
  3438. }
  3439. bool ggml_is_quantized(enum ggml_type type) {
  3440. return GGML_IS_QUANTIZED[type];
  3441. }
  3442. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3443. enum ggml_type wtype = GGML_TYPE_COUNT;
  3444. switch (ftype) {
  3445. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3446. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3447. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3448. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3449. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3450. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3451. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3452. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3453. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3454. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3455. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3456. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3457. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3458. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3459. }
  3460. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3461. return wtype;
  3462. }
  3463. size_t ggml_tensor_overhead(void) {
  3464. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3465. }
  3466. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3467. return tensor->nb[0] > tensor->nb[1];
  3468. }
  3469. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3470. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3471. return
  3472. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3473. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3474. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3475. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3476. }
  3477. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3478. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3479. return
  3480. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3481. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3482. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3483. }
  3484. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3485. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3486. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3487. }
  3488. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3489. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3490. return
  3491. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3492. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3493. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3494. }
  3495. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3496. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3497. return
  3498. (t0->ne[0] == t1->ne[0] ) &&
  3499. (t0->ne[1] == t1->ne[1] ) &&
  3500. (t0->ne[2] == t1->ne[2] ) &&
  3501. (t0->ne[3] == t1->ne[3] );
  3502. }
  3503. // check if t1 can be represented as a repeatition of t0
  3504. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3505. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3506. return
  3507. (t1->ne[0]%t0->ne[0] == 0) &&
  3508. (t1->ne[1]%t0->ne[1] == 0) &&
  3509. (t1->ne[2]%t0->ne[2] == 0) &&
  3510. (t1->ne[3]%t0->ne[3] == 0);
  3511. }
  3512. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3513. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3514. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3515. }
  3516. static inline int ggml_up32(int n) {
  3517. return (n + 31) & ~31;
  3518. }
  3519. //static inline int ggml_up64(int n) {
  3520. // return (n + 63) & ~63;
  3521. //}
  3522. static inline int ggml_up(int n, int m) {
  3523. // assert m is a power of 2
  3524. GGML_ASSERT((m & (m - 1)) == 0);
  3525. return (n + m - 1) & ~(m - 1);
  3526. }
  3527. // assert that pointer is aligned to GGML_MEM_ALIGN
  3528. #define ggml_assert_aligned(ptr) \
  3529. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3530. ////////////////////////////////////////////////////////////////////////////////
  3531. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3532. // make this function thread safe
  3533. ggml_critical_section_start();
  3534. static bool is_first_call = true;
  3535. if (is_first_call) {
  3536. // initialize time system (required on Windows)
  3537. ggml_time_init();
  3538. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3539. {
  3540. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3541. ggml_fp16_t ii;
  3542. for (int i = 0; i < (1 << 16); ++i) {
  3543. uint16_t ui = i;
  3544. memcpy(&ii, &ui, sizeof(ii));
  3545. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3546. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3547. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3548. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3549. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3550. }
  3551. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3552. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3553. }
  3554. // initialize g_state
  3555. {
  3556. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3557. g_state = (struct ggml_state) {
  3558. /*.contexts =*/ { { 0 } },
  3559. /*.numa =*/ {
  3560. .n_nodes = 0,
  3561. .total_cpus = 0,
  3562. },
  3563. };
  3564. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3565. g_state.contexts[i].used = false;
  3566. }
  3567. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3568. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3569. }
  3570. #if defined(GGML_USE_CUBLAS)
  3571. ggml_init_cublas();
  3572. #elif defined(GGML_USE_CLBLAST)
  3573. ggml_cl_init();
  3574. #endif
  3575. ggml_setup_op_has_task_pass();
  3576. is_first_call = false;
  3577. }
  3578. // find non-used context in g_state
  3579. struct ggml_context * ctx = NULL;
  3580. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3581. if (!g_state.contexts[i].used) {
  3582. g_state.contexts[i].used = true;
  3583. ctx = &g_state.contexts[i].context;
  3584. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3585. break;
  3586. }
  3587. }
  3588. if (ctx == NULL) {
  3589. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3590. ggml_critical_section_end();
  3591. return NULL;
  3592. }
  3593. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3594. *ctx = (struct ggml_context) {
  3595. /*.mem_size =*/ mem_size,
  3596. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3597. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3598. /*.no_alloc =*/ params.no_alloc,
  3599. /*.no_alloc_save =*/ params.no_alloc,
  3600. /*.n_objects =*/ 0,
  3601. /*.objects_begin =*/ NULL,
  3602. /*.objects_end =*/ NULL,
  3603. /*.scratch =*/ { 0, 0, NULL, },
  3604. /*.scratch_save =*/ { 0, 0, NULL, },
  3605. };
  3606. GGML_ASSERT(ctx->mem_buffer != NULL);
  3607. ggml_assert_aligned(ctx->mem_buffer);
  3608. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3609. ggml_critical_section_end();
  3610. return ctx;
  3611. }
  3612. void ggml_free(struct ggml_context * ctx) {
  3613. // make this function thread safe
  3614. ggml_critical_section_start();
  3615. bool found = false;
  3616. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3617. if (&g_state.contexts[i].context == ctx) {
  3618. g_state.contexts[i].used = false;
  3619. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3620. __func__, i, ggml_used_mem(ctx));
  3621. if (ctx->mem_buffer_owned) {
  3622. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3623. }
  3624. found = true;
  3625. break;
  3626. }
  3627. }
  3628. if (!found) {
  3629. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3630. }
  3631. ggml_critical_section_end();
  3632. }
  3633. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3634. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3635. }
  3636. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3637. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3638. ctx->scratch = scratch;
  3639. return result;
  3640. }
  3641. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3642. return ctx->no_alloc;
  3643. }
  3644. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3645. ctx->no_alloc = no_alloc;
  3646. }
  3647. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3648. return ctx->mem_buffer;
  3649. }
  3650. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3651. return ctx->mem_size;
  3652. }
  3653. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3654. size_t max_size = 0;
  3655. struct ggml_object * obj = ctx->objects_begin;
  3656. while (obj != NULL) {
  3657. if (obj->type == GGML_OBJECT_TENSOR) {
  3658. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3659. const size_t size = ggml_nbytes(tensor);
  3660. if (max_size < size) {
  3661. max_size = size;
  3662. }
  3663. }
  3664. obj = obj->next;
  3665. }
  3666. return max_size;
  3667. }
  3668. // IMPORTANT:
  3669. // when creating "opt" tensors, always save and load the scratch buffer
  3670. // this is an error prone process, but it is necessary to support inplace
  3671. // operators when using scratch buffers
  3672. // TODO: implement a better way
  3673. static void ggml_scratch_save(struct ggml_context * ctx) {
  3674. // this is needed to allow opt tensors to store their data
  3675. // TODO: again, need to find a better way
  3676. ctx->no_alloc_save = ctx->no_alloc;
  3677. ctx->no_alloc = false;
  3678. ctx->scratch_save = ctx->scratch;
  3679. ctx->scratch.data = NULL;
  3680. }
  3681. static void ggml_scratch_load(struct ggml_context * ctx) {
  3682. ctx->no_alloc = ctx->no_alloc_save;
  3683. ctx->scratch = ctx->scratch_save;
  3684. }
  3685. ////////////////////////////////////////////////////////////////////////////////
  3686. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3687. // always insert objects at the end of the context's memory pool
  3688. struct ggml_object * obj_cur = ctx->objects_end;
  3689. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3690. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3691. const size_t cur_end = cur_offs + cur_size;
  3692. // align to GGML_MEM_ALIGN
  3693. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3694. char * const mem_buffer = ctx->mem_buffer;
  3695. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3696. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3697. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3698. __func__, cur_end + size_needed, ctx->mem_size);
  3699. assert(false);
  3700. return NULL;
  3701. }
  3702. *obj_new = (struct ggml_object) {
  3703. .offs = cur_end + GGML_OBJECT_SIZE,
  3704. .size = size_needed,
  3705. .next = NULL,
  3706. .type = type,
  3707. };
  3708. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3709. if (obj_cur != NULL) {
  3710. obj_cur->next = obj_new;
  3711. } else {
  3712. // this is the first object in this context
  3713. ctx->objects_begin = obj_new;
  3714. }
  3715. ctx->objects_end = obj_new;
  3716. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3717. return obj_new;
  3718. }
  3719. static struct ggml_tensor * ggml_new_tensor_impl(
  3720. struct ggml_context * ctx,
  3721. enum ggml_type type,
  3722. int n_dims,
  3723. const int64_t * ne,
  3724. void * data) {
  3725. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3726. size_t data_size = 0;
  3727. if (data == NULL && !ctx->no_alloc) {
  3728. data_size += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3729. for (int i = 1; i < n_dims; i++) {
  3730. data_size *= ne[i];
  3731. }
  3732. }
  3733. if (ctx->scratch.data != NULL && data == NULL) {
  3734. // allocate tensor data in the scratch buffer
  3735. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3736. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3737. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3738. assert(false);
  3739. return NULL;
  3740. }
  3741. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3742. ctx->scratch.offs += data_size;
  3743. data_size = 0;
  3744. }
  3745. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size);
  3746. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3747. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3748. *result = (struct ggml_tensor) {
  3749. /*.type =*/ type,
  3750. /*.backend =*/ GGML_BACKEND_CPU,
  3751. /*.n_dims =*/ n_dims,
  3752. /*.ne =*/ { 1, 1, 1, 1 },
  3753. /*.nb =*/ { 0, 0, 0, 0 },
  3754. /*.op =*/ GGML_OP_NONE,
  3755. /*.op_params =*/ { 0 },
  3756. /*.is_param =*/ false,
  3757. /*.grad =*/ NULL,
  3758. /*.src =*/ { NULL },
  3759. /*.perf_runs =*/ 0,
  3760. /*.perf_cycles =*/ 0,
  3761. /*.perf_time_us =*/ 0,
  3762. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3763. /*.name =*/ { 0 },
  3764. /*.extra =*/ NULL,
  3765. /*.padding =*/ { 0 },
  3766. };
  3767. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3768. //ggml_assert_aligned(result->data);
  3769. for (int i = 0; i < n_dims; i++) {
  3770. result->ne[i] = ne[i];
  3771. }
  3772. result->nb[0] = GGML_TYPE_SIZE[type];
  3773. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3774. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3775. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3776. }
  3777. ctx->n_objects++;
  3778. return result;
  3779. }
  3780. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3781. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3782. assert(params_size <= GGML_MAX_OP_PARAMS);
  3783. memcpy(tensor->op_params, params, params_size);
  3784. }
  3785. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3786. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3787. return ((const int32_t *)(tensor->op_params))[i];
  3788. }
  3789. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3790. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3791. ((int32_t *)(tensor->op_params))[i] = value;
  3792. }
  3793. struct ggml_tensor * ggml_new_tensor(
  3794. struct ggml_context * ctx,
  3795. enum ggml_type type,
  3796. int n_dims,
  3797. const int64_t * ne) {
  3798. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3799. }
  3800. struct ggml_tensor * ggml_new_tensor_1d(
  3801. struct ggml_context * ctx,
  3802. enum ggml_type type,
  3803. int64_t ne0) {
  3804. return ggml_new_tensor(ctx, type, 1, &ne0);
  3805. }
  3806. struct ggml_tensor * ggml_new_tensor_2d(
  3807. struct ggml_context * ctx,
  3808. enum ggml_type type,
  3809. int64_t ne0,
  3810. int64_t ne1) {
  3811. const int64_t ne[2] = { ne0, ne1 };
  3812. return ggml_new_tensor(ctx, type, 2, ne);
  3813. }
  3814. struct ggml_tensor * ggml_new_tensor_3d(
  3815. struct ggml_context * ctx,
  3816. enum ggml_type type,
  3817. int64_t ne0,
  3818. int64_t ne1,
  3819. int64_t ne2) {
  3820. const int64_t ne[3] = { ne0, ne1, ne2 };
  3821. return ggml_new_tensor(ctx, type, 3, ne);
  3822. }
  3823. struct ggml_tensor * ggml_new_tensor_4d(
  3824. struct ggml_context * ctx,
  3825. enum ggml_type type,
  3826. int64_t ne0,
  3827. int64_t ne1,
  3828. int64_t ne2,
  3829. int64_t ne3) {
  3830. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3831. return ggml_new_tensor(ctx, type, 4, ne);
  3832. }
  3833. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3834. ggml_scratch_save(ctx);
  3835. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3836. ggml_scratch_load(ctx);
  3837. ggml_set_i32(result, value);
  3838. return result;
  3839. }
  3840. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3841. ggml_scratch_save(ctx);
  3842. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3843. ggml_scratch_load(ctx);
  3844. ggml_set_f32(result, value);
  3845. return result;
  3846. }
  3847. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3848. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3849. }
  3850. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3851. memset(tensor->data, 0, ggml_nbytes(tensor));
  3852. return tensor;
  3853. }
  3854. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3855. const int n = ggml_nrows(tensor);
  3856. const int nc = tensor->ne[0];
  3857. const size_t n1 = tensor->nb[1];
  3858. char * const data = tensor->data;
  3859. switch (tensor->type) {
  3860. case GGML_TYPE_I8:
  3861. {
  3862. assert(tensor->nb[0] == sizeof(int8_t));
  3863. for (int i = 0; i < n; i++) {
  3864. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3865. }
  3866. } break;
  3867. case GGML_TYPE_I16:
  3868. {
  3869. assert(tensor->nb[0] == sizeof(int16_t));
  3870. for (int i = 0; i < n; i++) {
  3871. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3872. }
  3873. } break;
  3874. case GGML_TYPE_I32:
  3875. {
  3876. assert(tensor->nb[0] == sizeof(int32_t));
  3877. for (int i = 0; i < n; i++) {
  3878. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3879. }
  3880. } break;
  3881. case GGML_TYPE_F16:
  3882. {
  3883. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3884. for (int i = 0; i < n; i++) {
  3885. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3886. }
  3887. } break;
  3888. case GGML_TYPE_F32:
  3889. {
  3890. assert(tensor->nb[0] == sizeof(float));
  3891. for (int i = 0; i < n; i++) {
  3892. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3893. }
  3894. } break;
  3895. default:
  3896. {
  3897. GGML_ASSERT(false);
  3898. } break;
  3899. }
  3900. return tensor;
  3901. }
  3902. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3903. const int n = ggml_nrows(tensor);
  3904. const int nc = tensor->ne[0];
  3905. const size_t n1 = tensor->nb[1];
  3906. char * const data = tensor->data;
  3907. switch (tensor->type) {
  3908. case GGML_TYPE_I8:
  3909. {
  3910. assert(tensor->nb[0] == sizeof(int8_t));
  3911. for (int i = 0; i < n; i++) {
  3912. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3913. }
  3914. } break;
  3915. case GGML_TYPE_I16:
  3916. {
  3917. assert(tensor->nb[0] == sizeof(int16_t));
  3918. for (int i = 0; i < n; i++) {
  3919. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3920. }
  3921. } break;
  3922. case GGML_TYPE_I32:
  3923. {
  3924. assert(tensor->nb[0] == sizeof(int32_t));
  3925. for (int i = 0; i < n; i++) {
  3926. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3927. }
  3928. } break;
  3929. case GGML_TYPE_F16:
  3930. {
  3931. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3932. for (int i = 0; i < n; i++) {
  3933. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3934. }
  3935. } break;
  3936. case GGML_TYPE_F32:
  3937. {
  3938. assert(tensor->nb[0] == sizeof(float));
  3939. for (int i = 0; i < n; i++) {
  3940. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3941. }
  3942. } break;
  3943. default:
  3944. {
  3945. GGML_ASSERT(false);
  3946. } break;
  3947. }
  3948. return tensor;
  3949. }
  3950. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3951. switch (tensor->type) {
  3952. case GGML_TYPE_I8:
  3953. {
  3954. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3955. return ((int8_t *)(tensor->data))[i];
  3956. } break;
  3957. case GGML_TYPE_I16:
  3958. {
  3959. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3960. return ((int16_t *)(tensor->data))[i];
  3961. } break;
  3962. case GGML_TYPE_I32:
  3963. {
  3964. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3965. return ((int32_t *)(tensor->data))[i];
  3966. } break;
  3967. case GGML_TYPE_F16:
  3968. {
  3969. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3970. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3971. } break;
  3972. case GGML_TYPE_F32:
  3973. {
  3974. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3975. return ((float *)(tensor->data))[i];
  3976. } break;
  3977. default:
  3978. {
  3979. GGML_ASSERT(false);
  3980. } break;
  3981. }
  3982. return 0.0f;
  3983. }
  3984. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3985. switch (tensor->type) {
  3986. case GGML_TYPE_I8:
  3987. {
  3988. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3989. ((int8_t *)(tensor->data))[i] = value;
  3990. } break;
  3991. case GGML_TYPE_I16:
  3992. {
  3993. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3994. ((int16_t *)(tensor->data))[i] = value;
  3995. } break;
  3996. case GGML_TYPE_I32:
  3997. {
  3998. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3999. ((int32_t *)(tensor->data))[i] = value;
  4000. } break;
  4001. case GGML_TYPE_F16:
  4002. {
  4003. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4004. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4005. } break;
  4006. case GGML_TYPE_F32:
  4007. {
  4008. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4009. ((float *)(tensor->data))[i] = value;
  4010. } break;
  4011. default:
  4012. {
  4013. GGML_ASSERT(false);
  4014. } break;
  4015. }
  4016. }
  4017. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4018. switch (tensor->type) {
  4019. case GGML_TYPE_I8:
  4020. {
  4021. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4022. return ((int8_t *)(tensor->data))[i];
  4023. } break;
  4024. case GGML_TYPE_I16:
  4025. {
  4026. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4027. return ((int16_t *)(tensor->data))[i];
  4028. } break;
  4029. case GGML_TYPE_I32:
  4030. {
  4031. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4032. return ((int32_t *)(tensor->data))[i];
  4033. } break;
  4034. case GGML_TYPE_F16:
  4035. {
  4036. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4037. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4038. } break;
  4039. case GGML_TYPE_F32:
  4040. {
  4041. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4042. return ((float *)(tensor->data))[i];
  4043. } break;
  4044. default:
  4045. {
  4046. GGML_ASSERT(false);
  4047. } break;
  4048. }
  4049. return 0.0f;
  4050. }
  4051. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4052. switch (tensor->type) {
  4053. case GGML_TYPE_I8:
  4054. {
  4055. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4056. ((int8_t *)(tensor->data))[i] = value;
  4057. } break;
  4058. case GGML_TYPE_I16:
  4059. {
  4060. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4061. ((int16_t *)(tensor->data))[i] = value;
  4062. } break;
  4063. case GGML_TYPE_I32:
  4064. {
  4065. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4066. ((int32_t *)(tensor->data))[i] = value;
  4067. } break;
  4068. case GGML_TYPE_F16:
  4069. {
  4070. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4071. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4072. } break;
  4073. case GGML_TYPE_F32:
  4074. {
  4075. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4076. ((float *)(tensor->data))[i] = value;
  4077. } break;
  4078. default:
  4079. {
  4080. GGML_ASSERT(false);
  4081. } break;
  4082. }
  4083. }
  4084. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4085. return tensor->data;
  4086. }
  4087. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4088. assert(tensor->type == GGML_TYPE_F32);
  4089. return (float *)(tensor->data);
  4090. }
  4091. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4092. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4093. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4094. }
  4095. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4096. return tensor->name;
  4097. }
  4098. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4099. strncpy(tensor->name, name, sizeof(tensor->name));
  4100. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4101. return tensor;
  4102. }
  4103. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4104. va_list args;
  4105. va_start(args, fmt);
  4106. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4107. va_end(args);
  4108. return tensor;
  4109. }
  4110. struct ggml_tensor * ggml_view_tensor(
  4111. struct ggml_context * ctx,
  4112. const struct ggml_tensor * src) {
  4113. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4114. ggml_format_name(result, "%s (view)", src->name);
  4115. result->nb[0] = src->nb[0];
  4116. result->nb[1] = src->nb[1];
  4117. result->nb[2] = src->nb[2];
  4118. result->nb[3] = src->nb[3];
  4119. return result;
  4120. }
  4121. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4122. struct ggml_object * obj = ctx->objects_begin;
  4123. char * const mem_buffer = ctx->mem_buffer;
  4124. while (obj != NULL) {
  4125. if (obj->type == GGML_OBJECT_TENSOR) {
  4126. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4127. if (strcmp(cur->name, name) == 0) {
  4128. return cur;
  4129. }
  4130. }
  4131. obj = obj->next;
  4132. }
  4133. return NULL;
  4134. }
  4135. ////////////////////////////////////////////////////////////////////////////////
  4136. // ggml_dup
  4137. static struct ggml_tensor * ggml_dup_impl(
  4138. struct ggml_context * ctx,
  4139. struct ggml_tensor * a,
  4140. bool inplace) {
  4141. bool is_node = false;
  4142. if (!inplace && (a->grad)) {
  4143. is_node = true;
  4144. }
  4145. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4146. result->op = GGML_OP_DUP;
  4147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4148. result->src[0] = a;
  4149. return result;
  4150. }
  4151. struct ggml_tensor * ggml_dup(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a) {
  4154. return ggml_dup_impl(ctx, a, false);
  4155. }
  4156. struct ggml_tensor * ggml_dup_inplace(
  4157. struct ggml_context * ctx,
  4158. struct ggml_tensor * a) {
  4159. return ggml_dup_impl(ctx, a, true);
  4160. }
  4161. // ggml_add
  4162. static struct ggml_tensor * ggml_add_impl(
  4163. struct ggml_context * ctx,
  4164. struct ggml_tensor * a,
  4165. struct ggml_tensor * b,
  4166. bool inplace) {
  4167. // TODO: support less-strict constraint
  4168. // GGML_ASSERT(ggml_can_repeat(b, a));
  4169. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4170. bool is_node = false;
  4171. if (!inplace && (a->grad || b->grad)) {
  4172. // TODO: support backward pass for broadcasting
  4173. GGML_ASSERT(ggml_are_same_shape(a, b));
  4174. is_node = true;
  4175. }
  4176. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4177. result->op = GGML_OP_ADD;
  4178. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4179. result->src[0] = a;
  4180. result->src[1] = b;
  4181. return result;
  4182. }
  4183. struct ggml_tensor * ggml_add(
  4184. struct ggml_context * ctx,
  4185. struct ggml_tensor * a,
  4186. struct ggml_tensor * b) {
  4187. return ggml_add_impl(ctx, a, b, false);
  4188. }
  4189. struct ggml_tensor * ggml_add_inplace(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a,
  4192. struct ggml_tensor * b) {
  4193. return ggml_add_impl(ctx, a, b, true);
  4194. }
  4195. // ggml_add1
  4196. static struct ggml_tensor * ggml_add1_impl(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a,
  4199. struct ggml_tensor * b,
  4200. bool inplace) {
  4201. GGML_ASSERT(ggml_is_scalar(b));
  4202. GGML_ASSERT(ggml_is_padded_1d(a));
  4203. bool is_node = false;
  4204. if (a->grad || b->grad) {
  4205. is_node = true;
  4206. }
  4207. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4208. result->op = GGML_OP_ADD1;
  4209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4210. result->src[0] = a;
  4211. result->src[1] = b;
  4212. return result;
  4213. }
  4214. struct ggml_tensor * ggml_add1(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a,
  4217. struct ggml_tensor * b) {
  4218. return ggml_add1_impl(ctx, a, b, false);
  4219. }
  4220. struct ggml_tensor * ggml_add1_inplace(
  4221. struct ggml_context * ctx,
  4222. struct ggml_tensor * a,
  4223. struct ggml_tensor * b) {
  4224. return ggml_add1_impl(ctx, a, b, true);
  4225. }
  4226. // ggml_acc
  4227. static struct ggml_tensor * ggml_acc_impl(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a,
  4230. struct ggml_tensor * b,
  4231. size_t nb1,
  4232. size_t nb2,
  4233. size_t nb3,
  4234. size_t offset,
  4235. bool inplace) {
  4236. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4237. GGML_ASSERT(ggml_is_contiguous(a));
  4238. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4239. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4240. bool is_node = false;
  4241. if (!inplace && (a->grad || b->grad)) {
  4242. is_node = true;
  4243. }
  4244. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4245. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4246. ggml_set_op_params(result, params, sizeof(params));
  4247. result->op = GGML_OP_ACC;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src[0] = a;
  4250. result->src[1] = b;
  4251. return result;
  4252. }
  4253. struct ggml_tensor * ggml_acc(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. struct ggml_tensor * b,
  4257. size_t nb1,
  4258. size_t nb2,
  4259. size_t nb3,
  4260. size_t offset) {
  4261. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4262. }
  4263. struct ggml_tensor * ggml_acc_inplace(
  4264. struct ggml_context * ctx,
  4265. struct ggml_tensor * a,
  4266. struct ggml_tensor * b,
  4267. size_t nb1,
  4268. size_t nb2,
  4269. size_t nb3,
  4270. size_t offset) {
  4271. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4272. }
  4273. // ggml_sub
  4274. static struct ggml_tensor * ggml_sub_impl(
  4275. struct ggml_context * ctx,
  4276. struct ggml_tensor * a,
  4277. struct ggml_tensor * b,
  4278. bool inplace) {
  4279. GGML_ASSERT(ggml_are_same_shape(a, b));
  4280. bool is_node = false;
  4281. if (!inplace && (a->grad || b->grad)) {
  4282. is_node = true;
  4283. }
  4284. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4285. result->op = GGML_OP_SUB;
  4286. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4287. result->src[0] = a;
  4288. result->src[1] = b;
  4289. return result;
  4290. }
  4291. struct ggml_tensor * ggml_sub(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a,
  4294. struct ggml_tensor * b) {
  4295. return ggml_sub_impl(ctx, a, b, false);
  4296. }
  4297. struct ggml_tensor * ggml_sub_inplace(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a,
  4300. struct ggml_tensor * b) {
  4301. return ggml_sub_impl(ctx, a, b, true);
  4302. }
  4303. // ggml_mul
  4304. static struct ggml_tensor * ggml_mul_impl(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b,
  4308. bool inplace) {
  4309. // TODO: support less-strict constraint
  4310. // GGML_ASSERT(ggml_can_repeat(b, a));
  4311. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4312. bool is_node = false;
  4313. if (!inplace && (a->grad || b->grad)) {
  4314. // TODO: support backward pass for broadcasting
  4315. GGML_ASSERT(ggml_are_same_shape(a, b));
  4316. is_node = true;
  4317. }
  4318. if (inplace) {
  4319. GGML_ASSERT(is_node == false);
  4320. }
  4321. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4322. result->op = GGML_OP_MUL;
  4323. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4324. result->src[0] = a;
  4325. result->src[1] = b;
  4326. return result;
  4327. }
  4328. struct ggml_tensor * ggml_mul(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a,
  4331. struct ggml_tensor * b) {
  4332. return ggml_mul_impl(ctx, a, b, false);
  4333. }
  4334. struct ggml_tensor * ggml_mul_inplace(
  4335. struct ggml_context * ctx,
  4336. struct ggml_tensor * a,
  4337. struct ggml_tensor * b) {
  4338. return ggml_mul_impl(ctx, a, b, true);
  4339. }
  4340. // ggml_div
  4341. static struct ggml_tensor * ggml_div_impl(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. struct ggml_tensor * b,
  4345. bool inplace) {
  4346. GGML_ASSERT(ggml_are_same_shape(a, b));
  4347. bool is_node = false;
  4348. if (!inplace && (a->grad || b->grad)) {
  4349. is_node = true;
  4350. }
  4351. if (inplace) {
  4352. GGML_ASSERT(is_node == false);
  4353. }
  4354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4355. result->op = GGML_OP_DIV;
  4356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4357. result->src[0] = a;
  4358. result->src[1] = b;
  4359. return result;
  4360. }
  4361. struct ggml_tensor * ggml_div(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a,
  4364. struct ggml_tensor * b) {
  4365. return ggml_div_impl(ctx, a, b, false);
  4366. }
  4367. struct ggml_tensor * ggml_div_inplace(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a,
  4370. struct ggml_tensor * b) {
  4371. return ggml_div_impl(ctx, a, b, true);
  4372. }
  4373. // ggml_sqr
  4374. static struct ggml_tensor * ggml_sqr_impl(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. bool inplace) {
  4378. bool is_node = false;
  4379. if (!inplace && (a->grad)) {
  4380. is_node = true;
  4381. }
  4382. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4383. result->op = GGML_OP_SQR;
  4384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4385. result->src[0] = a;
  4386. return result;
  4387. }
  4388. struct ggml_tensor * ggml_sqr(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a) {
  4391. return ggml_sqr_impl(ctx, a, false);
  4392. }
  4393. struct ggml_tensor * ggml_sqr_inplace(
  4394. struct ggml_context * ctx,
  4395. struct ggml_tensor * a) {
  4396. return ggml_sqr_impl(ctx, a, true);
  4397. }
  4398. // ggml_sqrt
  4399. static struct ggml_tensor * ggml_sqrt_impl(
  4400. struct ggml_context * ctx,
  4401. struct ggml_tensor * a,
  4402. bool inplace) {
  4403. bool is_node = false;
  4404. if (!inplace && (a->grad)) {
  4405. is_node = true;
  4406. }
  4407. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4408. result->op = GGML_OP_SQRT;
  4409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4410. result->src[0] = a;
  4411. return result;
  4412. }
  4413. struct ggml_tensor * ggml_sqrt(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a) {
  4416. return ggml_sqrt_impl(ctx, a, false);
  4417. }
  4418. struct ggml_tensor * ggml_sqrt_inplace(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a) {
  4421. return ggml_sqrt_impl(ctx, a, true);
  4422. }
  4423. // ggml_log
  4424. static struct ggml_tensor * ggml_log_impl(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a,
  4427. bool inplace) {
  4428. bool is_node = false;
  4429. if (!inplace && (a->grad)) {
  4430. is_node = true;
  4431. }
  4432. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4433. result->op = GGML_OP_LOG;
  4434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4435. result->src[0] = a;
  4436. return result;
  4437. }
  4438. struct ggml_tensor * ggml_log(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a) {
  4441. return ggml_log_impl(ctx, a, false);
  4442. }
  4443. struct ggml_tensor * ggml_log_inplace(
  4444. struct ggml_context * ctx,
  4445. struct ggml_tensor * a) {
  4446. return ggml_log_impl(ctx, a, true);
  4447. }
  4448. // ggml_sum
  4449. struct ggml_tensor * ggml_sum(
  4450. struct ggml_context * ctx,
  4451. struct ggml_tensor * a) {
  4452. bool is_node = false;
  4453. if (a->grad) {
  4454. is_node = true;
  4455. }
  4456. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4457. result->op = GGML_OP_SUM;
  4458. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4459. result->src[0] = a;
  4460. return result;
  4461. }
  4462. // ggml_sum_rows
  4463. struct ggml_tensor * ggml_sum_rows(
  4464. struct ggml_context * ctx,
  4465. struct ggml_tensor * a) {
  4466. bool is_node = false;
  4467. if (a->grad) {
  4468. is_node = true;
  4469. }
  4470. int64_t ne[4] = {1,1,1,1};
  4471. for (int i=1; i<a->n_dims; ++i) {
  4472. ne[i] = a->ne[i];
  4473. }
  4474. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4475. result->op = GGML_OP_SUM_ROWS;
  4476. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4477. result->src[0] = a;
  4478. return result;
  4479. }
  4480. // ggml_mean
  4481. struct ggml_tensor * ggml_mean(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * a) {
  4484. bool is_node = false;
  4485. if (a->grad) {
  4486. GGML_ASSERT(false); // TODO: implement
  4487. is_node = true;
  4488. }
  4489. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4490. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4491. result->op = GGML_OP_MEAN;
  4492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4493. result->src[0] = a;
  4494. return result;
  4495. }
  4496. // ggml_argmax
  4497. struct ggml_tensor * ggml_argmax(
  4498. struct ggml_context * ctx,
  4499. struct ggml_tensor * a) {
  4500. GGML_ASSERT(ggml_is_matrix(a));
  4501. bool is_node = false;
  4502. if (a->grad) {
  4503. GGML_ASSERT(false);
  4504. is_node = true;
  4505. }
  4506. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4507. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4508. result->op = GGML_OP_ARGMAX;
  4509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4510. result->src[0] = a;
  4511. return result;
  4512. }
  4513. // ggml_repeat
  4514. struct ggml_tensor * ggml_repeat(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a,
  4517. struct ggml_tensor * b) {
  4518. GGML_ASSERT(ggml_can_repeat(a, b));
  4519. bool is_node = false;
  4520. if (a->grad) {
  4521. is_node = true;
  4522. }
  4523. if (ggml_are_same_shape(a, b) && !is_node) {
  4524. return a;
  4525. }
  4526. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4527. result->op = GGML_OP_REPEAT;
  4528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4529. result->src[0] = a;
  4530. result->src[1] = b;
  4531. return result;
  4532. }
  4533. // ggml_repeat_back
  4534. struct ggml_tensor * ggml_repeat_back(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a,
  4537. struct ggml_tensor * b) {
  4538. GGML_ASSERT(ggml_can_repeat(b, a));
  4539. bool is_node = false;
  4540. if (a->grad) {
  4541. is_node = true;
  4542. }
  4543. if (ggml_are_same_shape(a, b) && !is_node) {
  4544. return a;
  4545. }
  4546. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4547. result->op = GGML_OP_REPEAT_BACK;
  4548. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4549. result->src[0] = a;
  4550. result->src[1] = b;
  4551. return result;
  4552. }
  4553. // ggml_abs
  4554. struct ggml_tensor * ggml_abs(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a) {
  4557. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4558. }
  4559. struct ggml_tensor * ggml_abs_inplace(
  4560. struct ggml_context * ctx,
  4561. struct ggml_tensor * a) {
  4562. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4563. }
  4564. // ggml_sgn
  4565. struct ggml_tensor * ggml_sgn(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a) {
  4568. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4569. }
  4570. struct ggml_tensor * ggml_sgn_inplace(
  4571. struct ggml_context * ctx,
  4572. struct ggml_tensor * a) {
  4573. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4574. }
  4575. // ggml_neg
  4576. struct ggml_tensor * ggml_neg(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a) {
  4579. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4580. }
  4581. struct ggml_tensor * ggml_neg_inplace(
  4582. struct ggml_context * ctx,
  4583. struct ggml_tensor * a) {
  4584. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4585. }
  4586. // ggml_step
  4587. struct ggml_tensor * ggml_step(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a) {
  4590. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4591. }
  4592. struct ggml_tensor * ggml_step_inplace(
  4593. struct ggml_context * ctx,
  4594. struct ggml_tensor * a) {
  4595. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4596. }
  4597. // ggml_tanh
  4598. struct ggml_tensor * ggml_tanh(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * a) {
  4601. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4602. }
  4603. struct ggml_tensor * ggml_tanh_inplace(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a) {
  4606. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4607. }
  4608. // ggml_elu
  4609. struct ggml_tensor * ggml_elu(
  4610. struct ggml_context * ctx,
  4611. struct ggml_tensor * a) {
  4612. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4613. }
  4614. struct ggml_tensor * ggml_elu_inplace(
  4615. struct ggml_context * ctx,
  4616. struct ggml_tensor * a) {
  4617. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4618. }
  4619. // ggml_relu
  4620. struct ggml_tensor * ggml_relu(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a) {
  4623. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4624. }
  4625. struct ggml_tensor * ggml_relu_inplace(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * a) {
  4628. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4629. }
  4630. // ggml_gelu
  4631. struct ggml_tensor * ggml_gelu(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * a) {
  4634. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4635. }
  4636. struct ggml_tensor * ggml_gelu_inplace(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a) {
  4639. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4640. }
  4641. // ggml_gelu_quick
  4642. struct ggml_tensor * ggml_gelu_quick(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a) {
  4645. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4646. }
  4647. struct ggml_tensor * ggml_gelu_quick_inplace(
  4648. struct ggml_context * ctx,
  4649. struct ggml_tensor * a) {
  4650. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4651. }
  4652. // ggml_silu
  4653. struct ggml_tensor * ggml_silu(
  4654. struct ggml_context * ctx,
  4655. struct ggml_tensor * a) {
  4656. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4657. }
  4658. struct ggml_tensor * ggml_silu_inplace(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a) {
  4661. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4662. }
  4663. // ggml_silu_back
  4664. struct ggml_tensor * ggml_silu_back(
  4665. struct ggml_context * ctx,
  4666. struct ggml_tensor * a,
  4667. struct ggml_tensor * b) {
  4668. bool is_node = false;
  4669. if (a->grad || b->grad) {
  4670. // TODO: implement backward
  4671. is_node = true;
  4672. }
  4673. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4674. result->op = GGML_OP_SILU_BACK;
  4675. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4676. result->src[0] = a;
  4677. result->src[1] = b;
  4678. return result;
  4679. }
  4680. // ggml_norm
  4681. static struct ggml_tensor * ggml_norm_impl(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. bool inplace) {
  4685. bool is_node = false;
  4686. if (!inplace && (a->grad)) {
  4687. GGML_ASSERT(false); // TODO: implement backward
  4688. is_node = true;
  4689. }
  4690. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4691. // TODO: maybe store epsilon here?
  4692. result->op = GGML_OP_NORM;
  4693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4694. result->src[0] = a;
  4695. return result;
  4696. }
  4697. struct ggml_tensor * ggml_norm(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a) {
  4700. return ggml_norm_impl(ctx, a, false);
  4701. }
  4702. struct ggml_tensor * ggml_norm_inplace(
  4703. struct ggml_context * ctx,
  4704. struct ggml_tensor * a) {
  4705. return ggml_norm_impl(ctx, a, true);
  4706. }
  4707. static struct ggml_tensor * ggml_rms_norm_impl(
  4708. struct ggml_context * ctx,
  4709. struct ggml_tensor * a,
  4710. float eps,
  4711. bool inplace) {
  4712. bool is_node = false;
  4713. if (!inplace && (a->grad)) {
  4714. is_node = true;
  4715. }
  4716. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4717. ggml_set_op_params(result, &eps, sizeof(eps));
  4718. result->op = GGML_OP_RMS_NORM;
  4719. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4720. result->src[0] = a;
  4721. return result;
  4722. }
  4723. struct ggml_tensor * ggml_rms_norm(
  4724. struct ggml_context * ctx,
  4725. struct ggml_tensor * a,
  4726. float eps) {
  4727. return ggml_rms_norm_impl(ctx, a, eps, false);
  4728. }
  4729. struct ggml_tensor * ggml_rms_norm_inplace(
  4730. struct ggml_context * ctx,
  4731. struct ggml_tensor * a,
  4732. float eps) {
  4733. return ggml_rms_norm_impl(ctx, a, eps, true);
  4734. }
  4735. struct ggml_tensor * ggml_rms_norm_back(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * a,
  4738. struct ggml_tensor * b) {
  4739. bool is_node = false;
  4740. if (a->grad) {
  4741. // TODO: implement backward
  4742. is_node = true;
  4743. }
  4744. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4745. result->op = GGML_OP_RMS_NORM_BACK;
  4746. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4747. result->src[0] = a;
  4748. result->src[1] = b;
  4749. return result;
  4750. }
  4751. // ggml_mul_mat
  4752. struct ggml_tensor * ggml_mul_mat(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a,
  4755. struct ggml_tensor * b) {
  4756. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4757. GGML_ASSERT(!ggml_is_transposed(a));
  4758. bool is_node = false;
  4759. if (a->grad || b->grad) {
  4760. is_node = true;
  4761. }
  4762. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4763. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4764. result->op = GGML_OP_MUL_MAT;
  4765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4766. result->src[0] = a;
  4767. result->src[1] = b;
  4768. return result;
  4769. }
  4770. // ggml_out_prod
  4771. struct ggml_tensor * ggml_out_prod(
  4772. struct ggml_context * ctx,
  4773. struct ggml_tensor * a,
  4774. struct ggml_tensor * b) {
  4775. GGML_ASSERT(ggml_can_out_prod(a, b));
  4776. GGML_ASSERT(!ggml_is_transposed(a));
  4777. bool is_node = false;
  4778. if (a->grad || b->grad) {
  4779. is_node = true;
  4780. }
  4781. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4782. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4783. result->op = GGML_OP_OUT_PROD;
  4784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4785. result->src[0] = a;
  4786. result->src[1] = b;
  4787. return result;
  4788. }
  4789. // ggml_scale
  4790. static struct ggml_tensor * ggml_scale_impl(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a,
  4793. struct ggml_tensor * b,
  4794. bool inplace) {
  4795. GGML_ASSERT(ggml_is_scalar(b));
  4796. GGML_ASSERT(ggml_is_padded_1d(a));
  4797. bool is_node = false;
  4798. if (a->grad || b->grad) {
  4799. is_node = true;
  4800. }
  4801. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4802. result->op = GGML_OP_SCALE;
  4803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4804. result->src[0] = a;
  4805. result->src[1] = b;
  4806. return result;
  4807. }
  4808. struct ggml_tensor * ggml_scale(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. struct ggml_tensor * b) {
  4812. return ggml_scale_impl(ctx, a, b, false);
  4813. }
  4814. struct ggml_tensor * ggml_scale_inplace(
  4815. struct ggml_context * ctx,
  4816. struct ggml_tensor * a,
  4817. struct ggml_tensor * b) {
  4818. return ggml_scale_impl(ctx, a, b, true);
  4819. }
  4820. // ggml_set
  4821. static struct ggml_tensor * ggml_set_impl(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a,
  4824. struct ggml_tensor * b,
  4825. size_t nb1,
  4826. size_t nb2,
  4827. size_t nb3,
  4828. size_t offset,
  4829. bool inplace) {
  4830. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4831. bool is_node = false;
  4832. if (a->grad || b->grad) {
  4833. is_node = true;
  4834. }
  4835. // make a view of the destination
  4836. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4837. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4838. ggml_set_op_params(result, params, sizeof(params));
  4839. result->op = GGML_OP_SET;
  4840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4841. result->src[0] = a;
  4842. result->src[1] = b;
  4843. return result;
  4844. }
  4845. struct ggml_tensor * ggml_set(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. struct ggml_tensor * b,
  4849. size_t nb1,
  4850. size_t nb2,
  4851. size_t nb3,
  4852. size_t offset) {
  4853. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4854. }
  4855. struct ggml_tensor * ggml_set_inplace(
  4856. struct ggml_context * ctx,
  4857. struct ggml_tensor * a,
  4858. struct ggml_tensor * b,
  4859. size_t nb1,
  4860. size_t nb2,
  4861. size_t nb3,
  4862. size_t offset) {
  4863. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4864. }
  4865. struct ggml_tensor * ggml_set_1d(
  4866. struct ggml_context * ctx,
  4867. struct ggml_tensor * a,
  4868. struct ggml_tensor * b,
  4869. size_t offset) {
  4870. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4871. }
  4872. struct ggml_tensor * ggml_set_1d_inplace(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * a,
  4875. struct ggml_tensor * b,
  4876. size_t offset) {
  4877. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4878. }
  4879. struct ggml_tensor * ggml_set_2d(
  4880. struct ggml_context * ctx,
  4881. struct ggml_tensor * a,
  4882. struct ggml_tensor * b,
  4883. size_t nb1,
  4884. size_t offset) {
  4885. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4886. }
  4887. struct ggml_tensor * ggml_set_2d_inplace(
  4888. struct ggml_context * ctx,
  4889. struct ggml_tensor * a,
  4890. struct ggml_tensor * b,
  4891. size_t nb1,
  4892. size_t offset) {
  4893. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4894. }
  4895. // ggml_cpy
  4896. static struct ggml_tensor * ggml_cpy_impl(
  4897. struct ggml_context * ctx,
  4898. struct ggml_tensor * a,
  4899. struct ggml_tensor * b,
  4900. bool inplace) {
  4901. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4902. bool is_node = false;
  4903. if (!inplace && (a->grad || b->grad)) {
  4904. is_node = true;
  4905. }
  4906. // make a view of the destination
  4907. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4908. if (strlen(b->name) > 0) {
  4909. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4910. } else {
  4911. ggml_format_name(result, "%s (copy)", a->name);
  4912. }
  4913. result->op = GGML_OP_CPY;
  4914. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4915. result->src[0] = a;
  4916. result->src[1] = b;
  4917. return result;
  4918. }
  4919. struct ggml_tensor * ggml_cpy(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. struct ggml_tensor * b) {
  4923. return ggml_cpy_impl(ctx, a, b, false);
  4924. }
  4925. struct ggml_tensor * ggml_cpy_inplace(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. struct ggml_tensor * b) {
  4929. return ggml_cpy_impl(ctx, a, b, true);
  4930. }
  4931. // ggml_cont
  4932. static struct ggml_tensor * ggml_cont_impl(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. bool inplace) {
  4936. bool is_node = false;
  4937. if (!inplace && a->grad) {
  4938. is_node = true;
  4939. }
  4940. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4941. ggml_format_name(result, "%s (cont)", a->name);
  4942. result->op = GGML_OP_CONT;
  4943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4944. result->src[0] = a;
  4945. return result;
  4946. }
  4947. struct ggml_tensor * ggml_cont(
  4948. struct ggml_context * ctx,
  4949. struct ggml_tensor * a) {
  4950. return ggml_cont_impl(ctx, a, false);
  4951. }
  4952. struct ggml_tensor * ggml_cont_inplace(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a) {
  4955. return ggml_cont_impl(ctx, a, true);
  4956. }
  4957. // ggml_reshape
  4958. struct ggml_tensor * ggml_reshape(
  4959. struct ggml_context * ctx,
  4960. struct ggml_tensor * a,
  4961. struct ggml_tensor * b) {
  4962. GGML_ASSERT(ggml_is_contiguous(a));
  4963. GGML_ASSERT(ggml_is_contiguous(b));
  4964. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4965. bool is_node = false;
  4966. if (a->grad) {
  4967. is_node = true;
  4968. }
  4969. if (b->grad) {
  4970. // gradient propagation is not supported
  4971. //GGML_ASSERT(false);
  4972. }
  4973. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4974. ggml_format_name(result, "%s (reshaped)", a->name);
  4975. result->op = GGML_OP_RESHAPE;
  4976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4977. result->src[0] = a;
  4978. return result;
  4979. }
  4980. struct ggml_tensor * ggml_reshape_1d(
  4981. struct ggml_context * ctx,
  4982. struct ggml_tensor * a,
  4983. int64_t ne0) {
  4984. GGML_ASSERT(ggml_is_contiguous(a));
  4985. GGML_ASSERT(ggml_nelements(a) == ne0);
  4986. bool is_node = false;
  4987. if (a->grad) {
  4988. is_node = true;
  4989. }
  4990. const int64_t ne[1] = { ne0 };
  4991. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4992. ggml_format_name(result, "%s (reshaped)", a->name);
  4993. result->op = GGML_OP_RESHAPE;
  4994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4995. result->src[0] = a;
  4996. return result;
  4997. }
  4998. struct ggml_tensor * ggml_reshape_2d(
  4999. struct ggml_context * ctx,
  5000. struct ggml_tensor * a,
  5001. int64_t ne0,
  5002. int64_t ne1) {
  5003. GGML_ASSERT(ggml_is_contiguous(a));
  5004. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5005. bool is_node = false;
  5006. if (a->grad) {
  5007. is_node = true;
  5008. }
  5009. const int64_t ne[2] = { ne0, ne1 };
  5010. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5011. ggml_format_name(result, "%s (reshaped)", a->name);
  5012. result->op = GGML_OP_RESHAPE;
  5013. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5014. result->src[0] = a;
  5015. return result;
  5016. }
  5017. struct ggml_tensor * ggml_reshape_3d(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a,
  5020. int64_t ne0,
  5021. int64_t ne1,
  5022. int64_t ne2) {
  5023. GGML_ASSERT(ggml_is_contiguous(a));
  5024. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5025. bool is_node = false;
  5026. if (a->grad) {
  5027. is_node = true;
  5028. }
  5029. const int64_t ne[3] = { ne0, ne1, ne2 };
  5030. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5031. ggml_format_name(result, "%s (reshaped)", a->name);
  5032. result->op = GGML_OP_RESHAPE;
  5033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5034. result->src[0] = a;
  5035. return result;
  5036. }
  5037. struct ggml_tensor * ggml_reshape_4d(
  5038. struct ggml_context * ctx,
  5039. struct ggml_tensor * a,
  5040. int64_t ne0,
  5041. int64_t ne1,
  5042. int64_t ne2,
  5043. int64_t ne3) {
  5044. GGML_ASSERT(ggml_is_contiguous(a));
  5045. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5046. bool is_node = false;
  5047. if (a->grad) {
  5048. is_node = true;
  5049. }
  5050. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5051. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5052. ggml_format_name(result, "%s (reshaped)", a->name);
  5053. result->op = GGML_OP_RESHAPE;
  5054. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5055. result->src[0] = a;
  5056. return result;
  5057. }
  5058. // ggml_view_1d
  5059. static struct ggml_tensor * ggml_view_tensor_offset(
  5060. struct ggml_context * ctx,
  5061. struct ggml_tensor * a,
  5062. int n_dims,
  5063. const int64_t * ne,
  5064. size_t offset) {
  5065. // don't calculate an offset from an unallocated tensor
  5066. void * data = NULL;
  5067. if (a->data != NULL) {
  5068. data = (char *) a->data + offset;
  5069. }
  5070. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
  5071. ggml_format_name(result, "%s (view)", a->name);
  5072. ggml_set_op_params(result, &offset, sizeof(offset));
  5073. return result;
  5074. }
  5075. struct ggml_tensor * ggml_view_1d(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. int64_t ne0,
  5079. size_t offset) {
  5080. bool is_node = false;
  5081. if (a->grad) {
  5082. is_node = true;
  5083. }
  5084. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
  5085. result->op = GGML_OP_VIEW;
  5086. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5087. result->src[0] = a;
  5088. return result;
  5089. }
  5090. // ggml_view_2d
  5091. struct ggml_tensor * ggml_view_2d(
  5092. struct ggml_context * ctx,
  5093. struct ggml_tensor * a,
  5094. int64_t ne0,
  5095. int64_t ne1,
  5096. size_t nb1,
  5097. size_t offset) {
  5098. bool is_node = false;
  5099. if (a->grad) {
  5100. is_node = true;
  5101. }
  5102. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5103. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
  5104. result->nb[1] = nb1;
  5105. result->nb[2] = result->nb[1]*ne1;
  5106. result->nb[3] = result->nb[2];
  5107. result->op = GGML_OP_VIEW;
  5108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5109. result->src[0] = a;
  5110. return result;
  5111. }
  5112. // ggml_view_3d
  5113. struct ggml_tensor * ggml_view_3d(
  5114. struct ggml_context * ctx,
  5115. struct ggml_tensor * a,
  5116. int64_t ne0,
  5117. int64_t ne1,
  5118. int64_t ne2,
  5119. size_t nb1,
  5120. size_t nb2,
  5121. size_t offset) {
  5122. bool is_node = false;
  5123. if (a->grad) {
  5124. is_node = true;
  5125. }
  5126. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5127. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
  5128. result->nb[1] = nb1;
  5129. result->nb[2] = nb2;
  5130. result->nb[3] = result->nb[2]*ne2;
  5131. result->op = GGML_OP_VIEW;
  5132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5133. result->src[0] = a;
  5134. return result;
  5135. }
  5136. // ggml_view_4d
  5137. struct ggml_tensor * ggml_view_4d(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a,
  5140. int64_t ne0,
  5141. int64_t ne1,
  5142. int64_t ne2,
  5143. int64_t ne3,
  5144. size_t nb1,
  5145. size_t nb2,
  5146. size_t nb3,
  5147. size_t offset) {
  5148. bool is_node = false;
  5149. if (a->grad) {
  5150. is_node = true;
  5151. }
  5152. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5153. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
  5154. result->nb[1] = nb1;
  5155. result->nb[2] = nb2;
  5156. result->nb[3] = nb3;
  5157. result->op = GGML_OP_VIEW;
  5158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5159. result->src[0] = a;
  5160. return result;
  5161. }
  5162. // ggml_permute
  5163. struct ggml_tensor * ggml_permute(
  5164. struct ggml_context * ctx,
  5165. struct ggml_tensor * a,
  5166. int axis0,
  5167. int axis1,
  5168. int axis2,
  5169. int axis3) {
  5170. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5171. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5172. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5173. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5174. GGML_ASSERT(axis0 != axis1);
  5175. GGML_ASSERT(axis0 != axis2);
  5176. GGML_ASSERT(axis0 != axis3);
  5177. GGML_ASSERT(axis1 != axis2);
  5178. GGML_ASSERT(axis1 != axis3);
  5179. GGML_ASSERT(axis2 != axis3);
  5180. bool is_node = false;
  5181. if (a->grad) {
  5182. is_node = true;
  5183. }
  5184. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5185. ggml_format_name(result, "%s (permuted)", a->name);
  5186. int ne[GGML_MAX_DIMS];
  5187. int nb[GGML_MAX_DIMS];
  5188. ne[axis0] = a->ne[0];
  5189. ne[axis1] = a->ne[1];
  5190. ne[axis2] = a->ne[2];
  5191. ne[axis3] = a->ne[3];
  5192. nb[axis0] = a->nb[0];
  5193. nb[axis1] = a->nb[1];
  5194. nb[axis2] = a->nb[2];
  5195. nb[axis3] = a->nb[3];
  5196. result->ne[0] = ne[0];
  5197. result->ne[1] = ne[1];
  5198. result->ne[2] = ne[2];
  5199. result->ne[3] = ne[3];
  5200. result->nb[0] = nb[0];
  5201. result->nb[1] = nb[1];
  5202. result->nb[2] = nb[2];
  5203. result->nb[3] = nb[3];
  5204. result->op = GGML_OP_PERMUTE;
  5205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5206. result->src[0] = a;
  5207. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5208. ggml_set_op_params(result, params, sizeof(params));
  5209. return result;
  5210. }
  5211. // ggml_transpose
  5212. struct ggml_tensor * ggml_transpose(
  5213. struct ggml_context * ctx,
  5214. struct ggml_tensor * a) {
  5215. bool is_node = false;
  5216. if (a->grad) {
  5217. is_node = true;
  5218. }
  5219. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5220. ggml_format_name(result, "%s (transposed)", a->name);
  5221. result->ne[0] = a->ne[1];
  5222. result->ne[1] = a->ne[0];
  5223. result->nb[0] = a->nb[1];
  5224. result->nb[1] = a->nb[0];
  5225. result->op = GGML_OP_TRANSPOSE;
  5226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5227. result->src[0] = a;
  5228. return result;
  5229. }
  5230. // ggml_get_rows
  5231. struct ggml_tensor * ggml_get_rows(
  5232. struct ggml_context * ctx,
  5233. struct ggml_tensor * a,
  5234. struct ggml_tensor * b) {
  5235. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5236. bool is_node = false;
  5237. if (a->grad || b->grad) {
  5238. is_node = true;
  5239. }
  5240. // TODO: implement non F32 return
  5241. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5242. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5243. result->op = GGML_OP_GET_ROWS;
  5244. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5245. result->src[0] = a;
  5246. result->src[1] = b;
  5247. return result;
  5248. }
  5249. // ggml_get_rows_back
  5250. struct ggml_tensor * ggml_get_rows_back(
  5251. struct ggml_context * ctx,
  5252. struct ggml_tensor * a,
  5253. struct ggml_tensor * b,
  5254. struct ggml_tensor * c) {
  5255. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5256. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5257. bool is_node = false;
  5258. if (a->grad || b->grad) {
  5259. is_node = true;
  5260. }
  5261. // TODO: implement non F32 return
  5262. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5263. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5264. result->op = GGML_OP_GET_ROWS_BACK;
  5265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5266. result->src[0] = a;
  5267. result->src[1] = b;
  5268. result->src[2] = c;
  5269. return result;
  5270. }
  5271. // ggml_diag
  5272. struct ggml_tensor * ggml_diag(
  5273. struct ggml_context * ctx,
  5274. struct ggml_tensor * a) {
  5275. GGML_ASSERT(a->ne[1] == 1);
  5276. bool is_node = false;
  5277. if (a->grad) {
  5278. is_node = true;
  5279. }
  5280. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5281. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5282. result->op = GGML_OP_DIAG;
  5283. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5284. result->src[0] = a;
  5285. return result;
  5286. }
  5287. // ggml_diag_mask_inf
  5288. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5289. struct ggml_context * ctx,
  5290. struct ggml_tensor * a,
  5291. int n_past,
  5292. bool inplace) {
  5293. bool is_node = false;
  5294. if (a->grad) {
  5295. is_node = true;
  5296. }
  5297. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5298. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5299. ggml_set_op_params(result, params, sizeof(params));
  5300. result->op = GGML_OP_DIAG_MASK_INF;
  5301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5302. result->src[0] = a;
  5303. return result;
  5304. }
  5305. struct ggml_tensor * ggml_diag_mask_inf(
  5306. struct ggml_context * ctx,
  5307. struct ggml_tensor * a,
  5308. int n_past) {
  5309. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5310. }
  5311. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5312. struct ggml_context * ctx,
  5313. struct ggml_tensor * a,
  5314. int n_past) {
  5315. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5316. }
  5317. // ggml_diag_mask_zero
  5318. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5319. struct ggml_context * ctx,
  5320. struct ggml_tensor * a,
  5321. int n_past,
  5322. bool inplace) {
  5323. bool is_node = false;
  5324. if (a->grad) {
  5325. is_node = true;
  5326. }
  5327. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5328. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5329. ggml_set_op_params(result, params, sizeof(params));
  5330. result->op = GGML_OP_DIAG_MASK_ZERO;
  5331. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5332. result->src[0] = a;
  5333. return result;
  5334. }
  5335. struct ggml_tensor * ggml_diag_mask_zero(
  5336. struct ggml_context * ctx,
  5337. struct ggml_tensor * a,
  5338. int n_past) {
  5339. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5340. }
  5341. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5342. struct ggml_context * ctx,
  5343. struct ggml_tensor * a,
  5344. int n_past) {
  5345. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5346. }
  5347. // ggml_soft_max
  5348. static struct ggml_tensor * ggml_soft_max_impl(
  5349. struct ggml_context * ctx,
  5350. struct ggml_tensor * a,
  5351. bool inplace) {
  5352. bool is_node = false;
  5353. if (a->grad) {
  5354. is_node = true;
  5355. }
  5356. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5357. result->op = GGML_OP_SOFT_MAX;
  5358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5359. result->src[0] = a;
  5360. return result;
  5361. }
  5362. struct ggml_tensor * ggml_soft_max(
  5363. struct ggml_context * ctx,
  5364. struct ggml_tensor * a) {
  5365. return ggml_soft_max_impl(ctx, a, false);
  5366. }
  5367. struct ggml_tensor * ggml_soft_max_inplace(
  5368. struct ggml_context * ctx,
  5369. struct ggml_tensor * a) {
  5370. return ggml_soft_max_impl(ctx, a, true);
  5371. }
  5372. // ggml_soft_max_back
  5373. static struct ggml_tensor * ggml_soft_max_back_impl(
  5374. struct ggml_context * ctx,
  5375. struct ggml_tensor * a,
  5376. struct ggml_tensor * b,
  5377. bool inplace) {
  5378. bool is_node = false;
  5379. if (a->grad || b->grad) {
  5380. is_node = true; // TODO : implement backward pass
  5381. }
  5382. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5383. result->op = GGML_OP_SOFT_MAX_BACK;
  5384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5385. result->src[0] = a;
  5386. result->src[1] = b;
  5387. return result;
  5388. }
  5389. struct ggml_tensor * ggml_soft_max_back(
  5390. struct ggml_context * ctx,
  5391. struct ggml_tensor * a,
  5392. struct ggml_tensor * b) {
  5393. return ggml_soft_max_back_impl(ctx, a, b, false);
  5394. }
  5395. struct ggml_tensor * ggml_soft_max_back_inplace(
  5396. struct ggml_context * ctx,
  5397. struct ggml_tensor * a,
  5398. struct ggml_tensor * b) {
  5399. return ggml_soft_max_back_impl(ctx, a, b, true);
  5400. }
  5401. // ggml_rope
  5402. static struct ggml_tensor * ggml_rope_impl(
  5403. struct ggml_context * ctx,
  5404. struct ggml_tensor * a,
  5405. int n_past,
  5406. int n_dims,
  5407. int mode,
  5408. int n_ctx,
  5409. float freq_base,
  5410. float freq_scale,
  5411. bool inplace) {
  5412. GGML_ASSERT(n_past >= 0);
  5413. bool is_node = false;
  5414. if (a->grad) {
  5415. is_node = true;
  5416. }
  5417. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5418. int32_t params[6] = { n_past, n_dims, mode, n_ctx };
  5419. memcpy(params + 4, &freq_base, sizeof(float));
  5420. memcpy(params + 5, &freq_scale, sizeof(float));
  5421. ggml_set_op_params(result, params, sizeof(params));
  5422. result->op = GGML_OP_ROPE;
  5423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5424. result->src[0] = a;
  5425. return result;
  5426. }
  5427. struct ggml_tensor * ggml_rope(
  5428. struct ggml_context * ctx,
  5429. struct ggml_tensor * a,
  5430. int n_past,
  5431. int n_dims,
  5432. int mode,
  5433. int n_ctx) {
  5434. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, false);
  5435. }
  5436. struct ggml_tensor * ggml_rope_inplace(
  5437. struct ggml_context * ctx,
  5438. struct ggml_tensor * a,
  5439. int n_past,
  5440. int n_dims,
  5441. int mode,
  5442. int n_ctx) {
  5443. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
  5444. }
  5445. struct ggml_tensor * ggml_rope_custom(
  5446. struct ggml_context * ctx,
  5447. struct ggml_tensor * a,
  5448. int n_past,
  5449. int n_dims,
  5450. int mode,
  5451. int n_ctx,
  5452. float freq_base,
  5453. float freq_scale) {
  5454. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, false);
  5455. }
  5456. struct ggml_tensor * ggml_rope_custom_inplace(
  5457. struct ggml_context * ctx,
  5458. struct ggml_tensor * a,
  5459. int n_past,
  5460. int n_dims,
  5461. int mode,
  5462. int n_ctx,
  5463. float freq_base,
  5464. float freq_scale) {
  5465. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, true);
  5466. }
  5467. // ggml_rope_back
  5468. struct ggml_tensor * ggml_rope_back(
  5469. struct ggml_context * ctx,
  5470. struct ggml_tensor * a,
  5471. int n_past,
  5472. int n_dims,
  5473. int mode,
  5474. int n_ctx) {
  5475. GGML_ASSERT(n_past >= 0);
  5476. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5477. bool is_node = false;
  5478. if (a->grad) {
  5479. is_node = false; // TODO: implement backward
  5480. }
  5481. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5482. int32_t params[] = { n_past, n_dims, mode, n_ctx };
  5483. ggml_set_op_params(result, params, sizeof(params));
  5484. result->op = GGML_OP_ROPE_BACK;
  5485. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5486. result->src[0] = a;
  5487. return result;
  5488. }
  5489. // ggml_alibi
  5490. struct ggml_tensor * ggml_alibi(
  5491. struct ggml_context * ctx,
  5492. struct ggml_tensor * a,
  5493. int n_past,
  5494. int n_head,
  5495. float bias_max) {
  5496. GGML_ASSERT(n_past >= 0);
  5497. bool is_node = false;
  5498. if (a->grad) {
  5499. GGML_ASSERT(false); // TODO: implement backward
  5500. is_node = true;
  5501. }
  5502. // TODO: when implement backward, fix this:
  5503. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5504. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5505. int32_t op_params[3] = { n_past, n_head };
  5506. memcpy(op_params + 2, &bias_max, sizeof(float));
  5507. ggml_set_op_params(result, op_params, sizeof(op_params));
  5508. result->op = GGML_OP_ALIBI;
  5509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5510. result->src[0] = a;
  5511. return result;
  5512. }
  5513. // ggml_clamp
  5514. struct ggml_tensor * ggml_clamp(
  5515. struct ggml_context * ctx,
  5516. struct ggml_tensor * a,
  5517. float min,
  5518. float max) {
  5519. bool is_node = false;
  5520. if (a->grad) {
  5521. GGML_ASSERT(false); // TODO: implement backward
  5522. is_node = true;
  5523. }
  5524. // TODO: when implement backward, fix this:
  5525. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5526. float params[] = { min, max };
  5527. ggml_set_op_params(result, params, sizeof(params));
  5528. result->op = GGML_OP_CLAMP;
  5529. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5530. result->src[0] = a;
  5531. return result;
  5532. }
  5533. // ggml_conv_1d
  5534. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5535. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5536. }
  5537. GGML_API struct ggml_tensor * ggml_conv_1d(
  5538. struct ggml_context * ctx,
  5539. struct ggml_tensor * a,
  5540. struct ggml_tensor * b,
  5541. int s0,
  5542. int p0,
  5543. int d0) {
  5544. GGML_ASSERT(ggml_is_matrix(b));
  5545. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5546. bool is_node = false;
  5547. if (a->grad || b->grad) {
  5548. GGML_ASSERT(false); // TODO: implement backward
  5549. is_node = true;
  5550. }
  5551. const int64_t ne[4] = {
  5552. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5553. a->ne[2], 1, 1,
  5554. };
  5555. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5556. int32_t params[] = { s0, p0, d0 };
  5557. ggml_set_op_params(result, params, sizeof(params));
  5558. result->op = GGML_OP_CONV_1D;
  5559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5560. result->src[0] = a;
  5561. result->src[1] = b;
  5562. return result;
  5563. }
  5564. // ggml_conv_2d
  5565. struct ggml_tensor * ggml_conv_2d(
  5566. struct ggml_context * ctx,
  5567. struct ggml_tensor * a,
  5568. struct ggml_tensor * b,
  5569. int s0,
  5570. int s1,
  5571. int p0,
  5572. int p1,
  5573. int d0,
  5574. int d1) {
  5575. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5576. bool is_node = false;
  5577. if (a->grad || b->grad) {
  5578. GGML_ASSERT(false); // TODO: implement backward
  5579. is_node = true;
  5580. }
  5581. const int64_t ne[4] = {
  5582. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5583. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5584. a->ne[3], b->ne[3],
  5585. };
  5586. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5587. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5588. ggml_set_op_params(result, params, sizeof(params));
  5589. result->op = GGML_OP_CONV_2D;
  5590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5591. result->src[0] = a;
  5592. result->src[1] = b;
  5593. return result;
  5594. }
  5595. // ggml_conv_1d_ph
  5596. struct ggml_tensor * ggml_conv_1d_ph(
  5597. struct ggml_context * ctx,
  5598. struct ggml_tensor * a,
  5599. struct ggml_tensor * b,
  5600. int s,
  5601. int d) {
  5602. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5603. }
  5604. // ggml_pool_*
  5605. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5606. return (ins + 2 * p - ks) / s + 1;
  5607. }
  5608. // ggml_pool_1d
  5609. struct ggml_tensor * ggml_pool_1d(
  5610. struct ggml_context * ctx,
  5611. struct ggml_tensor * a,
  5612. enum ggml_op_pool op,
  5613. int k0,
  5614. int s0,
  5615. int p0) {
  5616. bool is_node = false;
  5617. if (a->grad) {
  5618. GGML_ASSERT(false); // TODO: implement backward
  5619. is_node = true;
  5620. }
  5621. const int64_t ne[3] = {
  5622. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5623. a->ne[1],
  5624. };
  5625. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5626. int32_t params[] = { op, k0, s0, p0 };
  5627. ggml_set_op_params(result, params, sizeof(params));
  5628. result->op = GGML_OP_POOL_1D;
  5629. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5630. result->src[0] = a;
  5631. return result;
  5632. }
  5633. // ggml_pool_2d
  5634. struct ggml_tensor * ggml_pool_2d(
  5635. struct ggml_context * ctx,
  5636. struct ggml_tensor * a,
  5637. enum ggml_op_pool op,
  5638. int k0,
  5639. int k1,
  5640. int s0,
  5641. int s1,
  5642. int p0,
  5643. int p1) {
  5644. bool is_node = false;
  5645. if (a->grad) {
  5646. GGML_ASSERT(false); // TODO: implement backward
  5647. is_node = true;
  5648. }
  5649. const int64_t ne[3] = {
  5650. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5651. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5652. a->ne[2],
  5653. };
  5654. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5655. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5656. ggml_set_op_params(result, params, sizeof(params));
  5657. result->op = GGML_OP_POOL_2D;
  5658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5659. result->src[0] = a;
  5660. return result;
  5661. }
  5662. // ggml_flash_attn
  5663. struct ggml_tensor * ggml_flash_attn(
  5664. struct ggml_context * ctx,
  5665. struct ggml_tensor * q,
  5666. struct ggml_tensor * k,
  5667. struct ggml_tensor * v,
  5668. bool masked) {
  5669. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5670. // TODO: check if vT can be multiplied by (k*qT)
  5671. bool is_node = false;
  5672. if (q->grad || k->grad || v->grad) {
  5673. is_node = true;
  5674. }
  5675. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5676. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5677. int32_t t = masked ? 1 : 0;
  5678. ggml_set_op_params(result, &t, sizeof(t));
  5679. result->op = GGML_OP_FLASH_ATTN;
  5680. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5681. result->src[0] = q;
  5682. result->src[1] = k;
  5683. result->src[2] = v;
  5684. return result;
  5685. }
  5686. // ggml_flash_ff
  5687. struct ggml_tensor * ggml_flash_ff(
  5688. struct ggml_context * ctx,
  5689. struct ggml_tensor * a,
  5690. struct ggml_tensor * b0,
  5691. struct ggml_tensor * b1,
  5692. struct ggml_tensor * c0,
  5693. struct ggml_tensor * c1) {
  5694. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5695. // TODO: more checks
  5696. bool is_node = false;
  5697. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5698. is_node = true;
  5699. }
  5700. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5701. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5702. result->op = GGML_OP_FLASH_FF;
  5703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5704. result->src[0] = a;
  5705. result->src[1] = b0;
  5706. result->src[2] = b1;
  5707. result->src[3] = c0;
  5708. result->src[4] = c1;
  5709. return result;
  5710. }
  5711. // ggml_flash_attn_back
  5712. struct ggml_tensor * ggml_flash_attn_back(
  5713. struct ggml_context * ctx,
  5714. struct ggml_tensor * q,
  5715. struct ggml_tensor * k,
  5716. struct ggml_tensor * v,
  5717. struct ggml_tensor * d,
  5718. bool masked) {
  5719. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5720. // TODO: check if vT can be multiplied by (k*qT)
  5721. // d shape [D,N,ne2,ne3]
  5722. // q shape [D,N,ne2,ne3]
  5723. // k shape [D,M,ne2,ne3]
  5724. // v shape [M,D,ne2,ne3]
  5725. const int64_t D = q->ne[0];
  5726. const int64_t N = q->ne[1];
  5727. const int64_t M = k->ne[1];
  5728. const int64_t ne2 = q->ne[2];
  5729. const int64_t ne3 = q->ne[3];
  5730. GGML_ASSERT(k->ne[0] == D);
  5731. GGML_ASSERT(v->ne[0] == M);
  5732. GGML_ASSERT(v->ne[1] == D);
  5733. GGML_ASSERT(d->ne[0] == D);
  5734. GGML_ASSERT(d->ne[1] == N);
  5735. GGML_ASSERT(k->ne[2] == ne2);
  5736. GGML_ASSERT(k->ne[3] == ne3);
  5737. GGML_ASSERT(v->ne[2] == ne2);
  5738. GGML_ASSERT(v->ne[3] == ne3);
  5739. GGML_ASSERT(d->ne[2] == ne2);
  5740. GGML_ASSERT(d->ne[3] == ne3);
  5741. bool is_node = false;
  5742. if (q->grad || k->grad || v->grad) {
  5743. // when using this operation (in backwards pass) these grads are set.
  5744. // we don't want to create (big) grad of our result, so is_node is false.
  5745. is_node = false;
  5746. }
  5747. // store gradients of q, k and v as continuous tensors concatenated in result.
  5748. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5749. // gradq->data = result->data
  5750. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5751. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5752. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5753. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5754. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5755. int32_t masked_i = masked ? 1 : 0;
  5756. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5757. result->op = GGML_OP_FLASH_ATTN_BACK;
  5758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5759. result->src[0] = q;
  5760. result->src[1] = k;
  5761. result->src[2] = v;
  5762. result->src[3] = d;
  5763. return result;
  5764. }
  5765. // ggml_win_part
  5766. struct ggml_tensor * ggml_win_part(
  5767. struct ggml_context * ctx,
  5768. struct ggml_tensor * a,
  5769. int w) {
  5770. GGML_ASSERT(a->ne[3] == 1);
  5771. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5772. bool is_node = false;
  5773. if (a->grad) {
  5774. GGML_ASSERT(false); // TODO: implement backward
  5775. is_node = true;
  5776. }
  5777. // padding
  5778. const int px = (w - a->ne[1]%w)%w;
  5779. const int py = (w - a->ne[2]%w)%w;
  5780. const int npx = (px + a->ne[1])/w;
  5781. const int npy = (py + a->ne[2])/w;
  5782. const int np = npx*npy;
  5783. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5784. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5785. int32_t params[] = { npx, npy, w };
  5786. ggml_set_op_params(result, params, sizeof(params));
  5787. result->op = GGML_OP_WIN_PART;
  5788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5789. result->src[0] = a;
  5790. return result;
  5791. }
  5792. // ggml_win_unpart
  5793. struct ggml_tensor * ggml_win_unpart(
  5794. struct ggml_context * ctx,
  5795. struct ggml_tensor * a,
  5796. int w0,
  5797. int h0,
  5798. int w) {
  5799. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5800. bool is_node = false;
  5801. if (a->grad) {
  5802. GGML_ASSERT(false); // TODO: implement backward
  5803. is_node = true;
  5804. }
  5805. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5806. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5807. int32_t params[] = { w };
  5808. ggml_set_op_params(result, params, sizeof(params));
  5809. result->op = GGML_OP_WIN_UNPART;
  5810. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5811. result->src[0] = a;
  5812. return result;
  5813. }
  5814. // gmml_unary
  5815. static struct ggml_tensor * ggml_unary_impl(
  5816. struct ggml_context * ctx,
  5817. struct ggml_tensor * a,
  5818. enum ggml_unary_op op,
  5819. bool inplace) {
  5820. bool is_node = false;
  5821. if (!inplace && (a->grad)) {
  5822. is_node = true;
  5823. }
  5824. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5825. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5826. result->op = GGML_OP_UNARY;
  5827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5828. result->src[0] = a;
  5829. return result;
  5830. }
  5831. struct ggml_tensor * ggml_unary(
  5832. struct ggml_context * ctx,
  5833. struct ggml_tensor * a,
  5834. enum ggml_unary_op op) {
  5835. return ggml_unary_impl(ctx, a, op, false);
  5836. }
  5837. struct ggml_tensor * ggml_unary_inplace(
  5838. struct ggml_context * ctx,
  5839. struct ggml_tensor * a,
  5840. enum ggml_unary_op op) {
  5841. return ggml_unary_impl(ctx, a, op, true);
  5842. }
  5843. // ggml_map_unary
  5844. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5845. struct ggml_context * ctx,
  5846. struct ggml_tensor * a,
  5847. const ggml_unary_op_f32_t fun,
  5848. bool inplace) {
  5849. bool is_node = false;
  5850. if (!inplace && a->grad) {
  5851. is_node = true;
  5852. }
  5853. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5854. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5855. result->op = GGML_OP_MAP_UNARY;
  5856. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5857. result->src[0] = a;
  5858. return result;
  5859. }
  5860. struct ggml_tensor * ggml_map_unary_f32(
  5861. struct ggml_context * ctx,
  5862. struct ggml_tensor * a,
  5863. const ggml_unary_op_f32_t fun) {
  5864. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5865. }
  5866. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5867. struct ggml_context * ctx,
  5868. struct ggml_tensor * a,
  5869. const ggml_unary_op_f32_t fun) {
  5870. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5871. }
  5872. // ggml_map_binary
  5873. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5874. struct ggml_context * ctx,
  5875. struct ggml_tensor * a,
  5876. struct ggml_tensor * b,
  5877. const ggml_binary_op_f32_t fun,
  5878. bool inplace) {
  5879. GGML_ASSERT(ggml_are_same_shape(a, b));
  5880. bool is_node = false;
  5881. if (!inplace && (a->grad || b->grad)) {
  5882. is_node = true;
  5883. }
  5884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5885. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5886. result->op = GGML_OP_MAP_BINARY;
  5887. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5888. result->src[0] = a;
  5889. result->src[1] = b;
  5890. return result;
  5891. }
  5892. struct ggml_tensor * ggml_map_binary_f32(
  5893. struct ggml_context * ctx,
  5894. struct ggml_tensor * a,
  5895. struct ggml_tensor * b,
  5896. const ggml_binary_op_f32_t fun) {
  5897. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5898. }
  5899. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5900. struct ggml_context * ctx,
  5901. struct ggml_tensor * a,
  5902. struct ggml_tensor * b,
  5903. const ggml_binary_op_f32_t fun) {
  5904. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5905. }
  5906. // ggml_map_custom1_f32
  5907. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5908. struct ggml_context * ctx,
  5909. struct ggml_tensor * a,
  5910. const ggml_custom1_op_f32_t fun,
  5911. bool inplace) {
  5912. bool is_node = false;
  5913. if (!inplace && a->grad) {
  5914. is_node = true;
  5915. }
  5916. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5917. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5918. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5920. result->src[0] = a;
  5921. return result;
  5922. }
  5923. struct ggml_tensor * ggml_map_custom1_f32(
  5924. struct ggml_context * ctx,
  5925. struct ggml_tensor * a,
  5926. const ggml_custom1_op_f32_t fun) {
  5927. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5928. }
  5929. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5930. struct ggml_context * ctx,
  5931. struct ggml_tensor * a,
  5932. const ggml_custom1_op_f32_t fun) {
  5933. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5934. }
  5935. // ggml_map_custom2_f32
  5936. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5937. struct ggml_context * ctx,
  5938. struct ggml_tensor * a,
  5939. struct ggml_tensor * b,
  5940. const ggml_custom2_op_f32_t fun,
  5941. bool inplace) {
  5942. bool is_node = false;
  5943. if (!inplace && (a->grad || b->grad)) {
  5944. is_node = true;
  5945. }
  5946. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5947. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5948. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5949. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5950. result->src[0] = a;
  5951. result->src[1] = b;
  5952. return result;
  5953. }
  5954. struct ggml_tensor * ggml_map_custom2_f32(
  5955. struct ggml_context * ctx,
  5956. struct ggml_tensor * a,
  5957. struct ggml_tensor * b,
  5958. const ggml_custom2_op_f32_t fun) {
  5959. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5960. }
  5961. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5962. struct ggml_context * ctx,
  5963. struct ggml_tensor * a,
  5964. struct ggml_tensor * b,
  5965. const ggml_custom2_op_f32_t fun) {
  5966. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5967. }
  5968. // ggml_map_custom3_f32
  5969. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5970. struct ggml_context * ctx,
  5971. struct ggml_tensor * a,
  5972. struct ggml_tensor * b,
  5973. struct ggml_tensor * c,
  5974. const ggml_custom3_op_f32_t fun,
  5975. bool inplace) {
  5976. bool is_node = false;
  5977. if (!inplace && (a->grad || b->grad || c->grad)) {
  5978. is_node = true;
  5979. }
  5980. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5981. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5982. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5984. result->src[0] = a;
  5985. result->src[1] = b;
  5986. result->src[2] = c;
  5987. return result;
  5988. }
  5989. struct ggml_tensor * ggml_map_custom3_f32(
  5990. struct ggml_context * ctx,
  5991. struct ggml_tensor * a,
  5992. struct ggml_tensor * b,
  5993. struct ggml_tensor * c,
  5994. const ggml_custom3_op_f32_t fun) {
  5995. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5996. }
  5997. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5998. struct ggml_context * ctx,
  5999. struct ggml_tensor * a,
  6000. struct ggml_tensor * b,
  6001. struct ggml_tensor * c,
  6002. const ggml_custom3_op_f32_t fun) {
  6003. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6004. }
  6005. // ggml_map_custom1
  6006. struct ggml_map_custom1_op_params {
  6007. ggml_custom1_op_t fun;
  6008. int n_tasks;
  6009. void * userdata;
  6010. };
  6011. static struct ggml_tensor * ggml_map_custom1_impl(
  6012. struct ggml_context * ctx,
  6013. struct ggml_tensor * a,
  6014. const ggml_custom1_op_t fun,
  6015. int n_tasks,
  6016. void * userdata,
  6017. bool inplace) {
  6018. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6019. bool is_node = false;
  6020. if (!inplace && a->grad) {
  6021. is_node = true;
  6022. }
  6023. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6024. struct ggml_map_custom1_op_params params = {
  6025. /*.fun =*/ fun,
  6026. /*.n_tasks =*/ n_tasks,
  6027. /*.userdata =*/ userdata
  6028. };
  6029. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6030. result->op = GGML_OP_MAP_CUSTOM1;
  6031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6032. result->src[0] = a;
  6033. return result;
  6034. }
  6035. struct ggml_tensor * ggml_map_custom1(
  6036. struct ggml_context * ctx,
  6037. struct ggml_tensor * a,
  6038. const ggml_custom1_op_t fun,
  6039. int n_tasks,
  6040. void * userdata) {
  6041. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6042. }
  6043. struct ggml_tensor * ggml_map_custom1_inplace(
  6044. struct ggml_context * ctx,
  6045. struct ggml_tensor * a,
  6046. const ggml_custom1_op_t fun,
  6047. int n_tasks,
  6048. void * userdata) {
  6049. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6050. }
  6051. // ggml_map_custom2
  6052. struct ggml_map_custom2_op_params {
  6053. ggml_custom2_op_t fun;
  6054. int n_tasks;
  6055. void * userdata;
  6056. };
  6057. static struct ggml_tensor * ggml_map_custom2_impl(
  6058. struct ggml_context * ctx,
  6059. struct ggml_tensor * a,
  6060. struct ggml_tensor * b,
  6061. const ggml_custom2_op_t fun,
  6062. int n_tasks,
  6063. void * userdata,
  6064. bool inplace) {
  6065. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6066. bool is_node = false;
  6067. if (!inplace && (a->grad || b->grad)) {
  6068. is_node = true;
  6069. }
  6070. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6071. struct ggml_map_custom2_op_params params = {
  6072. /*.fun =*/ fun,
  6073. /*.n_tasks =*/ n_tasks,
  6074. /*.userdata =*/ userdata
  6075. };
  6076. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6077. result->op = GGML_OP_MAP_CUSTOM2;
  6078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6079. result->src[0] = a;
  6080. result->src[1] = b;
  6081. return result;
  6082. }
  6083. struct ggml_tensor * ggml_map_custom2(
  6084. struct ggml_context * ctx,
  6085. struct ggml_tensor * a,
  6086. struct ggml_tensor * b,
  6087. const ggml_custom2_op_t fun,
  6088. int n_tasks,
  6089. void * userdata) {
  6090. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6091. }
  6092. struct ggml_tensor * ggml_map_custom2_inplace(
  6093. struct ggml_context * ctx,
  6094. struct ggml_tensor * a,
  6095. struct ggml_tensor * b,
  6096. const ggml_custom2_op_t fun,
  6097. int n_tasks,
  6098. void * userdata) {
  6099. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6100. }
  6101. // ggml_map_custom3
  6102. struct ggml_map_custom3_op_params {
  6103. ggml_custom3_op_t fun;
  6104. int n_tasks;
  6105. void * userdata;
  6106. };
  6107. static struct ggml_tensor * ggml_map_custom3_impl(
  6108. struct ggml_context * ctx,
  6109. struct ggml_tensor * a,
  6110. struct ggml_tensor * b,
  6111. struct ggml_tensor * c,
  6112. const ggml_custom3_op_t fun,
  6113. int n_tasks,
  6114. void * userdata,
  6115. bool inplace) {
  6116. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6117. bool is_node = false;
  6118. if (!inplace && (a->grad || b->grad || c->grad)) {
  6119. is_node = true;
  6120. }
  6121. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6122. struct ggml_map_custom3_op_params params = {
  6123. /*.fun =*/ fun,
  6124. /*.n_tasks =*/ n_tasks,
  6125. /*.userdata =*/ userdata
  6126. };
  6127. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6128. result->op = GGML_OP_MAP_CUSTOM3;
  6129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6130. result->src[0] = a;
  6131. result->src[1] = b;
  6132. result->src[2] = c;
  6133. return result;
  6134. }
  6135. struct ggml_tensor * ggml_map_custom3(
  6136. struct ggml_context * ctx,
  6137. struct ggml_tensor * a,
  6138. struct ggml_tensor * b,
  6139. struct ggml_tensor * c,
  6140. const ggml_custom3_op_t fun,
  6141. int n_tasks,
  6142. void * userdata) {
  6143. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6144. }
  6145. struct ggml_tensor * ggml_map_custom3_inplace(
  6146. struct ggml_context * ctx,
  6147. struct ggml_tensor * a,
  6148. struct ggml_tensor * b,
  6149. struct ggml_tensor * c,
  6150. const ggml_custom3_op_t fun,
  6151. int n_tasks,
  6152. void * userdata) {
  6153. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6154. }
  6155. // ggml_cross_entropy_loss
  6156. struct ggml_tensor * ggml_cross_entropy_loss(
  6157. struct ggml_context * ctx,
  6158. struct ggml_tensor * a,
  6159. struct ggml_tensor * b) {
  6160. GGML_ASSERT(ggml_are_same_shape(a, b));
  6161. bool is_node = false;
  6162. if (a->grad || b->grad) {
  6163. is_node = true;
  6164. }
  6165. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6166. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6168. result->src[0] = a;
  6169. result->src[1] = b;
  6170. return result;
  6171. }
  6172. // ggml_cross_entropy_loss_back
  6173. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6174. struct ggml_context * ctx,
  6175. struct ggml_tensor * a,
  6176. struct ggml_tensor * b,
  6177. struct ggml_tensor * c) {
  6178. GGML_ASSERT(ggml_are_same_shape(a, b));
  6179. GGML_ASSERT(ggml_is_scalar(c));
  6180. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6181. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6182. result->grad = NULL;
  6183. result->src[0] = a;
  6184. result->src[1] = b;
  6185. result->src[2] = c;
  6186. return result;
  6187. }
  6188. ////////////////////////////////////////////////////////////////////////////////
  6189. void ggml_set_param(
  6190. struct ggml_context * ctx,
  6191. struct ggml_tensor * tensor) {
  6192. tensor->is_param = true;
  6193. GGML_ASSERT(tensor->grad == NULL);
  6194. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6195. }
  6196. // ggml_compute_forward_dup
  6197. static void ggml_compute_forward_dup_same_cont(
  6198. const struct ggml_compute_params * params,
  6199. const struct ggml_tensor * src0,
  6200. struct ggml_tensor * dst) {
  6201. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6202. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6203. GGML_ASSERT(src0->type == dst->type);
  6204. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6205. return;
  6206. }
  6207. const size_t nb00 = src0->nb[0];
  6208. const size_t nb0 = dst->nb[0];
  6209. const int ith = params->ith; // thread index
  6210. const int nth = params->nth; // number of threads
  6211. // parallelize by elements
  6212. const int ne = ggml_nelements(dst);
  6213. const int dr = (ne + nth - 1) / nth;
  6214. const int ie0 = dr * ith;
  6215. const int ie1 = MIN(ie0 + dr, ne);
  6216. if (ie0 < ie1) {
  6217. memcpy(
  6218. ((char *) dst->data + ie0*nb0),
  6219. ((char *) src0->data + ie0*nb00),
  6220. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6221. }
  6222. }
  6223. static void ggml_compute_forward_dup_f16(
  6224. const struct ggml_compute_params * params,
  6225. const struct ggml_tensor * src0,
  6226. struct ggml_tensor * dst) {
  6227. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6228. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6229. return;
  6230. }
  6231. GGML_TENSOR_UNARY_OP_LOCALS;
  6232. const int ith = params->ith; // thread index
  6233. const int nth = params->nth; // number of threads
  6234. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6235. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6236. return;
  6237. }
  6238. // parallelize by rows
  6239. const int nr = ne01;
  6240. // number of rows per thread
  6241. const int dr = (nr + nth - 1) / nth;
  6242. // row range for this thread
  6243. const int ir0 = dr * ith;
  6244. const int ir1 = MIN(ir0 + dr, nr);
  6245. if (src0->type == dst->type &&
  6246. ne00 == ne0 &&
  6247. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6248. // copy by rows
  6249. const size_t rs = ne00*nb00;
  6250. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6251. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6252. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6253. memcpy(
  6254. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6255. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6256. rs);
  6257. }
  6258. }
  6259. }
  6260. return;
  6261. }
  6262. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6263. if (ggml_is_contiguous(dst)) {
  6264. if (nb00 == sizeof(ggml_fp16_t)) {
  6265. if (dst->type == GGML_TYPE_F16) {
  6266. size_t id = 0;
  6267. const size_t rs = ne00 * nb00;
  6268. char * dst_ptr = (char *) dst->data;
  6269. for (int i03 = 0; i03 < ne03; i03++) {
  6270. for (int i02 = 0; i02 < ne02; i02++) {
  6271. id += rs * ir0;
  6272. for (int i01 = ir0; i01 < ir1; i01++) {
  6273. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6274. memcpy(dst_ptr + id, src0_ptr, rs);
  6275. id += rs;
  6276. }
  6277. id += rs * (ne01 - ir1);
  6278. }
  6279. }
  6280. } else if (dst->type == GGML_TYPE_F32) {
  6281. size_t id = 0;
  6282. float * dst_ptr = (float *) dst->data;
  6283. for (int i03 = 0; i03 < ne03; i03++) {
  6284. for (int i02 = 0; i02 < ne02; i02++) {
  6285. id += ne00 * ir0;
  6286. for (int i01 = ir0; i01 < ir1; i01++) {
  6287. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6288. for (int i00 = 0; i00 < ne00; i00++) {
  6289. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6290. id++;
  6291. }
  6292. }
  6293. id += ne00 * (ne01 - ir1);
  6294. }
  6295. }
  6296. } else if (type_traits[dst->type].from_float) {
  6297. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6298. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6299. size_t id = 0;
  6300. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6301. char * dst_ptr = (char *) dst->data;
  6302. for (int i03 = 0; i03 < ne03; i03++) {
  6303. for (int i02 = 0; i02 < ne02; i02++) {
  6304. id += rs * ir0;
  6305. for (int i01 = ir0; i01 < ir1; i01++) {
  6306. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6307. for (int i00 = 0; i00 < ne00; i00++) {
  6308. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6309. }
  6310. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6311. id += rs;
  6312. }
  6313. id += rs * (ne01 - ir1);
  6314. }
  6315. }
  6316. } else {
  6317. GGML_ASSERT(false); // TODO: implement
  6318. }
  6319. } else {
  6320. //printf("%s: this is not optimal - fix me\n", __func__);
  6321. if (dst->type == GGML_TYPE_F32) {
  6322. size_t id = 0;
  6323. float * dst_ptr = (float *) dst->data;
  6324. for (int i03 = 0; i03 < ne03; i03++) {
  6325. for (int i02 = 0; i02 < ne02; i02++) {
  6326. id += ne00 * ir0;
  6327. for (int i01 = ir0; i01 < ir1; i01++) {
  6328. for (int i00 = 0; i00 < ne00; i00++) {
  6329. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6330. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6331. id++;
  6332. }
  6333. }
  6334. id += ne00 * (ne01 - ir1);
  6335. }
  6336. }
  6337. } else if (dst->type == GGML_TYPE_F16) {
  6338. size_t id = 0;
  6339. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6340. for (int i03 = 0; i03 < ne03; i03++) {
  6341. for (int i02 = 0; i02 < ne02; i02++) {
  6342. id += ne00 * ir0;
  6343. for (int i01 = ir0; i01 < ir1; i01++) {
  6344. for (int i00 = 0; i00 < ne00; i00++) {
  6345. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6346. dst_ptr[id] = *src0_ptr;
  6347. id++;
  6348. }
  6349. }
  6350. id += ne00 * (ne01 - ir1);
  6351. }
  6352. }
  6353. } else {
  6354. GGML_ASSERT(false); // TODO: implement
  6355. }
  6356. }
  6357. return;
  6358. }
  6359. // dst counters
  6360. int64_t i10 = 0;
  6361. int64_t i11 = 0;
  6362. int64_t i12 = 0;
  6363. int64_t i13 = 0;
  6364. if (dst->type == GGML_TYPE_F16) {
  6365. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6366. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6367. i10 += ne00 * ir0;
  6368. while (i10 >= ne0) {
  6369. i10 -= ne0;
  6370. if (++i11 == ne1) {
  6371. i11 = 0;
  6372. if (++i12 == ne2) {
  6373. i12 = 0;
  6374. if (++i13 == ne3) {
  6375. i13 = 0;
  6376. }
  6377. }
  6378. }
  6379. }
  6380. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6381. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6382. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6383. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6384. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6385. if (++i10 == ne00) {
  6386. i10 = 0;
  6387. if (++i11 == ne01) {
  6388. i11 = 0;
  6389. if (++i12 == ne02) {
  6390. i12 = 0;
  6391. if (++i13 == ne03) {
  6392. i13 = 0;
  6393. }
  6394. }
  6395. }
  6396. }
  6397. }
  6398. }
  6399. i10 += ne00 * (ne01 - ir1);
  6400. while (i10 >= ne0) {
  6401. i10 -= ne0;
  6402. if (++i11 == ne1) {
  6403. i11 = 0;
  6404. if (++i12 == ne2) {
  6405. i12 = 0;
  6406. if (++i13 == ne3) {
  6407. i13 = 0;
  6408. }
  6409. }
  6410. }
  6411. }
  6412. }
  6413. }
  6414. } else if (dst->type == GGML_TYPE_F32) {
  6415. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6416. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6417. i10 += ne00 * ir0;
  6418. while (i10 >= ne0) {
  6419. i10 -= ne0;
  6420. if (++i11 == ne1) {
  6421. i11 = 0;
  6422. if (++i12 == ne2) {
  6423. i12 = 0;
  6424. if (++i13 == ne3) {
  6425. i13 = 0;
  6426. }
  6427. }
  6428. }
  6429. }
  6430. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6431. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6432. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6433. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6434. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6435. if (++i10 == ne0) {
  6436. i10 = 0;
  6437. if (++i11 == ne1) {
  6438. i11 = 0;
  6439. if (++i12 == ne2) {
  6440. i12 = 0;
  6441. if (++i13 == ne3) {
  6442. i13 = 0;
  6443. }
  6444. }
  6445. }
  6446. }
  6447. }
  6448. }
  6449. i10 += ne00 * (ne01 - ir1);
  6450. while (i10 >= ne0) {
  6451. i10 -= ne0;
  6452. if (++i11 == ne1) {
  6453. i11 = 0;
  6454. if (++i12 == ne2) {
  6455. i12 = 0;
  6456. if (++i13 == ne3) {
  6457. i13 = 0;
  6458. }
  6459. }
  6460. }
  6461. }
  6462. }
  6463. }
  6464. } else {
  6465. GGML_ASSERT(false); // TODO: implement
  6466. }
  6467. }
  6468. static void ggml_compute_forward_dup_f32(
  6469. const struct ggml_compute_params * params,
  6470. const struct ggml_tensor * src0,
  6471. struct ggml_tensor * dst) {
  6472. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6473. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6474. return;
  6475. }
  6476. GGML_TENSOR_UNARY_OP_LOCALS;
  6477. const int ith = params->ith; // thread index
  6478. const int nth = params->nth; // number of threads
  6479. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6480. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6481. return;
  6482. }
  6483. // parallelize by rows
  6484. const int nr = ne01;
  6485. // number of rows per thread
  6486. const int dr = (nr + nth - 1) / nth;
  6487. // row range for this thread
  6488. const int ir0 = dr * ith;
  6489. const int ir1 = MIN(ir0 + dr, nr);
  6490. if (src0->type == dst->type &&
  6491. ne00 == ne0 &&
  6492. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6493. // copy by rows
  6494. const size_t rs = ne00*nb00;
  6495. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6496. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6497. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6498. memcpy(
  6499. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6500. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6501. rs);
  6502. }
  6503. }
  6504. }
  6505. return;
  6506. }
  6507. if (ggml_is_contiguous(dst)) {
  6508. // TODO: simplify
  6509. if (nb00 == sizeof(float)) {
  6510. if (dst->type == GGML_TYPE_F32) {
  6511. size_t id = 0;
  6512. const size_t rs = ne00 * nb00;
  6513. char * dst_ptr = (char *) dst->data;
  6514. for (int i03 = 0; i03 < ne03; i03++) {
  6515. for (int i02 = 0; i02 < ne02; i02++) {
  6516. id += rs * ir0;
  6517. for (int i01 = ir0; i01 < ir1; i01++) {
  6518. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6519. memcpy(dst_ptr + id, src0_ptr, rs);
  6520. id += rs;
  6521. }
  6522. id += rs * (ne01 - ir1);
  6523. }
  6524. }
  6525. } else if (type_traits[dst->type].from_float) {
  6526. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6527. size_t id = 0;
  6528. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6529. char * dst_ptr = (char *) dst->data;
  6530. for (int i03 = 0; i03 < ne03; i03++) {
  6531. for (int i02 = 0; i02 < ne02; i02++) {
  6532. id += rs * ir0;
  6533. for (int i01 = ir0; i01 < ir1; i01++) {
  6534. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6535. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6536. id += rs;
  6537. }
  6538. id += rs * (ne01 - ir1);
  6539. }
  6540. }
  6541. } else {
  6542. GGML_ASSERT(false); // TODO: implement
  6543. }
  6544. } else {
  6545. //printf("%s: this is not optimal - fix me\n", __func__);
  6546. if (dst->type == GGML_TYPE_F32) {
  6547. size_t id = 0;
  6548. float * dst_ptr = (float *) dst->data;
  6549. for (int i03 = 0; i03 < ne03; i03++) {
  6550. for (int i02 = 0; i02 < ne02; i02++) {
  6551. id += ne00 * ir0;
  6552. for (int i01 = ir0; i01 < ir1; i01++) {
  6553. for (int i00 = 0; i00 < ne00; i00++) {
  6554. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6555. dst_ptr[id] = *src0_ptr;
  6556. id++;
  6557. }
  6558. }
  6559. id += ne00 * (ne01 - ir1);
  6560. }
  6561. }
  6562. } else if (dst->type == GGML_TYPE_F16) {
  6563. size_t id = 0;
  6564. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6565. for (int i03 = 0; i03 < ne03; i03++) {
  6566. for (int i02 = 0; i02 < ne02; i02++) {
  6567. id += ne00 * ir0;
  6568. for (int i01 = ir0; i01 < ir1; i01++) {
  6569. for (int i00 = 0; i00 < ne00; i00++) {
  6570. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6571. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6572. id++;
  6573. }
  6574. }
  6575. id += ne00 * (ne01 - ir1);
  6576. }
  6577. }
  6578. } else {
  6579. GGML_ASSERT(false); // TODO: implement
  6580. }
  6581. }
  6582. return;
  6583. }
  6584. // dst counters
  6585. int64_t i10 = 0;
  6586. int64_t i11 = 0;
  6587. int64_t i12 = 0;
  6588. int64_t i13 = 0;
  6589. if (dst->type == GGML_TYPE_F32) {
  6590. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6591. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6592. i10 += ne00 * ir0;
  6593. while (i10 >= ne0) {
  6594. i10 -= ne0;
  6595. if (++i11 == ne1) {
  6596. i11 = 0;
  6597. if (++i12 == ne2) {
  6598. i12 = 0;
  6599. if (++i13 == ne3) {
  6600. i13 = 0;
  6601. }
  6602. }
  6603. }
  6604. }
  6605. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6606. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6607. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6608. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6609. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6610. if (++i10 == ne0) {
  6611. i10 = 0;
  6612. if (++i11 == ne1) {
  6613. i11 = 0;
  6614. if (++i12 == ne2) {
  6615. i12 = 0;
  6616. if (++i13 == ne3) {
  6617. i13 = 0;
  6618. }
  6619. }
  6620. }
  6621. }
  6622. }
  6623. }
  6624. i10 += ne00 * (ne01 - ir1);
  6625. while (i10 >= ne0) {
  6626. i10 -= ne0;
  6627. if (++i11 == ne1) {
  6628. i11 = 0;
  6629. if (++i12 == ne2) {
  6630. i12 = 0;
  6631. if (++i13 == ne3) {
  6632. i13 = 0;
  6633. }
  6634. }
  6635. }
  6636. }
  6637. }
  6638. }
  6639. } else if (dst->type == GGML_TYPE_F16) {
  6640. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6641. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6642. i10 += ne00 * ir0;
  6643. while (i10 >= ne0) {
  6644. i10 -= ne0;
  6645. if (++i11 == ne1) {
  6646. i11 = 0;
  6647. if (++i12 == ne2) {
  6648. i12 = 0;
  6649. if (++i13 == ne3) {
  6650. i13 = 0;
  6651. }
  6652. }
  6653. }
  6654. }
  6655. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6656. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6657. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6658. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6659. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6660. if (++i10 == ne0) {
  6661. i10 = 0;
  6662. if (++i11 == ne1) {
  6663. i11 = 0;
  6664. if (++i12 == ne2) {
  6665. i12 = 0;
  6666. if (++i13 == ne3) {
  6667. i13 = 0;
  6668. }
  6669. }
  6670. }
  6671. }
  6672. }
  6673. }
  6674. i10 += ne00 * (ne01 - ir1);
  6675. while (i10 >= ne0) {
  6676. i10 -= ne0;
  6677. if (++i11 == ne1) {
  6678. i11 = 0;
  6679. if (++i12 == ne2) {
  6680. i12 = 0;
  6681. if (++i13 == ne3) {
  6682. i13 = 0;
  6683. }
  6684. }
  6685. }
  6686. }
  6687. }
  6688. }
  6689. } else {
  6690. GGML_ASSERT(false); // TODO: implement
  6691. }
  6692. }
  6693. static void ggml_compute_forward_dup(
  6694. const struct ggml_compute_params * params,
  6695. const struct ggml_tensor * src0,
  6696. struct ggml_tensor * dst) {
  6697. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6698. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6699. return;
  6700. }
  6701. switch (src0->type) {
  6702. case GGML_TYPE_F16:
  6703. {
  6704. ggml_compute_forward_dup_f16(params, src0, dst);
  6705. } break;
  6706. case GGML_TYPE_F32:
  6707. {
  6708. ggml_compute_forward_dup_f32(params, src0, dst);
  6709. } break;
  6710. default:
  6711. {
  6712. GGML_ASSERT(false);
  6713. } break;
  6714. }
  6715. }
  6716. // ggml_compute_forward_add
  6717. static void ggml_compute_forward_add_f32(
  6718. const struct ggml_compute_params * params,
  6719. const struct ggml_tensor * src0,
  6720. const struct ggml_tensor * src1,
  6721. struct ggml_tensor * dst) {
  6722. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6723. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6724. return;
  6725. }
  6726. const int ith = params->ith;
  6727. const int nth = params->nth;
  6728. const int nr = ggml_nrows(src0);
  6729. GGML_TENSOR_BINARY_OP_LOCALS;
  6730. GGML_ASSERT( nb0 == sizeof(float));
  6731. GGML_ASSERT(nb00 == sizeof(float));
  6732. // rows per thread
  6733. const int dr = (nr + nth - 1)/nth;
  6734. // row range for this thread
  6735. const int ir0 = dr*ith;
  6736. const int ir1 = MIN(ir0 + dr, nr);
  6737. if (nb10 == sizeof(float)) {
  6738. for (int ir = ir0; ir < ir1; ++ir) {
  6739. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6740. const int64_t i03 = ir/(ne02*ne01);
  6741. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6742. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6743. const int64_t i13 = i03 % ne13;
  6744. const int64_t i12 = i02 % ne12;
  6745. const int64_t i11 = i01 % ne11;
  6746. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6747. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6748. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6749. #ifdef GGML_USE_ACCELERATE
  6750. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6751. #else
  6752. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6753. #endif
  6754. // }
  6755. // }
  6756. }
  6757. } else {
  6758. // src1 is not contiguous
  6759. for (int ir = ir0; ir < ir1; ++ir) {
  6760. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6761. const int64_t i03 = ir/(ne02*ne01);
  6762. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6763. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6764. const int64_t i13 = i03 % ne13;
  6765. const int64_t i12 = i02 % ne12;
  6766. const int64_t i11 = i01 % ne11;
  6767. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6768. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6769. for (int i0 = 0; i0 < ne0; i0++) {
  6770. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6771. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6772. }
  6773. }
  6774. }
  6775. }
  6776. static void ggml_compute_forward_add_f16_f32(
  6777. const struct ggml_compute_params * params,
  6778. const struct ggml_tensor * src0,
  6779. const struct ggml_tensor * src1,
  6780. struct ggml_tensor * dst) {
  6781. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6783. return;
  6784. }
  6785. const int ith = params->ith;
  6786. const int nth = params->nth;
  6787. const int nr = ggml_nrows(src0);
  6788. GGML_TENSOR_BINARY_OP_LOCALS;
  6789. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6790. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6791. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6792. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6793. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6794. // rows per thread
  6795. const int dr = (nr + nth - 1)/nth;
  6796. // row range for this thread
  6797. const int ir0 = dr*ith;
  6798. const int ir1 = MIN(ir0 + dr, nr);
  6799. if (nb10 == sizeof(float)) {
  6800. for (int ir = ir0; ir < ir1; ++ir) {
  6801. // src0, src1 and dst are same shape => same indices
  6802. const int i3 = ir/(ne2*ne1);
  6803. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6804. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6805. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6806. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6807. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6808. for (int i = 0; i < ne0; i++) {
  6809. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6810. }
  6811. }
  6812. }
  6813. else {
  6814. // src1 is not contiguous
  6815. GGML_ASSERT(false);
  6816. }
  6817. }
  6818. static void ggml_compute_forward_add_f16_f16(
  6819. const struct ggml_compute_params * params,
  6820. const struct ggml_tensor * src0,
  6821. const struct ggml_tensor * src1,
  6822. struct ggml_tensor * dst) {
  6823. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6824. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6825. return;
  6826. }
  6827. const int ith = params->ith;
  6828. const int nth = params->nth;
  6829. const int nr = ggml_nrows(src0);
  6830. GGML_TENSOR_BINARY_OP_LOCALS;
  6831. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6832. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6833. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6834. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6835. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6836. // rows per thread
  6837. const int dr = (nr + nth - 1)/nth;
  6838. // row range for this thread
  6839. const int ir0 = dr*ith;
  6840. const int ir1 = MIN(ir0 + dr, nr);
  6841. if (nb10 == sizeof(ggml_fp16_t)) {
  6842. for (int ir = ir0; ir < ir1; ++ir) {
  6843. // src0, src1 and dst are same shape => same indices
  6844. const int i3 = ir/(ne2*ne1);
  6845. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6846. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6847. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6848. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6849. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6850. for (int i = 0; i < ne0; i++) {
  6851. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6852. }
  6853. }
  6854. }
  6855. else {
  6856. // src1 is not contiguous
  6857. GGML_ASSERT(false);
  6858. }
  6859. }
  6860. static void ggml_compute_forward_add_q_f32(
  6861. const struct ggml_compute_params * params,
  6862. const struct ggml_tensor * src0,
  6863. const struct ggml_tensor * src1,
  6864. struct ggml_tensor * dst) {
  6865. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6866. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6867. return;
  6868. }
  6869. const int nr = ggml_nrows(src0);
  6870. GGML_TENSOR_BINARY_OP_LOCALS;
  6871. const int ith = params->ith;
  6872. const int nth = params->nth;
  6873. const enum ggml_type type = src0->type;
  6874. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6875. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6876. // we don't support permuted src0 or src1
  6877. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6878. GGML_ASSERT(nb10 == sizeof(float));
  6879. // dst cannot be transposed or permuted
  6880. GGML_ASSERT(nb0 <= nb1);
  6881. GGML_ASSERT(nb1 <= nb2);
  6882. GGML_ASSERT(nb2 <= nb3);
  6883. GGML_ASSERT(ggml_is_quantized(src0->type));
  6884. GGML_ASSERT(dst->type == src0->type);
  6885. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6886. // rows per thread
  6887. const int dr = (nr + nth - 1)/nth;
  6888. // row range for this thread
  6889. const int ir0 = dr*ith;
  6890. const int ir1 = MIN(ir0 + dr, nr);
  6891. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6892. for (int ir = ir0; ir < ir1; ++ir) {
  6893. // src0 indices
  6894. const int i03 = ir/(ne02*ne01);
  6895. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6896. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6897. // src1 and dst are same shape as src0 => same indices
  6898. const int i13 = i03;
  6899. const int i12 = i02;
  6900. const int i11 = i01;
  6901. const int i3 = i03;
  6902. const int i2 = i02;
  6903. const int i1 = i01;
  6904. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6905. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6906. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6907. assert(ne00 % 32 == 0);
  6908. // unquantize row from src0 to temp buffer
  6909. dequantize_row_q(src0_row, wdata, ne00);
  6910. // add src1
  6911. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6912. // quantize row to dst
  6913. quantize_row_q(wdata, dst_row, ne00);
  6914. }
  6915. }
  6916. static void ggml_compute_forward_add(
  6917. const struct ggml_compute_params * params,
  6918. const struct ggml_tensor * src0,
  6919. const struct ggml_tensor * src1,
  6920. struct ggml_tensor * dst) {
  6921. switch (src0->type) {
  6922. case GGML_TYPE_F32:
  6923. {
  6924. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6925. } break;
  6926. case GGML_TYPE_F16:
  6927. {
  6928. if (src1->type == GGML_TYPE_F16) {
  6929. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6930. }
  6931. else if (src1->type == GGML_TYPE_F32) {
  6932. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6933. }
  6934. else {
  6935. GGML_ASSERT(false);
  6936. }
  6937. } break;
  6938. case GGML_TYPE_Q4_0:
  6939. case GGML_TYPE_Q4_1:
  6940. case GGML_TYPE_Q5_0:
  6941. case GGML_TYPE_Q5_1:
  6942. case GGML_TYPE_Q8_0:
  6943. case GGML_TYPE_Q2_K:
  6944. case GGML_TYPE_Q3_K:
  6945. case GGML_TYPE_Q4_K:
  6946. case GGML_TYPE_Q5_K:
  6947. case GGML_TYPE_Q6_K:
  6948. {
  6949. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6950. } break;
  6951. default:
  6952. {
  6953. GGML_ASSERT(false);
  6954. } break;
  6955. }
  6956. }
  6957. // ggml_compute_forward_add1
  6958. static void ggml_compute_forward_add1_f32(
  6959. const struct ggml_compute_params * params,
  6960. const struct ggml_tensor * src0,
  6961. const struct ggml_tensor * src1,
  6962. struct ggml_tensor * dst) {
  6963. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6964. GGML_ASSERT(ggml_is_scalar(src1));
  6965. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6966. return;
  6967. }
  6968. const int ith = params->ith;
  6969. const int nth = params->nth;
  6970. const int nr = ggml_nrows(src0);
  6971. GGML_TENSOR_UNARY_OP_LOCALS;
  6972. GGML_ASSERT( nb0 == sizeof(float));
  6973. GGML_ASSERT(nb00 == sizeof(float));
  6974. // rows per thread
  6975. const int dr = (nr + nth - 1)/nth;
  6976. // row range for this thread
  6977. const int ir0 = dr*ith;
  6978. const int ir1 = MIN(ir0 + dr, nr);
  6979. for (int ir = ir0; ir < ir1; ++ir) {
  6980. // src0 and dst are same shape => same indices
  6981. const int i3 = ir/(ne2*ne1);
  6982. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6983. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6984. #ifdef GGML_USE_ACCELERATE
  6985. UNUSED(ggml_vec_add1_f32);
  6986. vDSP_vadd(
  6987. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6988. (float *) ((char *) src1->data), 0,
  6989. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6990. ne0);
  6991. #else
  6992. ggml_vec_add1_f32(ne0,
  6993. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6994. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6995. *(float *) src1->data);
  6996. #endif
  6997. }
  6998. }
  6999. static void ggml_compute_forward_add1_f16_f32(
  7000. const struct ggml_compute_params * params,
  7001. const struct ggml_tensor * src0,
  7002. const struct ggml_tensor * src1,
  7003. struct ggml_tensor * dst) {
  7004. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7005. GGML_ASSERT(ggml_is_scalar(src1));
  7006. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7007. return;
  7008. }
  7009. // scalar to add
  7010. const float v = *(float *) src1->data;
  7011. const int ith = params->ith;
  7012. const int nth = params->nth;
  7013. const int nr = ggml_nrows(src0);
  7014. GGML_TENSOR_UNARY_OP_LOCALS;
  7015. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7016. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7017. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7018. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7019. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7020. // rows per thread
  7021. const int dr = (nr + nth - 1)/nth;
  7022. // row range for this thread
  7023. const int ir0 = dr*ith;
  7024. const int ir1 = MIN(ir0 + dr, nr);
  7025. for (int ir = ir0; ir < ir1; ++ir) {
  7026. // src0 and dst are same shape => same indices
  7027. const int i3 = ir/(ne2*ne1);
  7028. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7029. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7030. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7031. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7032. for (int i = 0; i < ne0; i++) {
  7033. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7034. }
  7035. }
  7036. }
  7037. static void ggml_compute_forward_add1_f16_f16(
  7038. const struct ggml_compute_params * params,
  7039. const struct ggml_tensor * src0,
  7040. const struct ggml_tensor * src1,
  7041. struct ggml_tensor * dst) {
  7042. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7043. GGML_ASSERT(ggml_is_scalar(src1));
  7044. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7045. return;
  7046. }
  7047. // scalar to add
  7048. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7049. const int ith = params->ith;
  7050. const int nth = params->nth;
  7051. const int nr = ggml_nrows(src0);
  7052. GGML_TENSOR_UNARY_OP_LOCALS;
  7053. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7054. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7055. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7056. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7057. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7058. // rows per thread
  7059. const int dr = (nr + nth - 1)/nth;
  7060. // row range for this thread
  7061. const int ir0 = dr*ith;
  7062. const int ir1 = MIN(ir0 + dr, nr);
  7063. for (int ir = ir0; ir < ir1; ++ir) {
  7064. // src0 and dst are same shape => same indices
  7065. const int i3 = ir/(ne2*ne1);
  7066. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7067. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7068. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7069. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7070. for (int i = 0; i < ne0; i++) {
  7071. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7072. }
  7073. }
  7074. }
  7075. static void ggml_compute_forward_add1_q_f32(
  7076. const struct ggml_compute_params * params,
  7077. const struct ggml_tensor * src0,
  7078. const struct ggml_tensor * src1,
  7079. struct ggml_tensor * dst) {
  7080. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7081. GGML_ASSERT(ggml_is_scalar(src1));
  7082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7083. return;
  7084. }
  7085. // scalar to add
  7086. const float v = *(float *) src1->data;
  7087. const int ith = params->ith;
  7088. const int nth = params->nth;
  7089. const int nr = ggml_nrows(src0);
  7090. GGML_TENSOR_UNARY_OP_LOCALS;
  7091. const enum ggml_type type = src0->type;
  7092. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7093. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7094. // we don't support permuted src0
  7095. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7096. // dst cannot be transposed or permuted
  7097. GGML_ASSERT(nb0 <= nb1);
  7098. GGML_ASSERT(nb1 <= nb2);
  7099. GGML_ASSERT(nb2 <= nb3);
  7100. GGML_ASSERT(ggml_is_quantized(src0->type));
  7101. GGML_ASSERT(dst->type == src0->type);
  7102. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7103. // rows per thread
  7104. const int dr = (nr + nth - 1)/nth;
  7105. // row range for this thread
  7106. const int ir0 = dr*ith;
  7107. const int ir1 = MIN(ir0 + dr, nr);
  7108. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7109. for (int ir = ir0; ir < ir1; ++ir) {
  7110. // src0 and dst are same shape => same indices
  7111. const int i3 = ir/(ne2*ne1);
  7112. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7113. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7114. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7115. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7116. assert(ne0 % 32 == 0);
  7117. // unquantize row from src0 to temp buffer
  7118. dequantize_row_q(src0_row, wdata, ne0);
  7119. // add src1
  7120. ggml_vec_acc1_f32(ne0, wdata, v);
  7121. // quantize row to dst
  7122. quantize_row_q(wdata, dst_row, ne0);
  7123. }
  7124. }
  7125. static void ggml_compute_forward_add1(
  7126. const struct ggml_compute_params * params,
  7127. const struct ggml_tensor * src0,
  7128. const struct ggml_tensor * src1,
  7129. struct ggml_tensor * dst) {
  7130. switch (src0->type) {
  7131. case GGML_TYPE_F32:
  7132. {
  7133. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7134. } break;
  7135. case GGML_TYPE_F16:
  7136. {
  7137. if (src1->type == GGML_TYPE_F16) {
  7138. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7139. }
  7140. else if (src1->type == GGML_TYPE_F32) {
  7141. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7142. }
  7143. else {
  7144. GGML_ASSERT(false);
  7145. }
  7146. } break;
  7147. case GGML_TYPE_Q4_0:
  7148. case GGML_TYPE_Q4_1:
  7149. case GGML_TYPE_Q5_0:
  7150. case GGML_TYPE_Q5_1:
  7151. case GGML_TYPE_Q8_0:
  7152. case GGML_TYPE_Q8_1:
  7153. case GGML_TYPE_Q2_K:
  7154. case GGML_TYPE_Q3_K:
  7155. case GGML_TYPE_Q4_K:
  7156. case GGML_TYPE_Q5_K:
  7157. case GGML_TYPE_Q6_K:
  7158. {
  7159. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7160. } break;
  7161. default:
  7162. {
  7163. GGML_ASSERT(false);
  7164. } break;
  7165. }
  7166. }
  7167. // ggml_compute_forward_acc
  7168. static void ggml_compute_forward_acc_f32(
  7169. const struct ggml_compute_params * params,
  7170. const struct ggml_tensor * src0,
  7171. const struct ggml_tensor * src1,
  7172. struct ggml_tensor * dst) {
  7173. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7174. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7175. // view src0 and dst with these strides and data offset inbytes during acc
  7176. // nb0 is implicitely element_size because src0 and dst are contiguous
  7177. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7178. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7179. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7180. size_t offset = ((int32_t *) dst->op_params)[3];
  7181. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7182. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7183. // memcpy needs to be synchronized across threads to avoid race conditions.
  7184. // => do it in INIT phase
  7185. memcpy(
  7186. ((char *) dst->data),
  7187. ((char *) src0->data),
  7188. ggml_nbytes(dst));
  7189. }
  7190. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7191. return;
  7192. }
  7193. const int ith = params->ith;
  7194. const int nth = params->nth;
  7195. const int nr = ggml_nrows(src1);
  7196. const int nc = src1->ne[0];
  7197. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7198. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7199. // src0 and dst as viewed during acc
  7200. const size_t nb0 = ggml_element_size(src0);
  7201. const size_t nb00 = nb0;
  7202. const size_t nb01 = nb1;
  7203. const size_t nb02 = nb2;
  7204. const size_t nb03 = nb3;
  7205. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7206. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7207. GGML_ASSERT(nb10 == sizeof(float));
  7208. // rows per thread
  7209. const int dr = (nr + nth - 1)/nth;
  7210. // row range for this thread
  7211. const int ir0 = dr*ith;
  7212. const int ir1 = MIN(ir0 + dr, nr);
  7213. for (int ir = ir0; ir < ir1; ++ir) {
  7214. // src0 and dst are viewed with shape of src1 and offset
  7215. // => same indices
  7216. const int i3 = ir/(ne12*ne11);
  7217. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7218. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7219. #ifdef GGML_USE_ACCELERATE
  7220. vDSP_vadd(
  7221. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7222. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7223. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7224. #else
  7225. ggml_vec_add_f32(nc,
  7226. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7227. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7228. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7229. #endif
  7230. }
  7231. }
  7232. static void ggml_compute_forward_acc(
  7233. const struct ggml_compute_params * params,
  7234. const struct ggml_tensor * src0,
  7235. const struct ggml_tensor * src1,
  7236. struct ggml_tensor * dst) {
  7237. switch (src0->type) {
  7238. case GGML_TYPE_F32:
  7239. {
  7240. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7241. } break;
  7242. case GGML_TYPE_F16:
  7243. case GGML_TYPE_Q4_0:
  7244. case GGML_TYPE_Q4_1:
  7245. case GGML_TYPE_Q5_0:
  7246. case GGML_TYPE_Q5_1:
  7247. case GGML_TYPE_Q8_0:
  7248. case GGML_TYPE_Q8_1:
  7249. case GGML_TYPE_Q2_K:
  7250. case GGML_TYPE_Q3_K:
  7251. case GGML_TYPE_Q4_K:
  7252. case GGML_TYPE_Q5_K:
  7253. case GGML_TYPE_Q6_K:
  7254. default:
  7255. {
  7256. GGML_ASSERT(false);
  7257. } break;
  7258. }
  7259. }
  7260. // ggml_compute_forward_sub
  7261. static void ggml_compute_forward_sub_f32(
  7262. const struct ggml_compute_params * params,
  7263. const struct ggml_tensor * src0,
  7264. const struct ggml_tensor * src1,
  7265. struct ggml_tensor * dst) {
  7266. assert(params->ith == 0);
  7267. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7268. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7269. return;
  7270. }
  7271. const int nr = ggml_nrows(src0);
  7272. GGML_TENSOR_BINARY_OP_LOCALS;
  7273. GGML_ASSERT( nb0 == sizeof(float));
  7274. GGML_ASSERT(nb00 == sizeof(float));
  7275. if (nb10 == sizeof(float)) {
  7276. for (int ir = 0; ir < nr; ++ir) {
  7277. // src0, src1 and dst are same shape => same indices
  7278. const int i3 = ir/(ne2*ne1);
  7279. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7280. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7281. #ifdef GGML_USE_ACCELERATE
  7282. vDSP_vsub(
  7283. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7284. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7285. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7286. ne0);
  7287. #else
  7288. ggml_vec_sub_f32(ne0,
  7289. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7290. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7291. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7292. #endif
  7293. // }
  7294. // }
  7295. }
  7296. } else {
  7297. // src1 is not contiguous
  7298. for (int ir = 0; ir < nr; ++ir) {
  7299. // src0, src1 and dst are same shape => same indices
  7300. const int i3 = ir/(ne2*ne1);
  7301. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7302. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7303. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7304. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7305. for (int i0 = 0; i0 < ne0; i0++) {
  7306. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7307. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7308. }
  7309. }
  7310. }
  7311. }
  7312. static void ggml_compute_forward_sub(
  7313. const struct ggml_compute_params * params,
  7314. const struct ggml_tensor * src0,
  7315. const struct ggml_tensor * src1,
  7316. struct ggml_tensor * dst) {
  7317. switch (src0->type) {
  7318. case GGML_TYPE_F32:
  7319. {
  7320. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7321. } break;
  7322. default:
  7323. {
  7324. GGML_ASSERT(false);
  7325. } break;
  7326. }
  7327. }
  7328. // ggml_compute_forward_mul
  7329. static void ggml_compute_forward_mul_f32(
  7330. const struct ggml_compute_params * params,
  7331. const struct ggml_tensor * src0,
  7332. const struct ggml_tensor * src1,
  7333. struct ggml_tensor * dst) {
  7334. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7335. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7336. return;
  7337. }
  7338. const int ith = params->ith;
  7339. const int nth = params->nth;
  7340. #ifdef GGML_USE_CLBLAST
  7341. if (src1->backend == GGML_BACKEND_GPU) {
  7342. if (ith == 0) {
  7343. ggml_cl_mul(src0, src1, dst);
  7344. }
  7345. return;
  7346. }
  7347. #endif
  7348. const int64_t nr = ggml_nrows(src0);
  7349. GGML_TENSOR_BINARY_OP_LOCALS;
  7350. GGML_ASSERT( nb0 == sizeof(float));
  7351. GGML_ASSERT(nb00 == sizeof(float));
  7352. GGML_ASSERT(ne00 == ne10);
  7353. if (nb10 == sizeof(float)) {
  7354. for (int64_t ir = ith; ir < nr; ir += nth) {
  7355. // src0 and dst are same shape => same indices
  7356. const int64_t i03 = ir/(ne02*ne01);
  7357. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7358. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7359. const int64_t i13 = i03 % ne13;
  7360. const int64_t i12 = i02 % ne12;
  7361. const int64_t i11 = i01 % ne11;
  7362. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7363. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7364. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7365. #ifdef GGML_USE_ACCELERATE
  7366. UNUSED(ggml_vec_mul_f32);
  7367. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7368. #else
  7369. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7370. #endif
  7371. // }
  7372. // }
  7373. }
  7374. } else {
  7375. // src1 is not contiguous
  7376. for (int64_t ir = ith; ir < nr; ir += nth) {
  7377. // src0 and dst are same shape => same indices
  7378. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7379. const int64_t i03 = ir/(ne02*ne01);
  7380. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7381. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7382. const int64_t i13 = i03 % ne13;
  7383. const int64_t i12 = i02 % ne12;
  7384. const int64_t i11 = i01 % ne11;
  7385. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7386. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7387. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7388. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7389. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7390. }
  7391. }
  7392. }
  7393. }
  7394. static void ggml_compute_forward_mul(
  7395. const struct ggml_compute_params * params,
  7396. const struct ggml_tensor * src0,
  7397. const struct ggml_tensor * src1,
  7398. struct ggml_tensor * dst) {
  7399. switch (src0->type) {
  7400. case GGML_TYPE_F32:
  7401. {
  7402. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7403. } break;
  7404. default:
  7405. {
  7406. GGML_ASSERT(false);
  7407. } break;
  7408. }
  7409. }
  7410. // ggml_compute_forward_div
  7411. static void ggml_compute_forward_div_f32(
  7412. const struct ggml_compute_params * params,
  7413. const struct ggml_tensor * src0,
  7414. const struct ggml_tensor * src1,
  7415. struct ggml_tensor * dst) {
  7416. assert(params->ith == 0);
  7417. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7418. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7419. return;
  7420. }
  7421. const int nr = ggml_nrows(src0);
  7422. GGML_TENSOR_BINARY_OP_LOCALS;
  7423. GGML_ASSERT( nb0 == sizeof(float));
  7424. GGML_ASSERT(nb00 == sizeof(float));
  7425. if (nb10 == sizeof(float)) {
  7426. for (int ir = 0; ir < nr; ++ir) {
  7427. // src0, src1 and dst are same shape => same indices
  7428. const int i3 = ir/(ne2*ne1);
  7429. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7430. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7431. #ifdef GGML_USE_ACCELERATE
  7432. vDSP_vdiv(
  7433. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7434. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7435. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7436. ne0);
  7437. #else
  7438. ggml_vec_div_f32(ne0,
  7439. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7440. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7441. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7442. #endif
  7443. // }
  7444. // }
  7445. }
  7446. } else {
  7447. // src1 is not contiguous
  7448. for (int ir = 0; ir < nr; ++ir) {
  7449. // src0, src1 and dst are same shape => same indices
  7450. const int i3 = ir/(ne2*ne1);
  7451. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7452. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7453. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7454. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7455. for (int i0 = 0; i0 < ne0; i0++) {
  7456. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7457. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7458. }
  7459. }
  7460. }
  7461. }
  7462. static void ggml_compute_forward_div(
  7463. const struct ggml_compute_params * params,
  7464. const struct ggml_tensor * src0,
  7465. const struct ggml_tensor * src1,
  7466. struct ggml_tensor * dst) {
  7467. switch (src0->type) {
  7468. case GGML_TYPE_F32:
  7469. {
  7470. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7471. } break;
  7472. default:
  7473. {
  7474. GGML_ASSERT(false);
  7475. } break;
  7476. }
  7477. }
  7478. // ggml_compute_forward_sqr
  7479. static void ggml_compute_forward_sqr_f32(
  7480. const struct ggml_compute_params * params,
  7481. const struct ggml_tensor * src0,
  7482. struct ggml_tensor * dst) {
  7483. assert(params->ith == 0);
  7484. assert(ggml_are_same_shape(src0, dst));
  7485. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7486. return;
  7487. }
  7488. const int n = ggml_nrows(src0);
  7489. const int nc = src0->ne[0];
  7490. assert( dst->nb[0] == sizeof(float));
  7491. assert(src0->nb[0] == sizeof(float));
  7492. for (int i = 0; i < n; i++) {
  7493. ggml_vec_sqr_f32(nc,
  7494. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7495. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7496. }
  7497. }
  7498. static void ggml_compute_forward_sqr(
  7499. const struct ggml_compute_params * params,
  7500. const struct ggml_tensor * src0,
  7501. struct ggml_tensor * dst) {
  7502. switch (src0->type) {
  7503. case GGML_TYPE_F32:
  7504. {
  7505. ggml_compute_forward_sqr_f32(params, src0, dst);
  7506. } break;
  7507. default:
  7508. {
  7509. GGML_ASSERT(false);
  7510. } break;
  7511. }
  7512. }
  7513. // ggml_compute_forward_sqrt
  7514. static void ggml_compute_forward_sqrt_f32(
  7515. const struct ggml_compute_params * params,
  7516. const struct ggml_tensor * src0,
  7517. struct ggml_tensor * dst) {
  7518. assert(params->ith == 0);
  7519. assert(ggml_are_same_shape(src0, dst));
  7520. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7521. return;
  7522. }
  7523. const int n = ggml_nrows(src0);
  7524. const int nc = src0->ne[0];
  7525. assert( dst->nb[0] == sizeof(float));
  7526. assert(src0->nb[0] == sizeof(float));
  7527. for (int i = 0; i < n; i++) {
  7528. ggml_vec_sqrt_f32(nc,
  7529. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7530. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7531. }
  7532. }
  7533. static void ggml_compute_forward_sqrt(
  7534. const struct ggml_compute_params * params,
  7535. const struct ggml_tensor * src0,
  7536. struct ggml_tensor * dst) {
  7537. switch (src0->type) {
  7538. case GGML_TYPE_F32:
  7539. {
  7540. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7541. } break;
  7542. default:
  7543. {
  7544. GGML_ASSERT(false);
  7545. } break;
  7546. }
  7547. }
  7548. // ggml_compute_forward_log
  7549. static void ggml_compute_forward_log_f32(
  7550. const struct ggml_compute_params * params,
  7551. const struct ggml_tensor * src0,
  7552. struct ggml_tensor * dst) {
  7553. GGML_ASSERT(params->ith == 0);
  7554. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7555. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7556. return;
  7557. }
  7558. const int n = ggml_nrows(src0);
  7559. const int nc = src0->ne[0];
  7560. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7561. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7562. for (int i = 0; i < n; i++) {
  7563. ggml_vec_log_f32(nc,
  7564. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7565. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7566. }
  7567. }
  7568. static void ggml_compute_forward_log(
  7569. const struct ggml_compute_params * params,
  7570. const struct ggml_tensor * src0,
  7571. struct ggml_tensor * dst) {
  7572. switch (src0->type) {
  7573. case GGML_TYPE_F32:
  7574. {
  7575. ggml_compute_forward_log_f32(params, src0, dst);
  7576. } break;
  7577. default:
  7578. {
  7579. GGML_ASSERT(false);
  7580. } break;
  7581. }
  7582. }
  7583. // ggml_compute_forward_sum
  7584. static void ggml_compute_forward_sum_f32(
  7585. const struct ggml_compute_params * params,
  7586. const struct ggml_tensor * src0,
  7587. struct ggml_tensor * dst) {
  7588. assert(params->ith == 0);
  7589. assert(ggml_is_scalar(dst));
  7590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7591. return;
  7592. }
  7593. assert(ggml_is_scalar(dst));
  7594. assert(src0->nb[0] == sizeof(float));
  7595. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7596. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7597. ggml_float sum = 0;
  7598. ggml_float row_sum = 0;
  7599. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7600. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7601. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7602. ggml_vec_sum_f32_ggf(ne00,
  7603. &row_sum,
  7604. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7605. sum += row_sum;
  7606. }
  7607. }
  7608. }
  7609. ((float *) dst->data)[0] = sum;
  7610. }
  7611. static void ggml_compute_forward_sum_f16(
  7612. const struct ggml_compute_params * params,
  7613. const struct ggml_tensor * src0,
  7614. struct ggml_tensor * dst) {
  7615. assert(params->ith == 0);
  7616. assert(ggml_is_scalar(dst));
  7617. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7618. return;
  7619. }
  7620. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7621. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7622. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7623. float sum = 0;
  7624. float row_sum = 0;
  7625. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7626. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7627. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7628. ggml_vec_sum_f16_ggf(ne00,
  7629. &row_sum,
  7630. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7631. sum += row_sum;
  7632. }
  7633. }
  7634. }
  7635. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7636. }
  7637. static void ggml_compute_forward_sum(
  7638. const struct ggml_compute_params * params,
  7639. const struct ggml_tensor * src0,
  7640. struct ggml_tensor * dst) {
  7641. switch (src0->type) {
  7642. case GGML_TYPE_F32:
  7643. {
  7644. ggml_compute_forward_sum_f32(params, src0, dst);
  7645. } break;
  7646. case GGML_TYPE_F16:
  7647. {
  7648. ggml_compute_forward_sum_f16(params, src0, dst);
  7649. } break;
  7650. default:
  7651. {
  7652. GGML_ASSERT(false);
  7653. } break;
  7654. }
  7655. }
  7656. // ggml_compute_forward_sum_rows
  7657. static void ggml_compute_forward_sum_rows_f32(
  7658. const struct ggml_compute_params * params,
  7659. const struct ggml_tensor * src0,
  7660. struct ggml_tensor * dst) {
  7661. GGML_ASSERT(params->ith == 0);
  7662. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7663. return;
  7664. }
  7665. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7666. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7667. GGML_TENSOR_UNARY_OP_LOCALS;
  7668. GGML_ASSERT(ne0 == 1);
  7669. GGML_ASSERT(ne1 == ne01);
  7670. GGML_ASSERT(ne2 == ne02);
  7671. GGML_ASSERT(ne3 == ne03);
  7672. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7673. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7674. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7675. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7676. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7677. float row_sum = 0;
  7678. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7679. dst_row[0] = row_sum;
  7680. }
  7681. }
  7682. }
  7683. }
  7684. static void ggml_compute_forward_sum_rows(
  7685. const struct ggml_compute_params * params,
  7686. const struct ggml_tensor * src0,
  7687. struct ggml_tensor * dst) {
  7688. switch (src0->type) {
  7689. case GGML_TYPE_F32:
  7690. {
  7691. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7692. } break;
  7693. default:
  7694. {
  7695. GGML_ASSERT(false);
  7696. } break;
  7697. }
  7698. }
  7699. // ggml_compute_forward_mean
  7700. static void ggml_compute_forward_mean_f32(
  7701. const struct ggml_compute_params * params,
  7702. const struct ggml_tensor * src0,
  7703. struct ggml_tensor * dst) {
  7704. assert(params->ith == 0);
  7705. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7706. return;
  7707. }
  7708. assert(src0->nb[0] == sizeof(float));
  7709. GGML_TENSOR_UNARY_OP_LOCALS;
  7710. assert(ne0 == 1);
  7711. assert(ne1 == ne01);
  7712. assert(ne2 == ne02);
  7713. assert(ne3 == ne03);
  7714. UNUSED(ne0);
  7715. UNUSED(ne1);
  7716. UNUSED(ne2);
  7717. UNUSED(ne3);
  7718. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7719. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7720. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7721. ggml_vec_sum_f32(ne00,
  7722. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7723. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7724. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7725. }
  7726. }
  7727. }
  7728. }
  7729. static void ggml_compute_forward_mean(
  7730. const struct ggml_compute_params * params,
  7731. const struct ggml_tensor * src0,
  7732. struct ggml_tensor * dst) {
  7733. switch (src0->type) {
  7734. case GGML_TYPE_F32:
  7735. {
  7736. ggml_compute_forward_mean_f32(params, src0, dst);
  7737. } break;
  7738. default:
  7739. {
  7740. GGML_ASSERT(false);
  7741. } break;
  7742. }
  7743. }
  7744. // ggml_compute_forward_argmax
  7745. static void ggml_compute_forward_argmax_f32(
  7746. const struct ggml_compute_params * params,
  7747. const struct ggml_tensor * src0,
  7748. struct ggml_tensor * dst) {
  7749. assert(params->ith == 0);
  7750. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7751. return;
  7752. }
  7753. assert(src0->nb[0] == sizeof(float));
  7754. assert(dst->nb[0] == sizeof(float));
  7755. const int64_t ne00 = src0->ne[0];
  7756. const int64_t ne01 = src0->ne[1];
  7757. const size_t nb01 = src0->nb[1];
  7758. const size_t nb0 = dst->nb[0];
  7759. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7760. float * src = (float *) ((char *) src0->data + i1*nb01);
  7761. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7762. int v = 0;
  7763. ggml_vec_argmax_f32(ne00, &v, src);
  7764. dst_[0] = v;
  7765. }
  7766. }
  7767. static void ggml_compute_forward_argmax(
  7768. const struct ggml_compute_params * params,
  7769. const struct ggml_tensor * src0,
  7770. struct ggml_tensor * dst) {
  7771. switch (src0->type) {
  7772. case GGML_TYPE_F32:
  7773. {
  7774. ggml_compute_forward_argmax_f32(params, src0, dst);
  7775. } break;
  7776. default:
  7777. {
  7778. GGML_ASSERT(false);
  7779. } break;
  7780. }
  7781. }
  7782. // ggml_compute_forward_repeat
  7783. static void ggml_compute_forward_repeat_f32(
  7784. const struct ggml_compute_params * params,
  7785. const struct ggml_tensor * src0,
  7786. struct ggml_tensor * dst) {
  7787. GGML_ASSERT(params->ith == 0);
  7788. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7789. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7790. return;
  7791. }
  7792. GGML_TENSOR_UNARY_OP_LOCALS;
  7793. // guaranteed to be an integer due to the check in ggml_can_repeat
  7794. const int nr0 = (int)(ne0/ne00);
  7795. const int nr1 = (int)(ne1/ne01);
  7796. const int nr2 = (int)(ne2/ne02);
  7797. const int nr3 = (int)(ne3/ne03);
  7798. // TODO: support for transposed / permuted tensors
  7799. GGML_ASSERT(nb0 == sizeof(float));
  7800. GGML_ASSERT(nb00 == sizeof(float));
  7801. // TODO: maybe this is not optimal?
  7802. for (int i3 = 0; i3 < nr3; i3++) {
  7803. for (int k3 = 0; k3 < ne03; k3++) {
  7804. for (int i2 = 0; i2 < nr2; i2++) {
  7805. for (int k2 = 0; k2 < ne02; k2++) {
  7806. for (int i1 = 0; i1 < nr1; i1++) {
  7807. for (int k1 = 0; k1 < ne01; k1++) {
  7808. for (int i0 = 0; i0 < nr0; i0++) {
  7809. ggml_vec_cpy_f32(ne00,
  7810. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7811. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7812. }
  7813. }
  7814. }
  7815. }
  7816. }
  7817. }
  7818. }
  7819. }
  7820. static void ggml_compute_forward_repeat(
  7821. const struct ggml_compute_params * params,
  7822. const struct ggml_tensor * src0,
  7823. struct ggml_tensor * dst) {
  7824. switch (src0->type) {
  7825. case GGML_TYPE_F32:
  7826. {
  7827. ggml_compute_forward_repeat_f32(params, src0, dst);
  7828. } break;
  7829. default:
  7830. {
  7831. GGML_ASSERT(false);
  7832. } break;
  7833. }
  7834. }
  7835. // ggml_compute_forward_repeat_back
  7836. static void ggml_compute_forward_repeat_back_f32(
  7837. const struct ggml_compute_params * params,
  7838. const struct ggml_tensor * src0,
  7839. struct ggml_tensor * dst) {
  7840. GGML_ASSERT(params->ith == 0);
  7841. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7842. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7843. return;
  7844. }
  7845. GGML_TENSOR_UNARY_OP_LOCALS;
  7846. // guaranteed to be an integer due to the check in ggml_can_repeat
  7847. const int nr0 = (int)(ne00/ne0);
  7848. const int nr1 = (int)(ne01/ne1);
  7849. const int nr2 = (int)(ne02/ne2);
  7850. const int nr3 = (int)(ne03/ne3);
  7851. // TODO: support for transposed / permuted tensors
  7852. GGML_ASSERT(nb0 == sizeof(float));
  7853. GGML_ASSERT(nb00 == sizeof(float));
  7854. if (ggml_is_contiguous(dst)) {
  7855. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7856. } else {
  7857. for (int k3 = 0; k3 < ne3; k3++) {
  7858. for (int k2 = 0; k2 < ne2; k2++) {
  7859. for (int k1 = 0; k1 < ne1; k1++) {
  7860. ggml_vec_set_f32(ne0,
  7861. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7862. 0);
  7863. }
  7864. }
  7865. }
  7866. }
  7867. // TODO: maybe this is not optimal?
  7868. for (int i3 = 0; i3 < nr3; i3++) {
  7869. for (int k3 = 0; k3 < ne3; k3++) {
  7870. for (int i2 = 0; i2 < nr2; i2++) {
  7871. for (int k2 = 0; k2 < ne2; k2++) {
  7872. for (int i1 = 0; i1 < nr1; i1++) {
  7873. for (int k1 = 0; k1 < ne1; k1++) {
  7874. for (int i0 = 0; i0 < nr0; i0++) {
  7875. ggml_vec_acc_f32(ne0,
  7876. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7877. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7878. }
  7879. }
  7880. }
  7881. }
  7882. }
  7883. }
  7884. }
  7885. }
  7886. static void ggml_compute_forward_repeat_back(
  7887. const struct ggml_compute_params * params,
  7888. const struct ggml_tensor * src0,
  7889. struct ggml_tensor * dst) {
  7890. switch (src0->type) {
  7891. case GGML_TYPE_F32:
  7892. {
  7893. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7894. } break;
  7895. default:
  7896. {
  7897. GGML_ASSERT(false);
  7898. } break;
  7899. }
  7900. }
  7901. // ggml_compute_forward_abs
  7902. static void ggml_compute_forward_abs_f32(
  7903. const struct ggml_compute_params * params,
  7904. const struct ggml_tensor * src0,
  7905. struct ggml_tensor * dst) {
  7906. assert(params->ith == 0);
  7907. assert(ggml_are_same_shape(src0, dst));
  7908. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7909. return;
  7910. }
  7911. const int n = ggml_nrows(src0);
  7912. const int nc = src0->ne[0];
  7913. assert(dst->nb[0] == sizeof(float));
  7914. assert(src0->nb[0] == sizeof(float));
  7915. for (int i = 0; i < n; i++) {
  7916. ggml_vec_abs_f32(nc,
  7917. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7918. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7919. }
  7920. }
  7921. static void ggml_compute_forward_abs(
  7922. const struct ggml_compute_params * params,
  7923. const struct ggml_tensor * src0,
  7924. struct ggml_tensor * dst) {
  7925. switch (src0->type) {
  7926. case GGML_TYPE_F32:
  7927. {
  7928. ggml_compute_forward_abs_f32(params, src0, dst);
  7929. } break;
  7930. default:
  7931. {
  7932. GGML_ASSERT(false);
  7933. } break;
  7934. }
  7935. }
  7936. // ggml_compute_forward_sgn
  7937. static void ggml_compute_forward_sgn_f32(
  7938. const struct ggml_compute_params * params,
  7939. const struct ggml_tensor * src0,
  7940. struct ggml_tensor * dst) {
  7941. assert(params->ith == 0);
  7942. assert(ggml_are_same_shape(src0, dst));
  7943. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7944. return;
  7945. }
  7946. const int n = ggml_nrows(src0);
  7947. const int nc = src0->ne[0];
  7948. assert(dst->nb[0] == sizeof(float));
  7949. assert(src0->nb[0] == sizeof(float));
  7950. for (int i = 0; i < n; i++) {
  7951. ggml_vec_sgn_f32(nc,
  7952. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7953. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7954. }
  7955. }
  7956. static void ggml_compute_forward_sgn(
  7957. const struct ggml_compute_params * params,
  7958. const struct ggml_tensor * src0,
  7959. struct ggml_tensor * dst) {
  7960. switch (src0->type) {
  7961. case GGML_TYPE_F32:
  7962. {
  7963. ggml_compute_forward_sgn_f32(params, src0, dst);
  7964. } break;
  7965. default:
  7966. {
  7967. GGML_ASSERT(false);
  7968. } break;
  7969. }
  7970. }
  7971. // ggml_compute_forward_neg
  7972. static void ggml_compute_forward_neg_f32(
  7973. const struct ggml_compute_params * params,
  7974. const struct ggml_tensor * src0,
  7975. struct ggml_tensor * dst) {
  7976. assert(params->ith == 0);
  7977. assert(ggml_are_same_shape(src0, dst));
  7978. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7979. return;
  7980. }
  7981. const int n = ggml_nrows(src0);
  7982. const int nc = src0->ne[0];
  7983. assert(dst->nb[0] == sizeof(float));
  7984. assert(src0->nb[0] == sizeof(float));
  7985. for (int i = 0; i < n; i++) {
  7986. ggml_vec_neg_f32(nc,
  7987. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7988. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7989. }
  7990. }
  7991. static void ggml_compute_forward_neg(
  7992. const struct ggml_compute_params * params,
  7993. const struct ggml_tensor * src0,
  7994. struct ggml_tensor * dst) {
  7995. switch (src0->type) {
  7996. case GGML_TYPE_F32:
  7997. {
  7998. ggml_compute_forward_neg_f32(params, src0, dst);
  7999. } break;
  8000. default:
  8001. {
  8002. GGML_ASSERT(false);
  8003. } break;
  8004. }
  8005. }
  8006. // ggml_compute_forward_step
  8007. static void ggml_compute_forward_step_f32(
  8008. const struct ggml_compute_params * params,
  8009. const struct ggml_tensor * src0,
  8010. struct ggml_tensor * dst) {
  8011. assert(params->ith == 0);
  8012. assert(ggml_are_same_shape(src0, dst));
  8013. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8014. return;
  8015. }
  8016. const int n = ggml_nrows(src0);
  8017. const int nc = src0->ne[0];
  8018. assert(dst->nb[0] == sizeof(float));
  8019. assert(src0->nb[0] == sizeof(float));
  8020. for (int i = 0; i < n; i++) {
  8021. ggml_vec_step_f32(nc,
  8022. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8023. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8024. }
  8025. }
  8026. static void ggml_compute_forward_step(
  8027. const struct ggml_compute_params * params,
  8028. const struct ggml_tensor * src0,
  8029. struct ggml_tensor * dst) {
  8030. switch (src0->type) {
  8031. case GGML_TYPE_F32:
  8032. {
  8033. ggml_compute_forward_step_f32(params, src0, dst);
  8034. } break;
  8035. default:
  8036. {
  8037. GGML_ASSERT(false);
  8038. } break;
  8039. }
  8040. }
  8041. // ggml_compute_forward_tanh
  8042. static void ggml_compute_forward_tanh_f32(
  8043. const struct ggml_compute_params * params,
  8044. const struct ggml_tensor * src0,
  8045. struct ggml_tensor * dst) {
  8046. assert(params->ith == 0);
  8047. assert(ggml_are_same_shape(src0, dst));
  8048. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8049. return;
  8050. }
  8051. const int n = ggml_nrows(src0);
  8052. const int nc = src0->ne[0];
  8053. assert(dst->nb[0] == sizeof(float));
  8054. assert(src0->nb[0] == sizeof(float));
  8055. for (int i = 0; i < n; i++) {
  8056. ggml_vec_tanh_f32(nc,
  8057. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8058. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8059. }
  8060. }
  8061. static void ggml_compute_forward_tanh(
  8062. const struct ggml_compute_params * params,
  8063. const struct ggml_tensor * src0,
  8064. struct ggml_tensor * dst) {
  8065. switch (src0->type) {
  8066. case GGML_TYPE_F32:
  8067. {
  8068. ggml_compute_forward_tanh_f32(params, src0, dst);
  8069. } break;
  8070. default:
  8071. {
  8072. GGML_ASSERT(false);
  8073. } break;
  8074. }
  8075. }
  8076. // ggml_compute_forward_elu
  8077. static void ggml_compute_forward_elu_f32(
  8078. const struct ggml_compute_params * params,
  8079. const struct ggml_tensor * src0,
  8080. struct ggml_tensor * dst) {
  8081. assert(params->ith == 0);
  8082. assert(ggml_are_same_shape(src0, dst));
  8083. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8084. return;
  8085. }
  8086. const int n = ggml_nrows(src0);
  8087. const int nc = src0->ne[0];
  8088. assert(dst->nb[0] == sizeof(float));
  8089. assert(src0->nb[0] == sizeof(float));
  8090. for (int i = 0; i < n; i++) {
  8091. ggml_vec_elu_f32(nc,
  8092. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8093. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8094. }
  8095. }
  8096. static void ggml_compute_forward_elu(
  8097. const struct ggml_compute_params * params,
  8098. const struct ggml_tensor * src0,
  8099. struct ggml_tensor * dst) {
  8100. switch (src0->type) {
  8101. case GGML_TYPE_F32:
  8102. {
  8103. ggml_compute_forward_elu_f32(params, src0, dst);
  8104. } break;
  8105. default:
  8106. {
  8107. GGML_ASSERT(false);
  8108. } break;
  8109. }
  8110. }
  8111. // ggml_compute_forward_relu
  8112. static void ggml_compute_forward_relu_f32(
  8113. const struct ggml_compute_params * params,
  8114. const struct ggml_tensor * src0,
  8115. struct ggml_tensor * dst) {
  8116. assert(params->ith == 0);
  8117. assert(ggml_are_same_shape(src0, dst));
  8118. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8119. return;
  8120. }
  8121. const int n = ggml_nrows(src0);
  8122. const int nc = src0->ne[0];
  8123. assert(dst->nb[0] == sizeof(float));
  8124. assert(src0->nb[0] == sizeof(float));
  8125. for (int i = 0; i < n; i++) {
  8126. ggml_vec_relu_f32(nc,
  8127. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8128. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8129. }
  8130. }
  8131. static void ggml_compute_forward_relu(
  8132. const struct ggml_compute_params * params,
  8133. const struct ggml_tensor * src0,
  8134. struct ggml_tensor * dst) {
  8135. switch (src0->type) {
  8136. case GGML_TYPE_F32:
  8137. {
  8138. ggml_compute_forward_relu_f32(params, src0, dst);
  8139. } break;
  8140. default:
  8141. {
  8142. GGML_ASSERT(false);
  8143. } break;
  8144. }
  8145. }
  8146. // ggml_compute_forward_gelu
  8147. static void ggml_compute_forward_gelu_f32(
  8148. const struct ggml_compute_params * params,
  8149. const struct ggml_tensor * src0,
  8150. struct ggml_tensor * dst) {
  8151. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8152. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8153. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8154. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8155. return;
  8156. }
  8157. const int ith = params->ith;
  8158. const int nth = params->nth;
  8159. const int nc = src0->ne[0];
  8160. const int nr = ggml_nrows(src0);
  8161. // rows per thread
  8162. const int dr = (nr + nth - 1)/nth;
  8163. // row range for this thread
  8164. const int ir0 = dr*ith;
  8165. const int ir1 = MIN(ir0 + dr, nr);
  8166. for (int i1 = ir0; i1 < ir1; i1++) {
  8167. ggml_vec_gelu_f32(nc,
  8168. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8169. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8170. #ifndef NDEBUG
  8171. for (int k = 0; k < nc; k++) {
  8172. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8173. UNUSED(x);
  8174. assert(!isnan(x));
  8175. assert(!isinf(x));
  8176. }
  8177. #endif
  8178. }
  8179. }
  8180. static void ggml_compute_forward_gelu(
  8181. const struct ggml_compute_params * params,
  8182. const struct ggml_tensor * src0,
  8183. struct ggml_tensor * dst) {
  8184. switch (src0->type) {
  8185. case GGML_TYPE_F32:
  8186. {
  8187. ggml_compute_forward_gelu_f32(params, src0, dst);
  8188. } break;
  8189. default:
  8190. {
  8191. GGML_ASSERT(false);
  8192. } break;
  8193. }
  8194. }
  8195. // ggml_compute_forward_gelu_quick
  8196. static void ggml_compute_forward_gelu_quick_f32(
  8197. const struct ggml_compute_params * params,
  8198. const struct ggml_tensor * src0,
  8199. struct ggml_tensor * dst) {
  8200. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8201. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8202. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8203. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8204. return;
  8205. }
  8206. const int ith = params->ith;
  8207. const int nth = params->nth;
  8208. const int nc = src0->ne[0];
  8209. const int nr = ggml_nrows(src0);
  8210. // rows per thread
  8211. const int dr = (nr + nth - 1)/nth;
  8212. // row range for this thread
  8213. const int ir0 = dr*ith;
  8214. const int ir1 = MIN(ir0 + dr, nr);
  8215. for (int i1 = ir0; i1 < ir1; i1++) {
  8216. ggml_vec_gelu_quick_f32(nc,
  8217. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8218. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8219. #ifndef NDEBUG
  8220. for (int k = 0; k < nc; k++) {
  8221. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8222. UNUSED(x);
  8223. assert(!isnan(x));
  8224. assert(!isinf(x));
  8225. }
  8226. #endif
  8227. }
  8228. }
  8229. static void ggml_compute_forward_gelu_quick(
  8230. const struct ggml_compute_params * params,
  8231. const struct ggml_tensor * src0,
  8232. struct ggml_tensor * dst) {
  8233. switch (src0->type) {
  8234. case GGML_TYPE_F32:
  8235. {
  8236. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8237. } break;
  8238. default:
  8239. {
  8240. GGML_ASSERT(false);
  8241. } break;
  8242. }
  8243. }
  8244. // ggml_compute_forward_silu
  8245. static void ggml_compute_forward_silu_f32(
  8246. const struct ggml_compute_params * params,
  8247. const struct ggml_tensor * src0,
  8248. struct ggml_tensor * dst) {
  8249. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8250. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8251. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8252. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8253. return;
  8254. }
  8255. const int ith = params->ith;
  8256. const int nth = params->nth;
  8257. const int nc = src0->ne[0];
  8258. const int nr = ggml_nrows(src0);
  8259. // rows per thread
  8260. const int dr = (nr + nth - 1)/nth;
  8261. // row range for this thread
  8262. const int ir0 = dr*ith;
  8263. const int ir1 = MIN(ir0 + dr, nr);
  8264. for (int i1 = ir0; i1 < ir1; i1++) {
  8265. ggml_vec_silu_f32(nc,
  8266. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8267. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8268. #ifndef NDEBUG
  8269. for (int k = 0; k < nc; k++) {
  8270. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8271. UNUSED(x);
  8272. assert(!isnan(x));
  8273. assert(!isinf(x));
  8274. }
  8275. #endif
  8276. }
  8277. }
  8278. static void ggml_compute_forward_silu(
  8279. const struct ggml_compute_params * params,
  8280. const struct ggml_tensor * src0,
  8281. struct ggml_tensor * dst) {
  8282. switch (src0->type) {
  8283. case GGML_TYPE_F32:
  8284. {
  8285. ggml_compute_forward_silu_f32(params, src0, dst);
  8286. } break;
  8287. default:
  8288. {
  8289. GGML_ASSERT(false);
  8290. } break;
  8291. }
  8292. }
  8293. // ggml_compute_forward_silu_back
  8294. static void ggml_compute_forward_silu_back_f32(
  8295. const struct ggml_compute_params * params,
  8296. const struct ggml_tensor * src0,
  8297. const struct ggml_tensor * grad,
  8298. struct ggml_tensor * dst) {
  8299. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8300. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8301. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8302. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8303. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8304. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8305. return;
  8306. }
  8307. const int ith = params->ith;
  8308. const int nth = params->nth;
  8309. const int nc = src0->ne[0];
  8310. const int nr = ggml_nrows(src0);
  8311. // rows per thread
  8312. const int dr = (nr + nth - 1)/nth;
  8313. // row range for this thread
  8314. const int ir0 = dr*ith;
  8315. const int ir1 = MIN(ir0 + dr, nr);
  8316. for (int i1 = ir0; i1 < ir1; i1++) {
  8317. ggml_vec_silu_backward_f32(nc,
  8318. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8319. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8320. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8321. #ifndef NDEBUG
  8322. for (int k = 0; k < nc; k++) {
  8323. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8324. UNUSED(x);
  8325. assert(!isnan(x));
  8326. assert(!isinf(x));
  8327. }
  8328. #endif
  8329. }
  8330. }
  8331. static void ggml_compute_forward_silu_back(
  8332. const struct ggml_compute_params * params,
  8333. const struct ggml_tensor * src0,
  8334. const struct ggml_tensor * grad,
  8335. struct ggml_tensor * dst) {
  8336. switch (src0->type) {
  8337. case GGML_TYPE_F32:
  8338. {
  8339. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8340. } break;
  8341. default:
  8342. {
  8343. GGML_ASSERT(false);
  8344. } break;
  8345. }
  8346. }
  8347. // ggml_compute_forward_norm
  8348. static void ggml_compute_forward_norm_f32(
  8349. const struct ggml_compute_params * params,
  8350. const struct ggml_tensor * src0,
  8351. struct ggml_tensor * dst) {
  8352. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8353. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8354. return;
  8355. }
  8356. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8357. const int ith = params->ith;
  8358. const int nth = params->nth;
  8359. GGML_TENSOR_UNARY_OP_LOCALS;
  8360. const float eps = 1e-5f; // TODO: make this a parameter
  8361. // TODO: optimize
  8362. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8363. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8364. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8365. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8366. ggml_float sum = 0.0;
  8367. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8368. sum += (ggml_float)x[i00];
  8369. }
  8370. float mean = sum/ne00;
  8371. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8372. ggml_float sum2 = 0.0;
  8373. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8374. float v = x[i00] - mean;
  8375. y[i00] = v;
  8376. sum2 += (ggml_float)(v*v);
  8377. }
  8378. float variance = sum2/ne00;
  8379. const float scale = 1.0f/sqrtf(variance + eps);
  8380. ggml_vec_scale_f32(ne00, y, scale);
  8381. }
  8382. }
  8383. }
  8384. }
  8385. static void ggml_compute_forward_norm(
  8386. const struct ggml_compute_params * params,
  8387. const struct ggml_tensor * src0,
  8388. struct ggml_tensor * dst) {
  8389. switch (src0->type) {
  8390. case GGML_TYPE_F32:
  8391. {
  8392. ggml_compute_forward_norm_f32(params, src0, dst);
  8393. } break;
  8394. default:
  8395. {
  8396. GGML_ASSERT(false);
  8397. } break;
  8398. }
  8399. }
  8400. static void ggml_compute_forward_rms_norm_f32(
  8401. const struct ggml_compute_params * params,
  8402. const struct ggml_tensor * src0,
  8403. struct ggml_tensor * dst) {
  8404. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8405. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8406. return;
  8407. }
  8408. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8409. const int ith = params->ith;
  8410. const int nth = params->nth;
  8411. GGML_TENSOR_UNARY_OP_LOCALS;
  8412. float eps;
  8413. memcpy(&eps, dst->op_params, sizeof(float));
  8414. // TODO: optimize
  8415. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8416. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8417. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8418. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8419. ggml_float sum = 0.0;
  8420. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8421. sum += (ggml_float)(x[i00] * x[i00]);
  8422. }
  8423. const float mean = sum/ne00;
  8424. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8425. memcpy(y, x, ne00 * sizeof(float));
  8426. // for (int i00 = 0; i00 < ne00; i00++) {
  8427. // y[i00] = x[i00];
  8428. // }
  8429. const float scale = 1.0f/sqrtf(mean + eps);
  8430. ggml_vec_scale_f32(ne00, y, scale);
  8431. }
  8432. }
  8433. }
  8434. }
  8435. static void ggml_compute_forward_rms_norm(
  8436. const struct ggml_compute_params * params,
  8437. const struct ggml_tensor * src0,
  8438. struct ggml_tensor * dst) {
  8439. switch (src0->type) {
  8440. case GGML_TYPE_F32:
  8441. {
  8442. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8443. } break;
  8444. default:
  8445. {
  8446. GGML_ASSERT(false);
  8447. } break;
  8448. }
  8449. }
  8450. static void ggml_compute_forward_rms_norm_back_f32(
  8451. const struct ggml_compute_params * params,
  8452. const struct ggml_tensor * src0,
  8453. const struct ggml_tensor * src1,
  8454. struct ggml_tensor * dst) {
  8455. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8456. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8457. return;
  8458. }
  8459. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8460. const int ith = params->ith;
  8461. const int nth = params->nth;
  8462. GGML_TENSOR_BINARY_OP_LOCALS;
  8463. const float eps = 1e-6f; // TODO: make this a parameter
  8464. // TODO: optimize
  8465. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8466. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8467. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8468. // src1 is same shape as src0 => same indices
  8469. const int64_t i11 = i01;
  8470. const int64_t i12 = i02;
  8471. const int64_t i13 = i03;
  8472. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8473. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8474. ggml_float sum_xx = 0.0;
  8475. ggml_float sum_xdz = 0.0;
  8476. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8477. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8478. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8479. }
  8480. //const float mean = (float)(sum_xx)/ne00;
  8481. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8482. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8483. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8484. // we could cache rms from forward pass to improve performance.
  8485. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8486. //const float rms = sqrtf(mean_eps);
  8487. const float rrms = 1.0f / sqrtf(mean_eps);
  8488. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8489. {
  8490. // z = rms_norm(x)
  8491. //
  8492. // rms_norm(src0) =
  8493. // scale(
  8494. // src0,
  8495. // div(
  8496. // 1,
  8497. // sqrt(
  8498. // add(
  8499. // scale(
  8500. // sum(
  8501. // sqr(
  8502. // src0)),
  8503. // (1.0/N)),
  8504. // eps))));
  8505. // postorder:
  8506. // ## op args grad
  8507. // 00 param src0 grad[#00]
  8508. // 01 const 1
  8509. // 02 sqr (#00) grad[#02]
  8510. // 03 sum (#02) grad[#03]
  8511. // 04 const 1/N
  8512. // 05 scale (#03, #04) grad[#05]
  8513. // 06 const eps
  8514. // 07 add (#05, #06) grad[#07]
  8515. // 08 sqrt (#07) grad[#08]
  8516. // 09 div (#01,#08) grad[#09]
  8517. // 10 scale (#00,#09) grad[#10]
  8518. //
  8519. // backward pass, given grad[#10]
  8520. // #10: scale
  8521. // grad[#00] += scale(grad[#10],#09)
  8522. // grad[#09] += sum(mul(grad[#10],#00))
  8523. // #09: div
  8524. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8525. // #08: sqrt
  8526. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8527. // #07: add
  8528. // grad[#05] += grad[#07]
  8529. // #05: scale
  8530. // grad[#03] += scale(grad[#05],#04)
  8531. // #03: sum
  8532. // grad[#02] += repeat(grad[#03], #02)
  8533. // #02:
  8534. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8535. //
  8536. // substitute and simplify:
  8537. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8538. // grad[#02] = repeat(grad[#03], #02)
  8539. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8540. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8541. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8542. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8543. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8544. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8545. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8546. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8547. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8548. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8549. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8550. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8551. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8552. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8553. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8554. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8555. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8556. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8557. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8558. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8559. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8560. // a = b*c + d*e
  8561. // a = b*c*f/f + d*e*f/f
  8562. // a = (b*c*f + d*e*f)*(1/f)
  8563. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8564. // a = (b + d*e/c)*c
  8565. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8566. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8567. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8568. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8569. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8570. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8571. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8572. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8573. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8574. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8575. }
  8576. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8577. // post-order:
  8578. // dx := x
  8579. // dx := scale(dx,-mean_xdz/mean_eps)
  8580. // dx := add(dx, dz)
  8581. // dx := scale(dx, rrms)
  8582. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8583. ggml_vec_cpy_f32 (ne00, dx, x);
  8584. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8585. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8586. ggml_vec_acc_f32 (ne00, dx, dz);
  8587. ggml_vec_scale_f32(ne00, dx, rrms);
  8588. }
  8589. }
  8590. }
  8591. }
  8592. static void ggml_compute_forward_rms_norm_back(
  8593. const struct ggml_compute_params * params,
  8594. const struct ggml_tensor * src0,
  8595. const struct ggml_tensor * src1,
  8596. struct ggml_tensor * dst) {
  8597. switch (src0->type) {
  8598. case GGML_TYPE_F32:
  8599. {
  8600. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8601. } break;
  8602. default:
  8603. {
  8604. GGML_ASSERT(false);
  8605. } break;
  8606. }
  8607. }
  8608. // ggml_compute_forward_mul_mat
  8609. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8610. // helper function to determine if it is better to use BLAS or not
  8611. // for large matrices, BLAS is faster
  8612. static bool ggml_compute_forward_mul_mat_use_blas(
  8613. const struct ggml_tensor * src0,
  8614. const struct ggml_tensor * src1,
  8615. struct ggml_tensor * dst) {
  8616. //const int64_t ne00 = src0->ne[0];
  8617. //const int64_t ne01 = src0->ne[1];
  8618. const int64_t ne10 = src1->ne[0];
  8619. const int64_t ne0 = dst->ne[0];
  8620. const int64_t ne1 = dst->ne[1];
  8621. // TODO: find the optimal values for these
  8622. if (ggml_is_contiguous(src0) &&
  8623. ggml_is_contiguous(src1) &&
  8624. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8625. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8626. return true;
  8627. }
  8628. return false;
  8629. }
  8630. #endif
  8631. static void ggml_compute_forward_mul_mat(
  8632. const struct ggml_compute_params * params,
  8633. const struct ggml_tensor * src0,
  8634. const struct ggml_tensor * src1,
  8635. struct ggml_tensor * dst) {
  8636. int64_t t0 = ggml_perf_time_us();
  8637. UNUSED(t0);
  8638. GGML_TENSOR_BINARY_OP_LOCALS;
  8639. const int ith = params->ith;
  8640. const int nth = params->nth;
  8641. const enum ggml_type type = src0->type;
  8642. const bool src1_cont = ggml_is_contiguous(src1);
  8643. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8644. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8645. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8646. GGML_ASSERT(ne0 == ne01);
  8647. GGML_ASSERT(ne1 == ne11);
  8648. GGML_ASSERT(ne2 == ne12);
  8649. GGML_ASSERT(ne3 == ne13);
  8650. // we don't support permuted src0 or src1
  8651. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8652. GGML_ASSERT(nb10 == sizeof(float));
  8653. // dst cannot be transposed or permuted
  8654. GGML_ASSERT(nb0 == sizeof(float));
  8655. GGML_ASSERT(nb0 <= nb1);
  8656. GGML_ASSERT(nb1 <= nb2);
  8657. GGML_ASSERT(nb2 <= nb3);
  8658. // nb01 >= nb00 - src0 is not transposed
  8659. // compute by src0 rows
  8660. #if defined(GGML_USE_CLBLAST)
  8661. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8662. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8663. // ref: https://github.com/ggerganov/ggml/pull/224
  8664. GGML_ASSERT(ne02 == ne12);
  8665. GGML_ASSERT(ne03 == ne13);
  8666. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8667. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8668. }
  8669. return;
  8670. }
  8671. #endif
  8672. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8673. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8674. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8675. // ref: https://github.com/ggerganov/ggml/pull/224
  8676. GGML_ASSERT(ne02 == ne12);
  8677. GGML_ASSERT(ne03 == ne13);
  8678. if (params->ith != 0) {
  8679. return;
  8680. }
  8681. if (params->type == GGML_TASK_INIT) {
  8682. return;
  8683. }
  8684. if (params->type == GGML_TASK_FINALIZE) {
  8685. return;
  8686. }
  8687. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8688. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8689. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8690. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8691. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8692. if (type != GGML_TYPE_F32) {
  8693. float * const wdata = params->wdata;
  8694. ggml_to_float_t const to_float = type_traits[type].to_float;
  8695. size_t id = 0;
  8696. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8697. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8698. id += ne00;
  8699. }
  8700. assert(id*sizeof(float) <= params->wsize);
  8701. x = wdata;
  8702. }
  8703. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8704. ne11, ne01, ne10,
  8705. 1.0f, y, ne10,
  8706. x, ne00,
  8707. 0.0f, d, ne01);
  8708. }
  8709. }
  8710. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8711. return;
  8712. }
  8713. #endif
  8714. if (params->type == GGML_TASK_INIT) {
  8715. if (src1->type != vec_dot_type) {
  8716. char * wdata = params->wdata;
  8717. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8718. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8719. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8720. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8721. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8722. wdata += row_size;
  8723. }
  8724. }
  8725. }
  8726. }
  8727. return;
  8728. }
  8729. if (params->type == GGML_TASK_FINALIZE) {
  8730. return;
  8731. }
  8732. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8733. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8734. const int64_t nr0 = ne01; // src0 rows
  8735. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  8736. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8737. // distribute the thread work across the inner or outer loop based on which one is larger
  8738. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8739. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8740. const int64_t ith0 = ith % nth0;
  8741. const int64_t ith1 = ith / nth0;
  8742. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8743. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8744. const int64_t ir010 = dr0*ith0;
  8745. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8746. const int64_t ir110 = dr1*ith1;
  8747. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8748. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8749. // threads with no work simply yield (not sure if it helps)
  8750. if (ir010 >= ir011 || ir110 >= ir111) {
  8751. sched_yield();
  8752. return;
  8753. }
  8754. assert(ne12 % ne02 == 0);
  8755. assert(ne13 % ne03 == 0);
  8756. // broadcast factors
  8757. const int64_t r2 = ne12/ne02;
  8758. const int64_t r3 = ne13/ne03;
  8759. // block-tiling attempt
  8760. const int64_t blck_0 = 16;
  8761. const int64_t blck_1 = 16;
  8762. // attempt to reduce false-sharing (does not seem to make a difference)
  8763. float tmp[16];
  8764. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8765. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8766. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8767. const int64_t i13 = (ir1/(ne12*ne11));
  8768. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  8769. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  8770. // broadcast src0 into src1
  8771. const int64_t i03 = i13/r3;
  8772. const int64_t i02 = i12/r2;
  8773. const int64_t i1 = i11;
  8774. const int64_t i2 = i12;
  8775. const int64_t i3 = i13;
  8776. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8777. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8778. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8779. // the original src1 data pointer, so we should index using the indices directly
  8780. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8781. const char * src1_col = (const char *) wdata +
  8782. (src1_cont || src1->type != vec_dot_type
  8783. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8784. : (i11*nb11 + i12*nb12 + i13*nb13));
  8785. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8786. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8787. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8788. //}
  8789. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8790. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8791. }
  8792. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8793. }
  8794. }
  8795. }
  8796. }
  8797. // ggml_compute_forward_out_prod
  8798. static void ggml_compute_forward_out_prod_f32(
  8799. const struct ggml_compute_params * params,
  8800. const struct ggml_tensor * src0,
  8801. const struct ggml_tensor * src1,
  8802. struct ggml_tensor * dst) {
  8803. int64_t t0 = ggml_perf_time_us();
  8804. UNUSED(t0);
  8805. GGML_TENSOR_BINARY_OP_LOCALS;
  8806. const int ith = params->ith;
  8807. const int nth = params->nth;
  8808. GGML_ASSERT(ne02 == ne12);
  8809. GGML_ASSERT(ne03 == ne13);
  8810. GGML_ASSERT(ne2 == ne12);
  8811. GGML_ASSERT(ne3 == ne13);
  8812. // we don't support permuted src0 or src1
  8813. GGML_ASSERT(nb00 == sizeof(float));
  8814. // dst cannot be transposed or permuted
  8815. GGML_ASSERT(nb0 == sizeof(float));
  8816. // GGML_ASSERT(nb0 <= nb1);
  8817. // GGML_ASSERT(nb1 <= nb2);
  8818. // GGML_ASSERT(nb2 <= nb3);
  8819. GGML_ASSERT(ne0 == ne00);
  8820. GGML_ASSERT(ne1 == ne10);
  8821. GGML_ASSERT(ne2 == ne02);
  8822. GGML_ASSERT(ne3 == ne03);
  8823. // nb01 >= nb00 - src0 is not transposed
  8824. // compute by src0 rows
  8825. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8826. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8827. if (params->type == GGML_TASK_INIT) {
  8828. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8829. return;
  8830. }
  8831. if (params->type == GGML_TASK_FINALIZE) {
  8832. return;
  8833. }
  8834. // parallelize by last three dimensions
  8835. // total rows in dst
  8836. const int64_t nr = ne1*ne2*ne3;
  8837. // rows per thread
  8838. const int64_t dr = (nr + nth - 1)/nth;
  8839. // row range for this thread
  8840. const int64_t ir0 = dr*ith;
  8841. const int64_t ir1 = MIN(ir0 + dr, nr);
  8842. // dst[:,:,:,:] = 0
  8843. // for i2,i3:
  8844. // for i1:
  8845. // for i01:
  8846. // for i0:
  8847. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8848. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8849. // dst indices
  8850. const int64_t i3 = ir/(ne2*ne1);
  8851. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8852. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8853. const int64_t i02 = i2;
  8854. const int64_t i03 = i3;
  8855. //const int64_t i10 = i1;
  8856. const int64_t i12 = i2;
  8857. const int64_t i13 = i3;
  8858. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8859. const int64_t i11 = i01;
  8860. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8861. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8862. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8863. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8864. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8865. // d[i0] += s0[i0] * s1[i1];
  8866. // }
  8867. }
  8868. }
  8869. //int64_t t1 = ggml_perf_time_us();
  8870. //static int64_t acc = 0;
  8871. //acc += t1 - t0;
  8872. //if (t1 - t0 > 10) {
  8873. // printf("\n");
  8874. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8875. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8876. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8877. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8878. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8879. //}
  8880. }
  8881. static void ggml_compute_forward_out_prod(
  8882. const struct ggml_compute_params * params,
  8883. const struct ggml_tensor * src0,
  8884. const struct ggml_tensor * src1,
  8885. struct ggml_tensor * dst) {
  8886. switch (src0->type) {
  8887. case GGML_TYPE_Q4_0:
  8888. case GGML_TYPE_Q4_1:
  8889. case GGML_TYPE_Q5_0:
  8890. case GGML_TYPE_Q5_1:
  8891. case GGML_TYPE_Q8_0:
  8892. case GGML_TYPE_Q8_1:
  8893. {
  8894. GGML_ASSERT(false); // todo
  8895. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8896. } break;
  8897. case GGML_TYPE_F16:
  8898. {
  8899. GGML_ASSERT(false); // todo
  8900. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8901. } break;
  8902. case GGML_TYPE_F32:
  8903. {
  8904. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8905. } break;
  8906. default:
  8907. {
  8908. GGML_ASSERT(false);
  8909. } break;
  8910. }
  8911. }
  8912. // ggml_compute_forward_scale
  8913. static void ggml_compute_forward_scale_f32(
  8914. const struct ggml_compute_params * params,
  8915. const struct ggml_tensor * src0,
  8916. const struct ggml_tensor * src1,
  8917. struct ggml_tensor * dst) {
  8918. GGML_ASSERT(ggml_is_contiguous(src0));
  8919. GGML_ASSERT(ggml_is_contiguous(dst));
  8920. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8921. GGML_ASSERT(ggml_is_scalar(src1));
  8922. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8923. return;
  8924. }
  8925. // scale factor
  8926. const float v = *(float *) src1->data;
  8927. const int ith = params->ith;
  8928. const int nth = params->nth;
  8929. const int nc = src0->ne[0];
  8930. const int nr = ggml_nrows(src0);
  8931. // rows per thread
  8932. const int dr = (nr + nth - 1)/nth;
  8933. // row range for this thread
  8934. const int ir0 = dr*ith;
  8935. const int ir1 = MIN(ir0 + dr, nr);
  8936. const size_t nb01 = src0->nb[1];
  8937. const size_t nb1 = dst->nb[1];
  8938. for (int i1 = ir0; i1 < ir1; i1++) {
  8939. if (dst->data != src0->data) {
  8940. // src0 is same shape as dst => same indices
  8941. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8942. }
  8943. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8944. }
  8945. }
  8946. static void ggml_compute_forward_scale(
  8947. const struct ggml_compute_params * params,
  8948. const struct ggml_tensor * src0,
  8949. const struct ggml_tensor * src1,
  8950. struct ggml_tensor * dst) {
  8951. switch (src0->type) {
  8952. case GGML_TYPE_F32:
  8953. {
  8954. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8955. } break;
  8956. default:
  8957. {
  8958. GGML_ASSERT(false);
  8959. } break;
  8960. }
  8961. }
  8962. // ggml_compute_forward_set
  8963. static void ggml_compute_forward_set_f32(
  8964. const struct ggml_compute_params * params,
  8965. const struct ggml_tensor * src0,
  8966. const struct ggml_tensor * src1,
  8967. struct ggml_tensor * dst) {
  8968. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8969. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8970. // view src0 and dst with these strides and data offset inbytes during set
  8971. // nb0 is implicitely element_size because src0 and dst are contiguous
  8972. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8973. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8974. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8975. size_t offset = ((int32_t *) dst->op_params)[3];
  8976. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8977. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8978. // memcpy needs to be synchronized across threads to avoid race conditions.
  8979. // => do it in INIT phase
  8980. memcpy(
  8981. ((char *) dst->data),
  8982. ((char *) src0->data),
  8983. ggml_nbytes(dst));
  8984. }
  8985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8986. return;
  8987. }
  8988. const int ith = params->ith;
  8989. const int nth = params->nth;
  8990. const int nr = ggml_nrows(src1);
  8991. const int nc = src1->ne[0];
  8992. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8993. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8994. // src0 and dst as viewed during set
  8995. const size_t nb0 = ggml_element_size(src0);
  8996. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8997. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8998. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8999. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9000. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9001. GGML_ASSERT(nb10 == sizeof(float));
  9002. // rows per thread
  9003. const int dr = (nr + nth - 1)/nth;
  9004. // row range for this thread
  9005. const int ir0 = dr*ith;
  9006. const int ir1 = MIN(ir0 + dr, nr);
  9007. for (int ir = ir0; ir < ir1; ++ir) {
  9008. // src0 and dst are viewed with shape of src1 and offset
  9009. // => same indices
  9010. const int i3 = ir/(ne12*ne11);
  9011. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9012. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9013. ggml_vec_cpy_f32(nc,
  9014. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9015. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9016. }
  9017. }
  9018. static void ggml_compute_forward_set(
  9019. const struct ggml_compute_params * params,
  9020. const struct ggml_tensor * src0,
  9021. const struct ggml_tensor * src1,
  9022. struct ggml_tensor * dst) {
  9023. switch (src0->type) {
  9024. case GGML_TYPE_F32:
  9025. {
  9026. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9027. } break;
  9028. case GGML_TYPE_F16:
  9029. case GGML_TYPE_Q4_0:
  9030. case GGML_TYPE_Q4_1:
  9031. case GGML_TYPE_Q5_0:
  9032. case GGML_TYPE_Q5_1:
  9033. case GGML_TYPE_Q8_0:
  9034. case GGML_TYPE_Q8_1:
  9035. case GGML_TYPE_Q2_K:
  9036. case GGML_TYPE_Q3_K:
  9037. case GGML_TYPE_Q4_K:
  9038. case GGML_TYPE_Q5_K:
  9039. case GGML_TYPE_Q6_K:
  9040. default:
  9041. {
  9042. GGML_ASSERT(false);
  9043. } break;
  9044. }
  9045. }
  9046. // ggml_compute_forward_cpy
  9047. static void ggml_compute_forward_cpy(
  9048. const struct ggml_compute_params * params,
  9049. const struct ggml_tensor * src0,
  9050. struct ggml_tensor * dst) {
  9051. ggml_compute_forward_dup(params, src0, dst);
  9052. }
  9053. // ggml_compute_forward_cont
  9054. static void ggml_compute_forward_cont(
  9055. const struct ggml_compute_params * params,
  9056. const struct ggml_tensor * src0,
  9057. struct ggml_tensor * dst) {
  9058. ggml_compute_forward_dup(params, src0, dst);
  9059. }
  9060. // ggml_compute_forward_reshape
  9061. static void ggml_compute_forward_reshape(
  9062. const struct ggml_compute_params * params,
  9063. const struct ggml_tensor * src0,
  9064. struct ggml_tensor * dst) {
  9065. // NOP
  9066. UNUSED(params);
  9067. UNUSED(src0);
  9068. UNUSED(dst);
  9069. }
  9070. // ggml_compute_forward_view
  9071. static void ggml_compute_forward_view(
  9072. const struct ggml_compute_params * params,
  9073. const struct ggml_tensor * src0) {
  9074. // NOP
  9075. UNUSED(params);
  9076. UNUSED(src0);
  9077. }
  9078. // ggml_compute_forward_permute
  9079. static void ggml_compute_forward_permute(
  9080. const struct ggml_compute_params * params,
  9081. const struct ggml_tensor * src0) {
  9082. // NOP
  9083. UNUSED(params);
  9084. UNUSED(src0);
  9085. }
  9086. // ggml_compute_forward_transpose
  9087. static void ggml_compute_forward_transpose(
  9088. const struct ggml_compute_params * params,
  9089. const struct ggml_tensor * src0) {
  9090. // NOP
  9091. UNUSED(params);
  9092. UNUSED(src0);
  9093. }
  9094. // ggml_compute_forward_get_rows
  9095. static void ggml_compute_forward_get_rows_q(
  9096. const struct ggml_compute_params * params,
  9097. const struct ggml_tensor * src0,
  9098. const struct ggml_tensor * src1,
  9099. struct ggml_tensor * dst) {
  9100. assert(params->ith == 0);
  9101. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9102. return;
  9103. }
  9104. const int nc = src0->ne[0];
  9105. const int nr = ggml_nelements(src1);
  9106. const enum ggml_type type = src0->type;
  9107. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9108. assert( dst->ne[0] == nc);
  9109. assert( dst->ne[1] == nr);
  9110. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9111. for (int i = 0; i < nr; ++i) {
  9112. const int r = ((int32_t *) src1->data)[i];
  9113. dequantize_row_q(
  9114. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9115. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9116. }
  9117. }
  9118. static void ggml_compute_forward_get_rows_f16(
  9119. const struct ggml_compute_params * params,
  9120. const struct ggml_tensor * src0,
  9121. const struct ggml_tensor * src1,
  9122. struct ggml_tensor * dst) {
  9123. assert(params->ith == 0);
  9124. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9125. return;
  9126. }
  9127. const int nc = src0->ne[0];
  9128. const int nr = ggml_nelements(src1);
  9129. assert( dst->ne[0] == nc);
  9130. assert( dst->ne[1] == nr);
  9131. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9132. for (int i = 0; i < nr; ++i) {
  9133. const int r = ((int32_t *) src1->data)[i];
  9134. for (int j = 0; j < nc; ++j) {
  9135. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9136. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9137. }
  9138. }
  9139. }
  9140. static void ggml_compute_forward_get_rows_f32(
  9141. const struct ggml_compute_params * params,
  9142. const struct ggml_tensor * src0,
  9143. const struct ggml_tensor * src1,
  9144. struct ggml_tensor * dst) {
  9145. assert(params->ith == 0);
  9146. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9147. return;
  9148. }
  9149. const int nc = src0->ne[0];
  9150. const int nr = ggml_nelements(src1);
  9151. assert( dst->ne[0] == nc);
  9152. assert( dst->ne[1] == nr);
  9153. assert(src0->nb[0] == sizeof(float));
  9154. for (int i = 0; i < nr; ++i) {
  9155. const int r = ((int32_t *) src1->data)[i];
  9156. ggml_vec_cpy_f32(nc,
  9157. (float *) ((char *) dst->data + i*dst->nb[1]),
  9158. (float *) ((char *) src0->data + r*src0->nb[1]));
  9159. }
  9160. }
  9161. static void ggml_compute_forward_get_rows(
  9162. const struct ggml_compute_params * params,
  9163. const struct ggml_tensor * src0,
  9164. const struct ggml_tensor * src1,
  9165. struct ggml_tensor * dst) {
  9166. switch (src0->type) {
  9167. case GGML_TYPE_Q4_0:
  9168. case GGML_TYPE_Q4_1:
  9169. case GGML_TYPE_Q5_0:
  9170. case GGML_TYPE_Q5_1:
  9171. case GGML_TYPE_Q8_0:
  9172. case GGML_TYPE_Q8_1:
  9173. case GGML_TYPE_Q2_K:
  9174. case GGML_TYPE_Q3_K:
  9175. case GGML_TYPE_Q4_K:
  9176. case GGML_TYPE_Q5_K:
  9177. case GGML_TYPE_Q6_K:
  9178. {
  9179. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9180. } break;
  9181. case GGML_TYPE_F16:
  9182. {
  9183. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9184. } break;
  9185. case GGML_TYPE_F32:
  9186. {
  9187. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9188. } break;
  9189. default:
  9190. {
  9191. GGML_ASSERT(false);
  9192. } break;
  9193. }
  9194. //static bool first = true;
  9195. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9196. //if (first) {
  9197. // first = false;
  9198. //} else {
  9199. // for (int k = 0; k < dst->ne[1]; ++k) {
  9200. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9201. // for (int i = 0; i < 16; ++i) {
  9202. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9203. // }
  9204. // printf("\n");
  9205. // }
  9206. // printf("\n");
  9207. // }
  9208. // printf("\n");
  9209. // exit(0);
  9210. //}
  9211. }
  9212. // ggml_compute_forward_get_rows_back
  9213. static void ggml_compute_forward_get_rows_back_f32_f16(
  9214. const struct ggml_compute_params * params,
  9215. const struct ggml_tensor * src0,
  9216. const struct ggml_tensor * src1,
  9217. const struct ggml_tensor * opt0,
  9218. struct ggml_tensor * dst) {
  9219. GGML_ASSERT(params->ith == 0);
  9220. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9221. GGML_ASSERT(ggml_is_contiguous(opt0));
  9222. GGML_ASSERT(ggml_is_contiguous(dst));
  9223. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9224. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9225. return;
  9226. }
  9227. const int nc = src0->ne[0];
  9228. const int nr = ggml_nelements(src1);
  9229. GGML_ASSERT( dst->ne[0] == nc);
  9230. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9231. for (int i = 0; i < nr; ++i) {
  9232. const int r = ((int32_t *) src1->data)[i];
  9233. for (int j = 0; j < nc; ++j) {
  9234. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9235. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9236. }
  9237. }
  9238. }
  9239. static void ggml_compute_forward_get_rows_back_f32(
  9240. const struct ggml_compute_params * params,
  9241. const struct ggml_tensor * src0,
  9242. const struct ggml_tensor * src1,
  9243. const struct ggml_tensor * opt0,
  9244. struct ggml_tensor * dst) {
  9245. GGML_ASSERT(params->ith == 0);
  9246. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9247. GGML_ASSERT(ggml_is_contiguous(opt0));
  9248. GGML_ASSERT(ggml_is_contiguous(dst));
  9249. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9250. if (params->type == GGML_TASK_INIT) {
  9251. memset(dst->data, 0, ggml_nbytes(dst));
  9252. }
  9253. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9254. return;
  9255. }
  9256. const int nc = src0->ne[0];
  9257. const int nr = ggml_nelements(src1);
  9258. GGML_ASSERT( dst->ne[0] == nc);
  9259. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9260. for (int i = 0; i < nr; ++i) {
  9261. const int r = ((int32_t *) src1->data)[i];
  9262. ggml_vec_add_f32(nc,
  9263. (float *) ((char *) dst->data + r*dst->nb[1]),
  9264. (float *) ((char *) dst->data + r*dst->nb[1]),
  9265. (float *) ((char *) src0->data + i*src0->nb[1]));
  9266. }
  9267. }
  9268. static void ggml_compute_forward_get_rows_back(
  9269. const struct ggml_compute_params * params,
  9270. const struct ggml_tensor * src0,
  9271. const struct ggml_tensor * src1,
  9272. const struct ggml_tensor * opt0,
  9273. struct ggml_tensor * dst) {
  9274. switch (src0->type) {
  9275. case GGML_TYPE_F16:
  9276. {
  9277. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9278. } break;
  9279. case GGML_TYPE_F32:
  9280. {
  9281. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9282. } break;
  9283. default:
  9284. {
  9285. GGML_ASSERT(false);
  9286. } break;
  9287. }
  9288. //static bool first = true;
  9289. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9290. //if (first) {
  9291. // first = false;
  9292. //} else {
  9293. // for (int k = 0; k < dst->ne[1]; ++k) {
  9294. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9295. // for (int i = 0; i < 16; ++i) {
  9296. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9297. // }
  9298. // printf("\n");
  9299. // }
  9300. // printf("\n");
  9301. // }
  9302. // printf("\n");
  9303. // exit(0);
  9304. //}
  9305. }
  9306. // ggml_compute_forward_diag
  9307. static void ggml_compute_forward_diag_f32(
  9308. const struct ggml_compute_params * params,
  9309. const struct ggml_tensor * src0,
  9310. struct ggml_tensor * dst) {
  9311. GGML_ASSERT(params->ith == 0);
  9312. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9313. return;
  9314. }
  9315. // TODO: handle transposed/permuted matrices
  9316. GGML_TENSOR_UNARY_OP_LOCALS;
  9317. GGML_ASSERT(ne00 == ne0);
  9318. GGML_ASSERT(ne00 == ne1);
  9319. GGML_ASSERT(ne01 == 1);
  9320. GGML_ASSERT(ne02 == ne2);
  9321. GGML_ASSERT(ne03 == ne3);
  9322. GGML_ASSERT(nb00 == sizeof(float));
  9323. GGML_ASSERT(nb0 == sizeof(float));
  9324. for (int i3 = 0; i3 < ne3; i3++) {
  9325. for (int i2 = 0; i2 < ne2; i2++) {
  9326. for (int i1 = 0; i1 < ne1; i1++) {
  9327. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9328. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9329. for (int i0 = 0; i0 < i1; i0++) {
  9330. d[i0] = 0;
  9331. }
  9332. d[i1] = s[i1];
  9333. for (int i0 = i1+1; i0 < ne0; i0++) {
  9334. d[i0] = 0;
  9335. }
  9336. }
  9337. }
  9338. }
  9339. }
  9340. static void ggml_compute_forward_diag(
  9341. const struct ggml_compute_params * params,
  9342. const struct ggml_tensor * src0,
  9343. struct ggml_tensor * dst) {
  9344. switch (src0->type) {
  9345. case GGML_TYPE_F32:
  9346. {
  9347. ggml_compute_forward_diag_f32(params, src0, dst);
  9348. } break;
  9349. default:
  9350. {
  9351. GGML_ASSERT(false);
  9352. } break;
  9353. }
  9354. }
  9355. // ggml_compute_forward_diag_mask_inf
  9356. static void ggml_compute_forward_diag_mask_f32(
  9357. const struct ggml_compute_params * params,
  9358. const struct ggml_tensor * src0,
  9359. struct ggml_tensor * dst,
  9360. const float value) {
  9361. const int ith = params->ith;
  9362. const int nth = params->nth;
  9363. const int n_past = ((int32_t *) dst->op_params)[0];
  9364. const bool inplace = (bool)((int32_t *) dst->op_params)[1];
  9365. GGML_ASSERT(n_past >= 0);
  9366. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9367. // memcpy needs to be synchronized across threads to avoid race conditions.
  9368. // => do it in INIT phase
  9369. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9370. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9371. memcpy(
  9372. ((char *) dst->data),
  9373. ((char *) src0->data),
  9374. ggml_nbytes(dst));
  9375. }
  9376. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9377. return;
  9378. }
  9379. // TODO: handle transposed/permuted matrices
  9380. const int n = ggml_nrows(src0);
  9381. const int nc = src0->ne[0];
  9382. const int nr = src0->ne[1];
  9383. const int nz = n/nr;
  9384. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9385. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9386. for (int k = 0; k < nz; k++) {
  9387. for (int j = ith; j < nr; j += nth) {
  9388. for (int i = n_past; i < nc; i++) {
  9389. if (i > n_past + j) {
  9390. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9391. }
  9392. }
  9393. }
  9394. }
  9395. }
  9396. static void ggml_compute_forward_diag_mask_inf(
  9397. const struct ggml_compute_params * params,
  9398. const struct ggml_tensor * src0,
  9399. struct ggml_tensor * dst) {
  9400. switch (src0->type) {
  9401. case GGML_TYPE_F32:
  9402. {
  9403. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9404. } break;
  9405. default:
  9406. {
  9407. GGML_ASSERT(false);
  9408. } break;
  9409. }
  9410. }
  9411. static void ggml_compute_forward_diag_mask_zero(
  9412. const struct ggml_compute_params * params,
  9413. const struct ggml_tensor * src0,
  9414. struct ggml_tensor * dst) {
  9415. switch (src0->type) {
  9416. case GGML_TYPE_F32:
  9417. {
  9418. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9419. } break;
  9420. default:
  9421. {
  9422. GGML_ASSERT(false);
  9423. } break;
  9424. }
  9425. }
  9426. // ggml_compute_forward_soft_max
  9427. static void ggml_compute_forward_soft_max_f32(
  9428. const struct ggml_compute_params * params,
  9429. const struct ggml_tensor * src0,
  9430. struct ggml_tensor * dst) {
  9431. GGML_ASSERT(ggml_is_contiguous(src0));
  9432. GGML_ASSERT(ggml_is_contiguous(dst));
  9433. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9434. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9435. return;
  9436. }
  9437. // TODO: handle transposed/permuted matrices
  9438. const int ith = params->ith;
  9439. const int nth = params->nth;
  9440. const int nc = src0->ne[0];
  9441. const int nr = ggml_nrows(src0);
  9442. // rows per thread
  9443. const int dr = (nr + nth - 1)/nth;
  9444. // row range for this thread
  9445. const int ir0 = dr*ith;
  9446. const int ir1 = MIN(ir0 + dr, nr);
  9447. for (int i1 = ir0; i1 < ir1; i1++) {
  9448. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9449. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9450. #ifndef NDEBUG
  9451. for (int i = 0; i < nc; ++i) {
  9452. //printf("p[%d] = %f\n", i, p[i]);
  9453. assert(!isnan(sp[i]));
  9454. }
  9455. #endif
  9456. float max = -INFINITY;
  9457. ggml_vec_max_f32(nc, &max, sp);
  9458. ggml_float sum = 0.0;
  9459. uint16_t scvt;
  9460. for (int i = 0; i < nc; i++) {
  9461. if (sp[i] == -INFINITY) {
  9462. dp[i] = 0.0f;
  9463. } else {
  9464. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9465. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9466. memcpy(&scvt, &s, sizeof(scvt));
  9467. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9468. sum += (ggml_float)val;
  9469. dp[i] = val;
  9470. }
  9471. }
  9472. assert(sum > 0.0);
  9473. sum = 1.0/sum;
  9474. ggml_vec_scale_f32(nc, dp, sum);
  9475. #ifndef NDEBUG
  9476. for (int i = 0; i < nc; ++i) {
  9477. assert(!isnan(dp[i]));
  9478. assert(!isinf(dp[i]));
  9479. }
  9480. #endif
  9481. }
  9482. }
  9483. static void ggml_compute_forward_soft_max(
  9484. const struct ggml_compute_params * params,
  9485. const struct ggml_tensor * src0,
  9486. struct ggml_tensor * dst) {
  9487. switch (src0->type) {
  9488. case GGML_TYPE_F32:
  9489. {
  9490. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9491. } break;
  9492. default:
  9493. {
  9494. GGML_ASSERT(false);
  9495. } break;
  9496. }
  9497. }
  9498. // ggml_compute_forward_soft_max_back
  9499. static void ggml_compute_forward_soft_max_back_f32(
  9500. const struct ggml_compute_params * params,
  9501. const struct ggml_tensor * src0,
  9502. const struct ggml_tensor * src1,
  9503. struct ggml_tensor * dst) {
  9504. GGML_ASSERT(ggml_is_contiguous(src0));
  9505. GGML_ASSERT(ggml_is_contiguous(src1));
  9506. GGML_ASSERT(ggml_is_contiguous(dst));
  9507. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9508. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9509. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9510. return;
  9511. }
  9512. // TODO: handle transposed/permuted matrices
  9513. const int ith = params->ith;
  9514. const int nth = params->nth;
  9515. const int nc = src0->ne[0];
  9516. const int nr = ggml_nrows(src0);
  9517. // rows per thread
  9518. const int dr = (nr + nth - 1)/nth;
  9519. // row range for this thread
  9520. const int ir0 = dr*ith;
  9521. const int ir1 = MIN(ir0 + dr, nr);
  9522. for (int i1 = ir0; i1 < ir1; i1++) {
  9523. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9524. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9525. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9526. #ifndef NDEBUG
  9527. for (int i = 0; i < nc; ++i) {
  9528. //printf("p[%d] = %f\n", i, p[i]);
  9529. assert(!isnan(dy[i]));
  9530. assert(!isnan(y[i]));
  9531. }
  9532. #endif
  9533. // Jii = yi - yi*yi
  9534. // Jij = -yi*yj
  9535. // J = diag(y)-y.T*y
  9536. // dx = J * dy
  9537. // dxk = sum_i(Jki * dyi)
  9538. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9539. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9540. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9541. // dxk = -yk * dot(y, dy) + yk*dyk
  9542. // dxk = yk * (- dot(y, dy) + dyk)
  9543. // dxk = yk * (dyk - dot(y, dy))
  9544. //
  9545. // post-order:
  9546. // dot_y_dy := dot(y, dy)
  9547. // dx := dy
  9548. // dx := dx - dot_y_dy
  9549. // dx := dx * y
  9550. // linear runtime, no additional memory
  9551. float dot_y_dy = 0;
  9552. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9553. ggml_vec_cpy_f32 (nc, dx, dy);
  9554. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9555. ggml_vec_mul_f32 (nc, dx, dx, y);
  9556. #ifndef NDEBUG
  9557. for (int i = 0; i < nc; ++i) {
  9558. assert(!isnan(dx[i]));
  9559. assert(!isinf(dx[i]));
  9560. }
  9561. #endif
  9562. }
  9563. }
  9564. static void ggml_compute_forward_soft_max_back(
  9565. const struct ggml_compute_params * params,
  9566. const struct ggml_tensor * src0,
  9567. const struct ggml_tensor * src1,
  9568. struct ggml_tensor * dst) {
  9569. switch (src0->type) {
  9570. case GGML_TYPE_F32:
  9571. {
  9572. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9573. } break;
  9574. default:
  9575. {
  9576. GGML_ASSERT(false);
  9577. } break;
  9578. }
  9579. }
  9580. // ggml_compute_forward_alibi
  9581. static void ggml_compute_forward_alibi_f32(
  9582. const struct ggml_compute_params * params,
  9583. const struct ggml_tensor * src0,
  9584. struct ggml_tensor * dst) {
  9585. assert(params->ith == 0);
  9586. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9587. return;
  9588. }
  9589. const int n_past = ((int32_t *) dst->op_params)[0];
  9590. const int n_head = ((int32_t *) dst->op_params)[1];
  9591. float max_bias;
  9592. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9593. assert(n_past >= 0);
  9594. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9595. const int ne1 = src0->ne[1]; // seq_len_without_past
  9596. const int ne2 = src0->ne[2]; // n_head -> this is k
  9597. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9598. const int n = ggml_nrows(src0);
  9599. const int ne2_ne3 = n/ne1; // ne2*ne3
  9600. const int nb0 = src0->nb[0];
  9601. const int nb1 = src0->nb[1];
  9602. const int nb2 = src0->nb[2];
  9603. //const int nb3 = src0->nb[3];
  9604. GGML_ASSERT(nb0 == sizeof(float));
  9605. GGML_ASSERT(ne1 + n_past == ne0);
  9606. GGML_ASSERT(n_head == ne2);
  9607. // add alibi to src0 (KQ_scaled)
  9608. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9609. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9610. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9611. for (int i = 0; i < ne0; i++) {
  9612. for (int j = 0; j < ne1; j++) {
  9613. for (int k = 0; k < ne2_ne3; k++) {
  9614. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9615. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9616. // TODO: k*nb2 or k*nb3
  9617. float m_k;
  9618. if (k < n_heads_log2_floor) {
  9619. m_k = powf(m0, k + 1);
  9620. } else {
  9621. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9622. }
  9623. pdst[0] = i * m_k + src[0];
  9624. }
  9625. }
  9626. }
  9627. }
  9628. static void ggml_compute_forward_alibi_f16(
  9629. const struct ggml_compute_params * params,
  9630. const struct ggml_tensor * src0,
  9631. struct ggml_tensor * dst) {
  9632. assert(params->ith == 0);
  9633. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9634. return;
  9635. }
  9636. const int n_past = ((int32_t *) dst->op_params)[0];
  9637. const int n_head = ((int32_t *) dst->op_params)[1];
  9638. float max_bias;
  9639. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9640. assert(n_past >= 0);
  9641. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9642. const int ne1 = src0->ne[1]; // seq_len_without_past
  9643. const int ne2 = src0->ne[2]; // n_head -> this is k
  9644. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9645. const int n = ggml_nrows(src0);
  9646. const int ne2_ne3 = n/ne1; // ne2*ne3
  9647. const int nb0 = src0->nb[0];
  9648. const int nb1 = src0->nb[1];
  9649. const int nb2 = src0->nb[2];
  9650. //const int nb3 = src0->nb[3];
  9651. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9652. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9653. GGML_ASSERT(n_head == ne2);
  9654. // add alibi to src0 (KQ_scaled)
  9655. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9656. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9657. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9658. for (int i = 0; i < ne0; i++) {
  9659. for (int j = 0; j < ne1; j++) {
  9660. for (int k = 0; k < ne2_ne3; k++) {
  9661. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9662. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9663. // TODO: k*nb2 or k*nb3
  9664. float m_k;
  9665. if (k < n_heads_log2_floor) {
  9666. m_k = powf(m0, k + 1);
  9667. } else {
  9668. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9669. }
  9670. // we return F32
  9671. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9672. }
  9673. }
  9674. }
  9675. }
  9676. static void ggml_compute_forward_alibi(
  9677. const struct ggml_compute_params * params,
  9678. const struct ggml_tensor * src0,
  9679. struct ggml_tensor * dst) {
  9680. switch (src0->type) {
  9681. case GGML_TYPE_F16:
  9682. {
  9683. ggml_compute_forward_alibi_f16(params, src0, dst);
  9684. } break;
  9685. case GGML_TYPE_F32:
  9686. {
  9687. ggml_compute_forward_alibi_f32(params, src0, dst);
  9688. } break;
  9689. case GGML_TYPE_Q4_0:
  9690. case GGML_TYPE_Q4_1:
  9691. case GGML_TYPE_Q5_0:
  9692. case GGML_TYPE_Q5_1:
  9693. case GGML_TYPE_Q8_0:
  9694. case GGML_TYPE_Q8_1:
  9695. case GGML_TYPE_Q2_K:
  9696. case GGML_TYPE_Q3_K:
  9697. case GGML_TYPE_Q4_K:
  9698. case GGML_TYPE_Q5_K:
  9699. case GGML_TYPE_Q6_K:
  9700. case GGML_TYPE_Q8_K:
  9701. case GGML_TYPE_I8:
  9702. case GGML_TYPE_I16:
  9703. case GGML_TYPE_I32:
  9704. case GGML_TYPE_COUNT:
  9705. {
  9706. GGML_ASSERT(false);
  9707. } break;
  9708. }
  9709. }
  9710. // ggml_compute_forward_clamp
  9711. static void ggml_compute_forward_clamp_f32(
  9712. const struct ggml_compute_params * params,
  9713. const struct ggml_tensor * src0,
  9714. struct ggml_tensor * dst) {
  9715. assert(params->ith == 0);
  9716. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9717. return;
  9718. }
  9719. float min;
  9720. float max;
  9721. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9722. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9723. const int ith = params->ith;
  9724. const int nth = params->nth;
  9725. const int n = ggml_nrows(src0);
  9726. const int nc = src0->ne[0];
  9727. const size_t nb00 = src0->nb[0];
  9728. const size_t nb01 = src0->nb[1];
  9729. const size_t nb0 = dst->nb[0];
  9730. const size_t nb1 = dst->nb[1];
  9731. GGML_ASSERT( nb0 == sizeof(float));
  9732. GGML_ASSERT(nb00 == sizeof(float));
  9733. for (int j = ith; j < n; j += nth) {
  9734. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9735. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9736. for (int i = 0; i < nc; i++) {
  9737. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9738. }
  9739. }
  9740. }
  9741. static void ggml_compute_forward_clamp(
  9742. const struct ggml_compute_params * params,
  9743. const struct ggml_tensor * src0,
  9744. struct ggml_tensor * dst) {
  9745. switch (src0->type) {
  9746. case GGML_TYPE_F32:
  9747. {
  9748. ggml_compute_forward_clamp_f32(params, src0, dst);
  9749. } break;
  9750. case GGML_TYPE_F16:
  9751. case GGML_TYPE_Q4_0:
  9752. case GGML_TYPE_Q4_1:
  9753. case GGML_TYPE_Q5_0:
  9754. case GGML_TYPE_Q5_1:
  9755. case GGML_TYPE_Q8_0:
  9756. case GGML_TYPE_Q8_1:
  9757. case GGML_TYPE_Q2_K:
  9758. case GGML_TYPE_Q3_K:
  9759. case GGML_TYPE_Q4_K:
  9760. case GGML_TYPE_Q5_K:
  9761. case GGML_TYPE_Q6_K:
  9762. case GGML_TYPE_Q8_K:
  9763. case GGML_TYPE_I8:
  9764. case GGML_TYPE_I16:
  9765. case GGML_TYPE_I32:
  9766. case GGML_TYPE_COUNT:
  9767. {
  9768. GGML_ASSERT(false);
  9769. } break;
  9770. }
  9771. }
  9772. // ggml_compute_forward_rope
  9773. static void ggml_compute_forward_rope_f32(
  9774. const struct ggml_compute_params * params,
  9775. const struct ggml_tensor * src0,
  9776. struct ggml_tensor * dst) {
  9777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9778. return;
  9779. }
  9780. float freq_base;
  9781. float freq_scale;
  9782. const int n_past = ((int32_t *) dst->op_params)[0];
  9783. const int n_dims = ((int32_t *) dst->op_params)[1];
  9784. const int mode = ((int32_t *) dst->op_params)[2];
  9785. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9786. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9787. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9788. assert(n_past >= 0);
  9789. GGML_TENSOR_UNARY_OP_LOCALS;
  9790. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9791. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9792. GGML_ASSERT(nb00 == sizeof(float));
  9793. const int ith = params->ith;
  9794. const int nth = params->nth;
  9795. const int nr = ggml_nrows(dst);
  9796. GGML_ASSERT(n_dims <= ne0);
  9797. GGML_ASSERT(n_dims % 2 == 0);
  9798. // rows per thread
  9799. const int dr = (nr + nth - 1)/nth;
  9800. // row range for this thread
  9801. const int ir0 = dr*ith;
  9802. const int ir1 = MIN(ir0 + dr, nr);
  9803. // row index used to determine which thread to use
  9804. int ir = 0;
  9805. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9806. const bool is_neox = mode & 2;
  9807. const bool is_glm = mode & 4;
  9808. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9809. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9810. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9811. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9812. if (ir++ < ir0) continue;
  9813. if (ir > ir1) break;
  9814. float theta = freq_scale * (float)p;
  9815. if (is_glm) {
  9816. theta = MIN(p, n_ctx - 2);
  9817. float block_theta = MAX(p - (n_ctx - 2), 0);
  9818. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9819. const float cos_theta = cosf(theta);
  9820. const float sin_theta = sinf(theta);
  9821. const float cos_block_theta = cosf(block_theta);
  9822. const float sin_block_theta = sinf(block_theta);
  9823. theta *= theta_scale;
  9824. block_theta *= theta_scale;
  9825. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9826. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9827. const float x0 = src[0];
  9828. const float x1 = src[n_dims/2];
  9829. const float x2 = src[n_dims];
  9830. const float x3 = src[n_dims/2*3];
  9831. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9832. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9833. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9834. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9835. }
  9836. } else if (!is_neox) {
  9837. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9838. const float cos_theta = cosf(theta);
  9839. const float sin_theta = sinf(theta);
  9840. theta *= theta_scale;
  9841. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9842. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9843. const float x0 = src[0];
  9844. const float x1 = src[1];
  9845. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9846. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9847. }
  9848. } else {
  9849. // TODO: this is probably wrong, but I can't figure it out ..
  9850. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9851. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9852. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9853. const float cos_theta = cosf(theta);
  9854. const float sin_theta = sinf(theta);
  9855. theta *= theta_scale;
  9856. const int64_t i0 = ib*n_dims + ic/2;
  9857. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9858. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9859. const float x0 = src[0];
  9860. const float x1 = src[n_dims/2];
  9861. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9862. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9863. }
  9864. }
  9865. }
  9866. }
  9867. }
  9868. }
  9869. }
  9870. static void ggml_compute_forward_rope_f16(
  9871. const struct ggml_compute_params * params,
  9872. const struct ggml_tensor * src0,
  9873. struct ggml_tensor * dst) {
  9874. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9875. return;
  9876. }
  9877. float freq_base;
  9878. float freq_scale;
  9879. const int n_past = ((int32_t *) dst->op_params)[0];
  9880. const int n_dims = ((int32_t *) dst->op_params)[1];
  9881. const int mode = ((int32_t *) dst->op_params)[2];
  9882. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9883. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9884. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9885. assert(n_past >= 0);
  9886. GGML_TENSOR_UNARY_OP_LOCALS;
  9887. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9888. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9889. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9890. const int ith = params->ith;
  9891. const int nth = params->nth;
  9892. const int nr = ggml_nrows(dst);
  9893. GGML_ASSERT(n_dims <= ne0);
  9894. GGML_ASSERT(n_dims % 2 == 0);
  9895. // rows per thread
  9896. const int dr = (nr + nth - 1)/nth;
  9897. // row range for this thread
  9898. const int ir0 = dr*ith;
  9899. const int ir1 = MIN(ir0 + dr, nr);
  9900. // row index used to determine which thread to use
  9901. int ir = 0;
  9902. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9903. const bool is_neox = mode & 2;
  9904. const bool is_glm = mode & 4;
  9905. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9906. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9907. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9908. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9909. if (ir++ < ir0) continue;
  9910. if (ir > ir1) break;
  9911. float theta = freq_scale * (float)p;
  9912. if (is_glm) {
  9913. theta = MIN(p, n_ctx - 2);
  9914. float block_theta = MAX(p - (n_ctx - 2), 0);
  9915. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9916. const float cos_theta = cosf(theta);
  9917. const float sin_theta = sinf(theta);
  9918. const float cos_block_theta = cosf(block_theta);
  9919. const float sin_block_theta = sinf(block_theta);
  9920. theta *= theta_scale;
  9921. block_theta *= theta_scale;
  9922. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9923. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9924. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9925. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9926. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9927. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9928. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9929. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9930. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9931. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9932. }
  9933. } if (!is_neox) {
  9934. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9935. const float cos_theta = cosf(theta);
  9936. const float sin_theta = sinf(theta);
  9937. theta *= theta_scale;
  9938. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9939. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9940. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9941. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9942. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9943. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9944. }
  9945. } else {
  9946. // TODO: this is probably wrong, but I can't figure it out ..
  9947. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9948. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9949. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9950. const float cos_theta = cosf(theta);
  9951. const float sin_theta = sinf(theta);
  9952. theta *= theta_scale;
  9953. const int64_t i0 = ib*n_dims + ic/2;
  9954. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9955. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9956. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9957. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9958. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9959. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9960. }
  9961. }
  9962. }
  9963. }
  9964. }
  9965. }
  9966. }
  9967. static void ggml_compute_forward_rope(
  9968. const struct ggml_compute_params * params,
  9969. const struct ggml_tensor * src0,
  9970. struct ggml_tensor * dst) {
  9971. switch (src0->type) {
  9972. case GGML_TYPE_F16:
  9973. {
  9974. ggml_compute_forward_rope_f16(params, src0, dst);
  9975. } break;
  9976. case GGML_TYPE_F32:
  9977. {
  9978. ggml_compute_forward_rope_f32(params, src0, dst);
  9979. } break;
  9980. default:
  9981. {
  9982. GGML_ASSERT(false);
  9983. } break;
  9984. }
  9985. }
  9986. // ggml_compute_forward_rope_back
  9987. static void ggml_compute_forward_rope_back_f32(
  9988. const struct ggml_compute_params * params,
  9989. const struct ggml_tensor * src0,
  9990. struct ggml_tensor * dst) {
  9991. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9992. return;
  9993. }
  9994. // y = rope(x, src1)
  9995. // dx = rope_back(dy, src1)
  9996. // src0 is dy, src1 contains options
  9997. const int n_past = ((int32_t *) dst->op_params)[0];
  9998. const int n_dims = ((int32_t *) dst->op_params)[1];
  9999. const int mode = ((int32_t *) dst->op_params)[2];
  10000. assert(n_past >= 0);
  10001. GGML_TENSOR_UNARY_OP_LOCALS;
  10002. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10003. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10004. assert(nb0 == sizeof(float));
  10005. const int ith = params->ith;
  10006. const int nth = params->nth;
  10007. const int nr = ggml_nrows(dst);
  10008. // rows per thread
  10009. const int dr = (nr + nth - 1)/nth;
  10010. // row range for this thread
  10011. const int ir0 = dr*ith;
  10012. const int ir1 = MIN(ir0 + dr, nr);
  10013. // row index used to determine which thread to use
  10014. int ir = 0;
  10015. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10016. const bool is_neox = mode & 2;
  10017. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10018. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10019. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10020. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10021. if (ir++ < ir0) continue;
  10022. if (ir > ir1) break;
  10023. float theta = (float)p;
  10024. if (!is_neox) {
  10025. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10026. const float cos_theta = cosf(theta);
  10027. const float sin_theta = sinf(theta);
  10028. theta *= theta_scale;
  10029. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10030. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10031. const float dy0 = dy[0];
  10032. const float dy1 = dy[1];
  10033. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10034. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  10035. }
  10036. } else {
  10037. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10038. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10039. const float cos_theta = cosf(theta);
  10040. const float sin_theta = sinf(theta);
  10041. theta *= theta_scale;
  10042. const int64_t i0 = ib*n_dims + ic/2;
  10043. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10044. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10045. const float dy0 = dy[0];
  10046. const float dy1 = dy[n_dims/2];
  10047. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10048. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10049. }
  10050. }
  10051. }
  10052. }
  10053. }
  10054. }
  10055. }
  10056. static void ggml_compute_forward_rope_back_f16(
  10057. const struct ggml_compute_params * params,
  10058. const struct ggml_tensor * src0,
  10059. struct ggml_tensor * dst) {
  10060. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10061. return;
  10062. }
  10063. // y = rope(x, src1)
  10064. // dx = rope_back(dy, src1)
  10065. // src0 is dy, src1 contains options
  10066. const int n_past = ((int32_t *) dst->op_params)[0];
  10067. const int n_dims = ((int32_t *) dst->op_params)[1];
  10068. const int mode = ((int32_t *) dst->op_params)[2];
  10069. assert(n_past >= 0);
  10070. GGML_TENSOR_UNARY_OP_LOCALS;
  10071. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10072. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10073. assert(nb0 == sizeof(ggml_fp16_t));
  10074. const int ith = params->ith;
  10075. const int nth = params->nth;
  10076. const int nr = ggml_nrows(dst);
  10077. // rows per thread
  10078. const int dr = (nr + nth - 1)/nth;
  10079. // row range for this thread
  10080. const int ir0 = dr*ith;
  10081. const int ir1 = MIN(ir0 + dr, nr);
  10082. // row index used to determine which thread to use
  10083. int ir = 0;
  10084. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10085. const bool is_neox = mode & 2;
  10086. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10087. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10088. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10089. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10090. if (ir++ < ir0) continue;
  10091. if (ir > ir1) break;
  10092. float theta = (float)p;
  10093. if (!is_neox) {
  10094. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10095. const float cos_theta = cosf(theta);
  10096. const float sin_theta = sinf(theta);
  10097. theta *= theta_scale;
  10098. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10099. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10100. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10101. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10102. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10103. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10104. }
  10105. } else {
  10106. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10107. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10108. const float cos_theta = cosf(theta);
  10109. const float sin_theta = sinf(theta);
  10110. theta *= theta_scale;
  10111. const int64_t i0 = ib*n_dims + ic/2;
  10112. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10113. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10114. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10115. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10116. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10117. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10118. }
  10119. }
  10120. }
  10121. }
  10122. }
  10123. }
  10124. }
  10125. static void ggml_compute_forward_rope_back(
  10126. const struct ggml_compute_params * params,
  10127. const struct ggml_tensor * src0,
  10128. struct ggml_tensor * dst) {
  10129. switch (src0->type) {
  10130. case GGML_TYPE_F16:
  10131. {
  10132. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10133. } break;
  10134. case GGML_TYPE_F32:
  10135. {
  10136. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10137. } break;
  10138. default:
  10139. {
  10140. GGML_ASSERT(false);
  10141. } break;
  10142. }
  10143. }
  10144. // ggml_compute_forward_conv_1d
  10145. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10146. const struct ggml_compute_params * params,
  10147. const struct ggml_tensor * src0,
  10148. const struct ggml_tensor * src1,
  10149. struct ggml_tensor * dst) {
  10150. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10151. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10152. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10153. int64_t t0 = ggml_perf_time_us();
  10154. UNUSED(t0);
  10155. GGML_TENSOR_BINARY_OP_LOCALS;
  10156. const int ith = params->ith;
  10157. const int nth = params->nth;
  10158. const int nk = ne00;
  10159. const int nh = nk/2;
  10160. const int ew0 = ggml_up32(ne01);
  10161. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10162. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10163. GGML_ASSERT(nb10 == sizeof(float));
  10164. if (params->type == GGML_TASK_INIT) {
  10165. // TODO: fix this memset (wsize is overestimated)
  10166. memset(params->wdata, 0, params->wsize);
  10167. // prepare kernel data (src0)
  10168. {
  10169. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10170. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10171. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10172. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10173. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10174. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10175. dst_data[i00*ew0 + i01] = src[i00];
  10176. }
  10177. }
  10178. }
  10179. }
  10180. // prepare source data (src1)
  10181. {
  10182. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10183. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10184. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10185. ggml_fp16_t * dst_data = wdata;
  10186. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10187. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10188. }
  10189. }
  10190. }
  10191. return;
  10192. }
  10193. if (params->type == GGML_TASK_FINALIZE) {
  10194. return;
  10195. }
  10196. // total rows in dst
  10197. const int nr = ne02;
  10198. // rows per thread
  10199. const int dr = (nr + nth - 1)/nth;
  10200. // row range for this thread
  10201. const int ir0 = dr*ith;
  10202. const int ir1 = MIN(ir0 + dr, nr);
  10203. for (int i1 = ir0; i1 < ir1; i1++) {
  10204. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10205. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10206. dst_data[i0] = 0;
  10207. for (int k = -nh; k <= nh; k++) {
  10208. float v = 0.0f;
  10209. ggml_vec_dot_f16(ew0, &v,
  10210. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10211. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10212. dst_data[i0] += v;
  10213. }
  10214. }
  10215. }
  10216. }
  10217. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10218. const struct ggml_compute_params * params,
  10219. const struct ggml_tensor * src0,
  10220. const struct ggml_tensor * src1,
  10221. struct ggml_tensor * dst) {
  10222. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10223. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10224. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10225. int64_t t0 = ggml_perf_time_us();
  10226. UNUSED(t0);
  10227. GGML_TENSOR_BINARY_OP_LOCALS;
  10228. const int ith = params->ith;
  10229. const int nth = params->nth;
  10230. const int nk = ne00;
  10231. const int nh = nk/2;
  10232. const int ew0 = ggml_up32(ne01);
  10233. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10234. GGML_ASSERT(nb00 == sizeof(float));
  10235. GGML_ASSERT(nb10 == sizeof(float));
  10236. if (params->type == GGML_TASK_INIT) {
  10237. // TODO: fix this memset (wsize is overestimated)
  10238. memset(params->wdata, 0, params->wsize);
  10239. // prepare kernel data (src0)
  10240. {
  10241. float * const wdata = (float *) params->wdata + 0;
  10242. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10243. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10244. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10245. float * dst_data = wdata + i02*ew0*ne00;
  10246. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10247. dst_data[i00*ew0 + i01] = src[i00];
  10248. }
  10249. }
  10250. }
  10251. }
  10252. // prepare source data (src1)
  10253. {
  10254. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10255. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10256. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10257. float * dst_data = wdata;
  10258. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10259. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10260. }
  10261. }
  10262. }
  10263. return;
  10264. }
  10265. if (params->type == GGML_TASK_FINALIZE) {
  10266. return;
  10267. }
  10268. // total rows in dst
  10269. const int nr = ne02;
  10270. // rows per thread
  10271. const int dr = (nr + nth - 1)/nth;
  10272. // row range for this thread
  10273. const int ir0 = dr*ith;
  10274. const int ir1 = MIN(ir0 + dr, nr);
  10275. for (int i1 = ir0; i1 < ir1; i1++) {
  10276. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10277. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10278. dst_data[i0] = 0;
  10279. for (int k = -nh; k <= nh; k++) {
  10280. float v = 0.0f;
  10281. ggml_vec_dot_f32(ew0, &v,
  10282. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10283. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10284. dst_data[i0] += v;
  10285. }
  10286. }
  10287. }
  10288. }
  10289. static void ggml_compute_forward_conv_1d_s1_ph(
  10290. const struct ggml_compute_params * params,
  10291. const struct ggml_tensor * src0,
  10292. const struct ggml_tensor * src1,
  10293. struct ggml_tensor * dst) {
  10294. switch (src0->type) {
  10295. case GGML_TYPE_F16:
  10296. {
  10297. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10298. } break;
  10299. case GGML_TYPE_F32:
  10300. {
  10301. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10302. } break;
  10303. default:
  10304. {
  10305. GGML_ASSERT(false);
  10306. } break;
  10307. }
  10308. }
  10309. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10310. const struct ggml_compute_params * params,
  10311. const struct ggml_tensor * src0,
  10312. const struct ggml_tensor * src1,
  10313. struct ggml_tensor * dst) {
  10314. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10315. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10316. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10317. int64_t t0 = ggml_perf_time_us();
  10318. UNUSED(t0);
  10319. GGML_TENSOR_BINARY_OP_LOCALS;
  10320. const int ith = params->ith;
  10321. const int nth = params->nth;
  10322. const int nk = ne00;
  10323. const int nh = nk/2;
  10324. const int ew0 = ggml_up32(ne01);
  10325. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10326. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10327. GGML_ASSERT(nb10 == sizeof(float));
  10328. if (params->type == GGML_TASK_INIT) {
  10329. // TODO: fix this memset (wsize is overestimated)
  10330. memset(params->wdata, 0, params->wsize);
  10331. // prepare kernel data (src0)
  10332. {
  10333. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10334. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10335. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10336. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10337. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10338. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10339. dst_data[i00*ew0 + i01] = src[i00];
  10340. }
  10341. }
  10342. }
  10343. }
  10344. // prepare source data (src1)
  10345. {
  10346. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10347. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10348. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10349. ggml_fp16_t * dst_data = wdata;
  10350. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10351. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10352. }
  10353. }
  10354. }
  10355. return;
  10356. }
  10357. if (params->type == GGML_TASK_FINALIZE) {
  10358. return;
  10359. }
  10360. // total rows in dst
  10361. const int nr = ne02;
  10362. // rows per thread
  10363. const int dr = (nr + nth - 1)/nth;
  10364. // row range for this thread
  10365. const int ir0 = dr*ith;
  10366. const int ir1 = MIN(ir0 + dr, nr);
  10367. for (int i1 = ir0; i1 < ir1; i1++) {
  10368. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10369. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10370. dst_data[i0/2] = 0;
  10371. for (int k = -nh; k <= nh; k++) {
  10372. float v = 0.0f;
  10373. ggml_vec_dot_f16(ew0, &v,
  10374. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10375. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10376. dst_data[i0/2] += v;
  10377. }
  10378. }
  10379. }
  10380. }
  10381. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10382. const struct ggml_compute_params * params,
  10383. const struct ggml_tensor * src0,
  10384. const struct ggml_tensor * src1,
  10385. struct ggml_tensor * dst) {
  10386. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10387. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10388. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10389. int64_t t0 = ggml_perf_time_us();
  10390. UNUSED(t0);
  10391. GGML_TENSOR_BINARY_OP_LOCALS;
  10392. const int ith = params->ith;
  10393. const int nth = params->nth;
  10394. const int nk = ne00;
  10395. const int nh = nk/2;
  10396. const int ew0 = ggml_up32(ne01);
  10397. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10398. GGML_ASSERT(nb00 == sizeof(float));
  10399. GGML_ASSERT(nb10 == sizeof(float));
  10400. if (params->type == GGML_TASK_INIT) {
  10401. // TODO: fix this memset (wsize is overestimated)
  10402. memset(params->wdata, 0, params->wsize);
  10403. // prepare kernel data (src0)
  10404. {
  10405. float * const wdata = (float *) params->wdata + 0;
  10406. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10407. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10408. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10409. float * dst_data = wdata + i02*ew0*ne00;
  10410. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10411. dst_data[i00*ew0 + i01] = src[i00];
  10412. }
  10413. }
  10414. }
  10415. }
  10416. // prepare source data (src1)
  10417. {
  10418. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10419. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10420. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10421. float * dst_data = wdata;
  10422. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10423. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10424. }
  10425. }
  10426. }
  10427. return;
  10428. }
  10429. if (params->type == GGML_TASK_FINALIZE) {
  10430. return;
  10431. }
  10432. // total rows in dst
  10433. const int nr = ne02;
  10434. // rows per thread
  10435. const int dr = (nr + nth - 1)/nth;
  10436. // row range for this thread
  10437. const int ir0 = dr*ith;
  10438. const int ir1 = MIN(ir0 + dr, nr);
  10439. for (int i1 = ir0; i1 < ir1; i1++) {
  10440. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10441. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10442. dst_data[i0/2] = 0;
  10443. for (int k = -nh; k <= nh; k++) {
  10444. float v = 0.0f;
  10445. ggml_vec_dot_f32(ew0, &v,
  10446. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10447. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10448. dst_data[i0/2] += v;
  10449. }
  10450. }
  10451. }
  10452. }
  10453. static void ggml_compute_forward_conv_1d_s2_ph(
  10454. const struct ggml_compute_params * params,
  10455. const struct ggml_tensor * src0,
  10456. const struct ggml_tensor * src1,
  10457. struct ggml_tensor * dst) {
  10458. switch (src0->type) {
  10459. case GGML_TYPE_F16:
  10460. {
  10461. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10462. } break;
  10463. case GGML_TYPE_F32:
  10464. {
  10465. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10466. } break;
  10467. default:
  10468. {
  10469. GGML_ASSERT(false);
  10470. } break;
  10471. }
  10472. }
  10473. // ggml_compute_forward_conv_1d
  10474. static void ggml_compute_forward_conv_1d(
  10475. const struct ggml_compute_params * params,
  10476. const struct ggml_tensor * src0,
  10477. const struct ggml_tensor * src1,
  10478. struct ggml_tensor * dst) {
  10479. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10480. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10481. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10482. GGML_ASSERT(d0 == 1); // dilation not supported
  10483. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10484. if (s0 == 1) {
  10485. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10486. } else if (s0 == 2) {
  10487. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10488. } else {
  10489. GGML_ASSERT(false); // only stride 1 and 2 supported
  10490. };
  10491. }
  10492. // ggml_compute_forward_conv_2d
  10493. static void ggml_compute_forward_conv_2d_f16_f32(
  10494. const struct ggml_compute_params * params,
  10495. const struct ggml_tensor * src0,
  10496. const struct ggml_tensor * src1,
  10497. struct ggml_tensor * dst) {
  10498. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10499. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10500. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10501. int64_t t0 = ggml_perf_time_us();
  10502. UNUSED(t0);
  10503. GGML_TENSOR_BINARY_OP_LOCALS;
  10504. const int ith = params->ith;
  10505. const int nth = params->nth;
  10506. const int nk0 = ne00;
  10507. const int nk1 = ne01;
  10508. // size of the convolution row - the kernel size unrolled across all channels
  10509. const int ew0 = nk0*nk1*ne02;
  10510. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10511. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10512. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10513. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10514. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10515. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10516. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10517. GGML_ASSERT(nb10 == sizeof(float));
  10518. if (params->type == GGML_TASK_INIT) {
  10519. memset(params->wdata, 0, params->wsize);
  10520. // prepare source data (src1)
  10521. {
  10522. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10523. for (int i12 = 0; i12 < ne12; i12++) {
  10524. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10525. ggml_fp16_t * dst_data = wdata;
  10526. for (int i1 = 0; i1 < ne1; i1++) {
  10527. for (int i0 = 0; i0 < ne0; i0++) {
  10528. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10529. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10530. const int idx0 = i0*s0 + ik0*d0 - p0;
  10531. const int idx1 = i1*s1 + ik1*d1 - p1;
  10532. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10533. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10534. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10535. }
  10536. }
  10537. }
  10538. }
  10539. }
  10540. }
  10541. }
  10542. return;
  10543. }
  10544. if (params->type == GGML_TASK_FINALIZE) {
  10545. return;
  10546. }
  10547. // total patches in dst
  10548. const int np = ne2;
  10549. // patches per thread
  10550. const int dp = (np + nth - 1)/nth;
  10551. // patch range for this thread
  10552. const int ip0 = dp*ith;
  10553. const int ip1 = MIN(ip0 + dp, np);
  10554. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10555. for (int i3 = 0; i3 < ne3; i3++) {
  10556. for (int i2 = ip0; i2 < ip1; i2++) {
  10557. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10558. for (int i1 = 0; i1 < ne1; ++i1) {
  10559. for (int i0 = 0; i0 < ne0; ++i0) {
  10560. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10561. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10562. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10563. }
  10564. }
  10565. }
  10566. }
  10567. }
  10568. static void ggml_compute_forward_conv_2d(
  10569. const struct ggml_compute_params * params,
  10570. const struct ggml_tensor * src0,
  10571. const struct ggml_tensor * src1,
  10572. struct ggml_tensor * dst) {
  10573. switch (src0->type) {
  10574. case GGML_TYPE_F16:
  10575. {
  10576. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10577. } break;
  10578. case GGML_TYPE_F32:
  10579. {
  10580. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10581. GGML_ASSERT(false);
  10582. } break;
  10583. default:
  10584. {
  10585. GGML_ASSERT(false);
  10586. } break;
  10587. }
  10588. }
  10589. // ggml_compute_forward_pool_1d_sk_p0
  10590. static void ggml_compute_forward_pool_1d_sk_p0(
  10591. const struct ggml_compute_params * params,
  10592. const enum ggml_op_pool op,
  10593. const struct ggml_tensor * src,
  10594. const int k,
  10595. struct ggml_tensor * dst) {
  10596. assert(src->type == GGML_TYPE_F32);
  10597. assert(params->ith == 0);
  10598. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10599. return;
  10600. }
  10601. const char * cdata = (const char *)src->data;
  10602. const char * const data_end = cdata + ggml_nbytes(src);
  10603. float * drow = (float *)dst->data;
  10604. const int64_t rs = dst->ne[0];
  10605. while (cdata < data_end) {
  10606. const float * const srow = (const float *)cdata;
  10607. int j = 0;
  10608. for (int64_t i = 0; i < rs; ++i) {
  10609. switch (op) {
  10610. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10611. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10612. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10613. }
  10614. for (int ki = 0; ki < k; ++ki) {
  10615. switch (op) {
  10616. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10617. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10618. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10619. }
  10620. ++j;
  10621. }
  10622. switch (op) {
  10623. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10624. case GGML_OP_POOL_MAX: break;
  10625. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10626. }
  10627. }
  10628. cdata += src->nb[1];
  10629. drow += rs;
  10630. }
  10631. }
  10632. // ggml_compute_forward_pool_1d
  10633. static void ggml_compute_forward_pool_1d(
  10634. const struct ggml_compute_params * params,
  10635. const struct ggml_tensor * src0,
  10636. struct ggml_tensor * dst) {
  10637. const int32_t * opts = (const int32_t *)dst->op_params;
  10638. enum ggml_op_pool op = opts[0];
  10639. const int k0 = opts[1];
  10640. const int s0 = opts[2];
  10641. const int p0 = opts[3];
  10642. GGML_ASSERT(p0 == 0); // padding not supported
  10643. GGML_ASSERT(k0 == s0); // only s = k supported
  10644. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10645. }
  10646. // ggml_compute_forward_pool_2d_sk_p0
  10647. static void ggml_compute_forward_pool_2d_sk_p0(
  10648. const struct ggml_compute_params * params,
  10649. const enum ggml_op_pool op,
  10650. const struct ggml_tensor * src,
  10651. const int k0,
  10652. const int k1,
  10653. struct ggml_tensor * dst) {
  10654. assert(src->type == GGML_TYPE_F32);
  10655. assert(params->ith == 0);
  10656. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10657. return;
  10658. }
  10659. const char * cdata = (const char*)src->data;
  10660. const char * const data_end = cdata + ggml_nbytes(src);
  10661. const int64_t px = dst->ne[0];
  10662. const int64_t py = dst->ne[1];
  10663. const int64_t pa = px * py;
  10664. float * dplane = (float *)dst->data;
  10665. const int ka = k0 * k1;
  10666. while (cdata < data_end) {
  10667. for (int oy = 0; oy < py; ++oy) {
  10668. float * const drow = dplane + oy * px;
  10669. for (int ox = 0; ox < px; ++ox) {
  10670. float * const out = drow + ox;
  10671. switch (op) {
  10672. case GGML_OP_POOL_AVG: *out = 0; break;
  10673. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10674. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10675. }
  10676. const int ix = ox * k0;
  10677. const int iy = oy * k1;
  10678. for (int ky = 0; ky < k1; ++ky) {
  10679. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10680. for (int kx = 0; kx < k0; ++kx) {
  10681. int j = ix + kx;
  10682. switch (op) {
  10683. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10684. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10685. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10686. }
  10687. }
  10688. }
  10689. switch (op) {
  10690. case GGML_OP_POOL_AVG: *out /= ka; break;
  10691. case GGML_OP_POOL_MAX: break;
  10692. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10693. }
  10694. }
  10695. }
  10696. cdata += src->nb[2];
  10697. dplane += pa;
  10698. }
  10699. }
  10700. // ggml_compute_forward_pool_2d
  10701. static void ggml_compute_forward_pool_2d(
  10702. const struct ggml_compute_params * params,
  10703. const struct ggml_tensor * src0,
  10704. struct ggml_tensor * dst) {
  10705. const int32_t * opts = (const int32_t *)dst->op_params;
  10706. enum ggml_op_pool op = opts[0];
  10707. const int k0 = opts[1];
  10708. const int k1 = opts[2];
  10709. const int s0 = opts[3];
  10710. const int s1 = opts[4];
  10711. const int p0 = opts[5];
  10712. const int p1 = opts[6];
  10713. GGML_ASSERT(p0 == 0);
  10714. GGML_ASSERT(p1 == 0); // padding not supported
  10715. GGML_ASSERT(k0 == s0);
  10716. GGML_ASSERT(k1 == s1); // only s = k supported
  10717. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10718. }
  10719. // ggml_compute_forward_flash_attn
  10720. static void ggml_compute_forward_flash_attn_f32(
  10721. const struct ggml_compute_params * params,
  10722. const struct ggml_tensor * q,
  10723. const struct ggml_tensor * k,
  10724. const struct ggml_tensor * v,
  10725. const bool masked,
  10726. struct ggml_tensor * dst) {
  10727. int64_t t0 = ggml_perf_time_us();
  10728. UNUSED(t0);
  10729. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10730. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10731. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10732. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10733. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10734. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10735. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10736. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10737. const int ith = params->ith;
  10738. const int nth = params->nth;
  10739. const int64_t D = neq0;
  10740. const int64_t N = neq1;
  10741. const int64_t P = nek1 - N;
  10742. const int64_t M = P + N;
  10743. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10744. GGML_ASSERT(ne0 == D);
  10745. GGML_ASSERT(ne1 == N);
  10746. GGML_ASSERT(P >= 0);
  10747. GGML_ASSERT(nbq0 == sizeof(float));
  10748. GGML_ASSERT(nbk0 == sizeof(float));
  10749. GGML_ASSERT(nbv0 == sizeof(float));
  10750. GGML_ASSERT(neq0 == D);
  10751. GGML_ASSERT(nek0 == D);
  10752. GGML_ASSERT(nev1 == D);
  10753. GGML_ASSERT(neq1 == N);
  10754. GGML_ASSERT(nek1 == N + P);
  10755. GGML_ASSERT(nev1 == D);
  10756. // dst cannot be transposed or permuted
  10757. GGML_ASSERT(nb0 == sizeof(float));
  10758. GGML_ASSERT(nb0 <= nb1);
  10759. GGML_ASSERT(nb1 <= nb2);
  10760. GGML_ASSERT(nb2 <= nb3);
  10761. if (params->type == GGML_TASK_INIT) {
  10762. return;
  10763. }
  10764. if (params->type == GGML_TASK_FINALIZE) {
  10765. return;
  10766. }
  10767. // parallelize by q rows using ggml_vec_dot_f32
  10768. // total rows in q
  10769. const int nr = neq1*neq2*neq3;
  10770. // rows per thread
  10771. const int dr = (nr + nth - 1)/nth;
  10772. // row range for this thread
  10773. const int ir0 = dr*ith;
  10774. const int ir1 = MIN(ir0 + dr, nr);
  10775. const float scale = 1.0f/sqrtf(D);
  10776. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10777. for (int ir = ir0; ir < ir1; ++ir) {
  10778. // q indices
  10779. const int iq3 = ir/(neq2*neq1);
  10780. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10781. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10782. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10783. for (int i = M; i < Mup; ++i) {
  10784. S[i] = -INFINITY;
  10785. }
  10786. for (int64_t ic = 0; ic < nek1; ++ic) {
  10787. // k indices
  10788. const int ik3 = iq3;
  10789. const int ik2 = iq2;
  10790. const int ik1 = ic;
  10791. // S indices
  10792. const int i1 = ik1;
  10793. ggml_vec_dot_f32(neq0,
  10794. S + i1,
  10795. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10796. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10797. }
  10798. // scale
  10799. ggml_vec_scale_f32(nek1, S, scale);
  10800. if (masked) {
  10801. for (int64_t i = P; i < M; i++) {
  10802. if (i > P + iq1) {
  10803. S[i] = -INFINITY;
  10804. }
  10805. }
  10806. }
  10807. // softmax
  10808. {
  10809. float max = -INFINITY;
  10810. ggml_vec_max_f32(M, &max, S);
  10811. ggml_float sum = 0.0;
  10812. {
  10813. #ifdef GGML_SOFT_MAX_ACCELERATE
  10814. max = -max;
  10815. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10816. vvexpf(S, S, &Mup);
  10817. ggml_vec_sum_f32(Mup, &sum, S);
  10818. #else
  10819. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10820. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10821. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10822. float * SS = S + i;
  10823. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10824. if (SS[j] == -INFINITY) {
  10825. SS[j] = 0.0f;
  10826. } else {
  10827. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10828. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10829. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10830. sump[j] += (ggml_float)val;
  10831. SS[j] = val;
  10832. }
  10833. }
  10834. }
  10835. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10836. sum += sump[i];
  10837. }
  10838. #endif
  10839. }
  10840. assert(sum > 0.0);
  10841. sum = 1.0/sum;
  10842. ggml_vec_scale_f32(M, S, sum);
  10843. #ifndef NDEBUG
  10844. for (int i = 0; i < M; ++i) {
  10845. assert(!isnan(S[i]));
  10846. assert(!isinf(S[i]));
  10847. }
  10848. #endif
  10849. }
  10850. for (int64_t ic = 0; ic < nev1; ++ic) {
  10851. // dst indices
  10852. const int i1 = iq1;
  10853. const int i2 = iq2;
  10854. const int i3 = iq3;
  10855. ggml_vec_dot_f32(nek1,
  10856. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10857. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10858. S);
  10859. }
  10860. }
  10861. }
  10862. static void ggml_compute_forward_flash_attn_f16(
  10863. const struct ggml_compute_params * params,
  10864. const struct ggml_tensor * q,
  10865. const struct ggml_tensor * k,
  10866. const struct ggml_tensor * v,
  10867. const bool masked,
  10868. struct ggml_tensor * dst) {
  10869. int64_t t0 = ggml_perf_time_us();
  10870. UNUSED(t0);
  10871. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10872. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10873. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10874. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10875. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10876. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10877. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10878. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10879. const int ith = params->ith;
  10880. const int nth = params->nth;
  10881. const int64_t D = neq0;
  10882. const int64_t N = neq1;
  10883. const int64_t P = nek1 - N;
  10884. const int64_t M = P + N;
  10885. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10886. GGML_ASSERT(ne0 == D);
  10887. GGML_ASSERT(ne1 == N);
  10888. GGML_ASSERT(P >= 0);
  10889. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10890. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10891. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10892. GGML_ASSERT(neq0 == D);
  10893. GGML_ASSERT(nek0 == D);
  10894. GGML_ASSERT(nev1 == D);
  10895. GGML_ASSERT(neq1 == N);
  10896. GGML_ASSERT(nek1 == N + P);
  10897. GGML_ASSERT(nev1 == D);
  10898. // dst cannot be transposed or permuted
  10899. GGML_ASSERT(nb0 == sizeof(float));
  10900. GGML_ASSERT(nb0 <= nb1);
  10901. GGML_ASSERT(nb1 <= nb2);
  10902. GGML_ASSERT(nb2 <= nb3);
  10903. if (params->type == GGML_TASK_INIT) {
  10904. return;
  10905. }
  10906. if (params->type == GGML_TASK_FINALIZE) {
  10907. return;
  10908. }
  10909. // parallelize by q rows using ggml_vec_dot_f32
  10910. // total rows in q
  10911. const int nr = neq1*neq2*neq3;
  10912. // rows per thread
  10913. const int dr = (nr + nth - 1)/nth;
  10914. // row range for this thread
  10915. const int ir0 = dr*ith;
  10916. const int ir1 = MIN(ir0 + dr, nr);
  10917. const float scale = 1.0f/sqrtf(D);
  10918. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10919. for (int ir = ir0; ir < ir1; ++ir) {
  10920. // q indices
  10921. const int iq3 = ir/(neq2*neq1);
  10922. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10923. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10924. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10925. for (int i = M; i < Mup; ++i) {
  10926. S[i] = -INFINITY;
  10927. }
  10928. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10929. for (int64_t ic = 0; ic < nek1; ++ic) {
  10930. // k indices
  10931. const int ik3 = iq3;
  10932. const int ik2 = iq2;
  10933. const int ik1 = ic;
  10934. // S indices
  10935. const int i1 = ik1;
  10936. ggml_vec_dot_f16(neq0,
  10937. S + i1,
  10938. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10939. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10940. }
  10941. } else {
  10942. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10943. // k indices
  10944. const int ik3 = iq3;
  10945. const int ik2 = iq2;
  10946. const int ik1 = ic;
  10947. // S indices
  10948. const int i1 = ik1;
  10949. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10950. S + i1,
  10951. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10952. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10953. }
  10954. }
  10955. // scale
  10956. ggml_vec_scale_f32(nek1, S, scale);
  10957. if (masked) {
  10958. for (int64_t i = P; i < M; i++) {
  10959. if (i > P + iq1) {
  10960. S[i] = -INFINITY;
  10961. }
  10962. }
  10963. }
  10964. // softmax
  10965. {
  10966. float max = -INFINITY;
  10967. ggml_vec_max_f32(M, &max, S);
  10968. ggml_float sum = 0.0;
  10969. {
  10970. #ifdef GGML_SOFT_MAX_ACCELERATE
  10971. max = -max;
  10972. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10973. vvexpf(S, S, &Mup);
  10974. ggml_vec_sum_f32(Mup, &sum, S);
  10975. #else
  10976. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10977. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10978. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10979. float * SS = S + i;
  10980. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10981. if (SS[j] == -INFINITY) {
  10982. SS[j] = 0.0f;
  10983. } else {
  10984. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10985. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10986. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10987. sump[j] += (ggml_float)val;
  10988. SS[j] = val;
  10989. }
  10990. }
  10991. }
  10992. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10993. sum += sump[i];
  10994. }
  10995. #endif
  10996. }
  10997. assert(sum > 0.0);
  10998. sum = 1.0/sum;
  10999. ggml_vec_scale_f32(M, S, sum);
  11000. #ifndef NDEBUG
  11001. for (int i = 0; i < M; ++i) {
  11002. assert(!isnan(S[i]));
  11003. assert(!isinf(S[i]));
  11004. }
  11005. #endif
  11006. }
  11007. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11008. for (int64_t i = 0; i < M; i++) {
  11009. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11010. }
  11011. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11012. for (int64_t ic = 0; ic < nev1; ++ic) {
  11013. // dst indices
  11014. const int i1 = iq1;
  11015. const int i2 = iq2;
  11016. const int i3 = iq3;
  11017. ggml_vec_dot_f16(nek1,
  11018. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11019. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11020. S16);
  11021. }
  11022. } else {
  11023. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11024. // dst indices
  11025. const int i1 = iq1;
  11026. const int i2 = iq2;
  11027. const int i3 = iq3;
  11028. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11029. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11030. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11031. S16);
  11032. }
  11033. }
  11034. }
  11035. }
  11036. static void ggml_compute_forward_flash_attn(
  11037. const struct ggml_compute_params * params,
  11038. const struct ggml_tensor * q,
  11039. const struct ggml_tensor * k,
  11040. const struct ggml_tensor * v,
  11041. const bool masked,
  11042. struct ggml_tensor * dst) {
  11043. switch (q->type) {
  11044. case GGML_TYPE_F16:
  11045. {
  11046. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11047. } break;
  11048. case GGML_TYPE_F32:
  11049. {
  11050. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11051. } break;
  11052. default:
  11053. {
  11054. GGML_ASSERT(false);
  11055. } break;
  11056. }
  11057. }
  11058. // ggml_compute_forward_flash_ff
  11059. static void ggml_compute_forward_flash_ff_f16(
  11060. const struct ggml_compute_params * params,
  11061. const struct ggml_tensor * a, // F16
  11062. const struct ggml_tensor * b0, // F16 fc_w
  11063. const struct ggml_tensor * b1, // F32 fc_b
  11064. const struct ggml_tensor * c0, // F16 proj_w
  11065. const struct ggml_tensor * c1, // F32 proj_b
  11066. struct ggml_tensor * dst) {
  11067. int64_t t0 = ggml_perf_time_us();
  11068. UNUSED(t0);
  11069. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11070. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11071. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11072. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11073. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11074. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11075. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11076. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11077. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11078. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11079. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11080. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11081. const int ith = params->ith;
  11082. const int nth = params->nth;
  11083. const int64_t D = nea0;
  11084. //const int64_t N = nea1;
  11085. const int64_t M = neb01;
  11086. GGML_ASSERT(ne0 == nea0);
  11087. GGML_ASSERT(ne1 == nea1);
  11088. GGML_ASSERT(ne2 == nea2);
  11089. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11090. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11091. GGML_ASSERT(nbb10 == sizeof(float));
  11092. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11093. GGML_ASSERT(nbc10 == sizeof(float));
  11094. GGML_ASSERT(neb00 == D);
  11095. GGML_ASSERT(neb01 == M);
  11096. GGML_ASSERT(neb10 == M);
  11097. GGML_ASSERT(neb11 == 1);
  11098. GGML_ASSERT(nec00 == M);
  11099. GGML_ASSERT(nec01 == D);
  11100. GGML_ASSERT(nec10 == D);
  11101. GGML_ASSERT(nec11 == 1);
  11102. // dst cannot be transposed or permuted
  11103. GGML_ASSERT(nb0 == sizeof(float));
  11104. GGML_ASSERT(nb0 <= nb1);
  11105. GGML_ASSERT(nb1 <= nb2);
  11106. GGML_ASSERT(nb2 <= nb3);
  11107. if (params->type == GGML_TASK_INIT) {
  11108. return;
  11109. }
  11110. if (params->type == GGML_TASK_FINALIZE) {
  11111. return;
  11112. }
  11113. // parallelize by a rows using ggml_vec_dot_f32
  11114. // total rows in a
  11115. const int nr = nea1*nea2*nea3;
  11116. // rows per thread
  11117. const int dr = (nr + nth - 1)/nth;
  11118. // row range for this thread
  11119. const int ir0 = dr*ith;
  11120. const int ir1 = MIN(ir0 + dr, nr);
  11121. for (int ir = ir0; ir < ir1; ++ir) {
  11122. // a indices
  11123. const int ia3 = ir/(nea2*nea1);
  11124. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11125. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11126. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11127. for (int64_t ic = 0; ic < neb01; ++ic) {
  11128. // b0 indices
  11129. const int ib03 = ia3;
  11130. const int ib02 = ia2;
  11131. const int ib01 = ic;
  11132. // S indices
  11133. const int i1 = ib01;
  11134. ggml_vec_dot_f16(nea0,
  11135. S + i1,
  11136. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11137. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11138. }
  11139. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11140. //ggml_vec_gelu_f32(neb01, S, S);
  11141. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11142. for (int64_t i = 0; i < M; i++) {
  11143. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11144. }
  11145. ggml_vec_gelu_f16(neb01, S16, S16);
  11146. {
  11147. // dst indices
  11148. const int i1 = ia1;
  11149. const int i2 = ia2;
  11150. const int i3 = ia3;
  11151. for (int64_t ic = 0; ic < nec01; ++ic) {
  11152. ggml_vec_dot_f16(neb01,
  11153. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11154. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11155. S16);
  11156. }
  11157. ggml_vec_add_f32(nec01,
  11158. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11159. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11160. (float *) c1->data);
  11161. }
  11162. }
  11163. }
  11164. static void ggml_compute_forward_flash_ff(
  11165. const struct ggml_compute_params * params,
  11166. const struct ggml_tensor * a,
  11167. const struct ggml_tensor * b0,
  11168. const struct ggml_tensor * b1,
  11169. const struct ggml_tensor * c0,
  11170. const struct ggml_tensor * c1,
  11171. struct ggml_tensor * dst) {
  11172. switch (b0->type) {
  11173. case GGML_TYPE_F16:
  11174. {
  11175. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11176. } break;
  11177. case GGML_TYPE_F32:
  11178. {
  11179. GGML_ASSERT(false); // TODO
  11180. } break;
  11181. default:
  11182. {
  11183. GGML_ASSERT(false);
  11184. } break;
  11185. }
  11186. }
  11187. // ggml_compute_forward_flash_attn_back
  11188. static void ggml_compute_forward_flash_attn_back_f32(
  11189. const struct ggml_compute_params * params,
  11190. const struct ggml_tensor * q,
  11191. const struct ggml_tensor * k,
  11192. const struct ggml_tensor * v,
  11193. const struct ggml_tensor * d,
  11194. const bool masked,
  11195. struct ggml_tensor * dst) {
  11196. int64_t t0 = ggml_perf_time_us();
  11197. UNUSED(t0);
  11198. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11199. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11200. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11201. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11202. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11203. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11204. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11205. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11206. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11207. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11208. const int ith = params->ith;
  11209. const int nth = params->nth;
  11210. const int64_t D = neq0;
  11211. const int64_t N = neq1;
  11212. const int64_t P = nek1 - N;
  11213. const int64_t M = P + N;
  11214. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11215. const int mxDM = MAX(D, Mup);
  11216. // GGML_ASSERT(ne0 == D);
  11217. // GGML_ASSERT(ne1 == N);
  11218. GGML_ASSERT(P >= 0);
  11219. GGML_ASSERT(nbq0 == sizeof(float));
  11220. GGML_ASSERT(nbk0 == sizeof(float));
  11221. GGML_ASSERT(nbv0 == sizeof(float));
  11222. GGML_ASSERT(neq0 == D);
  11223. GGML_ASSERT(nek0 == D);
  11224. GGML_ASSERT(nev1 == D);
  11225. GGML_ASSERT(ned0 == D);
  11226. GGML_ASSERT(neq1 == N);
  11227. GGML_ASSERT(nek1 == N + P);
  11228. GGML_ASSERT(nev1 == D);
  11229. GGML_ASSERT(ned1 == N);
  11230. // dst cannot be transposed or permuted
  11231. GGML_ASSERT(nb0 == sizeof(float));
  11232. GGML_ASSERT(nb0 <= nb1);
  11233. GGML_ASSERT(nb1 <= nb2);
  11234. GGML_ASSERT(nb2 <= nb3);
  11235. if (params->type == GGML_TASK_INIT) {
  11236. if (ith == 0) {
  11237. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11238. }
  11239. return;
  11240. }
  11241. if (params->type == GGML_TASK_FINALIZE) {
  11242. return;
  11243. }
  11244. // parallelize by q rows using ggml_vec_dot_f32
  11245. // total rows in q
  11246. const int nr = neq2*neq3;
  11247. // rows per thread
  11248. const int dr = (nr + nth - 1)/nth;
  11249. // row range for this thread
  11250. const int ir0 = dr*ith;
  11251. const int ir1 = MIN(ir0 + dr, nr);
  11252. const float scale = 1.0f/sqrtf(D);
  11253. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11254. for (int ir = ir0; ir < ir1; ++ir) {
  11255. // q indices
  11256. const int iq3 = ir/(neq2);
  11257. const int iq2 = ir - iq3*neq2;
  11258. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11259. // not sure about CACHE_LINE_SIZE_F32..
  11260. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11261. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11262. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11263. for (int i = M; i < Mup; ++i) {
  11264. S[i] = -INFINITY;
  11265. }
  11266. for (int64_t ic = 0; ic < nek1; ++ic) {
  11267. // k indices
  11268. const int ik3 = iq3;
  11269. const int ik2 = iq2;
  11270. const int ik1 = ic;
  11271. // S indices
  11272. const int i1 = ik1;
  11273. ggml_vec_dot_f32(neq0,
  11274. S + i1,
  11275. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11276. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11277. }
  11278. // scale
  11279. ggml_vec_scale_f32(nek1, S, scale);
  11280. if (masked) {
  11281. for (int64_t i = P; i < M; i++) {
  11282. if (i > P + iq1) {
  11283. S[i] = -INFINITY;
  11284. }
  11285. }
  11286. }
  11287. // softmax
  11288. {
  11289. float max = -INFINITY;
  11290. ggml_vec_max_f32(M, &max, S);
  11291. ggml_float sum = 0.0;
  11292. {
  11293. #ifdef GGML_SOFT_MAX_ACCELERATE
  11294. max = -max;
  11295. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11296. vvexpf(SM, SM, &Mup);
  11297. ggml_vec_sum_f32(Mup, &sum, SM);
  11298. #else
  11299. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11300. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11301. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11302. float * SR = S + i;
  11303. float * SW = SM + i;
  11304. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11305. if (SR[j] == -INFINITY) {
  11306. SW[j] = 0.0f;
  11307. } else {
  11308. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11309. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11310. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11311. sump[j] += (ggml_float)val;
  11312. SW[j] = val;
  11313. }
  11314. }
  11315. }
  11316. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11317. sum += sump[i];
  11318. }
  11319. #endif
  11320. }
  11321. assert(sum > 0.0);
  11322. sum = 1.0/sum;
  11323. ggml_vec_scale_f32(M, SM, sum);
  11324. }
  11325. // step-by-step explanation
  11326. {
  11327. // forward-process shape grads from backward process
  11328. // parallel_for iq2,iq3:
  11329. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11330. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11331. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11332. // for iq1:
  11333. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11334. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11335. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11336. // S0 = -Inf [D,1,1,1]
  11337. // ~S1[i] = dot(kcur[:D,i], qcur)
  11338. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11339. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11340. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11341. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11342. // ~S5[i] = dot(vcur[:,i], S4)
  11343. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11344. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11345. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11346. // dst backward-/ grad[dst] = d
  11347. //
  11348. // output gradients with their dependencies:
  11349. //
  11350. // grad[kcur] = grad[S1].T @ qcur
  11351. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11352. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11353. // grad[S4] = grad[S5] @ vcur
  11354. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11355. // grad[qcur] = grad[S1] @ kcur
  11356. // grad[vcur] = grad[S5].T @ S4
  11357. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11358. //
  11359. // in post-order:
  11360. //
  11361. // S1 = qcur @ kcur.T
  11362. // S2 = S1 * scale
  11363. // S3 = diag_mask_inf(S2, P)
  11364. // S4 = softmax(S3)
  11365. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11366. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11367. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11368. // grad[qcur] = grad[S1] @ kcur
  11369. // grad[kcur] = grad[S1].T @ qcur
  11370. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11371. //
  11372. // using less variables (SM=S4):
  11373. //
  11374. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11375. // SM = softmax(S)
  11376. // S = d[:D,iq1,iq2,iq3] @ vcur
  11377. // dot_SM_gradSM = dot(SM, S)
  11378. // S = SM * (S - dot(SM, S))
  11379. // S = diag_mask_zero(S, P) * scale
  11380. //
  11381. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11382. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11383. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11384. }
  11385. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11386. // S = d[:D,iq1,iq2,iq3] @ vcur
  11387. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11388. ggml_vec_set_f32(M, S, 0);
  11389. for (int64_t ic = 0; ic < D; ++ic) {
  11390. // dst indices
  11391. const int i1 = iq1;
  11392. const int i2 = iq2;
  11393. const int i3 = iq3;
  11394. ggml_vec_mad_f32(M,
  11395. S,
  11396. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11397. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11398. }
  11399. // S = SM * (S - dot(SM, S))
  11400. float dot_SM_gradSM = 0;
  11401. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11402. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11403. ggml_vec_mul_f32 (M, S, S, SM);
  11404. // S = diag_mask_zero(S, P) * scale
  11405. if (masked) {
  11406. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11407. // S[i] = 0;
  11408. // }
  11409. for (int64_t i = P; i < M; i++) {
  11410. if (i > P + iq1) {
  11411. S[i] = 0;
  11412. }
  11413. }
  11414. }
  11415. ggml_vec_scale_f32(M, S, scale);
  11416. void * grad_q = (char *) dst->data;
  11417. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11418. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11419. const size_t nbgq1 = nb0*neq0;
  11420. const size_t nbgq2 = nb0*neq0*neq1;
  11421. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11422. const size_t nbgk1 = nb0*nek0;
  11423. const size_t nbgk2 = nb0*nek0*nek1;
  11424. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11425. const size_t nbgv1 = nb0*nev0;
  11426. const size_t nbgv2 = nb0*nev0*nev1;
  11427. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11428. // S shape [M,1]
  11429. // SM shape [M,1]
  11430. // kcur shape [D,M]
  11431. // qcur shape [D,1]
  11432. // vcur shape [M,D]
  11433. //
  11434. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11435. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11436. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11437. //
  11438. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11439. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11440. for (int64_t ic = 0; ic < M; ++ic) {
  11441. // dst indices
  11442. const int i1 = iq1;
  11443. const int i2 = iq2;
  11444. const int i3 = iq3;
  11445. ggml_vec_mad_f32(D,
  11446. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11447. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11448. S[ic]);
  11449. }
  11450. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11451. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11452. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11453. for (int64_t ic = 0; ic < M; ++ic) {
  11454. // dst indices
  11455. const int i1 = iq1;
  11456. const int i2 = iq2;
  11457. const int i3 = iq3;
  11458. // ggml_vec_set_f32(D,
  11459. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11460. // 0);
  11461. ggml_vec_mad_f32(D,
  11462. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11463. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11464. S[ic]);
  11465. }
  11466. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11467. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11468. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11469. for (int64_t ic = 0; ic < D; ++ic) {
  11470. // dst indices
  11471. const int i1 = iq1;
  11472. const int i2 = iq2;
  11473. const int i3 = iq3;
  11474. // ggml_vec_set_f32(M,
  11475. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11476. // 0);
  11477. ggml_vec_mad_f32(M,
  11478. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11479. SM,
  11480. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11481. }
  11482. }
  11483. }
  11484. }
  11485. static void ggml_compute_forward_flash_attn_back(
  11486. const struct ggml_compute_params * params,
  11487. const struct ggml_tensor * q,
  11488. const struct ggml_tensor * k,
  11489. const struct ggml_tensor * v,
  11490. const struct ggml_tensor * d,
  11491. const bool masked,
  11492. struct ggml_tensor * dst) {
  11493. switch (q->type) {
  11494. case GGML_TYPE_F32:
  11495. {
  11496. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11497. } break;
  11498. default:
  11499. {
  11500. GGML_ASSERT(false);
  11501. } break;
  11502. }
  11503. }
  11504. // ggml_compute_forward_win_part
  11505. static void ggml_compute_forward_win_part_f32(
  11506. const struct ggml_compute_params * params,
  11507. const struct ggml_tensor * src0,
  11508. struct ggml_tensor * dst) {
  11509. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11510. return;
  11511. }
  11512. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11513. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11514. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11515. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11516. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11517. assert(ne00 == ne0);
  11518. assert(ne3 == nep0*nep1);
  11519. // TODO: optimize / multi-thread
  11520. for (int py = 0; py < nep1; ++py) {
  11521. for (int px = 0; px < nep0; ++px) {
  11522. const int64_t i3 = py*nep0 + px;
  11523. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11524. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11525. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11526. const int64_t i02 = py*w + i2;
  11527. const int64_t i01 = px*w + i1;
  11528. const int64_t i00 = i0;
  11529. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11530. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11531. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11532. ((float *) dst->data)[i] = 0.0f;
  11533. } else {
  11534. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11535. }
  11536. }
  11537. }
  11538. }
  11539. }
  11540. }
  11541. }
  11542. static void ggml_compute_forward_win_part(
  11543. const struct ggml_compute_params * params,
  11544. const struct ggml_tensor * src0,
  11545. struct ggml_tensor * dst) {
  11546. switch (src0->type) {
  11547. case GGML_TYPE_F32:
  11548. {
  11549. ggml_compute_forward_win_part_f32(params, src0, dst);
  11550. } break;
  11551. default:
  11552. {
  11553. GGML_ASSERT(false);
  11554. } break;
  11555. }
  11556. }
  11557. // ggml_compute_forward_win_unpart
  11558. static void ggml_compute_forward_win_unpart_f32(
  11559. const struct ggml_compute_params * params,
  11560. const struct ggml_tensor * src0,
  11561. struct ggml_tensor * dst) {
  11562. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11563. return;
  11564. }
  11565. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11566. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11567. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11568. // padding
  11569. const int px = (w - ne1%w)%w;
  11570. //const int py = (w - ne2%w)%w;
  11571. const int npx = (px + ne1)/w;
  11572. //const int npy = (py + ne2)/w;
  11573. assert(ne0 == ne00);
  11574. // TODO: optimize / multi-thread
  11575. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11576. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11577. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11578. const int ip2 = i2/w;
  11579. const int ip1 = i1/w;
  11580. const int64_t i02 = i2%w;
  11581. const int64_t i01 = i1%w;
  11582. const int64_t i00 = i0;
  11583. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11584. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11585. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11586. }
  11587. }
  11588. }
  11589. }
  11590. static void ggml_compute_forward_win_unpart(
  11591. const struct ggml_compute_params * params,
  11592. const struct ggml_tensor * src0,
  11593. struct ggml_tensor * dst) {
  11594. switch (src0->type) {
  11595. case GGML_TYPE_F32:
  11596. {
  11597. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11598. } break;
  11599. default:
  11600. {
  11601. GGML_ASSERT(false);
  11602. } break;
  11603. }
  11604. }
  11605. //gmml_compute_forward_unary
  11606. static void ggml_compute_forward_unary(
  11607. const struct ggml_compute_params * params,
  11608. const struct ggml_tensor * src0,
  11609. struct ggml_tensor * dst) {
  11610. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11611. switch (op) {
  11612. case GGML_UNARY_OP_ABS:
  11613. {
  11614. ggml_compute_forward_abs(params, src0, dst);
  11615. } break;
  11616. case GGML_UNARY_OP_SGN:
  11617. {
  11618. ggml_compute_forward_sgn(params, src0, dst);
  11619. } break;
  11620. case GGML_UNARY_OP_NEG:
  11621. {
  11622. ggml_compute_forward_neg(params, src0, dst);
  11623. } break;
  11624. case GGML_UNARY_OP_STEP:
  11625. {
  11626. ggml_compute_forward_step(params, src0, dst);
  11627. } break;
  11628. case GGML_UNARY_OP_TANH:
  11629. {
  11630. ggml_compute_forward_tanh(params, src0, dst);
  11631. } break;
  11632. case GGML_UNARY_OP_ELU:
  11633. {
  11634. ggml_compute_forward_elu(params, src0, dst);
  11635. } break;
  11636. case GGML_UNARY_OP_RELU:
  11637. {
  11638. ggml_compute_forward_relu(params, src0, dst);
  11639. } break;
  11640. case GGML_UNARY_OP_GELU:
  11641. {
  11642. ggml_compute_forward_gelu(params, src0, dst);
  11643. } break;
  11644. case GGML_UNARY_OP_GELU_QUICK:
  11645. {
  11646. ggml_compute_forward_gelu_quick(params, src0, dst);
  11647. } break;
  11648. case GGML_UNARY_OP_SILU:
  11649. {
  11650. ggml_compute_forward_silu(params, src0, dst);
  11651. } break;
  11652. default:
  11653. {
  11654. GGML_ASSERT(false);
  11655. } break;
  11656. }
  11657. }
  11658. // ggml_compute_forward_map_unary
  11659. static void ggml_compute_forward_map_unary_f32(
  11660. const struct ggml_compute_params * params,
  11661. const struct ggml_tensor * src0,
  11662. struct ggml_tensor * dst,
  11663. const ggml_unary_op_f32_t fun) {
  11664. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11665. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11666. return;
  11667. }
  11668. const int n = ggml_nrows(src0);
  11669. const int nc = src0->ne[0];
  11670. assert( dst->nb[0] == sizeof(float));
  11671. assert(src0->nb[0] == sizeof(float));
  11672. for (int i = 0; i < n; i++) {
  11673. fun(nc,
  11674. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11675. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11676. }
  11677. }
  11678. static void ggml_compute_forward_map_unary(
  11679. const struct ggml_compute_params * params,
  11680. const struct ggml_tensor * src0,
  11681. struct ggml_tensor * dst,
  11682. const ggml_unary_op_f32_t fun) {
  11683. switch (src0->type) {
  11684. case GGML_TYPE_F32:
  11685. {
  11686. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11687. } break;
  11688. default:
  11689. {
  11690. GGML_ASSERT(false);
  11691. } break;
  11692. }
  11693. }
  11694. // ggml_compute_forward_map_binary
  11695. static void ggml_compute_forward_map_binary_f32(
  11696. const struct ggml_compute_params * params,
  11697. const struct ggml_tensor * src0,
  11698. const struct ggml_tensor * src1,
  11699. struct ggml_tensor * dst,
  11700. const ggml_binary_op_f32_t fun) {
  11701. assert(params->ith == 0);
  11702. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11703. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11704. return;
  11705. }
  11706. const int n = ggml_nrows(src0);
  11707. const int nc = src0->ne[0];
  11708. assert( dst->nb[0] == sizeof(float));
  11709. assert(src0->nb[0] == sizeof(float));
  11710. assert(src1->nb[0] == sizeof(float));
  11711. for (int i = 0; i < n; i++) {
  11712. fun(nc,
  11713. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11714. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11715. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11716. }
  11717. }
  11718. static void ggml_compute_forward_map_binary(
  11719. const struct ggml_compute_params * params,
  11720. const struct ggml_tensor * src0,
  11721. const struct ggml_tensor * src1,
  11722. struct ggml_tensor * dst,
  11723. const ggml_binary_op_f32_t fun) {
  11724. switch (src0->type) {
  11725. case GGML_TYPE_F32:
  11726. {
  11727. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11728. } break;
  11729. default:
  11730. {
  11731. GGML_ASSERT(false);
  11732. } break;
  11733. }
  11734. }
  11735. // ggml_compute_forward_map_custom1
  11736. static void ggml_compute_forward_map_custom1_f32(
  11737. const struct ggml_compute_params * params,
  11738. const struct ggml_tensor * a,
  11739. struct ggml_tensor * dst,
  11740. const ggml_custom1_op_f32_t fun) {
  11741. assert(params->ith == 0);
  11742. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11743. return;
  11744. }
  11745. fun(dst, a);
  11746. }
  11747. // ggml_compute_forward_map_custom2
  11748. static void ggml_compute_forward_map_custom2_f32(
  11749. const struct ggml_compute_params * params,
  11750. const struct ggml_tensor * a,
  11751. const struct ggml_tensor * b,
  11752. struct ggml_tensor * dst,
  11753. const ggml_custom2_op_f32_t fun) {
  11754. assert(params->ith == 0);
  11755. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11756. return;
  11757. }
  11758. fun(dst, a, b);
  11759. }
  11760. // ggml_compute_forward_map_custom3
  11761. static void ggml_compute_forward_map_custom3_f32(
  11762. const struct ggml_compute_params * params,
  11763. const struct ggml_tensor * a,
  11764. const struct ggml_tensor * b,
  11765. const struct ggml_tensor * c,
  11766. struct ggml_tensor * dst,
  11767. const ggml_custom3_op_f32_t fun) {
  11768. assert(params->ith == 0);
  11769. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11770. return;
  11771. }
  11772. fun(dst, a, b, c);
  11773. }
  11774. // ggml_compute_forward_map_custom1
  11775. static void ggml_compute_forward_map_custom1(
  11776. const struct ggml_compute_params * params,
  11777. const struct ggml_tensor * a,
  11778. struct ggml_tensor * dst) {
  11779. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11780. return;
  11781. }
  11782. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11783. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11784. }
  11785. // ggml_compute_forward_map_custom2
  11786. static void ggml_compute_forward_map_custom2(
  11787. const struct ggml_compute_params * params,
  11788. const struct ggml_tensor * a,
  11789. const struct ggml_tensor * b,
  11790. struct ggml_tensor * dst) {
  11791. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11792. return;
  11793. }
  11794. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11795. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11796. }
  11797. // ggml_compute_forward_map_custom3
  11798. static void ggml_compute_forward_map_custom3(
  11799. const struct ggml_compute_params * params,
  11800. const struct ggml_tensor * a,
  11801. const struct ggml_tensor * b,
  11802. const struct ggml_tensor * c,
  11803. struct ggml_tensor * dst) {
  11804. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11805. return;
  11806. }
  11807. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11808. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11809. }
  11810. // ggml_compute_forward_cross_entropy_loss
  11811. static void ggml_compute_forward_cross_entropy_loss_f32(
  11812. const struct ggml_compute_params * params,
  11813. const struct ggml_tensor * src0,
  11814. const struct ggml_tensor * src1,
  11815. struct ggml_tensor * dst) {
  11816. GGML_ASSERT(ggml_is_contiguous(src0));
  11817. GGML_ASSERT(ggml_is_contiguous(src1));
  11818. GGML_ASSERT(ggml_is_scalar(dst));
  11819. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11820. const int ith = params->ith;
  11821. const int nth = params->nth;
  11822. float * sums = (float *) params->wdata;
  11823. // TODO: handle transposed/permuted matrices
  11824. const int nc = src0->ne[0];
  11825. const int nr = ggml_nrows(src0);
  11826. if (params->type == GGML_TASK_INIT) {
  11827. if (ith == 0) {
  11828. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11829. }
  11830. return;
  11831. }
  11832. if (params->type == GGML_TASK_FINALIZE) {
  11833. if (ith == 0) {
  11834. float * dp = (float *) dst->data;
  11835. ggml_vec_sum_f32(nth, dp, sums);
  11836. dp[0] *= -1.0f;
  11837. }
  11838. return;
  11839. }
  11840. const double eps = 1e-9;
  11841. // rows per thread
  11842. const int dr = (nr + nth - 1)/nth;
  11843. // row range for this thread
  11844. const int ir0 = dr*ith;
  11845. const int ir1 = MIN(ir0 + dr, nr);
  11846. for (int i1 = ir0; i1 < ir1; i1++) {
  11847. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11848. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11849. float * st = (float *) params->wdata + nth + ith*nc;
  11850. #ifndef NDEBUG
  11851. for (int i = 0; i < nc; ++i) {
  11852. //printf("p[%d] = %f\n", i, p[i]);
  11853. assert(!isnan(s0[i]));
  11854. assert(!isnan(s1[i]));
  11855. }
  11856. #endif
  11857. // soft_max
  11858. ggml_float sum = 0.0;
  11859. {
  11860. float max = -INFINITY;
  11861. ggml_vec_max_f32(nc, &max, s0);
  11862. uint16_t scvt;
  11863. for (int i = 0; i < nc; i++) {
  11864. if (s0[i] == -INFINITY) {
  11865. st[i] = 0.0f;
  11866. } else {
  11867. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11868. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11869. memcpy(&scvt, &s, sizeof(scvt));
  11870. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11871. sum += (ggml_float)val;
  11872. st[i] = val;
  11873. }
  11874. }
  11875. assert(sum > 0.0);
  11876. // sum = 1.0/sum;
  11877. }
  11878. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11879. sum = (1.0 - eps) / sum;
  11880. ggml_vec_scale_f32(nc, st, sum);
  11881. ggml_vec_add1_f32(nc, st, st, eps);
  11882. ggml_vec_log_f32(nc, st, st);
  11883. ggml_vec_mul_f32(nc, st, st, s1);
  11884. ggml_vec_sum_f32(nc, sums + ith, st);
  11885. #ifndef NDEBUG
  11886. for (int i = 0; i < nc; ++i) {
  11887. assert(!isnan(st[i]));
  11888. assert(!isinf(st[i]));
  11889. }
  11890. #endif
  11891. }
  11892. }
  11893. static void ggml_compute_forward_cross_entropy_loss(
  11894. const struct ggml_compute_params * params,
  11895. const struct ggml_tensor * src0,
  11896. const struct ggml_tensor * src1,
  11897. struct ggml_tensor * dst) {
  11898. switch (src0->type) {
  11899. case GGML_TYPE_F32:
  11900. {
  11901. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11902. } break;
  11903. default:
  11904. {
  11905. GGML_ASSERT(false);
  11906. } break;
  11907. }
  11908. }
  11909. // ggml_compute_forward_cross_entropy_loss_back
  11910. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11911. const struct ggml_compute_params * params,
  11912. const struct ggml_tensor * src0,
  11913. const struct ggml_tensor * src1,
  11914. const struct ggml_tensor * opt0,
  11915. struct ggml_tensor * dst) {
  11916. GGML_ASSERT(ggml_is_contiguous(dst));
  11917. GGML_ASSERT(ggml_is_contiguous(src0));
  11918. GGML_ASSERT(ggml_is_contiguous(src1));
  11919. GGML_ASSERT(ggml_is_contiguous(opt0));
  11920. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11921. const int64_t ith = params->ith;
  11922. const int64_t nth = params->nth;
  11923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11924. return;
  11925. }
  11926. const float eps = 1e-9f;
  11927. // TODO: handle transposed/permuted matrices
  11928. const int64_t nc = src0->ne[0];
  11929. const int64_t nr = ggml_nrows(src0);
  11930. // rows per thread
  11931. const int64_t dr = (nr + nth - 1)/nth;
  11932. // row range for this thread
  11933. const int64_t ir0 = dr*ith;
  11934. const int64_t ir1 = MIN(ir0 + dr, nr);
  11935. float * d = (float *) opt0->data;
  11936. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11937. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11938. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11939. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11940. float * sm = (float *) params->wdata + ith*nc;
  11941. #ifndef NDEBUG
  11942. for (int i = 0; i < nc; ++i) {
  11943. //printf("p[%d] = %f\n", i, p[i]);
  11944. assert(!isnan(s0[i]));
  11945. assert(!isnan(s1[i]));
  11946. }
  11947. #endif
  11948. // step by step explanation:
  11949. {
  11950. //float * sums = (float *) params->wdata;
  11951. // forward pass with annotated gradients from backward pass
  11952. // (built by going in reverse operation order, adding to gradients of current operation args)
  11953. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11954. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11955. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11956. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11957. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11958. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11959. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11960. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11961. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11962. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11963. // postorder:
  11964. // grad[st1] := softmax(s0)
  11965. // grad[st1] := grad[st1]*(1.0 - eps)
  11966. // grad[st1] := grad[st1] + eps
  11967. // grad[st1] := s1 / grad[st1]
  11968. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11969. // src0 gradients by going through softmax_back
  11970. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11971. // from softmax_back:
  11972. // dxk = yk * (dyk - dot(y, dy))
  11973. // dot_y_dy := dot(y, dy)
  11974. // dx := dy
  11975. // dx := dx - dot_y_dy
  11976. // dx := dx * y
  11977. // postorder:
  11978. // dot_st1_dst1 := dot(st1, grad[st1])
  11979. // grad[s0] := grad[st1]
  11980. // grad[s0] := grad[s0] - dot_st1_dst1
  11981. // grad[s0] := grad[s0] * st1
  11982. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11983. // sm := softmax(s0)
  11984. // grad[s0] := sm*(1.0 - eps)
  11985. // grad[s0] := grad[s0] + eps
  11986. // grad[s0] := s1 / grad[s0]
  11987. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11988. // dot_st1_dst1 := dot(sm, grad[s0])
  11989. // grad[s0] := grad[s0] - dot_st1_dst1
  11990. // grad[s0] := grad[s0] * sm
  11991. }
  11992. // soft_max
  11993. ggml_float sum = 0.0;
  11994. {
  11995. float max = -INFINITY;
  11996. ggml_vec_max_f32(nc, &max, s0);
  11997. uint16_t scvt;
  11998. for (int i = 0; i < nc; i++) {
  11999. if (s0[i] == -INFINITY) {
  12000. sm[i] = 0.0f;
  12001. } else {
  12002. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12003. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12004. memcpy(&scvt, &s, sizeof(scvt));
  12005. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12006. sum += (ggml_float)val;
  12007. sm[i] = val;
  12008. }
  12009. }
  12010. assert(sum > 0.0);
  12011. sum = 1.0/sum;
  12012. }
  12013. float dot_st1_dst1 = 0;
  12014. ggml_vec_scale_f32(nc, sm, sum);
  12015. ggml_vec_cpy_f32 (nc, ds0, sm);
  12016. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12017. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12018. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12019. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12020. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12021. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12022. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12023. #ifndef NDEBUG
  12024. for (int i = 0; i < nc; ++i) {
  12025. assert(!isnan(sm[i]));
  12026. assert(!isinf(sm[i]));
  12027. assert(!isnan(ds0[i]));
  12028. assert(!isinf(ds0[i]));
  12029. }
  12030. #endif
  12031. }
  12032. }
  12033. static void ggml_compute_forward_cross_entropy_loss_back(
  12034. const struct ggml_compute_params * params,
  12035. const struct ggml_tensor * src0,
  12036. const struct ggml_tensor * src1,
  12037. const struct ggml_tensor * opt0,
  12038. struct ggml_tensor * dst) {
  12039. switch (src0->type) {
  12040. case GGML_TYPE_F32:
  12041. {
  12042. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12043. } break;
  12044. default:
  12045. {
  12046. GGML_ASSERT(false);
  12047. } break;
  12048. }
  12049. }
  12050. /////////////////////////////////
  12051. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12052. GGML_ASSERT(params);
  12053. #ifdef GGML_USE_CUBLAS
  12054. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12055. if (skip_cpu) {
  12056. return;
  12057. }
  12058. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12059. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12060. #endif // GGML_USE_CUBLAS
  12061. switch (tensor->op) {
  12062. case GGML_OP_DUP:
  12063. {
  12064. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12065. } break;
  12066. case GGML_OP_ADD:
  12067. {
  12068. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12069. } break;
  12070. case GGML_OP_ADD1:
  12071. {
  12072. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12073. } break;
  12074. case GGML_OP_ACC:
  12075. {
  12076. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12077. } break;
  12078. case GGML_OP_SUB:
  12079. {
  12080. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12081. } break;
  12082. case GGML_OP_MUL:
  12083. {
  12084. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12085. } break;
  12086. case GGML_OP_DIV:
  12087. {
  12088. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12089. } break;
  12090. case GGML_OP_SQR:
  12091. {
  12092. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12093. } break;
  12094. case GGML_OP_SQRT:
  12095. {
  12096. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12097. } break;
  12098. case GGML_OP_LOG:
  12099. {
  12100. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12101. } break;
  12102. case GGML_OP_SUM:
  12103. {
  12104. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12105. } break;
  12106. case GGML_OP_SUM_ROWS:
  12107. {
  12108. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12109. } break;
  12110. case GGML_OP_MEAN:
  12111. {
  12112. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12113. } break;
  12114. case GGML_OP_ARGMAX:
  12115. {
  12116. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12117. } break;
  12118. case GGML_OP_REPEAT:
  12119. {
  12120. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12121. } break;
  12122. case GGML_OP_REPEAT_BACK:
  12123. {
  12124. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12125. } break;
  12126. case GGML_OP_SILU_BACK:
  12127. {
  12128. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12129. } break;
  12130. case GGML_OP_NORM:
  12131. {
  12132. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12133. } break;
  12134. case GGML_OP_RMS_NORM:
  12135. {
  12136. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12137. } break;
  12138. case GGML_OP_RMS_NORM_BACK:
  12139. {
  12140. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12141. } break;
  12142. case GGML_OP_MUL_MAT:
  12143. {
  12144. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12145. } break;
  12146. case GGML_OP_OUT_PROD:
  12147. {
  12148. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12149. } break;
  12150. case GGML_OP_SCALE:
  12151. {
  12152. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12153. } break;
  12154. case GGML_OP_SET:
  12155. {
  12156. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12157. } break;
  12158. case GGML_OP_CPY:
  12159. {
  12160. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12161. } break;
  12162. case GGML_OP_CONT:
  12163. {
  12164. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12165. } break;
  12166. case GGML_OP_RESHAPE:
  12167. {
  12168. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12169. } break;
  12170. case GGML_OP_VIEW:
  12171. {
  12172. ggml_compute_forward_view(params, tensor->src[0]);
  12173. } break;
  12174. case GGML_OP_PERMUTE:
  12175. {
  12176. ggml_compute_forward_permute(params, tensor->src[0]);
  12177. } break;
  12178. case GGML_OP_TRANSPOSE:
  12179. {
  12180. ggml_compute_forward_transpose(params, tensor->src[0]);
  12181. } break;
  12182. case GGML_OP_GET_ROWS:
  12183. {
  12184. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12185. } break;
  12186. case GGML_OP_GET_ROWS_BACK:
  12187. {
  12188. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12189. } break;
  12190. case GGML_OP_DIAG:
  12191. {
  12192. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12193. } break;
  12194. case GGML_OP_DIAG_MASK_INF:
  12195. {
  12196. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12197. } break;
  12198. case GGML_OP_DIAG_MASK_ZERO:
  12199. {
  12200. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12201. } break;
  12202. case GGML_OP_SOFT_MAX:
  12203. {
  12204. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12205. } break;
  12206. case GGML_OP_SOFT_MAX_BACK:
  12207. {
  12208. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12209. } break;
  12210. case GGML_OP_ROPE:
  12211. {
  12212. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12213. } break;
  12214. case GGML_OP_ROPE_BACK:
  12215. {
  12216. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12217. } break;
  12218. case GGML_OP_ALIBI:
  12219. {
  12220. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12221. } break;
  12222. case GGML_OP_CLAMP:
  12223. {
  12224. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12225. } break;
  12226. case GGML_OP_CONV_1D:
  12227. {
  12228. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12229. } break;
  12230. case GGML_OP_CONV_2D:
  12231. {
  12232. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12233. } break;
  12234. case GGML_OP_POOL_1D:
  12235. {
  12236. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12237. } break;
  12238. case GGML_OP_POOL_2D:
  12239. {
  12240. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12241. } break;
  12242. case GGML_OP_FLASH_ATTN:
  12243. {
  12244. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12245. GGML_ASSERT(t == 0 || t == 1);
  12246. const bool masked = t != 0;
  12247. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12248. } break;
  12249. case GGML_OP_FLASH_FF:
  12250. {
  12251. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12252. } break;
  12253. case GGML_OP_FLASH_ATTN_BACK:
  12254. {
  12255. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12256. GGML_ASSERT(t == 0 || t == 1);
  12257. bool masked = t != 0;
  12258. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12259. } break;
  12260. case GGML_OP_WIN_PART:
  12261. {
  12262. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12263. } break;
  12264. case GGML_OP_WIN_UNPART:
  12265. {
  12266. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12267. } break;
  12268. case GGML_OP_UNARY:
  12269. {
  12270. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12271. } break;
  12272. case GGML_OP_MAP_UNARY:
  12273. {
  12274. ggml_unary_op_f32_t fun;
  12275. memcpy(&fun, tensor->op_params, sizeof(fun));
  12276. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12277. }
  12278. break;
  12279. case GGML_OP_MAP_BINARY:
  12280. {
  12281. ggml_binary_op_f32_t fun;
  12282. memcpy(&fun, tensor->op_params, sizeof(fun));
  12283. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12284. }
  12285. break;
  12286. case GGML_OP_MAP_CUSTOM1_F32:
  12287. {
  12288. ggml_custom1_op_f32_t fun;
  12289. memcpy(&fun, tensor->op_params, sizeof(fun));
  12290. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12291. }
  12292. break;
  12293. case GGML_OP_MAP_CUSTOM2_F32:
  12294. {
  12295. ggml_custom2_op_f32_t fun;
  12296. memcpy(&fun, tensor->op_params, sizeof(fun));
  12297. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12298. }
  12299. break;
  12300. case GGML_OP_MAP_CUSTOM3_F32:
  12301. {
  12302. ggml_custom3_op_f32_t fun;
  12303. memcpy(&fun, tensor->op_params, sizeof(fun));
  12304. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12305. }
  12306. break;
  12307. case GGML_OP_MAP_CUSTOM1:
  12308. {
  12309. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12310. }
  12311. break;
  12312. case GGML_OP_MAP_CUSTOM2:
  12313. {
  12314. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12315. }
  12316. break;
  12317. case GGML_OP_MAP_CUSTOM3:
  12318. {
  12319. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12320. }
  12321. break;
  12322. case GGML_OP_CROSS_ENTROPY_LOSS:
  12323. {
  12324. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12325. }
  12326. break;
  12327. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12328. {
  12329. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12330. }
  12331. break;
  12332. case GGML_OP_NONE:
  12333. {
  12334. // nop
  12335. } break;
  12336. case GGML_OP_COUNT:
  12337. {
  12338. GGML_ASSERT(false);
  12339. } break;
  12340. }
  12341. }
  12342. ////////////////////////////////////////////////////////////////////////////////
  12343. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12344. struct ggml_tensor * src0 = tensor->src[0];
  12345. struct ggml_tensor * src1 = tensor->src[1];
  12346. switch (tensor->op) {
  12347. case GGML_OP_DUP:
  12348. {
  12349. if (src0->grad) {
  12350. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12351. }
  12352. } break;
  12353. case GGML_OP_ADD:
  12354. {
  12355. if (src0->grad) {
  12356. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12357. }
  12358. if (src1->grad) {
  12359. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12360. }
  12361. } break;
  12362. case GGML_OP_ADD1:
  12363. {
  12364. if (src0->grad) {
  12365. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12366. }
  12367. if (src1->grad) {
  12368. src1->grad = ggml_add_impl(ctx,
  12369. src1->grad,
  12370. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12371. inplace);
  12372. }
  12373. } break;
  12374. case GGML_OP_ACC:
  12375. {
  12376. if (src0->grad) {
  12377. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12378. }
  12379. if (src1->grad) {
  12380. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12381. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12382. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12383. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12384. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12385. tensor->grad,
  12386. src1->grad->ne[0],
  12387. src1->grad->ne[1],
  12388. src1->grad->ne[2],
  12389. src1->grad->ne[3],
  12390. nb1, nb2, nb3, offset);
  12391. src1->grad =
  12392. ggml_add_impl(ctx,
  12393. src1->grad,
  12394. ggml_reshape(ctx,
  12395. ggml_cont(ctx, tensor_grad_view),
  12396. src1->grad),
  12397. inplace);
  12398. }
  12399. } break;
  12400. case GGML_OP_SUB:
  12401. {
  12402. if (src0->grad) {
  12403. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12404. }
  12405. if (src1->grad) {
  12406. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12407. }
  12408. } break;
  12409. case GGML_OP_MUL:
  12410. {
  12411. if (src0->grad) {
  12412. src0->grad =
  12413. ggml_add_impl(ctx,
  12414. src0->grad,
  12415. ggml_mul(ctx, src1, tensor->grad),
  12416. inplace);
  12417. }
  12418. if (src1->grad) {
  12419. src1->grad =
  12420. ggml_add_impl(ctx,
  12421. src1->grad,
  12422. ggml_mul(ctx, src0, tensor->grad),
  12423. inplace);
  12424. }
  12425. } break;
  12426. case GGML_OP_DIV:
  12427. {
  12428. if (src0->grad) {
  12429. src0->grad =
  12430. ggml_add_impl(ctx,
  12431. src0->grad,
  12432. ggml_div(ctx, tensor->grad, src1),
  12433. inplace);
  12434. }
  12435. if (src1->grad) {
  12436. src1->grad =
  12437. ggml_sub_impl(ctx,
  12438. src1->grad,
  12439. ggml_mul(ctx,
  12440. tensor->grad,
  12441. ggml_div(ctx, tensor, src1)),
  12442. inplace);
  12443. }
  12444. } break;
  12445. case GGML_OP_SQR:
  12446. {
  12447. if (src0->grad) {
  12448. src0->grad =
  12449. ggml_add_impl(ctx,
  12450. src0->grad,
  12451. ggml_scale(ctx,
  12452. ggml_mul(ctx, src0, tensor->grad),
  12453. ggml_new_f32(ctx, 2.0f)),
  12454. inplace);
  12455. }
  12456. } break;
  12457. case GGML_OP_SQRT:
  12458. {
  12459. if (src0->grad) {
  12460. src0->grad =
  12461. ggml_add_impl(ctx,
  12462. src0->grad,
  12463. ggml_scale(ctx,
  12464. ggml_div(ctx,
  12465. tensor->grad,
  12466. tensor),
  12467. ggml_new_f32(ctx, 0.5f)),
  12468. inplace);
  12469. }
  12470. } break;
  12471. case GGML_OP_LOG:
  12472. {
  12473. if (src0->grad) {
  12474. src0->grad =
  12475. ggml_add_impl(ctx,
  12476. src0->grad,
  12477. ggml_div(ctx,
  12478. tensor->grad,
  12479. src0),
  12480. inplace);
  12481. }
  12482. } break;
  12483. case GGML_OP_SUM:
  12484. {
  12485. if (src0->grad) {
  12486. src0->grad =
  12487. ggml_add1_impl(ctx,
  12488. src0->grad,
  12489. tensor->grad,
  12490. inplace);
  12491. }
  12492. } break;
  12493. case GGML_OP_SUM_ROWS:
  12494. {
  12495. if (src0->grad) {
  12496. src0->grad =
  12497. ggml_add_impl(ctx,
  12498. src0->grad,
  12499. ggml_repeat(ctx,
  12500. tensor->grad,
  12501. src0->grad),
  12502. inplace);
  12503. }
  12504. } break;
  12505. case GGML_OP_MEAN:
  12506. case GGML_OP_ARGMAX:
  12507. {
  12508. GGML_ASSERT(false); // TODO: implement
  12509. } break;
  12510. case GGML_OP_REPEAT:
  12511. {
  12512. // necessary for llama
  12513. if (src0->grad) {
  12514. src0->grad = ggml_add_impl(ctx,
  12515. src0->grad,
  12516. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12517. inplace);
  12518. }
  12519. } break;
  12520. case GGML_OP_REPEAT_BACK:
  12521. {
  12522. if (src0->grad) {
  12523. // TODO: test this
  12524. src0->grad = ggml_add_impl(ctx,
  12525. src0->grad,
  12526. ggml_repeat(ctx, tensor->grad, src0->grad),
  12527. inplace);
  12528. }
  12529. } break;
  12530. case GGML_OP_SILU_BACK:
  12531. {
  12532. GGML_ASSERT(false); // TODO: not implemented
  12533. } break;
  12534. case GGML_OP_NORM:
  12535. {
  12536. GGML_ASSERT(false); // TODO: not implemented
  12537. } break;
  12538. case GGML_OP_RMS_NORM:
  12539. {
  12540. // necessary for llama
  12541. if (src0->grad) {
  12542. src0->grad = ggml_add_impl(ctx,
  12543. src0->grad,
  12544. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12545. inplace);
  12546. }
  12547. } break;
  12548. case GGML_OP_RMS_NORM_BACK:
  12549. {
  12550. GGML_ASSERT(false); // TODO: not implemented
  12551. } break;
  12552. case GGML_OP_MUL_MAT:
  12553. {
  12554. // https://cs231n.github.io/optimization-2/#staged
  12555. // # forward pass
  12556. // s0 = np.random.randn(5, 10)
  12557. // s1 = np.random.randn(10, 3)
  12558. // t = s0.dot(s1)
  12559. // # now suppose we had the gradient on t from above in the circuit
  12560. // dt = np.random.randn(*t.shape) # same shape as t
  12561. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12562. // ds1 = t.T.dot(dt)
  12563. // tensor.shape [m,p]
  12564. // src0.shape [n,m]
  12565. // src1.shape [n,p]
  12566. // necessary for llama
  12567. if (src0->grad) {
  12568. src0->grad =
  12569. ggml_add_impl(ctx,
  12570. src0->grad,
  12571. ggml_out_prod(ctx, // [n,m]
  12572. src1, // [n,p]
  12573. tensor->grad), // [m,p]
  12574. inplace);
  12575. }
  12576. if (src1->grad) {
  12577. src1->grad =
  12578. ggml_add_impl(ctx,
  12579. src1->grad,
  12580. // ggml_mul_mat(ctx, // [n,p]
  12581. // ggml_cont(ctx, // [m,n]
  12582. // ggml_transpose(ctx, src0)), // [m,n]
  12583. // tensor->grad), // [m,p]
  12584. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12585. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12586. // // and then use ggml_out_prod
  12587. ggml_out_prod(ctx, // [n,p]
  12588. src0, // [n,m]
  12589. ggml_transpose(ctx, // [p,m]
  12590. tensor->grad)), // [m,p]
  12591. inplace);
  12592. }
  12593. } break;
  12594. case GGML_OP_OUT_PROD:
  12595. {
  12596. GGML_ASSERT(false); // TODO: not implemented
  12597. } break;
  12598. case GGML_OP_SCALE:
  12599. {
  12600. // necessary for llama
  12601. if (src0->grad) {
  12602. src0->grad =
  12603. ggml_add_impl(ctx,
  12604. src0->grad,
  12605. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12606. inplace);
  12607. }
  12608. if (src1->grad) {
  12609. src1->grad =
  12610. ggml_add_impl(ctx,
  12611. src1->grad,
  12612. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12613. inplace);
  12614. }
  12615. } break;
  12616. case GGML_OP_SET:
  12617. {
  12618. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12619. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12620. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12621. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12622. struct ggml_tensor * tensor_grad_view = NULL;
  12623. if (src0->grad || src1->grad) {
  12624. GGML_ASSERT(src0->type == tensor->type);
  12625. GGML_ASSERT(tensor->grad->type == tensor->type);
  12626. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12627. tensor_grad_view = ggml_view_4d(ctx,
  12628. tensor->grad,
  12629. src1->grad->ne[0],
  12630. src1->grad->ne[1],
  12631. src1->grad->ne[2],
  12632. src1->grad->ne[3],
  12633. nb1, nb2, nb3, offset);
  12634. }
  12635. if (src0->grad) {
  12636. src0->grad = ggml_add_impl(ctx,
  12637. src0->grad,
  12638. ggml_acc_impl(ctx,
  12639. tensor->grad,
  12640. ggml_neg(ctx, tensor_grad_view),
  12641. nb1, nb2, nb3, offset, false),
  12642. inplace);
  12643. }
  12644. if (src1->grad) {
  12645. src1->grad =
  12646. ggml_add_impl(ctx,
  12647. src1->grad,
  12648. ggml_reshape(ctx,
  12649. ggml_cont(ctx, tensor_grad_view),
  12650. src1->grad),
  12651. inplace);
  12652. }
  12653. } break;
  12654. case GGML_OP_CPY:
  12655. {
  12656. // necessary for llama
  12657. // cpy overwrites value of src1 by src0 and returns view(src1)
  12658. // the overwriting is mathematically equivalent to:
  12659. // tensor = src0 * 1 + src1 * 0
  12660. if (src0->grad) {
  12661. // dsrc0 = dtensor * 1
  12662. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12663. }
  12664. if (src1->grad) {
  12665. // dsrc1 = dtensor * 0 -> noop
  12666. }
  12667. } break;
  12668. case GGML_OP_CONT:
  12669. {
  12670. // same as cpy
  12671. if (src0->grad) {
  12672. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12673. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12674. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12675. }
  12676. } break;
  12677. case GGML_OP_RESHAPE:
  12678. {
  12679. // necessary for llama
  12680. if (src0->grad) {
  12681. src0->grad =
  12682. ggml_add_impl(ctx, src0->grad,
  12683. ggml_reshape(ctx, tensor->grad, src0->grad),
  12684. inplace);
  12685. }
  12686. } break;
  12687. case GGML_OP_VIEW:
  12688. {
  12689. // necessary for llama
  12690. if (src0->grad) {
  12691. size_t offset;
  12692. memcpy(&offset, tensor->op_params, sizeof(offset));
  12693. size_t nb1 = tensor->nb[1];
  12694. size_t nb2 = tensor->nb[2];
  12695. size_t nb3 = tensor->nb[3];
  12696. if (src0->type != src0->grad->type) {
  12697. // gradient is typically F32, but src0 could be other type
  12698. size_t ng = ggml_element_size(src0->grad);
  12699. size_t n0 = ggml_element_size(src0);
  12700. GGML_ASSERT(offset % n0 == 0);
  12701. GGML_ASSERT(nb1 % n0 == 0);
  12702. GGML_ASSERT(nb2 % n0 == 0);
  12703. GGML_ASSERT(nb3 % n0 == 0);
  12704. offset = (offset / n0) * ng;
  12705. nb1 = (nb1 / n0) * ng;
  12706. nb2 = (nb2 / n0) * ng;
  12707. nb3 = (nb3 / n0) * ng;
  12708. }
  12709. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12710. }
  12711. } break;
  12712. case GGML_OP_PERMUTE:
  12713. {
  12714. // necessary for llama
  12715. if (src0->grad) {
  12716. int32_t * axes = (int32_t *) tensor->op_params;
  12717. int axis0 = axes[0] & 0x3;
  12718. int axis1 = axes[1] & 0x3;
  12719. int axis2 = axes[2] & 0x3;
  12720. int axis3 = axes[3] & 0x3;
  12721. int axes_backward[4] = {0,0,0,0};
  12722. axes_backward[axis0] = 0;
  12723. axes_backward[axis1] = 1;
  12724. axes_backward[axis2] = 2;
  12725. axes_backward[axis3] = 3;
  12726. src0->grad =
  12727. ggml_add_impl(ctx, src0->grad,
  12728. ggml_permute(ctx,
  12729. tensor->grad,
  12730. axes_backward[0],
  12731. axes_backward[1],
  12732. axes_backward[2],
  12733. axes_backward[3]),
  12734. inplace);
  12735. }
  12736. } break;
  12737. case GGML_OP_TRANSPOSE:
  12738. {
  12739. // necessary for llama
  12740. if (src0->grad) {
  12741. src0->grad =
  12742. ggml_add_impl(ctx, src0->grad,
  12743. ggml_transpose(ctx, tensor->grad),
  12744. inplace);
  12745. }
  12746. } break;
  12747. case GGML_OP_GET_ROWS:
  12748. {
  12749. // necessary for llama (only for tokenizer)
  12750. if (src0->grad) {
  12751. src0->grad =
  12752. ggml_add_impl(ctx, src0->grad,
  12753. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12754. inplace);
  12755. }
  12756. if (src1->grad) {
  12757. // noop
  12758. }
  12759. } break;
  12760. case GGML_OP_GET_ROWS_BACK:
  12761. {
  12762. GGML_ASSERT(false); // TODO: not implemented
  12763. } break;
  12764. case GGML_OP_DIAG:
  12765. {
  12766. GGML_ASSERT(false); // TODO: not implemented
  12767. } break;
  12768. case GGML_OP_DIAG_MASK_INF:
  12769. {
  12770. // necessary for llama
  12771. if (src0->grad) {
  12772. const int n_past = ((int32_t *) tensor->op_params)[0];
  12773. src0->grad =
  12774. ggml_add_impl(ctx, src0->grad,
  12775. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12776. inplace);
  12777. }
  12778. } break;
  12779. case GGML_OP_DIAG_MASK_ZERO:
  12780. {
  12781. // necessary for llama
  12782. if (src0->grad) {
  12783. const int n_past = ((int32_t *) tensor->op_params)[0];
  12784. src0->grad =
  12785. ggml_add_impl(ctx, src0->grad,
  12786. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12787. inplace);
  12788. }
  12789. } break;
  12790. case GGML_OP_SOFT_MAX:
  12791. {
  12792. // necessary for llama
  12793. if (src0->grad) {
  12794. src0->grad =
  12795. ggml_add_impl(ctx, src0->grad,
  12796. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12797. inplace);
  12798. }
  12799. } break;
  12800. case GGML_OP_SOFT_MAX_BACK:
  12801. {
  12802. GGML_ASSERT(false); // TODO: not implemented
  12803. } break;
  12804. case GGML_OP_ROPE:
  12805. {
  12806. // necessary for llama
  12807. if (src0->grad) {
  12808. const int n_past = ((int32_t *) tensor->op_params)[0];
  12809. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12810. const int mode = ((int32_t *) tensor->op_params)[2];
  12811. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12812. src0->grad = ggml_add_impl(ctx,
  12813. src0->grad,
  12814. ggml_rope_back(ctx,
  12815. tensor->grad,
  12816. n_past,
  12817. n_dims,
  12818. mode,
  12819. n_ctx),
  12820. inplace);
  12821. }
  12822. } break;
  12823. case GGML_OP_ROPE_BACK:
  12824. {
  12825. if (src0->grad) {
  12826. const int n_past = ((int32_t *) tensor->op_params)[0];
  12827. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12828. const int mode = ((int32_t *) tensor->op_params)[2];
  12829. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12830. src0->grad = ggml_add_impl(ctx,
  12831. src0->grad,
  12832. ggml_rope(ctx,
  12833. tensor->grad,
  12834. n_past,
  12835. n_dims,
  12836. mode,
  12837. n_ctx),
  12838. inplace);
  12839. }
  12840. } break;
  12841. case GGML_OP_ALIBI:
  12842. {
  12843. GGML_ASSERT(false); // TODO: not implemented
  12844. } break;
  12845. case GGML_OP_CLAMP:
  12846. {
  12847. GGML_ASSERT(false); // TODO: not implemented
  12848. } break;
  12849. case GGML_OP_CONV_1D:
  12850. {
  12851. GGML_ASSERT(false); // TODO: not implemented
  12852. } break;
  12853. case GGML_OP_CONV_2D:
  12854. {
  12855. GGML_ASSERT(false); // TODO: not implemented
  12856. } break;
  12857. case GGML_OP_POOL_1D:
  12858. {
  12859. GGML_ASSERT(false); // TODO: not implemented
  12860. } break;
  12861. case GGML_OP_POOL_2D:
  12862. {
  12863. GGML_ASSERT(false); // TODO: not implemented
  12864. } break;
  12865. case GGML_OP_FLASH_ATTN:
  12866. {
  12867. struct ggml_tensor * flash_grad = NULL;
  12868. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12869. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12870. GGML_ASSERT(t == 0 || t == 1);
  12871. bool masked = t != 0;
  12872. flash_grad =
  12873. ggml_flash_attn_back(ctx,
  12874. src0,
  12875. src1,
  12876. tensor->src[2],
  12877. tensor->grad,
  12878. masked);
  12879. }
  12880. if (src0->grad) {
  12881. struct ggml_tensor * grad_q = NULL;
  12882. const size_t nb0 = flash_grad->nb[0];
  12883. const size_t offset = 0;
  12884. switch(src0->n_dims) {
  12885. case 2:
  12886. {
  12887. grad_q = ggml_view_2d(ctx,
  12888. flash_grad,
  12889. src0->ne[0],
  12890. src0->ne[1],
  12891. nb0*src0->ne[0],
  12892. offset);
  12893. } break;
  12894. case 3:
  12895. {
  12896. grad_q = ggml_view_3d(ctx,
  12897. flash_grad,
  12898. src0->ne[0],
  12899. src0->ne[1],
  12900. src0->ne[2],
  12901. nb0*src0->ne[0],
  12902. nb0*src0->ne[0]*src0->ne[1],
  12903. offset);
  12904. } break;
  12905. case 4:
  12906. {
  12907. grad_q = ggml_view_4d(ctx,
  12908. flash_grad,
  12909. src0->ne[0],
  12910. src0->ne[1],
  12911. src0->ne[2],
  12912. src0->ne[3],
  12913. nb0*src0->ne[0],
  12914. nb0*src0->ne[0]*src0->ne[1],
  12915. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12916. offset);
  12917. } break;
  12918. }
  12919. src0->grad = ggml_add_impl(ctx,
  12920. src0->grad,
  12921. grad_q,
  12922. inplace);
  12923. }
  12924. if (src1->grad) {
  12925. struct ggml_tensor * grad_k = NULL;
  12926. const size_t nb0 = flash_grad->nb[0];
  12927. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12928. switch(src1->n_dims) {
  12929. case 2:
  12930. {
  12931. grad_k = ggml_view_2d(ctx,
  12932. flash_grad,
  12933. src1->ne[0],
  12934. src1->ne[1],
  12935. nb0*src1->ne[0],
  12936. offset);
  12937. } break;
  12938. case 3:
  12939. {
  12940. grad_k = ggml_view_3d(ctx,
  12941. flash_grad,
  12942. src1->ne[0],
  12943. src1->ne[1],
  12944. src1->ne[2],
  12945. nb0*src1->ne[0],
  12946. nb0*src1->ne[0]*src1->ne[1],
  12947. offset);
  12948. } break;
  12949. case 4:
  12950. {
  12951. grad_k = ggml_view_4d(ctx,
  12952. flash_grad,
  12953. src1->ne[0],
  12954. src1->ne[1],
  12955. src1->ne[2],
  12956. src1->ne[3],
  12957. nb0*src1->ne[0],
  12958. nb0*src1->ne[0]*src1->ne[1],
  12959. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12960. offset);
  12961. } break;
  12962. }
  12963. src1->grad = ggml_add_impl(ctx,
  12964. src1->grad,
  12965. grad_k,
  12966. inplace);
  12967. }
  12968. struct ggml_tensor * opt0 = tensor->src[2];
  12969. if (opt0->grad) {
  12970. struct ggml_tensor * grad_v = NULL;
  12971. const size_t nb0 = flash_grad->nb[0];
  12972. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12973. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12974. switch(opt0->n_dims) {
  12975. case 2:
  12976. {
  12977. grad_v = ggml_view_2d(ctx,
  12978. flash_grad,
  12979. opt0->ne[0],
  12980. opt0->ne[1],
  12981. nb0*opt0->ne[0],
  12982. offset);
  12983. } break;
  12984. case 3:
  12985. {
  12986. grad_v = ggml_view_3d(ctx,
  12987. flash_grad,
  12988. opt0->ne[0],
  12989. opt0->ne[1],
  12990. opt0->ne[2],
  12991. nb0*opt0->ne[0],
  12992. nb0*opt0->ne[0]*opt0->ne[1],
  12993. offset);
  12994. } break;
  12995. case 4:
  12996. {
  12997. grad_v = ggml_view_4d(ctx,
  12998. flash_grad,
  12999. opt0->ne[0],
  13000. opt0->ne[1],
  13001. opt0->ne[2],
  13002. opt0->ne[3],
  13003. nb0*opt0->ne[0],
  13004. nb0*opt0->ne[0]*opt0->ne[1],
  13005. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13006. offset);
  13007. } break;
  13008. }
  13009. opt0->grad = ggml_add_impl(ctx,
  13010. opt0->grad,
  13011. grad_v,
  13012. inplace);
  13013. }
  13014. } break;
  13015. case GGML_OP_FLASH_FF:
  13016. {
  13017. GGML_ASSERT(false); // not supported
  13018. } break;
  13019. case GGML_OP_FLASH_ATTN_BACK:
  13020. {
  13021. GGML_ASSERT(false); // not supported
  13022. } break;
  13023. case GGML_OP_WIN_PART:
  13024. case GGML_OP_WIN_UNPART:
  13025. case GGML_OP_UNARY:
  13026. {
  13027. switch (ggml_get_unary_op(tensor)) {
  13028. case GGML_UNARY_OP_ABS:
  13029. {
  13030. if (src0->grad) {
  13031. src0->grad =
  13032. ggml_add_impl(ctx,
  13033. src0->grad,
  13034. ggml_mul(ctx,
  13035. ggml_sgn(ctx, src0),
  13036. tensor->grad),
  13037. inplace);
  13038. }
  13039. } break;
  13040. case GGML_UNARY_OP_SGN:
  13041. {
  13042. if (src0->grad) {
  13043. // noop
  13044. }
  13045. } break;
  13046. case GGML_UNARY_OP_NEG:
  13047. {
  13048. if (src0->grad) {
  13049. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13050. }
  13051. } break;
  13052. case GGML_UNARY_OP_STEP:
  13053. {
  13054. if (src0->grad) {
  13055. // noop
  13056. }
  13057. } break;
  13058. case GGML_UNARY_OP_TANH:
  13059. {
  13060. GGML_ASSERT(false); // TODO: not implemented
  13061. } break;
  13062. case GGML_UNARY_OP_ELU:
  13063. {
  13064. GGML_ASSERT(false); // TODO: not implemented
  13065. } break;
  13066. case GGML_UNARY_OP_RELU:
  13067. {
  13068. if (src0->grad) {
  13069. src0->grad = ggml_add_impl(ctx,
  13070. src0->grad,
  13071. ggml_mul(ctx,
  13072. ggml_step(ctx, src0),
  13073. tensor->grad),
  13074. inplace);
  13075. }
  13076. } break;
  13077. case GGML_UNARY_OP_GELU:
  13078. {
  13079. GGML_ASSERT(false); // TODO: not implemented
  13080. } break;
  13081. case GGML_UNARY_OP_GELU_QUICK:
  13082. {
  13083. GGML_ASSERT(false); // TODO: not implemented
  13084. } break;
  13085. case GGML_UNARY_OP_SILU:
  13086. {
  13087. // necessary for llama
  13088. if (src0->grad) {
  13089. src0->grad = ggml_add_impl(ctx,
  13090. src0->grad,
  13091. ggml_silu_back(ctx, src0, tensor->grad),
  13092. inplace);
  13093. }
  13094. } break;
  13095. default:
  13096. GGML_ASSERT(false);
  13097. }
  13098. } break;
  13099. case GGML_OP_MAP_UNARY:
  13100. case GGML_OP_MAP_BINARY:
  13101. case GGML_OP_MAP_CUSTOM1_F32:
  13102. case GGML_OP_MAP_CUSTOM2_F32:
  13103. case GGML_OP_MAP_CUSTOM3_F32:
  13104. case GGML_OP_MAP_CUSTOM1:
  13105. case GGML_OP_MAP_CUSTOM2:
  13106. case GGML_OP_MAP_CUSTOM3:
  13107. {
  13108. GGML_ASSERT(false); // not supported
  13109. } break;
  13110. case GGML_OP_CROSS_ENTROPY_LOSS:
  13111. {
  13112. if (src0->grad) {
  13113. src0->grad = ggml_add_impl(ctx,
  13114. src0->grad,
  13115. ggml_cross_entropy_loss_back(ctx,
  13116. src0,
  13117. src1,
  13118. tensor->grad),
  13119. inplace);
  13120. }
  13121. } break;
  13122. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13123. {
  13124. GGML_ASSERT(false); // not supported
  13125. } break;
  13126. case GGML_OP_NONE:
  13127. {
  13128. // nop
  13129. } break;
  13130. case GGML_OP_COUNT:
  13131. {
  13132. GGML_ASSERT(false);
  13133. } break;
  13134. }
  13135. }
  13136. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13137. static size_t hash(void * p) {
  13138. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13139. }
  13140. static bool hash_insert(void * hash_table[], void * p) {
  13141. size_t h = hash(p);
  13142. // linear probing
  13143. size_t i = h;
  13144. while (hash_table[i] != NULL && hash_table[i] != p) {
  13145. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13146. if (i == h) {
  13147. // hash table is full
  13148. GGML_ASSERT(false);
  13149. }
  13150. }
  13151. if (hash_table[i] == p) {
  13152. return true;
  13153. }
  13154. // insert
  13155. hash_table[i] = p;
  13156. return false;
  13157. }
  13158. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13159. if (node->grad == NULL) {
  13160. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13161. // it can also happen during forward pass, if the user performs computations with constants
  13162. if (node->op != GGML_OP_NONE) {
  13163. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13164. }
  13165. }
  13166. // check if already visited
  13167. if (hash_insert(cgraph->visited_hash_table, node)) {
  13168. return;
  13169. }
  13170. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13171. if (node->src[i]) {
  13172. ggml_visit_parents(cgraph, node->src[i]);
  13173. }
  13174. }
  13175. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13176. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13177. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13178. if (strlen(node->name) == 0) {
  13179. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13180. }
  13181. cgraph->leafs[cgraph->n_leafs] = node;
  13182. cgraph->n_leafs++;
  13183. } else {
  13184. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13185. if (strlen(node->name) == 0) {
  13186. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13187. }
  13188. cgraph->nodes[cgraph->n_nodes] = node;
  13189. cgraph->grads[cgraph->n_nodes] = node->grad;
  13190. cgraph->n_nodes++;
  13191. }
  13192. }
  13193. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13194. if (!expand) {
  13195. cgraph->n_nodes = 0;
  13196. cgraph->n_leafs = 0;
  13197. }
  13198. const int n0 = cgraph->n_nodes;
  13199. UNUSED(n0);
  13200. ggml_visit_parents(cgraph, tensor);
  13201. const int n_new = cgraph->n_nodes - n0;
  13202. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13203. if (n_new > 0) {
  13204. // the last added node should always be starting point
  13205. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13206. }
  13207. }
  13208. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13209. ggml_build_forward_impl(cgraph, tensor, true);
  13210. }
  13211. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13212. struct ggml_cgraph result = {
  13213. /*.n_nodes =*/ 0,
  13214. /*.n_leafs =*/ 0,
  13215. /*.nodes =*/ { NULL },
  13216. /*.grads =*/ { NULL },
  13217. /*.leafs =*/ { NULL },
  13218. /*.hash_table =*/ { NULL },
  13219. /*.perf_runs =*/ 0,
  13220. /*.perf_cycles =*/ 0,
  13221. /*.perf_time_us =*/ 0,
  13222. };
  13223. ggml_build_forward_impl(&result, tensor, false);
  13224. return result;
  13225. }
  13226. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13227. struct ggml_cgraph result = *gf;
  13228. GGML_ASSERT(gf->n_nodes > 0);
  13229. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13230. if (keep) {
  13231. for (int i = 0; i < gf->n_nodes; i++) {
  13232. struct ggml_tensor * node = gf->nodes[i];
  13233. if (node->grad) {
  13234. node->grad = ggml_dup_tensor(ctx, node);
  13235. gf->grads[i] = node->grad;
  13236. }
  13237. }
  13238. }
  13239. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13240. struct ggml_tensor * node = gf->nodes[i];
  13241. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13242. if (node->grad) {
  13243. ggml_compute_backward(ctx, node, keep);
  13244. }
  13245. }
  13246. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13247. struct ggml_tensor * node = gf->nodes[i];
  13248. if (node->is_param) {
  13249. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13250. ggml_build_forward_expand(&result, node->grad);
  13251. }
  13252. }
  13253. return result;
  13254. }
  13255. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13256. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13257. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13258. *cgraph = (struct ggml_cgraph) {
  13259. /*.n_nodes =*/ 0,
  13260. /*.n_leafs =*/ 0,
  13261. /*.nodes =*/ { NULL },
  13262. /*.grads =*/ { NULL },
  13263. /*.leafs =*/ { NULL },
  13264. /*.hash_table =*/ { NULL },
  13265. /*.perf_runs =*/ 0,
  13266. /*.perf_cycles =*/ 0,
  13267. /*.perf_time_us =*/ 0,
  13268. };
  13269. return cgraph;
  13270. }
  13271. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13272. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13273. ggml_build_forward_impl(cgraph, tensor, false);
  13274. return cgraph;
  13275. }
  13276. size_t ggml_graph_overhead(void) {
  13277. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13278. }
  13279. //
  13280. // thread data
  13281. //
  13282. // synchronization is done via busy loops
  13283. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13284. //
  13285. #ifdef __APPLE__
  13286. //#include <os/lock.h>
  13287. //
  13288. //typedef os_unfair_lock ggml_lock_t;
  13289. //
  13290. //#define ggml_lock_init(x) UNUSED(x)
  13291. //#define ggml_lock_destroy(x) UNUSED(x)
  13292. //#define ggml_lock_lock os_unfair_lock_lock
  13293. //#define ggml_lock_unlock os_unfair_lock_unlock
  13294. //
  13295. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13296. typedef int ggml_lock_t;
  13297. #define ggml_lock_init(x) UNUSED(x)
  13298. #define ggml_lock_destroy(x) UNUSED(x)
  13299. #define ggml_lock_lock(x) UNUSED(x)
  13300. #define ggml_lock_unlock(x) UNUSED(x)
  13301. #define GGML_LOCK_INITIALIZER 0
  13302. typedef pthread_t ggml_thread_t;
  13303. #define ggml_thread_create pthread_create
  13304. #define ggml_thread_join pthread_join
  13305. #else
  13306. //typedef pthread_spinlock_t ggml_lock_t;
  13307. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13308. //#define ggml_lock_destroy pthread_spin_destroy
  13309. //#define ggml_lock_lock pthread_spin_lock
  13310. //#define ggml_lock_unlock pthread_spin_unlock
  13311. typedef int ggml_lock_t;
  13312. #define ggml_lock_init(x) UNUSED(x)
  13313. #define ggml_lock_destroy(x) UNUSED(x)
  13314. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13315. #define ggml_lock_lock(x) _mm_pause()
  13316. #else
  13317. #define ggml_lock_lock(x) UNUSED(x)
  13318. #endif
  13319. #define ggml_lock_unlock(x) UNUSED(x)
  13320. #define GGML_LOCK_INITIALIZER 0
  13321. typedef pthread_t ggml_thread_t;
  13322. #define ggml_thread_create pthread_create
  13323. #define ggml_thread_join pthread_join
  13324. #endif
  13325. // Android's libc implementation "bionic" does not support setting affinity
  13326. #if defined(__linux__) && !defined(__BIONIC__)
  13327. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13328. if (!ggml_is_numa()) {
  13329. return;
  13330. }
  13331. // run thread on node_num thread_n / (threads per node)
  13332. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13333. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13334. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13335. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13336. CPU_ZERO_S(setsize, cpus);
  13337. for (size_t i = 0; i < node->n_cpus; ++i) {
  13338. CPU_SET_S(node->cpus[i], setsize, cpus);
  13339. }
  13340. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13341. if (rv) {
  13342. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13343. strerror(rv));
  13344. }
  13345. CPU_FREE(cpus);
  13346. }
  13347. static void clear_numa_thread_affinity(void) {
  13348. if (!ggml_is_numa()) {
  13349. return;
  13350. }
  13351. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13352. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13353. CPU_ZERO_S(setsize, cpus);
  13354. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13355. CPU_SET_S(i, setsize, cpus);
  13356. }
  13357. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13358. if (rv) {
  13359. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13360. strerror(rv));
  13361. }
  13362. CPU_FREE(cpus);
  13363. }
  13364. #else
  13365. // TODO: Windows etc.
  13366. // (the linux implementation may also work on BSD, someone should test)
  13367. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13368. static void clear_numa_thread_affinity(void) {}
  13369. #endif
  13370. struct ggml_compute_state_shared {
  13371. const struct ggml_cgraph * cgraph;
  13372. const struct ggml_cplan * cplan;
  13373. int64_t perf_node_start_cycles;
  13374. int64_t perf_node_start_time_us;
  13375. const int n_threads;
  13376. // synchronization primitives
  13377. atomic_int n_active; // num active threads
  13378. atomic_int node_n; // active graph node
  13379. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13380. void * abort_callback_data;
  13381. };
  13382. struct ggml_compute_state {
  13383. ggml_thread_t thrd;
  13384. int ith;
  13385. struct ggml_compute_state_shared * shared;
  13386. };
  13387. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13388. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13389. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13390. node->perf_runs++;
  13391. node->perf_cycles += cycles_cur;
  13392. node->perf_time_us += time_us_cur;
  13393. }
  13394. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13395. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13396. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13397. const struct ggml_cplan * cplan = state->shared->cplan;
  13398. const int * n_tasks_arr = cplan->n_tasks;
  13399. const int n_threads = state->shared->n_threads;
  13400. set_numa_thread_affinity(state->ith, n_threads);
  13401. int node_n = -1;
  13402. while (true) {
  13403. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13404. state->shared->node_n += 1;
  13405. return (thread_ret_t) GGML_EXIT_ABORTED;
  13406. }
  13407. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13408. // all other threads are finished and spinning
  13409. // do finalize and init here so we don't have synchronize again
  13410. struct ggml_compute_params params = {
  13411. /*.type =*/ GGML_TASK_FINALIZE,
  13412. /*.ith =*/ 0,
  13413. /*.nth =*/ 0,
  13414. /*.wsize =*/ cplan->work_size,
  13415. /*.wdata =*/ cplan->work_data,
  13416. };
  13417. if (node_n != -1) {
  13418. /* FINALIZE */
  13419. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13420. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13421. params.nth = n_tasks_arr[node_n];
  13422. ggml_compute_forward(&params, node);
  13423. }
  13424. ggml_graph_compute_perf_stats_node(node, state->shared);
  13425. }
  13426. // distribute new work or execute it direct if 1T
  13427. while (++node_n < cgraph->n_nodes) {
  13428. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13429. struct ggml_tensor * node = cgraph->nodes[node_n];
  13430. const int n_tasks = n_tasks_arr[node_n];
  13431. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13432. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13433. params.nth = n_tasks;
  13434. /* INIT */
  13435. if (GGML_OP_HAS_INIT[node->op]) {
  13436. params.type = GGML_TASK_INIT;
  13437. ggml_compute_forward(&params, node);
  13438. }
  13439. if (n_tasks == 1) {
  13440. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13441. // they do something more efficient than spinning (?)
  13442. params.type = GGML_TASK_COMPUTE;
  13443. ggml_compute_forward(&params, node);
  13444. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13445. params.type = GGML_TASK_FINALIZE;
  13446. ggml_compute_forward(&params, node);
  13447. }
  13448. ggml_graph_compute_perf_stats_node(node, state->shared);
  13449. } else {
  13450. break;
  13451. }
  13452. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13453. break;
  13454. }
  13455. }
  13456. atomic_store(&state->shared->n_active, n_threads);
  13457. atomic_store(&state->shared->node_n, node_n);
  13458. } else {
  13459. // wait for other threads to finish
  13460. const int last = node_n;
  13461. do {
  13462. //sched_yield();
  13463. node_n = atomic_load(&state->shared->node_n);
  13464. } while (node_n == last);
  13465. }
  13466. // check if we should stop
  13467. if (node_n >= cgraph->n_nodes) break;
  13468. /* COMPUTE */
  13469. struct ggml_tensor * node = cgraph->nodes[node_n];
  13470. const int n_tasks = n_tasks_arr[node_n];
  13471. struct ggml_compute_params params = {
  13472. /*.type =*/ GGML_TASK_COMPUTE,
  13473. /*.ith =*/ state->ith,
  13474. /*.nth =*/ n_tasks,
  13475. /*.wsize =*/ cplan->work_size,
  13476. /*.wdata =*/ cplan->work_data,
  13477. };
  13478. if (state->ith < n_tasks) {
  13479. ggml_compute_forward(&params, node);
  13480. }
  13481. }
  13482. return GGML_EXIT_SUCCESS;
  13483. }
  13484. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13485. if (n_threads <= 0) {
  13486. n_threads = GGML_DEFAULT_N_THREADS;
  13487. }
  13488. size_t work_size = 0;
  13489. struct ggml_cplan cplan;
  13490. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13491. // thread scheduling for the different operations + work buffer size estimation
  13492. for (int i = 0; i < cgraph->n_nodes; i++) {
  13493. int n_tasks = 1;
  13494. struct ggml_tensor * node = cgraph->nodes[i];
  13495. switch (node->op) {
  13496. case GGML_OP_CPY:
  13497. case GGML_OP_DUP:
  13498. {
  13499. n_tasks = n_threads;
  13500. size_t cur = 0;
  13501. if (ggml_is_quantized(node->type)) {
  13502. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13503. }
  13504. work_size = MAX(work_size, cur);
  13505. } break;
  13506. case GGML_OP_ADD:
  13507. case GGML_OP_ADD1:
  13508. {
  13509. n_tasks = n_threads;
  13510. size_t cur = 0;
  13511. if (ggml_is_quantized(node->src[0]->type)) {
  13512. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
  13513. }
  13514. work_size = MAX(work_size, cur);
  13515. } break;
  13516. case GGML_OP_ACC:
  13517. {
  13518. n_tasks = n_threads;
  13519. size_t cur = 0;
  13520. if (ggml_is_quantized(node->src[0]->type)) {
  13521. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
  13522. }
  13523. work_size = MAX(work_size, cur);
  13524. } break;
  13525. case GGML_OP_SUB:
  13526. case GGML_OP_DIV:
  13527. case GGML_OP_SQR:
  13528. case GGML_OP_SQRT:
  13529. case GGML_OP_LOG:
  13530. case GGML_OP_SUM:
  13531. case GGML_OP_SUM_ROWS:
  13532. case GGML_OP_MEAN:
  13533. case GGML_OP_ARGMAX:
  13534. case GGML_OP_REPEAT:
  13535. case GGML_OP_REPEAT_BACK:
  13536. {
  13537. n_tasks = 1;
  13538. } break;
  13539. case GGML_OP_UNARY:
  13540. {
  13541. switch (ggml_get_unary_op(node)) {
  13542. case GGML_UNARY_OP_ABS:
  13543. case GGML_UNARY_OP_SGN:
  13544. case GGML_UNARY_OP_NEG:
  13545. case GGML_UNARY_OP_STEP:
  13546. case GGML_UNARY_OP_TANH:
  13547. case GGML_UNARY_OP_ELU:
  13548. case GGML_UNARY_OP_RELU:
  13549. {
  13550. n_tasks = 1;
  13551. } break;
  13552. case GGML_UNARY_OP_GELU:
  13553. case GGML_UNARY_OP_GELU_QUICK:
  13554. case GGML_UNARY_OP_SILU:
  13555. {
  13556. n_tasks = n_threads;
  13557. } break;
  13558. }
  13559. } break;
  13560. case GGML_OP_SILU_BACK:
  13561. case GGML_OP_MUL:
  13562. case GGML_OP_NORM:
  13563. case GGML_OP_RMS_NORM:
  13564. case GGML_OP_RMS_NORM_BACK:
  13565. {
  13566. n_tasks = n_threads;
  13567. } break;
  13568. case GGML_OP_MUL_MAT:
  13569. case GGML_OP_OUT_PROD:
  13570. {
  13571. n_tasks = n_threads;
  13572. // TODO: use different scheduling for different matrix sizes
  13573. //const int nr0 = ggml_nrows(node->src[0]);
  13574. //const int nr1 = ggml_nrows(node->src[1]);
  13575. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13576. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13577. size_t cur = 0;
  13578. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13579. #if defined(GGML_USE_CUBLAS)
  13580. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13581. n_tasks = 1; // TODO: this actually is doing nothing
  13582. // the threads are still spinning
  13583. } else
  13584. #elif defined(GGML_USE_CLBLAST)
  13585. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13586. n_tasks = 1; // TODO: this actually is doing nothing
  13587. // the threads are still spinning
  13588. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13589. } else
  13590. #endif
  13591. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13592. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13593. n_tasks = 1; // TODO: this actually is doing nothing
  13594. // the threads are still spinning
  13595. if (node->src[0]->type != GGML_TYPE_F32) {
  13596. // here we need memory just for single 2D matrix from src0
  13597. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13598. }
  13599. } else
  13600. #endif
  13601. if (node->src[1]->type != vec_dot_type) {
  13602. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
  13603. } else {
  13604. cur = 0;
  13605. }
  13606. work_size = MAX(work_size, cur);
  13607. } break;
  13608. case GGML_OP_SCALE:
  13609. {
  13610. n_tasks = 1;
  13611. } break;
  13612. case GGML_OP_SET:
  13613. case GGML_OP_CONT:
  13614. case GGML_OP_RESHAPE:
  13615. case GGML_OP_VIEW:
  13616. case GGML_OP_PERMUTE:
  13617. case GGML_OP_TRANSPOSE:
  13618. case GGML_OP_GET_ROWS:
  13619. case GGML_OP_GET_ROWS_BACK:
  13620. case GGML_OP_DIAG:
  13621. {
  13622. n_tasks = 1;
  13623. } break;
  13624. case GGML_OP_DIAG_MASK_ZERO:
  13625. case GGML_OP_DIAG_MASK_INF:
  13626. case GGML_OP_SOFT_MAX:
  13627. case GGML_OP_SOFT_MAX_BACK:
  13628. case GGML_OP_ROPE:
  13629. case GGML_OP_ROPE_BACK:
  13630. {
  13631. n_tasks = n_threads;
  13632. } break;
  13633. case GGML_OP_ALIBI:
  13634. {
  13635. n_tasks = 1; //TODO
  13636. } break;
  13637. case GGML_OP_CLAMP:
  13638. {
  13639. n_tasks = 1; //TODO
  13640. } break;
  13641. case GGML_OP_CONV_1D:
  13642. {
  13643. n_tasks = n_threads;
  13644. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13645. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13646. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13647. size_t cur = 0;
  13648. const int nk = node->src[0]->ne[0];
  13649. if (node->src[0]->type == GGML_TYPE_F16 &&
  13650. node->src[1]->type == GGML_TYPE_F32) {
  13651. cur = sizeof(ggml_fp16_t)*(
  13652. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13653. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13654. );
  13655. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13656. node->src[1]->type == GGML_TYPE_F32) {
  13657. cur = sizeof(float)*(
  13658. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13659. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13660. );
  13661. } else {
  13662. GGML_ASSERT(false);
  13663. }
  13664. work_size = MAX(work_size, cur);
  13665. } break;
  13666. case GGML_OP_CONV_2D:
  13667. {
  13668. n_tasks = n_threads;
  13669. const int64_t ne00 = node->src[0]->ne[0]; // W
  13670. const int64_t ne01 = node->src[0]->ne[1]; // H
  13671. const int64_t ne02 = node->src[0]->ne[2]; // C
  13672. const int64_t ne03 = node->src[0]->ne[3]; // N
  13673. const int64_t ne10 = node->src[1]->ne[0]; // W
  13674. const int64_t ne11 = node->src[1]->ne[1]; // H
  13675. const int64_t ne12 = node->src[1]->ne[2]; // C
  13676. const int64_t ne0 = node->ne[0];
  13677. const int64_t ne1 = node->ne[1];
  13678. const int64_t ne2 = node->ne[2];
  13679. const int64_t nk = ne00*ne01;
  13680. const int64_t ew0 = nk * ne02;
  13681. UNUSED(ne03);
  13682. UNUSED(ne2);
  13683. size_t cur = 0;
  13684. if (node->src[0]->type == GGML_TYPE_F16 &&
  13685. node->src[1]->type == GGML_TYPE_F32) {
  13686. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13687. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13688. node->src[1]->type == GGML_TYPE_F32) {
  13689. cur = sizeof(float)* (ne10*ne11*ne12);
  13690. } else {
  13691. GGML_ASSERT(false);
  13692. }
  13693. work_size = MAX(work_size, cur);
  13694. } break;
  13695. case GGML_OP_POOL_1D:
  13696. case GGML_OP_POOL_2D:
  13697. {
  13698. n_tasks = 1;
  13699. } break;
  13700. case GGML_OP_FLASH_ATTN:
  13701. {
  13702. n_tasks = n_threads;
  13703. size_t cur = 0;
  13704. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13705. if (node->src[1]->type == GGML_TYPE_F32) {
  13706. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13707. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13708. }
  13709. if (node->src[1]->type == GGML_TYPE_F16) {
  13710. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13711. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13712. }
  13713. work_size = MAX(work_size, cur);
  13714. } break;
  13715. case GGML_OP_FLASH_FF:
  13716. {
  13717. n_tasks = n_threads;
  13718. size_t cur = 0;
  13719. if (node->src[1]->type == GGML_TYPE_F32) {
  13720. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13721. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13722. }
  13723. if (node->src[1]->type == GGML_TYPE_F16) {
  13724. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13725. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13726. }
  13727. work_size = MAX(work_size, cur);
  13728. } break;
  13729. case GGML_OP_FLASH_ATTN_BACK:
  13730. {
  13731. n_tasks = n_threads;
  13732. size_t cur = 0;
  13733. const int64_t D = node->src[0]->ne[0];
  13734. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13735. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13736. if (node->src[1]->type == GGML_TYPE_F32) {
  13737. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13738. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13739. }
  13740. if (node->src[1]->type == GGML_TYPE_F16) {
  13741. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13742. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13743. }
  13744. work_size = MAX(work_size, cur);
  13745. } break;
  13746. case GGML_OP_WIN_PART:
  13747. case GGML_OP_WIN_UNPART:
  13748. case GGML_OP_MAP_UNARY:
  13749. case GGML_OP_MAP_BINARY:
  13750. case GGML_OP_MAP_CUSTOM1_F32:
  13751. case GGML_OP_MAP_CUSTOM2_F32:
  13752. case GGML_OP_MAP_CUSTOM3_F32:
  13753. {
  13754. n_tasks = 1;
  13755. } break;
  13756. case GGML_OP_MAP_CUSTOM1:
  13757. {
  13758. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13759. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13760. n_tasks = n_threads;
  13761. } else {
  13762. n_tasks = MIN(p->n_tasks, n_threads);
  13763. }
  13764. } break;
  13765. case GGML_OP_MAP_CUSTOM2:
  13766. {
  13767. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13768. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13769. n_tasks = n_threads;
  13770. } else {
  13771. n_tasks = MIN(p->n_tasks, n_threads);
  13772. }
  13773. } break;
  13774. case GGML_OP_MAP_CUSTOM3:
  13775. {
  13776. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13777. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13778. n_tasks = n_threads;
  13779. } else {
  13780. n_tasks = MIN(p->n_tasks, n_threads);
  13781. }
  13782. } break;
  13783. case GGML_OP_CROSS_ENTROPY_LOSS:
  13784. {
  13785. n_tasks = n_threads;
  13786. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13787. work_size = MAX(work_size, cur);
  13788. } break;
  13789. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13790. {
  13791. n_tasks = n_threads;
  13792. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13793. work_size = MAX(work_size, cur);
  13794. } break;
  13795. case GGML_OP_NONE:
  13796. {
  13797. n_tasks = 1;
  13798. } break;
  13799. case GGML_OP_COUNT:
  13800. {
  13801. GGML_ASSERT(false);
  13802. } break;
  13803. }
  13804. cplan.n_tasks[i] = n_tasks;
  13805. }
  13806. if (work_size > 0) {
  13807. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13808. }
  13809. cplan.n_threads = n_threads;
  13810. cplan.work_size = work_size;
  13811. cplan.work_data = NULL;
  13812. return cplan;
  13813. }
  13814. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13815. {
  13816. GGML_ASSERT(cplan);
  13817. GGML_ASSERT(cplan->n_threads > 0);
  13818. if (cplan->work_size > 0) {
  13819. GGML_ASSERT(cplan->work_data);
  13820. }
  13821. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13822. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13823. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13824. }
  13825. }
  13826. }
  13827. const int n_threads = cplan->n_threads;
  13828. struct ggml_compute_state_shared state_shared = {
  13829. /*.cgraph =*/ cgraph,
  13830. /*.cgraph_plan =*/ cplan,
  13831. /*.perf_node_start_cycles =*/ 0,
  13832. /*.perf_node_start_time_us =*/ 0,
  13833. /*.n_threads =*/ n_threads,
  13834. /*.n_active =*/ n_threads,
  13835. /*.node_n =*/ -1,
  13836. /*.abort_callback =*/ NULL,
  13837. /*.abort_callback_data =*/ NULL,
  13838. };
  13839. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13840. // create thread pool
  13841. if (n_threads > 1) {
  13842. for (int j = 1; j < n_threads; ++j) {
  13843. workers[j] = (struct ggml_compute_state) {
  13844. .thrd = 0,
  13845. .ith = j,
  13846. .shared = &state_shared,
  13847. };
  13848. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13849. GGML_ASSERT(rc == 0);
  13850. }
  13851. }
  13852. workers[0].ith = 0;
  13853. workers[0].shared = &state_shared;
  13854. const int64_t perf_start_cycles = ggml_perf_cycles();
  13855. const int64_t perf_start_time_us = ggml_perf_time_us();
  13856. // this is a work thread too
  13857. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13858. // don't leave affinity set on the main thread
  13859. clear_numa_thread_affinity();
  13860. // join or kill thread pool
  13861. if (n_threads > 1) {
  13862. for (int j = 1; j < n_threads; j++) {
  13863. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13864. GGML_ASSERT(rc == 0);
  13865. }
  13866. }
  13867. // performance stats (graph)
  13868. {
  13869. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13870. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13871. cgraph->perf_runs++;
  13872. cgraph->perf_cycles += perf_cycles_cur;
  13873. cgraph->perf_time_us += perf_time_us_cur;
  13874. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13875. __func__, cgraph->perf_runs,
  13876. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13877. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13878. (double) perf_time_us_cur / 1000.0,
  13879. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13880. }
  13881. return compute_status;
  13882. }
  13883. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13884. for (int i = 0; i < cgraph->n_nodes; i++) {
  13885. struct ggml_tensor * grad = cgraph->grads[i];
  13886. if (grad) {
  13887. ggml_set_zero(grad);
  13888. }
  13889. }
  13890. }
  13891. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13892. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13893. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13894. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13895. ggml_graph_compute(cgraph, &cplan);
  13896. }
  13897. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13898. for (int i = 0; i < cgraph->n_leafs; i++) {
  13899. struct ggml_tensor * leaf = cgraph->leafs[i];
  13900. if (strcmp(leaf->name, name) == 0) {
  13901. return leaf;
  13902. }
  13903. }
  13904. for (int i = 0; i < cgraph->n_nodes; i++) {
  13905. struct ggml_tensor * node = cgraph->nodes[i];
  13906. if (strcmp(node->name, name) == 0) {
  13907. return node;
  13908. }
  13909. }
  13910. return NULL;
  13911. }
  13912. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13913. const int64_t * ne = tensor->ne;
  13914. const size_t * nb = tensor->nb;
  13915. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13916. ggml_type_name(tensor->type),
  13917. ggml_op_name (tensor->op),
  13918. tensor->n_dims,
  13919. ne[0], ne[1], ne[2], ne[3],
  13920. nb[0], nb[1], nb[2], nb[3],
  13921. tensor->data,
  13922. tensor->name);
  13923. }
  13924. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13925. const int64_t * ne = tensor->ne;
  13926. const size_t * nb = tensor->nb;
  13927. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13928. arg,
  13929. ggml_type_name(tensor->type),
  13930. ggml_op_name (tensor->op),
  13931. tensor->n_dims,
  13932. ne[0], ne[1], ne[2], ne[3],
  13933. nb[0], nb[1], nb[2], nb[3],
  13934. tensor->data,
  13935. tensor->name);
  13936. }
  13937. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13938. uint64_t size_eval = 0;
  13939. // compute size of intermediate results
  13940. // TODO: does not take into account scratch buffers !!!!
  13941. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13942. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13943. }
  13944. // print
  13945. {
  13946. FILE * fout = stdout;
  13947. fprintf(fout, "\n");
  13948. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13949. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13950. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13951. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13952. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13953. // header
  13954. fprintf(fout, "\n");
  13955. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13956. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13957. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13958. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13959. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13960. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13961. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13962. }
  13963. // header
  13964. fprintf(fout, "\n");
  13965. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13966. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13967. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13968. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13969. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13970. if (cgraph->nodes[i]->src[j]) {
  13971. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13972. }
  13973. }
  13974. fprintf(fout, "\n");
  13975. }
  13976. fprintf(fout, "\n");
  13977. }
  13978. // write binary data
  13979. {
  13980. FILE * fout = fopen(fname, "wb");
  13981. if (!fout) {
  13982. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13983. return;
  13984. }
  13985. // header
  13986. {
  13987. const uint32_t magic = GGML_FILE_MAGIC;
  13988. const uint32_t version = GGML_FILE_VERSION;
  13989. const uint32_t n_leafs = cgraph->n_leafs;
  13990. const uint32_t nodes = cgraph->n_nodes;
  13991. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13992. fwrite(&version, sizeof(uint32_t), 1, fout);
  13993. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13994. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13995. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13996. }
  13997. // leafs
  13998. {
  13999. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14000. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14001. const uint32_t type = tensor->type;
  14002. const uint32_t op = tensor->op;
  14003. const uint32_t n_dims = tensor->n_dims;
  14004. fwrite(&type, sizeof(uint32_t), 1, fout);
  14005. fwrite(&op, sizeof(uint32_t), 1, fout);
  14006. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14007. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14008. const uint64_t ne = tensor->ne[j];
  14009. const uint64_t nb = tensor->nb[j];
  14010. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14011. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14012. }
  14013. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14014. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14015. // dump the data
  14016. // TODO: pad this to 32 byte boundary
  14017. {
  14018. const size_t size = ggml_nbytes(tensor);
  14019. fwrite(tensor->data, sizeof(char), size, fout);
  14020. }
  14021. }
  14022. }
  14023. // nodes
  14024. {
  14025. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14026. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14027. const uint32_t type = tensor->type;
  14028. const uint32_t op = tensor->op;
  14029. const uint32_t n_dims = tensor->n_dims;
  14030. fwrite(&type, sizeof(uint32_t), 1, fout);
  14031. fwrite(&op, sizeof(uint32_t), 1, fout);
  14032. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14033. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14034. const uint64_t ne = tensor->ne[j];
  14035. const uint64_t nb = tensor->nb[j];
  14036. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14037. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14038. }
  14039. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14040. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14041. // output the op arguments
  14042. {
  14043. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14044. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14045. args[j] = tensor->src[j];
  14046. }
  14047. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14048. if (args[j]) {
  14049. int32_t idx = -1;
  14050. // check if leaf
  14051. {
  14052. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14053. if (args[j] == cgraph->leafs[k]) {
  14054. idx = k;
  14055. break;
  14056. }
  14057. }
  14058. }
  14059. // check if node
  14060. if (idx == -1) {
  14061. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14062. if (args[j] == cgraph->nodes[k]) {
  14063. idx = GGML_MAX_NODES + k;
  14064. break;
  14065. }
  14066. }
  14067. }
  14068. if (idx == -1) {
  14069. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14070. return;
  14071. }
  14072. fwrite(&idx, sizeof(int32_t), 1, fout);
  14073. } else {
  14074. const int32_t nul = -1;
  14075. fwrite(&nul, sizeof(int32_t), 1, fout);
  14076. }
  14077. }
  14078. }
  14079. }
  14080. }
  14081. fclose(fout);
  14082. }
  14083. }
  14084. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14085. assert(*ctx_data == NULL);
  14086. assert(*ctx_eval == NULL);
  14087. struct ggml_cgraph result = { 0 };
  14088. struct ggml_tensor * data = NULL;
  14089. // read file into data
  14090. {
  14091. FILE * fin = fopen(fname, "rb");
  14092. if (!fin) {
  14093. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14094. return result;
  14095. }
  14096. size_t fsize = 0;
  14097. fseek(fin, 0, SEEK_END);
  14098. fsize = ftell(fin);
  14099. fseek(fin, 0, SEEK_SET);
  14100. // create the data context
  14101. {
  14102. const size_t overhead = 1*ggml_tensor_overhead();
  14103. struct ggml_init_params params = {
  14104. .mem_size = fsize + overhead,
  14105. .mem_buffer = NULL,
  14106. .no_alloc = false,
  14107. };
  14108. *ctx_data = ggml_init(params);
  14109. if (!*ctx_data) {
  14110. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14111. fclose(fin);
  14112. return result;
  14113. }
  14114. }
  14115. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14116. {
  14117. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14118. if (ret != fsize) {
  14119. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14120. fclose(fin);
  14121. return result;
  14122. }
  14123. }
  14124. fclose(fin);
  14125. }
  14126. // populate result
  14127. {
  14128. char * ptr = (char *) data->data;
  14129. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14130. if (magic != GGML_FILE_MAGIC) {
  14131. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14132. return result;
  14133. }
  14134. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14135. if (version != GGML_FILE_VERSION) {
  14136. fprintf(stderr, "%s: invalid version number\n", __func__);
  14137. return result;
  14138. }
  14139. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14140. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14141. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14142. result.n_leafs = n_leafs;
  14143. result.n_nodes = n_nodes;
  14144. // create the data context
  14145. {
  14146. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14147. struct ggml_init_params params = {
  14148. .mem_size = size_eval + overhead,
  14149. .mem_buffer = NULL,
  14150. .no_alloc = true,
  14151. };
  14152. *ctx_eval = ggml_init(params);
  14153. if (!*ctx_eval) {
  14154. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14155. return result;
  14156. }
  14157. }
  14158. // leafs
  14159. {
  14160. uint32_t type;
  14161. uint32_t op;
  14162. uint32_t n_dims;
  14163. for (uint32_t i = 0; i < n_leafs; ++i) {
  14164. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14165. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14166. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14167. int64_t ne[GGML_MAX_DIMS];
  14168. size_t nb[GGML_MAX_DIMS];
  14169. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14170. uint64_t ne_cur;
  14171. uint64_t nb_cur;
  14172. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14173. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14174. ne[j] = ne_cur;
  14175. nb[j] = nb_cur;
  14176. }
  14177. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14178. tensor->op = (enum ggml_op) op;
  14179. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14180. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14181. tensor->data = (void *) ptr;
  14182. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14183. tensor->nb[j] = nb[j];
  14184. }
  14185. result.leafs[i] = tensor;
  14186. ptr += ggml_nbytes(tensor);
  14187. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14188. }
  14189. }
  14190. ggml_set_no_alloc(*ctx_eval, false);
  14191. // nodes
  14192. {
  14193. uint32_t type;
  14194. uint32_t op;
  14195. uint32_t n_dims;
  14196. for (uint32_t i = 0; i < n_nodes; ++i) {
  14197. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14198. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14199. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14200. enum ggml_op eop = (enum ggml_op) op;
  14201. int64_t ne[GGML_MAX_DIMS];
  14202. size_t nb[GGML_MAX_DIMS];
  14203. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14204. uint64_t ne_cur;
  14205. uint64_t nb_cur;
  14206. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14207. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14208. ne[j] = ne_cur;
  14209. nb[j] = nb_cur;
  14210. }
  14211. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14212. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14213. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14214. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14215. // parse args
  14216. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14217. const int32_t arg_idx = ptr_arg_idx[j];
  14218. if (arg_idx == -1) {
  14219. continue;
  14220. }
  14221. if (arg_idx < GGML_MAX_NODES) {
  14222. args[j] = result.leafs[arg_idx];
  14223. } else {
  14224. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14225. }
  14226. }
  14227. // create the tensor
  14228. // "view" operations are handled differently
  14229. // TODO: handle inplace ops - currently a copy is always made
  14230. struct ggml_tensor * tensor = NULL;
  14231. switch (eop) {
  14232. // TODO: implement other view ops
  14233. case GGML_OP_RESHAPE:
  14234. {
  14235. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14236. } break;
  14237. case GGML_OP_VIEW:
  14238. {
  14239. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14240. size_t offs;
  14241. memcpy(&offs, ptr_op_params, sizeof(offs));
  14242. tensor->data = ((char *) tensor->data) + offs;
  14243. } break;
  14244. case GGML_OP_TRANSPOSE:
  14245. {
  14246. tensor = ggml_transpose(*ctx_eval, args[0]);
  14247. } break;
  14248. case GGML_OP_PERMUTE:
  14249. {
  14250. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14251. } break;
  14252. default:
  14253. {
  14254. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14255. tensor->op = eop;
  14256. } break;
  14257. }
  14258. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14259. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14260. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14261. tensor->nb[j] = nb[j];
  14262. }
  14263. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14264. tensor->src[j] = args[j];
  14265. }
  14266. result.nodes[i] = tensor;
  14267. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14268. }
  14269. }
  14270. }
  14271. return result;
  14272. }
  14273. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14274. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14275. GGML_PRINT("=== GRAPH ===\n");
  14276. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14277. for (int i = 0; i < cgraph->n_nodes; i++) {
  14278. struct ggml_tensor * node = cgraph->nodes[i];
  14279. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14280. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14281. i,
  14282. node->ne[0], node->ne[1], node->ne[2],
  14283. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14284. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14285. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14286. (double) node->perf_time_us / 1000.0,
  14287. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14288. }
  14289. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14290. for (int i = 0; i < cgraph->n_leafs; i++) {
  14291. struct ggml_tensor * node = cgraph->leafs[i];
  14292. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14293. i,
  14294. node->ne[0], node->ne[1],
  14295. ggml_op_name(node->op));
  14296. }
  14297. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14298. if (perf_total_per_op_us[i] == 0) {
  14299. continue;
  14300. }
  14301. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14302. }
  14303. GGML_PRINT("========================================\n");
  14304. }
  14305. // check if node is part of the graph
  14306. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14307. if (cgraph == NULL) {
  14308. return true;
  14309. }
  14310. for (int i = 0; i < cgraph->n_nodes; i++) {
  14311. if (cgraph->nodes[i] == node) {
  14312. return true;
  14313. }
  14314. }
  14315. return false;
  14316. }
  14317. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14318. for (int i = 0; i < cgraph->n_nodes; i++) {
  14319. struct ggml_tensor * parent = cgraph->nodes[i];
  14320. if (parent->grad == node) {
  14321. return parent;
  14322. }
  14323. }
  14324. return NULL;
  14325. }
  14326. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14327. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14328. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14329. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14330. gparent0 ? (void *) gparent0 : (void *) parent,
  14331. gparent0 ? "g" : "x",
  14332. gparent ? (void *) gparent : (void *) node,
  14333. gparent ? "g" : "x",
  14334. gparent ? "empty" : "vee",
  14335. gparent ? "dashed" : "solid",
  14336. label);
  14337. }
  14338. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14339. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14340. (void *) parent, "x",
  14341. (void *) node, "x",
  14342. label);
  14343. }
  14344. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14345. char color[16];
  14346. FILE * fp = fopen(filename, "w");
  14347. GGML_ASSERT(fp);
  14348. fprintf(fp, "digraph G {\n");
  14349. fprintf(fp, " newrank = true;\n");
  14350. fprintf(fp, " rankdir = LR;\n");
  14351. for (int i = 0; i < gb->n_nodes; i++) {
  14352. struct ggml_tensor * node = gb->nodes[i];
  14353. if (ggml_graph_get_parent(gb, node) != NULL) {
  14354. continue;
  14355. }
  14356. if (node->is_param) {
  14357. snprintf(color, sizeof(color), "yellow");
  14358. } else if (node->grad) {
  14359. if (ggml_graph_find(gf, node)) {
  14360. snprintf(color, sizeof(color), "green");
  14361. } else {
  14362. snprintf(color, sizeof(color), "lightblue");
  14363. }
  14364. } else {
  14365. snprintf(color, sizeof(color), "white");
  14366. }
  14367. fprintf(fp, " \"%p\" [ "
  14368. "style = filled; fillcolor = %s; shape = record; "
  14369. "label=\"",
  14370. (void *) node, color);
  14371. if (strlen(node->name) > 0) {
  14372. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14373. } else {
  14374. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14375. }
  14376. if (node->n_dims == 2) {
  14377. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14378. } else {
  14379. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14380. }
  14381. if (node->grad) {
  14382. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14383. } else {
  14384. fprintf(fp, "\"; ]\n");
  14385. }
  14386. }
  14387. for (int i = 0; i < gb->n_leafs; i++) {
  14388. struct ggml_tensor * node = gb->leafs[i];
  14389. snprintf(color, sizeof(color), "pink");
  14390. fprintf(fp, " \"%p\" [ "
  14391. "style = filled; fillcolor = %s; shape = record; "
  14392. "label=\"<x>",
  14393. (void *) node, color);
  14394. if (strlen(node->name) > 0) {
  14395. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14396. } else {
  14397. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14398. }
  14399. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14400. if (ggml_nelements(node) < 5) {
  14401. fprintf(fp, " | (");
  14402. for (int j = 0; j < ggml_nelements(node); j++) {
  14403. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14404. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14405. }
  14406. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14407. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14408. }
  14409. else {
  14410. fprintf(fp, "#");
  14411. }
  14412. if (j < ggml_nelements(node) - 1) {
  14413. fprintf(fp, ", ");
  14414. }
  14415. }
  14416. fprintf(fp, ")");
  14417. }
  14418. fprintf(fp, "\"; ]\n");
  14419. }
  14420. for (int i = 0; i < gb->n_nodes; i++) {
  14421. struct ggml_tensor * node = gb->nodes[i];
  14422. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14423. if (node->src[j]) {
  14424. char label[16];
  14425. snprintf(label, sizeof(label), "src %d", j);
  14426. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14427. }
  14428. }
  14429. }
  14430. for (int i = 0; i < gb->n_leafs; i++) {
  14431. struct ggml_tensor * node = gb->leafs[i];
  14432. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14433. if (node->src[j]) {
  14434. char label[16];
  14435. snprintf(label, sizeof(label), "src %d", j);
  14436. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14437. }
  14438. }
  14439. }
  14440. fprintf(fp, "}\n");
  14441. fclose(fp);
  14442. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14443. }
  14444. ////////////////////////////////////////////////////////////////////////////////
  14445. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14446. int i = 0;
  14447. for (int p = 0; p < np; ++p) {
  14448. const int64_t ne = ggml_nelements(ps[p]) ;
  14449. // TODO: add function to set tensor from array
  14450. for (int64_t j = 0; j < ne; ++j) {
  14451. ggml_set_f32_1d(ps[p], j, x[i++]);
  14452. }
  14453. }
  14454. }
  14455. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14456. int i = 0;
  14457. for (int p = 0; p < np; ++p) {
  14458. const int64_t ne = ggml_nelements(ps[p]) ;
  14459. // TODO: add function to get all elements at once
  14460. for (int64_t j = 0; j < ne; ++j) {
  14461. x[i++] = ggml_get_f32_1d(ps[p], j);
  14462. }
  14463. }
  14464. }
  14465. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14466. int i = 0;
  14467. for (int p = 0; p < np; ++p) {
  14468. const int64_t ne = ggml_nelements(ps[p]) ;
  14469. // TODO: add function to get all elements at once
  14470. for (int64_t j = 0; j < ne; ++j) {
  14471. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14472. }
  14473. }
  14474. }
  14475. //
  14476. // ADAM
  14477. //
  14478. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14479. //
  14480. static enum ggml_opt_result ggml_opt_adam(
  14481. struct ggml_context * ctx,
  14482. struct ggml_opt_context * opt,
  14483. struct ggml_opt_params params,
  14484. struct ggml_tensor * f,
  14485. struct ggml_cgraph * gf,
  14486. struct ggml_cgraph * gb) {
  14487. GGML_ASSERT(ggml_is_scalar(f));
  14488. // these will store the parameters we want to optimize
  14489. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14490. int np = 0;
  14491. int nx = 0;
  14492. for (int i = 0; i < gf->n_nodes; ++i) {
  14493. if (gf->nodes[i]->is_param) {
  14494. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14495. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14496. ps[np++] = gf->nodes[i];
  14497. nx += ggml_nelements(gf->nodes[i]);
  14498. }
  14499. }
  14500. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14501. int iter = opt->iter;
  14502. ggml_opt_init(opt->ctx, opt, params, nx);
  14503. opt->iter = iter;
  14504. }
  14505. // constants
  14506. const float sched = params.adam.sched;
  14507. const float decay = params.adam.decay * sched;
  14508. const float alpha = params.adam.alpha * sched;
  14509. const float beta1 = params.adam.beta1;
  14510. const float beta2 = params.adam.beta2;
  14511. const float eps = params.adam.eps;
  14512. float * x = opt->adam.x->data; // view of the parameters
  14513. float * g1 = opt->adam.g1->data; // gradient
  14514. float * g2 = opt->adam.g2->data; // gradient squared
  14515. float * m = opt->adam.m->data; // first moment
  14516. float * v = opt->adam.v->data; // second moment
  14517. float * mh = opt->adam.mh->data; // first moment hat
  14518. float * vh = opt->adam.vh->data; // second moment hat
  14519. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14520. // update view
  14521. ggml_opt_get_params(np, ps, x);
  14522. // compute the function value
  14523. ggml_graph_reset (gf);
  14524. ggml_set_f32 (f->grad, 1.0f);
  14525. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14526. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14527. opt->adam.fx_best = opt->adam.fx_prev;
  14528. if (pf) {
  14529. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14530. }
  14531. // initialize
  14532. if (opt->just_initialized) {
  14533. opt->adam.n_no_improvement = 0;
  14534. opt->just_initialized = false;
  14535. }
  14536. float * fx_best = &opt->adam.fx_best;
  14537. float * fx_prev = &opt->adam.fx_prev;
  14538. int * n_no_improvement = &opt->adam.n_no_improvement;
  14539. int iter0 = opt->iter;
  14540. // run the optimizer
  14541. for (int t = 0; t < params.adam.n_iter; ++t) {
  14542. opt->iter = iter0 + t + 1;
  14543. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14544. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14545. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14546. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14547. for (int i = 0; i < np; ++i) {
  14548. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14549. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14550. }
  14551. const int64_t t_start_wall = ggml_time_us();
  14552. const int64_t t_start_cpu = ggml_cycles();
  14553. UNUSED(t_start_wall);
  14554. UNUSED(t_start_cpu);
  14555. {
  14556. // update the gradient
  14557. ggml_opt_get_grad(np, ps, g1);
  14558. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14559. ggml_vec_scale_f32(nx, m, beta1);
  14560. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14561. // g2 = g1^2
  14562. ggml_vec_sqr_f32 (nx, g2, g1);
  14563. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14564. ggml_vec_scale_f32(nx, v, beta2);
  14565. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14566. // m^hat = m_t / (1 - beta1^t)
  14567. // v^hat = v_t / (1 - beta2^t)
  14568. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14569. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14570. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14571. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14572. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14573. ggml_vec_cpy_f32 (nx, mh, m);
  14574. ggml_vec_cpy_f32 (nx, vh, v);
  14575. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14576. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14577. ggml_vec_sqrt_f32 (nx, vh, vh);
  14578. ggml_vec_acc1_f32 (nx, vh, eps);
  14579. ggml_vec_div_f32 (nx, mh, mh, vh);
  14580. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14581. ggml_vec_sub_f32 (nx, x, x, mh);
  14582. // update the parameters
  14583. ggml_opt_set_params(np, ps, x);
  14584. }
  14585. ggml_graph_reset (gf);
  14586. ggml_set_f32 (f->grad, 1.0f);
  14587. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14588. const float fx = ggml_get_f32_1d(f, 0);
  14589. // check convergence
  14590. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14591. GGML_PRINT_DEBUG("converged\n");
  14592. return GGML_OPT_OK;
  14593. }
  14594. // delta-based convergence test
  14595. if (pf != NULL) {
  14596. // need at least params.past iterations to start checking for convergence
  14597. if (params.past <= iter0 + t) {
  14598. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14599. if (fabsf(rate) < params.delta) {
  14600. return GGML_OPT_OK;
  14601. }
  14602. }
  14603. pf[(iter0 + t)%params.past] = fx;
  14604. }
  14605. // check for improvement
  14606. if (params.max_no_improvement > 0) {
  14607. if (fx_best[0] > fx) {
  14608. fx_best[0] = fx;
  14609. n_no_improvement[0] = 0;
  14610. } else {
  14611. ++n_no_improvement[0];
  14612. if (n_no_improvement[0] >= params.max_no_improvement) {
  14613. return GGML_OPT_OK;
  14614. }
  14615. }
  14616. }
  14617. fx_prev[0] = fx;
  14618. {
  14619. const int64_t t_end_cpu = ggml_cycles();
  14620. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14621. UNUSED(t_end_cpu);
  14622. const int64_t t_end_wall = ggml_time_us();
  14623. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14624. UNUSED(t_end_wall);
  14625. }
  14626. }
  14627. return GGML_OPT_DID_NOT_CONVERGE;
  14628. }
  14629. //
  14630. // L-BFGS
  14631. //
  14632. // the L-BFGS implementation below is based on the following implementation:
  14633. //
  14634. // https://github.com/chokkan/liblbfgs
  14635. //
  14636. struct ggml_lbfgs_iteration_data {
  14637. float alpha;
  14638. float ys;
  14639. float * s;
  14640. float * y;
  14641. };
  14642. static enum ggml_opt_result linesearch_backtracking(
  14643. struct ggml_context * ctx,
  14644. const struct ggml_opt_params * params,
  14645. int nx,
  14646. float * x,
  14647. float * fx,
  14648. float * g,
  14649. float * d,
  14650. float * step,
  14651. const float * xp,
  14652. struct ggml_tensor * f,
  14653. struct ggml_cgraph * gf,
  14654. struct ggml_cgraph * gb,
  14655. const int np,
  14656. struct ggml_tensor * ps[]) {
  14657. int count = 0;
  14658. float width = 0.0f;
  14659. float dg = 0.0f;
  14660. float finit = 0.0f;
  14661. float dginit = 0.0f;
  14662. float dgtest = 0.0f;
  14663. const float dec = 0.5f;
  14664. const float inc = 2.1f;
  14665. if (*step <= 0.f) {
  14666. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14667. }
  14668. // compute the initial gradient in the search direction
  14669. ggml_vec_dot_f32(nx, &dginit, g, d);
  14670. // make sure that d points to a descent direction
  14671. if (0 < dginit) {
  14672. return GGML_LINESEARCH_FAIL;
  14673. }
  14674. // initialize local variables
  14675. finit = *fx;
  14676. dgtest = params->lbfgs.ftol*dginit;
  14677. while (true) {
  14678. ggml_vec_cpy_f32(nx, x, xp);
  14679. ggml_vec_mad_f32(nx, x, d, *step);
  14680. // evaluate the function and gradient values
  14681. {
  14682. ggml_opt_set_params(np, ps, x);
  14683. ggml_graph_reset (gf);
  14684. ggml_set_f32 (f->grad, 1.0f);
  14685. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14686. ggml_opt_get_grad(np, ps, g);
  14687. *fx = ggml_get_f32_1d(f, 0);
  14688. }
  14689. ++count;
  14690. if (*fx > finit + (*step)*dgtest) {
  14691. width = dec;
  14692. } else {
  14693. // Armijo condition is satisfied
  14694. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14695. return count;
  14696. }
  14697. ggml_vec_dot_f32(nx, &dg, g, d);
  14698. // check the Wolfe condition
  14699. if (dg < params->lbfgs.wolfe * dginit) {
  14700. width = inc;
  14701. } else {
  14702. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14703. // regular Wolfe conditions
  14704. return count;
  14705. }
  14706. if(dg > -params->lbfgs.wolfe*dginit) {
  14707. width = dec;
  14708. } else {
  14709. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14710. return count;
  14711. }
  14712. return count;
  14713. }
  14714. }
  14715. if (*step < params->lbfgs.min_step) {
  14716. return GGML_LINESEARCH_MINIMUM_STEP;
  14717. }
  14718. if (*step > params->lbfgs.max_step) {
  14719. return GGML_LINESEARCH_MAXIMUM_STEP;
  14720. }
  14721. if (params->lbfgs.max_linesearch <= count) {
  14722. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14723. }
  14724. (*step) *= width;
  14725. }
  14726. return GGML_LINESEARCH_FAIL;
  14727. }
  14728. static enum ggml_opt_result ggml_opt_lbfgs(
  14729. struct ggml_context * ctx,
  14730. struct ggml_opt_context * opt,
  14731. struct ggml_opt_params params,
  14732. struct ggml_tensor * f,
  14733. struct ggml_cgraph * gf,
  14734. struct ggml_cgraph * gb) {
  14735. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14736. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14737. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14738. return GGML_OPT_INVALID_WOLFE;
  14739. }
  14740. }
  14741. const int m = params.lbfgs.m;
  14742. // these will store the parameters we want to optimize
  14743. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14744. int np = 0;
  14745. int nx = 0;
  14746. for (int i = 0; i < gf->n_nodes; ++i) {
  14747. if (gf->nodes[i]->is_param) {
  14748. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14749. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14750. ps[np++] = gf->nodes[i];
  14751. nx += ggml_nelements(gf->nodes[i]);
  14752. }
  14753. }
  14754. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14755. int iter = opt->iter;
  14756. ggml_opt_init(ctx, opt, params, nx);
  14757. opt->iter = iter;
  14758. }
  14759. float * x = opt->lbfgs.x->data; // current parameters
  14760. float * xp = opt->lbfgs.xp->data; // previous parameters
  14761. float * g = opt->lbfgs.g->data; // current gradient
  14762. float * gp = opt->lbfgs.gp->data; // previous gradient
  14763. float * d = opt->lbfgs.d->data; // search direction
  14764. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14765. float fx = 0.0f; // cost function value
  14766. float xnorm = 0.0f; // ||x||
  14767. float gnorm = 0.0f; // ||g||
  14768. // initialize x from the graph nodes
  14769. ggml_opt_get_params(np, ps, x);
  14770. // the L-BFGS memory
  14771. float * lm_alpha = opt->lbfgs.lmal->data;
  14772. float * lm_ys = opt->lbfgs.lmys->data;
  14773. float * lm_s = opt->lbfgs.lms->data;
  14774. float * lm_y = opt->lbfgs.lmy->data;
  14775. // evaluate the function value and its gradient
  14776. {
  14777. ggml_opt_set_params(np, ps, x);
  14778. ggml_graph_reset (gf);
  14779. ggml_set_f32 (f->grad, 1.0f);
  14780. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14781. ggml_opt_get_grad(np, ps, g);
  14782. fx = ggml_get_f32_1d(f, 0);
  14783. }
  14784. // search direction = -gradient
  14785. ggml_vec_neg_f32(nx, d, g);
  14786. // ||x||, ||g||
  14787. ggml_vec_norm_f32(nx, &xnorm, x);
  14788. ggml_vec_norm_f32(nx, &gnorm, g);
  14789. if (xnorm < 1.0f) {
  14790. xnorm = 1.0f;
  14791. }
  14792. // already optimized
  14793. if (gnorm/xnorm <= params.lbfgs.eps) {
  14794. return GGML_OPT_OK;
  14795. }
  14796. if (opt->just_initialized) {
  14797. if (pf) {
  14798. pf[0] = fx;
  14799. }
  14800. opt->lbfgs.fx_best = fx;
  14801. // initial step
  14802. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14803. opt->lbfgs.j = 0;
  14804. opt->lbfgs.k = 1;
  14805. opt->lbfgs.end = 0;
  14806. opt->lbfgs.n_no_improvement = 0;
  14807. opt->just_initialized = false;
  14808. }
  14809. float * fx_best = &opt->lbfgs.fx_best;
  14810. float * step = &opt->lbfgs.step;
  14811. int * j = &opt->lbfgs.j;
  14812. int * k = &opt->lbfgs.k;
  14813. int * end = &opt->lbfgs.end;
  14814. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14815. int ls = 0;
  14816. int bound = 0;
  14817. float ys = 0.0f;
  14818. float yy = 0.0f;
  14819. float beta = 0.0f;
  14820. int it = 0;
  14821. while (true) {
  14822. // store the current position and gradient vectors
  14823. ggml_vec_cpy_f32(nx, xp, x);
  14824. ggml_vec_cpy_f32(nx, gp, g);
  14825. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14826. if (ls < 0) {
  14827. // linesearch failed - go back to the previous point and return
  14828. ggml_vec_cpy_f32(nx, x, xp);
  14829. ggml_vec_cpy_f32(nx, g, gp);
  14830. return ls;
  14831. }
  14832. ggml_vec_norm_f32(nx, &xnorm, x);
  14833. ggml_vec_norm_f32(nx, &gnorm, g);
  14834. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14835. if (xnorm < 1.0f) {
  14836. xnorm = 1.0f;
  14837. }
  14838. if (gnorm/xnorm <= params.lbfgs.eps) {
  14839. // converged
  14840. return GGML_OPT_OK;
  14841. }
  14842. // delta-based convergence test
  14843. if (pf != NULL) {
  14844. // need at least params.past iterations to start checking for convergence
  14845. if (params.past <= k[0]) {
  14846. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14847. if (fabsf(rate) < params.delta) {
  14848. return GGML_OPT_OK;
  14849. }
  14850. }
  14851. pf[k[0]%params.past] = fx;
  14852. }
  14853. // check for improvement
  14854. if (params.max_no_improvement > 0) {
  14855. if (fx < fx_best[0]) {
  14856. fx_best[0] = fx;
  14857. n_no_improvement[0] = 0;
  14858. } else {
  14859. n_no_improvement[0]++;
  14860. if (n_no_improvement[0] >= params.max_no_improvement) {
  14861. return GGML_OPT_OK;
  14862. }
  14863. }
  14864. }
  14865. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14866. // reached the maximum number of iterations
  14867. return GGML_OPT_DID_NOT_CONVERGE;
  14868. }
  14869. // update vectors s and y:
  14870. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14871. // y_{k+1} = g_{k+1} - g_{k}.
  14872. //
  14873. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14874. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14875. // compute scalars ys and yy:
  14876. // ys = y^t \cdot s -> 1 / \rho.
  14877. // yy = y^t \cdot y.
  14878. //
  14879. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14880. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14881. lm_ys[end[0]] = ys;
  14882. // find new search direction
  14883. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14884. bound = (m <= k[0]) ? m : k[0];
  14885. k[0]++;
  14886. it++;
  14887. end[0] = (end[0] + 1)%m;
  14888. // initialize search direction with -g
  14889. ggml_vec_neg_f32(nx, d, g);
  14890. j[0] = end[0];
  14891. for (int i = 0; i < bound; ++i) {
  14892. j[0] = (j[0] + m - 1) % m;
  14893. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14894. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14895. lm_alpha[j[0]] /= lm_ys[j[0]];
  14896. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14897. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14898. }
  14899. ggml_vec_scale_f32(nx, d, ys/yy);
  14900. for (int i = 0; i < bound; ++i) {
  14901. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14902. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14903. beta /= lm_ys[j[0]];
  14904. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14905. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14906. j[0] = (j[0] + 1)%m;
  14907. }
  14908. step[0] = 1.0;
  14909. }
  14910. return GGML_OPT_DID_NOT_CONVERGE;
  14911. }
  14912. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14913. struct ggml_opt_params result;
  14914. switch (type) {
  14915. case GGML_OPT_ADAM:
  14916. {
  14917. result = (struct ggml_opt_params) {
  14918. .type = GGML_OPT_ADAM,
  14919. .n_threads = 1,
  14920. .past = 0,
  14921. .delta = 1e-5f,
  14922. .max_no_improvement = 100,
  14923. .print_forward_graph = true,
  14924. .print_backward_graph = true,
  14925. .adam = {
  14926. .n_iter = 10000,
  14927. .sched = 1.000f,
  14928. .decay = 0.001f,
  14929. .alpha = 0.001f,
  14930. .beta1 = 0.9f,
  14931. .beta2 = 0.999f,
  14932. .eps = 1e-8f,
  14933. .eps_f = 1e-5f,
  14934. .eps_g = 1e-3f,
  14935. },
  14936. };
  14937. } break;
  14938. case GGML_OPT_LBFGS:
  14939. {
  14940. result = (struct ggml_opt_params) {
  14941. .type = GGML_OPT_LBFGS,
  14942. .n_threads = 1,
  14943. .past = 0,
  14944. .delta = 1e-5f,
  14945. .max_no_improvement = 0,
  14946. .print_forward_graph = true,
  14947. .print_backward_graph = true,
  14948. .lbfgs = {
  14949. .m = 6,
  14950. .n_iter = 100,
  14951. .max_linesearch = 20,
  14952. .eps = 1e-5f,
  14953. .ftol = 1e-4f,
  14954. .wolfe = 0.9f,
  14955. .min_step = 1e-20f,
  14956. .max_step = 1e+20f,
  14957. .linesearch = GGML_LINESEARCH_DEFAULT,
  14958. },
  14959. };
  14960. } break;
  14961. }
  14962. return result;
  14963. }
  14964. GGML_API void ggml_opt_init(
  14965. struct ggml_context * ctx,
  14966. struct ggml_opt_context * opt,
  14967. struct ggml_opt_params params,
  14968. int64_t nx) {
  14969. opt->ctx = ctx;
  14970. opt->params = params;
  14971. opt->iter = 0;
  14972. opt->nx = nx;
  14973. opt->just_initialized = true;
  14974. switch (opt->params.type) {
  14975. case GGML_OPT_ADAM:
  14976. {
  14977. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14978. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14979. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14980. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14981. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14982. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14983. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14984. opt->adam.pf = params.past > 0
  14985. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14986. : NULL;
  14987. ggml_set_zero(opt->adam.x);
  14988. ggml_set_zero(opt->adam.g1);
  14989. ggml_set_zero(opt->adam.g2);
  14990. ggml_set_zero(opt->adam.m);
  14991. ggml_set_zero(opt->adam.v);
  14992. ggml_set_zero(opt->adam.mh);
  14993. ggml_set_zero(opt->adam.vh);
  14994. if (opt->adam.pf) {
  14995. ggml_set_zero(opt->adam.pf);
  14996. }
  14997. } break;
  14998. case GGML_OPT_LBFGS:
  14999. {
  15000. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15001. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15002. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15003. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15004. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15005. opt->lbfgs.pf = params.past > 0
  15006. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15007. : NULL;
  15008. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15009. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15010. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15011. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15012. ggml_set_zero(opt->lbfgs.x);
  15013. ggml_set_zero(opt->lbfgs.xp);
  15014. ggml_set_zero(opt->lbfgs.g);
  15015. ggml_set_zero(opt->lbfgs.gp);
  15016. ggml_set_zero(opt->lbfgs.d);
  15017. if (opt->lbfgs.pf) {
  15018. ggml_set_zero(opt->lbfgs.pf);
  15019. }
  15020. ggml_set_zero(opt->lbfgs.lmal);
  15021. ggml_set_zero(opt->lbfgs.lmys);
  15022. ggml_set_zero(opt->lbfgs.lms);
  15023. ggml_set_zero(opt->lbfgs.lmy);
  15024. } break;
  15025. }
  15026. }
  15027. enum ggml_opt_result ggml_opt(
  15028. struct ggml_context * ctx,
  15029. struct ggml_opt_params params,
  15030. struct ggml_tensor * f) {
  15031. bool free_ctx = false;
  15032. if (ctx == NULL) {
  15033. struct ggml_init_params params_ctx = {
  15034. .mem_size = 16*1024*1024,
  15035. .mem_buffer = NULL,
  15036. .no_alloc = false,
  15037. };
  15038. ctx = ggml_init(params_ctx);
  15039. if (ctx == NULL) {
  15040. return GGML_OPT_NO_CONTEXT;
  15041. }
  15042. free_ctx = true;
  15043. }
  15044. enum ggml_opt_result result = GGML_OPT_OK;
  15045. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15046. ggml_opt_init(ctx, opt, params, 0);
  15047. result = ggml_opt_resume(ctx, opt, f);
  15048. if (free_ctx) {
  15049. ggml_free(ctx);
  15050. }
  15051. return result;
  15052. }
  15053. enum ggml_opt_result ggml_opt_resume(
  15054. struct ggml_context * ctx,
  15055. struct ggml_opt_context * opt,
  15056. struct ggml_tensor * f) {
  15057. // build forward + backward compute graphs
  15058. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15059. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15060. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15061. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15062. *gf = ggml_build_forward (f);
  15063. *gb = ggml_build_backward(ctx, gf, true);
  15064. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15065. }
  15066. enum ggml_opt_result ggml_opt_resume_g(
  15067. struct ggml_context * ctx,
  15068. struct ggml_opt_context * opt,
  15069. struct ggml_tensor * f,
  15070. struct ggml_cgraph * gf,
  15071. struct ggml_cgraph * gb) {
  15072. // build forward + backward compute graphs
  15073. enum ggml_opt_result result = GGML_OPT_OK;
  15074. switch (opt->params.type) {
  15075. case GGML_OPT_ADAM:
  15076. {
  15077. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15078. } break;
  15079. case GGML_OPT_LBFGS:
  15080. {
  15081. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15082. } break;
  15083. }
  15084. if (opt->params.print_forward_graph) {
  15085. ggml_graph_print (gf);
  15086. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15087. }
  15088. if (opt->params.print_backward_graph) {
  15089. ggml_graph_print (gb);
  15090. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15091. }
  15092. return result;
  15093. }
  15094. ////////////////////////////////////////////////////////////////////////////////
  15095. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15096. assert(k % QK4_0 == 0);
  15097. const int nb = k / QK4_0;
  15098. for (int b = 0; b < n; b += k) {
  15099. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15100. quantize_row_q4_0_reference(src + b, y, k);
  15101. for (int i = 0; i < nb; i++) {
  15102. for (int j = 0; j < QK4_0; j += 2) {
  15103. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15104. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15105. hist[vi0]++;
  15106. hist[vi1]++;
  15107. }
  15108. }
  15109. }
  15110. return (n/QK4_0*sizeof(block_q4_0));
  15111. }
  15112. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15113. assert(k % QK4_1 == 0);
  15114. const int nb = k / QK4_1;
  15115. for (int b = 0; b < n; b += k) {
  15116. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15117. quantize_row_q4_1_reference(src + b, y, k);
  15118. for (int i = 0; i < nb; i++) {
  15119. for (int j = 0; j < QK4_1; j += 2) {
  15120. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15121. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15122. hist[vi0]++;
  15123. hist[vi1]++;
  15124. }
  15125. }
  15126. }
  15127. return (n/QK4_1*sizeof(block_q4_1));
  15128. }
  15129. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15130. assert(k % QK5_0 == 0);
  15131. const int nb = k / QK5_0;
  15132. for (int b = 0; b < n; b += k) {
  15133. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15134. quantize_row_q5_0_reference(src + b, y, k);
  15135. for (int i = 0; i < nb; i++) {
  15136. uint32_t qh;
  15137. memcpy(&qh, &y[i].qh, sizeof(qh));
  15138. for (int j = 0; j < QK5_0; j += 2) {
  15139. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15140. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15141. // cast to 16 bins
  15142. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15143. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15144. hist[vi0]++;
  15145. hist[vi1]++;
  15146. }
  15147. }
  15148. }
  15149. return (n/QK5_0*sizeof(block_q5_0));
  15150. }
  15151. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15152. assert(k % QK5_1 == 0);
  15153. const int nb = k / QK5_1;
  15154. for (int b = 0; b < n; b += k) {
  15155. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15156. quantize_row_q5_1_reference(src + b, y, k);
  15157. for (int i = 0; i < nb; i++) {
  15158. uint32_t qh;
  15159. memcpy(&qh, &y[i].qh, sizeof(qh));
  15160. for (int j = 0; j < QK5_1; j += 2) {
  15161. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15162. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15163. // cast to 16 bins
  15164. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15165. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15166. hist[vi0]++;
  15167. hist[vi1]++;
  15168. }
  15169. }
  15170. }
  15171. return (n/QK5_1*sizeof(block_q5_1));
  15172. }
  15173. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15174. assert(k % QK8_0 == 0);
  15175. const int nb = k / QK8_0;
  15176. for (int b = 0; b < n; b += k) {
  15177. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15178. quantize_row_q8_0_reference(src + b, y, k);
  15179. for (int i = 0; i < nb; i++) {
  15180. for (int j = 0; j < QK8_0; ++j) {
  15181. const int8_t vi = y[i].qs[j];
  15182. hist[vi/16 + 8]++;
  15183. }
  15184. }
  15185. }
  15186. return (n/QK8_0*sizeof(block_q8_0));
  15187. }
  15188. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15189. size_t result = 0;
  15190. switch (type) {
  15191. case GGML_TYPE_Q4_0:
  15192. {
  15193. GGML_ASSERT(start % QK4_0 == 0);
  15194. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15195. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15196. } break;
  15197. case GGML_TYPE_Q4_1:
  15198. {
  15199. GGML_ASSERT(start % QK4_1 == 0);
  15200. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15201. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15202. } break;
  15203. case GGML_TYPE_Q5_0:
  15204. {
  15205. GGML_ASSERT(start % QK5_0 == 0);
  15206. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15207. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15208. } break;
  15209. case GGML_TYPE_Q5_1:
  15210. {
  15211. GGML_ASSERT(start % QK5_1 == 0);
  15212. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15213. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15214. } break;
  15215. case GGML_TYPE_Q8_0:
  15216. {
  15217. GGML_ASSERT(start % QK8_0 == 0);
  15218. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15219. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15220. } break;
  15221. #ifdef GGML_USE_K_QUANTS
  15222. case GGML_TYPE_Q2_K:
  15223. {
  15224. GGML_ASSERT(start % QK_K == 0);
  15225. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15226. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15227. } break;
  15228. case GGML_TYPE_Q3_K:
  15229. {
  15230. GGML_ASSERT(start % QK_K == 0);
  15231. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15232. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15233. } break;
  15234. case GGML_TYPE_Q4_K:
  15235. {
  15236. GGML_ASSERT(start % QK_K == 0);
  15237. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15238. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15239. } break;
  15240. case GGML_TYPE_Q5_K:
  15241. {
  15242. GGML_ASSERT(start % QK_K == 0);
  15243. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15244. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15245. } break;
  15246. case GGML_TYPE_Q6_K:
  15247. {
  15248. GGML_ASSERT(start % QK_K == 0);
  15249. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15250. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15251. } break;
  15252. #endif
  15253. case GGML_TYPE_F16:
  15254. {
  15255. int elemsize = sizeof(ggml_fp16_t);
  15256. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15257. result = n * elemsize;
  15258. } break;
  15259. case GGML_TYPE_F32:
  15260. {
  15261. int elemsize = sizeof(float);
  15262. result = n * elemsize;
  15263. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15264. } break;
  15265. default:
  15266. assert(false);
  15267. }
  15268. return result;
  15269. }
  15270. ////////////////////////////////////////////////////////////////////////////////
  15271. int ggml_cpu_has_avx(void) {
  15272. #if defined(__AVX__)
  15273. return 1;
  15274. #else
  15275. return 0;
  15276. #endif
  15277. }
  15278. int ggml_cpu_has_avx2(void) {
  15279. #if defined(__AVX2__)
  15280. return 1;
  15281. #else
  15282. return 0;
  15283. #endif
  15284. }
  15285. int ggml_cpu_has_avx512(void) {
  15286. #if defined(__AVX512F__)
  15287. return 1;
  15288. #else
  15289. return 0;
  15290. #endif
  15291. }
  15292. int ggml_cpu_has_avx512_vbmi(void) {
  15293. #if defined(__AVX512VBMI__)
  15294. return 1;
  15295. #else
  15296. return 0;
  15297. #endif
  15298. }
  15299. int ggml_cpu_has_avx512_vnni(void) {
  15300. #if defined(__AVX512VNNI__)
  15301. return 1;
  15302. #else
  15303. return 0;
  15304. #endif
  15305. }
  15306. int ggml_cpu_has_fma(void) {
  15307. #if defined(__FMA__)
  15308. return 1;
  15309. #else
  15310. return 0;
  15311. #endif
  15312. }
  15313. int ggml_cpu_has_neon(void) {
  15314. #if defined(__ARM_NEON)
  15315. return 1;
  15316. #else
  15317. return 0;
  15318. #endif
  15319. }
  15320. int ggml_cpu_has_arm_fma(void) {
  15321. #if defined(__ARM_FEATURE_FMA)
  15322. return 1;
  15323. #else
  15324. return 0;
  15325. #endif
  15326. }
  15327. int ggml_cpu_has_f16c(void) {
  15328. #if defined(__F16C__)
  15329. return 1;
  15330. #else
  15331. return 0;
  15332. #endif
  15333. }
  15334. int ggml_cpu_has_fp16_va(void) {
  15335. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15336. return 1;
  15337. #else
  15338. return 0;
  15339. #endif
  15340. }
  15341. int ggml_cpu_has_wasm_simd(void) {
  15342. #if defined(__wasm_simd128__)
  15343. return 1;
  15344. #else
  15345. return 0;
  15346. #endif
  15347. }
  15348. int ggml_cpu_has_blas(void) {
  15349. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15350. return 1;
  15351. #else
  15352. return 0;
  15353. #endif
  15354. }
  15355. int ggml_cpu_has_cublas(void) {
  15356. #if defined(GGML_USE_CUBLAS)
  15357. return 1;
  15358. #else
  15359. return 0;
  15360. #endif
  15361. }
  15362. int ggml_cpu_has_clblast(void) {
  15363. #if defined(GGML_USE_CLBLAST)
  15364. return 1;
  15365. #else
  15366. return 0;
  15367. #endif
  15368. }
  15369. int ggml_cpu_has_gpublas(void) {
  15370. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15371. }
  15372. int ggml_cpu_has_sse3(void) {
  15373. #if defined(__SSE3__)
  15374. return 1;
  15375. #else
  15376. return 0;
  15377. #endif
  15378. }
  15379. int ggml_cpu_has_vsx(void) {
  15380. #if defined(__POWER9_VECTOR__)
  15381. return 1;
  15382. #else
  15383. return 0;
  15384. #endif
  15385. }
  15386. ////////////////////////////////////////////////////////////////////////////////