llama.go 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
  1. package llm
  2. import (
  3. "bufio"
  4. "bytes"
  5. "context"
  6. "embed"
  7. "encoding/json"
  8. "errors"
  9. "fmt"
  10. "io"
  11. "io/fs"
  12. "log"
  13. "math/rand"
  14. "net/http"
  15. "os"
  16. "os/exec"
  17. "path"
  18. "path/filepath"
  19. "runtime"
  20. "strconv"
  21. "strings"
  22. "sync"
  23. "time"
  24. "github.com/jmorganca/ollama/api"
  25. "github.com/jmorganca/ollama/format"
  26. )
  27. const jsonGrammar = `
  28. root ::= object
  29. value ::= object | array | string | number | ("true" | "false" | "null") ws
  30. object ::=
  31. "{" ws (
  32. string ":" ws value
  33. ("," ws string ":" ws value)*
  34. )? "}" ws
  35. array ::=
  36. "[" ws (
  37. value
  38. ("," ws value)*
  39. )? "]" ws
  40. string ::=
  41. "\"" (
  42. [^"\\] |
  43. "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
  44. )* "\"" ws
  45. number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
  46. # Optional space: by convention, applied in this grammar after literal chars when allowed
  47. ws ::= ([ \t\n] ws)?
  48. `
  49. //go:embed llama.cpp/*/build/*/bin/*
  50. var llamaCppEmbed embed.FS
  51. type ModelRunner struct {
  52. Type string // "gguf" or "ggml"
  53. Path string // path to the model runner executable
  54. Accelerated bool
  55. }
  56. func chooseRunners(workDir, runnerType string) []ModelRunner {
  57. buildPath := path.Join("llama.cpp", runnerType, "build")
  58. var runners []ModelRunner
  59. // set the runners based on the OS
  60. // IMPORTANT: the order of the runners in the array is the priority order
  61. switch runtime.GOOS {
  62. case "darwin":
  63. if runtime.GOARCH == "arm64" {
  64. runners = []ModelRunner{{Type: runnerType, Path: path.Join(buildPath, "metal", "bin", "ollama-runner")}}
  65. } else {
  66. runners = []ModelRunner{{Type: runnerType, Path: path.Join(buildPath, "cpu", "bin", "ollama-runner")}}
  67. }
  68. case "linux":
  69. runners = []ModelRunner{
  70. {Type: runnerType, Path: path.Join(buildPath, "cuda", "bin", "ollama-runner"), Accelerated: true},
  71. {Type: runnerType, Path: path.Join(buildPath, "cpu", "bin", "ollama-runner")},
  72. }
  73. case "windows":
  74. // TODO: select windows GPU runner here when available
  75. runners = []ModelRunner{
  76. {Type: runnerType, Path: path.Join(buildPath, "cuda", "bin", "Release", "ollama-runner.exe"), Accelerated: true},
  77. {Type: runnerType, Path: path.Join(buildPath, "cpu", "bin", "Release", "ollama-runner.exe")},
  78. }
  79. default:
  80. log.Printf("unknown OS, running on CPU: %s", runtime.GOOS)
  81. runners = []ModelRunner{
  82. {Type: runnerType, Path: path.Join(buildPath, "cpu", "bin", "ollama-runner")},
  83. }
  84. }
  85. runnerAvailable := false // if no runner files are found in the embed, this flag will cause a fast fail
  86. for _, r := range runners {
  87. // find all the files in the runner's bin directory
  88. files, err := fs.Glob(llamaCppEmbed, path.Join(path.Dir(r.Path), "*"))
  89. if err != nil {
  90. // this is expected, ollama may be compiled without all runners packed in
  91. log.Printf("%s runner not found: %v", r.Path, err)
  92. continue
  93. }
  94. for _, f := range files {
  95. runnerAvailable = true
  96. srcFile, err := llamaCppEmbed.Open(f)
  97. if err != nil {
  98. log.Fatalf("read llama runner %s: %v", f, err)
  99. }
  100. defer srcFile.Close()
  101. // create the directory in case it does not exist, filepath.Dir() converts the file path to the OS's format
  102. destPath := filepath.Join(workDir, filepath.Dir(f))
  103. if err := os.MkdirAll(destPath, 0o755); err != nil {
  104. log.Fatalf("create runner temp dir %s: %v", filepath.Dir(f), err)
  105. }
  106. // create the path to the destination file, filepath.Base() converts the file path to the OS's format
  107. destFile := filepath.Join(destPath, filepath.Base(f))
  108. _, err = os.Stat(destFile)
  109. switch {
  110. case errors.Is(err, os.ErrNotExist):
  111. destFile, err := os.OpenFile(destFile, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
  112. if err != nil {
  113. log.Fatalf("write llama runner %s: %v", f, err)
  114. }
  115. defer destFile.Close()
  116. if _, err := io.Copy(destFile, srcFile); err != nil {
  117. log.Fatalf("copy llama runner %s: %v", f, err)
  118. }
  119. case err != nil:
  120. log.Fatalf("stat llama runner %s: %v", f, err)
  121. }
  122. }
  123. }
  124. if !runnerAvailable {
  125. log.Fatalf("%s runner not found", runnerType)
  126. }
  127. // return the runners to try in priority order
  128. localRunnersByPriority := []ModelRunner{}
  129. for _, r := range runners {
  130. // clean the ModelRunner paths so that they match the OS we are running on
  131. localRunnersByPriority = append(localRunnersByPriority, ModelRunner{
  132. Type: r.Type,
  133. Path: filepath.Clean(path.Join(workDir, r.Path)),
  134. Accelerated: r.Accelerated,
  135. })
  136. }
  137. return localRunnersByPriority
  138. }
  139. type llamaModel struct {
  140. hyperparameters llamaHyperparameters
  141. }
  142. func (llm *llamaModel) ModelFamily() string {
  143. return "llama"
  144. }
  145. func llamaModelType(numLayer uint32) string {
  146. switch numLayer {
  147. case 26:
  148. return "3B"
  149. case 32:
  150. return "7B"
  151. case 40:
  152. return "13B"
  153. case 48:
  154. return "34B"
  155. case 60:
  156. return "30B"
  157. case 80:
  158. return "65B"
  159. default:
  160. return "unknown"
  161. }
  162. }
  163. func (llm *llamaModel) ModelType() string {
  164. return llamaModelType(llm.hyperparameters.NumLayer)
  165. }
  166. func (llm *llamaModel) FileType() string {
  167. return fileType(llm.hyperparameters.FileType)
  168. }
  169. func (llm *llamaModel) NumLayers() int64 {
  170. return int64(llm.hyperparameters.NumLayer)
  171. }
  172. type llamaHyperparameters struct {
  173. // NumVocab is the size of the model's vocabulary.
  174. NumVocab uint32
  175. // NumEmbd is the size of the model's embedding layer.
  176. NumEmbd uint32
  177. NumMult uint32
  178. NumHead uint32
  179. // NumLayer is the number of layers in the model.
  180. NumLayer uint32
  181. NumRot uint32
  182. // FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
  183. FileType uint32
  184. }
  185. type Running struct {
  186. Port int
  187. Cmd *exec.Cmd
  188. Cancel context.CancelFunc
  189. exitOnce sync.Once
  190. exitCh chan error // channel to receive the exit status of the subprocess
  191. *StatusWriter // captures error messages from the llama runner process
  192. }
  193. type llama struct {
  194. api.Options
  195. Running
  196. }
  197. var (
  198. errNvidiaSMI = errors.New("warning: gpu support may not be enabled, check that you have installed GPU drivers: nvidia-smi command failed")
  199. errAvailableVRAM = errors.New("not enough VRAM available, falling back to CPU only")
  200. )
  201. // CheckVRAM returns the free VRAM in bytes on Linux machines with NVIDIA GPUs
  202. func CheckVRAM() (int64, error) {
  203. cmd := exec.Command("nvidia-smi", "--query-gpu=memory.free", "--format=csv,noheader,nounits")
  204. var stdout bytes.Buffer
  205. cmd.Stdout = &stdout
  206. err := cmd.Run()
  207. if err != nil {
  208. return 0, errNvidiaSMI
  209. }
  210. var freeMiB int64
  211. scanner := bufio.NewScanner(&stdout)
  212. for scanner.Scan() {
  213. line := scanner.Text()
  214. if strings.Contains(line, "[Insufficient Permissions]") {
  215. return 0, fmt.Errorf("GPU support may not enabled, check you have installed GPU drivers and have the necessary permissions to run nvidia-smi")
  216. }
  217. vram, err := strconv.ParseInt(strings.TrimSpace(line), 10, 64)
  218. if err != nil {
  219. return 0, fmt.Errorf("failed to parse available VRAM: %v", err)
  220. }
  221. freeMiB += vram
  222. }
  223. freeBytes := freeMiB * 1024 * 1024
  224. if freeBytes < 2*format.GigaByte {
  225. log.Printf("less than 2 GB VRAM available")
  226. return 0, errAvailableVRAM
  227. }
  228. return freeBytes, nil
  229. }
  230. func NumGPU(numLayer, fileSizeBytes int64, opts api.Options) int {
  231. if opts.NumGPU != -1 {
  232. return opts.NumGPU
  233. }
  234. if runtime.GOOS == "linux" || runtime.GOOS == "windows" {
  235. freeBytes, err := CheckVRAM()
  236. if err != nil {
  237. if !errors.Is(err, errNvidiaSMI) {
  238. log.Print(err.Error())
  239. }
  240. // nvidia driver not installed or no nvidia GPU found
  241. return 0
  242. }
  243. /*
  244. Calculate bytes per layer, this will roughly be the size of the model file divided by the number of layers.
  245. We can store the model weights and the kv cache in vram,
  246. to enable kv chache vram storage add two additional layers to the number of layers retrieved from the model file.
  247. */
  248. bytesPerLayer := fileSizeBytes / numLayer
  249. // 75% of the absolute max number of layers we can fit in available VRAM, off-loading too many layers to the GPU can cause OOM errors
  250. layers := int(freeBytes/bytesPerLayer) * 3 / 4
  251. log.Printf("%d MB VRAM available, loading up to %d GPU layers", freeBytes/(1024*1024), layers)
  252. return layers
  253. }
  254. // default to enable metal on macOS
  255. return 1
  256. }
  257. // StatusWriter is a writer that captures error messages from the llama runner process
  258. type StatusWriter struct {
  259. ErrCh chan error
  260. LastErrMsg string
  261. }
  262. func NewStatusWriter() *StatusWriter {
  263. return &StatusWriter{
  264. ErrCh: make(chan error, 1),
  265. }
  266. }
  267. func (w *StatusWriter) Write(b []byte) (int, error) {
  268. var errMsg string
  269. if _, after, ok := bytes.Cut(b, []byte("error:")); ok {
  270. errMsg = string(bytes.TrimSpace(after))
  271. } else if _, after, ok := bytes.Cut(b, []byte("CUDA error")); ok {
  272. errMsg = string(bytes.TrimSpace(after))
  273. }
  274. if errMsg != "" {
  275. w.LastErrMsg = errMsg
  276. w.ErrCh <- fmt.Errorf("llama runner: %s", errMsg)
  277. }
  278. return os.Stderr.Write(b)
  279. }
  280. func newLlama(model string, adapters, projectors []string, runners []ModelRunner, numLayers int64, opts api.Options) (*llama, error) {
  281. fileInfo, err := os.Stat(model)
  282. if err != nil {
  283. return nil, err
  284. }
  285. if len(adapters) > 1 {
  286. return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
  287. }
  288. numGPU := NumGPU(numLayers, fileInfo.Size(), opts)
  289. params := []string{
  290. "--model", model,
  291. "--ctx-size", fmt.Sprintf("%d", opts.NumCtx),
  292. "--batch-size", fmt.Sprintf("%d", opts.NumBatch),
  293. "--n-gpu-layers", fmt.Sprintf("%d", numGPU),
  294. "--embedding",
  295. }
  296. if opts.MainGPU > 0 {
  297. params = append(params, "--main-gpu", fmt.Sprintf("%d", opts.MainGPU))
  298. }
  299. if opts.RopeFrequencyBase > 0 {
  300. params = append(params, "--rope-freq-base", fmt.Sprintf("%f", opts.RopeFrequencyBase))
  301. }
  302. if opts.RopeFrequencyScale > 0 {
  303. params = append(params, "--rope-freq-scale", fmt.Sprintf("%f", opts.RopeFrequencyScale))
  304. }
  305. if opts.NumGQA > 0 {
  306. params = append(params, "--gqa", fmt.Sprintf("%d", opts.NumGQA))
  307. }
  308. if len(adapters) > 0 {
  309. // TODO: applying multiple adapters is not supported by the llama.cpp server yet
  310. params = append(params, "--lora", adapters[0])
  311. }
  312. if len(projectors) > 0 {
  313. // TODO: applying multiple projectors is not supported by the llama.cpp server yet
  314. params = append(params, "--mmproj", projectors[0])
  315. }
  316. if opts.NumThread > 0 {
  317. params = append(params, "--threads", fmt.Sprintf("%d", opts.NumThread))
  318. }
  319. if !opts.F16KV {
  320. params = append(params, "--memory-f32")
  321. }
  322. if opts.UseMLock {
  323. params = append(params, "--mlock")
  324. }
  325. if !opts.UseMMap {
  326. params = append(params, "--no-mmap")
  327. }
  328. if opts.UseNUMA {
  329. params = append(params, "--numa")
  330. }
  331. var runnerErr error
  332. // start the llama.cpp server with a retry in case the port is already in use
  333. for _, runner := range runners {
  334. if runner.Accelerated && numGPU == 0 {
  335. log.Printf("skipping accelerated runner because num_gpu=0")
  336. continue
  337. }
  338. if _, err := os.Stat(runner.Path); err != nil {
  339. log.Printf("llama runner not found: %v", err)
  340. continue
  341. }
  342. port := rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
  343. params := append(params, "--port", strconv.Itoa(port))
  344. if runner.Type == "gguf" {
  345. params = append(params, "--parallel", "2")
  346. }
  347. ctx, cancel := context.WithCancel(context.Background())
  348. cmd := exec.CommandContext(
  349. ctx,
  350. runner.Path,
  351. params...,
  352. )
  353. var libraryPaths []string
  354. if libraryPath, ok := os.LookupEnv("LD_LIBRARY_PATH"); ok {
  355. libraryPaths = append(libraryPaths, libraryPath)
  356. }
  357. libraryPaths = append(libraryPaths, filepath.Dir(runner.Path))
  358. cmd.Env = append(os.Environ(), fmt.Sprintf("LD_LIBRARY_PATH=%s", strings.Join(libraryPaths, ":")))
  359. cmd.Stdout = os.Stderr
  360. statusWriter := NewStatusWriter()
  361. cmd.Stderr = statusWriter
  362. llm := &llama{Options: opts, Running: Running{Port: port, Cmd: cmd, Cancel: cancel, exitCh: make(chan error)}}
  363. log.Print("starting llama runner")
  364. if err := llm.Cmd.Start(); err != nil {
  365. log.Printf("error starting the external llama runner: %v", err)
  366. continue
  367. }
  368. // monitor the llama runner process and signal when it exits
  369. go func() {
  370. err := llm.Cmd.Wait()
  371. // default to printing the exit message of the command process, it will probably just say 'exit staus 1'
  372. errMsg := err.Error()
  373. // try to set a better error message if llama runner logs captured an error
  374. if statusWriter.LastErrMsg != "" {
  375. errMsg = statusWriter.LastErrMsg
  376. }
  377. log.Println(errMsg)
  378. // llm.Cmd.Wait() can only be called once, use this exit channel to signal that the process has exited
  379. llm.exitOnce.Do(func() {
  380. close(llm.exitCh)
  381. })
  382. }()
  383. if err := waitForServer(llm); err != nil {
  384. log.Printf("error starting llama runner: %v", err)
  385. llm.Close()
  386. // default the runnerErr to the error returned by the most recent llama runner process
  387. runnerErr = err
  388. // capture the error directly from the runner process, if any
  389. select {
  390. case runnerErr = <-statusWriter.ErrCh:
  391. default:
  392. // the runner process probably timed out
  393. }
  394. // try again
  395. continue
  396. }
  397. // server started successfully
  398. return llm, nil
  399. }
  400. if runnerErr != nil {
  401. // this is the error returned from the llama runner process that failed most recently
  402. return nil, runnerErr
  403. }
  404. return nil, fmt.Errorf("failed to start a llama runner")
  405. }
  406. func waitForServer(llm *llama) error {
  407. start := time.Now()
  408. expiresAt := time.Now().Add(3 * time.Minute) // be generous with timeout, large models can take a while to load
  409. ticker := time.NewTicker(200 * time.Millisecond)
  410. defer ticker.Stop()
  411. log.Print("waiting for llama runner to start responding")
  412. for {
  413. select {
  414. case <-llm.exitCh:
  415. // failed to start subprocess
  416. return fmt.Errorf("llama runner process has terminated")
  417. case <-ticker.C:
  418. if time.Now().After(expiresAt) {
  419. // timeout
  420. return fmt.Errorf("timed out waiting for llama runner to start")
  421. }
  422. if err := llm.Ping(context.Background()); err == nil {
  423. // success
  424. log.Printf("llama runner started in %f seconds", time.Since(start).Seconds())
  425. return nil
  426. }
  427. }
  428. }
  429. }
  430. func (llm *llama) Close() {
  431. // signal the sub-process to terminate
  432. llm.Cancel()
  433. // wait for the command to exit to prevent race conditions with the next run
  434. <-llm.exitCh
  435. if llm.StatusWriter != nil && llm.StatusWriter.LastErrMsg != "" {
  436. log.Printf("llama runner stopped with error: %v", llm.StatusWriter.LastErrMsg)
  437. } else {
  438. log.Print("llama runner stopped successfully")
  439. }
  440. }
  441. func (llm *llama) SetOptions(opts api.Options) {
  442. llm.Options = opts
  443. }
  444. type prediction struct {
  445. Content string `json:"content"`
  446. Model string `json:"model"`
  447. Prompt string `json:"prompt"`
  448. Stop bool `json:"stop"`
  449. Timings struct {
  450. PredictedN int `json:"predicted_n"`
  451. PredictedMS float64 `json:"predicted_ms"`
  452. PromptN int `json:"prompt_n"`
  453. PromptMS float64 `json:"prompt_ms"`
  454. }
  455. }
  456. const maxBufferSize = 512 * format.KiloByte
  457. type PredictOpts struct {
  458. Model string
  459. Prompt string
  460. Format string
  461. CheckpointStart time.Time
  462. CheckpointLoaded time.Time
  463. }
  464. type PredictResult struct {
  465. Model string
  466. CreatedAt time.Time
  467. TotalDuration time.Duration
  468. LoadDuration time.Duration
  469. Content string
  470. Done bool
  471. PromptEvalCount int
  472. PromptEvalDuration time.Duration
  473. EvalCount int
  474. EvalDuration time.Duration
  475. }
  476. func (llm *llama) Predict(ctx context.Context, predict PredictOpts, fn func(PredictResult)) error {
  477. request := map[string]any{
  478. "prompt": predict.Prompt,
  479. "stream": true,
  480. "n_predict": llm.NumPredict,
  481. "n_keep": llm.NumKeep,
  482. "main_gpu": llm.MainGPU,
  483. "temperature": llm.Temperature,
  484. "top_k": llm.TopK,
  485. "top_p": llm.TopP,
  486. "tfs_z": llm.TFSZ,
  487. "typical_p": llm.TypicalP,
  488. "repeat_last_n": llm.RepeatLastN,
  489. "repeat_penalty": llm.RepeatPenalty,
  490. "presence_penalty": llm.PresencePenalty,
  491. "frequency_penalty": llm.FrequencyPenalty,
  492. "mirostat": llm.Mirostat,
  493. "mirostat_tau": llm.MirostatTau,
  494. "mirostat_eta": llm.MirostatEta,
  495. "penalize_nl": llm.PenalizeNewline,
  496. "seed": llm.Seed,
  497. "stop": llm.Stop,
  498. }
  499. if predict.Format == "json" {
  500. request["grammar"] = jsonGrammar
  501. }
  502. // Handling JSON marshaling with special characters unescaped.
  503. buffer := &bytes.Buffer{}
  504. enc := json.NewEncoder(buffer)
  505. enc.SetEscapeHTML(false)
  506. if err := enc.Encode(request); err != nil {
  507. return fmt.Errorf("failed to marshal data: %v", err)
  508. }
  509. endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", llm.Port)
  510. req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
  511. if err != nil {
  512. return fmt.Errorf("error creating POST request: %v", err)
  513. }
  514. req.Header.Set("Content-Type", "application/json")
  515. resp, err := http.DefaultClient.Do(req)
  516. if err != nil {
  517. return fmt.Errorf("POST predict: %v", err)
  518. }
  519. defer resp.Body.Close()
  520. if resp.StatusCode >= 400 {
  521. bodyBytes, err := io.ReadAll(resp.Body)
  522. if err != nil {
  523. return fmt.Errorf("failed reading llm error response: %w", err)
  524. }
  525. log.Printf("llm predict error: %s", bodyBytes)
  526. return fmt.Errorf("%s", bodyBytes)
  527. }
  528. scanner := bufio.NewScanner(resp.Body)
  529. // increase the buffer size to avoid running out of space
  530. buf := make([]byte, 0, maxBufferSize)
  531. scanner.Buffer(buf, maxBufferSize)
  532. for scanner.Scan() {
  533. select {
  534. case <-ctx.Done():
  535. // This handles the request cancellation
  536. return ctx.Err()
  537. default:
  538. line := scanner.Bytes()
  539. if len(line) == 0 {
  540. continue
  541. }
  542. evt, ok := bytes.CutPrefix(line, []byte("data: "))
  543. if !ok {
  544. return fmt.Errorf("error parsing llm response stream: %s", line)
  545. }
  546. var p prediction
  547. if err := json.Unmarshal(evt, &p); err != nil {
  548. return fmt.Errorf("error unmarshaling llm prediction response: %v", err)
  549. }
  550. if p.Content != "" {
  551. fn(PredictResult{
  552. Model: predict.Model,
  553. CreatedAt: time.Now().UTC(),
  554. Content: p.Content,
  555. })
  556. }
  557. if p.Stop {
  558. fn(PredictResult{
  559. Model: predict.Model,
  560. CreatedAt: time.Now().UTC(),
  561. TotalDuration: time.Since(predict.CheckpointStart),
  562. Done: true,
  563. PromptEvalCount: p.Timings.PromptN,
  564. PromptEvalDuration: parseDurationMs(p.Timings.PromptMS),
  565. EvalCount: p.Timings.PredictedN,
  566. EvalDuration: parseDurationMs(p.Timings.PredictedMS),
  567. })
  568. return nil
  569. }
  570. }
  571. }
  572. if err := scanner.Err(); err != nil {
  573. if strings.Contains(err.Error(), "unexpected EOF") {
  574. // this means the llama runner subprocess crashed
  575. llm.Close()
  576. if llm.StatusWriter != nil && llm.StatusWriter.LastErrMsg != "" {
  577. return fmt.Errorf("llama runner exited: %v", llm.StatusWriter.LastErrMsg)
  578. }
  579. return fmt.Errorf("llama runner exited, you may not have enough available memory to run this model")
  580. }
  581. return fmt.Errorf("error reading llm response: %v", err)
  582. }
  583. return nil
  584. }
  585. type TokenizeRequest struct {
  586. Content string `json:"content"`
  587. }
  588. type TokenizeResponse struct {
  589. Tokens []int `json:"tokens"`
  590. }
  591. func (llm *llama) Encode(ctx context.Context, prompt string) ([]int, error) {
  592. endpoint := fmt.Sprintf("http://127.0.0.1:%d/tokenize", llm.Port)
  593. data, err := json.Marshal(TokenizeRequest{Content: prompt})
  594. if err != nil {
  595. return nil, fmt.Errorf("marshaling encode data: %w", err)
  596. }
  597. req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
  598. if err != nil {
  599. return nil, fmt.Errorf("encode request: %w", err)
  600. }
  601. req.Header.Set("Content-Type", "application/json")
  602. resp, err := http.DefaultClient.Do(req)
  603. if err != nil {
  604. return nil, fmt.Errorf("do encode request: %w", err)
  605. }
  606. defer resp.Body.Close()
  607. body, err := io.ReadAll(resp.Body)
  608. if err != nil {
  609. return nil, fmt.Errorf("read encode request: %w", err)
  610. }
  611. if resp.StatusCode >= 400 {
  612. log.Printf("llm encode error: %s", body)
  613. return nil, fmt.Errorf("%s", body)
  614. }
  615. var encoded TokenizeResponse
  616. if err := json.Unmarshal(body, &encoded); err != nil {
  617. return nil, fmt.Errorf("unmarshal encode response: %w", err)
  618. }
  619. return encoded.Tokens, nil
  620. }
  621. type DetokenizeRequest struct {
  622. Tokens []int `json:"tokens"`
  623. }
  624. type DetokenizeResponse struct {
  625. Content string `json:"content"`
  626. }
  627. func (llm *llama) Decode(ctx context.Context, tokens []int) (string, error) {
  628. if len(tokens) == 0 {
  629. return "", nil
  630. }
  631. endpoint := fmt.Sprintf("http://127.0.0.1:%d/detokenize", llm.Port)
  632. data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
  633. if err != nil {
  634. return "", fmt.Errorf("marshaling decode data: %w", err)
  635. }
  636. req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
  637. if err != nil {
  638. return "", fmt.Errorf("decode request: %w", err)
  639. }
  640. req.Header.Set("Content-Type", "application/json")
  641. resp, err := http.DefaultClient.Do(req)
  642. if err != nil {
  643. return "", fmt.Errorf("do decode request: %w", err)
  644. }
  645. defer resp.Body.Close()
  646. body, err := io.ReadAll(resp.Body)
  647. if err != nil {
  648. return "", fmt.Errorf("read decode request: %w", err)
  649. }
  650. if resp.StatusCode >= 400 {
  651. log.Printf("llm decode error: %s", body)
  652. return "", fmt.Errorf("%s", body)
  653. }
  654. var decoded DetokenizeResponse
  655. if err := json.Unmarshal(body, &decoded); err != nil {
  656. return "", fmt.Errorf("unmarshal encode response: %w", err)
  657. }
  658. return decoded.Content, nil
  659. }
  660. type EmbeddingRequest struct {
  661. Content string `json:"content"`
  662. }
  663. type EmbeddingResponse struct {
  664. Embedding []float64 `json:"embedding"`
  665. }
  666. func (llm *llama) Embedding(ctx context.Context, input string) ([]float64, error) {
  667. endpoint := fmt.Sprintf("http://127.0.0.1:%d/embedding", llm.Port)
  668. data, err := json.Marshal(TokenizeRequest{Content: input})
  669. if err != nil {
  670. return nil, fmt.Errorf("error marshaling embed data: %w", err)
  671. }
  672. req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
  673. if err != nil {
  674. return nil, fmt.Errorf("error creating embed request: %w", err)
  675. }
  676. req.Header.Set("Content-Type", "application/json")
  677. resp, err := http.DefaultClient.Do(req)
  678. if err != nil {
  679. return nil, fmt.Errorf("POST embedding: %w", err)
  680. }
  681. defer resp.Body.Close()
  682. body, err := io.ReadAll(resp.Body)
  683. if err != nil {
  684. return nil, fmt.Errorf("error reading embed response: %w", err)
  685. }
  686. if resp.StatusCode >= 400 {
  687. log.Printf("llm encode error: %s", body)
  688. return nil, fmt.Errorf("%s", body)
  689. }
  690. var embedding EmbeddingResponse
  691. if err := json.Unmarshal(body, &embedding); err != nil {
  692. return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
  693. }
  694. return embedding.Embedding, nil
  695. }
  696. // Ping checks that the server subprocess is still running and responding to requests
  697. func (llm *llama) Ping(ctx context.Context) error {
  698. resp, err := http.Head(fmt.Sprintf("http://127.0.0.1:%d", llm.Port))
  699. if err != nil {
  700. return fmt.Errorf("ping resp: %w", err)
  701. }
  702. if resp.StatusCode != http.StatusOK {
  703. return fmt.Errorf("unexpected ping status: %s", resp.Status)
  704. }
  705. return nil
  706. }