llama.go 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. package llama
  2. // #cgo CFLAGS: -std=c11 -DNDEBUG -DLOG_DISABLE_LOGS
  3. // #cgo CXXFLAGS: -std=c++11 -DNDEBUG -DLOG_DISABLE_LOGS
  4. // #cgo darwin,arm64 CFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  5. // #cgo darwin,arm64 CXXFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  6. // #cgo darwin,arm64 LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework Accelerate
  7. // #cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
  8. // #cgo darwin,amd64 CXXFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
  9. // #cgo darwin,amd64 LDFLAGS: -framework Foundation
  10. // #cgo darwin,amd64,avx2 CFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  11. // #cgo darwin,amd64,avx2 CXXFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  12. // #cgo darwin,amd64,avx2 LDFLAGS: -framework Accelerate
  13. // #cgo linux CFLAGS: -D_GNU_SOURCE
  14. // #cgo linux CXXFLAGS: -D_GNU_SOURCE
  15. // #cgo windows CFLAGS: -Wno-discarded-qualifiers
  16. // #cgo windows LDFLAGS: -lmsvcrt
  17. // #cgo avx CFLAGS: -mavx
  18. // #cgo avx CXXFLAGS: -mavx
  19. // #cgo avx2 CFLAGS: -mavx2 -mfma
  20. // #cgo avx2 CXXFLAGS: -mavx2 -mfma
  21. // #cgo cuda CFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  22. // #cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  23. // #cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  24. // #cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  25. // #cgo rocm LDFLAGS: -L${SRCDIR} -lggml_hipblas -lhipblas -lamdhip64 -lrocblas
  26. // #cgo windows,cuda LDFLAGS: -L${SRCDIR} -L"C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.3/lib/x64" -lggml_cuda -lcuda -lcudart -lcublas -lcublasLt
  27. // #cgo windows,rocm LDFLAGS: -L${SRCDIR} -L"C:/Program Files/AMD/ROCm/5.7/lib" -lggml_hipblas -lhipblas -lamdhip64 -lrocblas
  28. // #cgo linux,cuda LDFLAGS: -L${SRCDIR} -L/usr/local/cuda/lib64 -lggml_cuda -lcuda -lcudart -lcublas -lcublasLt -lpthread -ldl -lrt
  29. // #cgo linux,rocm LDFLAGS: -L/opt/rocm/lib
  30. // #include <stdlib.h>
  31. // #include "llama.h"
  32. // #include "clip.h"
  33. // #include "llava.h"
  34. // #include "sampling_ext.h"
  35. //
  36. // bool llamaProgressCallback(float progress, void *user_data);
  37. import "C"
  38. import (
  39. "errors"
  40. "fmt"
  41. "runtime"
  42. "runtime/cgo"
  43. "strings"
  44. "unsafe"
  45. )
  46. func BackendInit() {
  47. C.llama_backend_init()
  48. }
  49. func PrintSystemInfo() string {
  50. return C.GoString(C.llama_print_system_info())
  51. }
  52. type ContextParams struct {
  53. c C.struct_llama_context_params
  54. }
  55. func NewContextParams(numCtx int, threads int, flashAttention bool) ContextParams {
  56. params := C.llama_context_default_params()
  57. params.n_ctx = C.uint(numCtx)
  58. params.n_threads = C.uint(runtime.NumCPU())
  59. params.n_threads_batch = params.n_threads
  60. params.embeddings = C.bool(true)
  61. params.flash_attn = C.bool(flashAttention)
  62. params.n_threads = C.uint(threads)
  63. return ContextParams{c: params}
  64. }
  65. type ModelParams struct {
  66. c C.struct_llama_model_params
  67. }
  68. //export llamaProgressCallback
  69. func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
  70. handle := cgo.Handle(userData)
  71. callback := handle.Value().(func(float32))
  72. callback(float32(progress))
  73. return true
  74. }
  75. func NewModelParams(numGpuLayers int, mainGpu int, callback func(float32)) ModelParams {
  76. params := C.llama_model_default_params()
  77. params.n_gpu_layers = C.int(numGpuLayers)
  78. params.main_gpu = C.int32_t(mainGpu)
  79. handle := cgo.NewHandle(callback)
  80. params.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
  81. params.progress_callback_user_data = unsafe.Pointer(handle)
  82. runtime.SetFinalizer(&params, func(p *C.struct_llama_model_params) {
  83. handle.Delete()
  84. })
  85. return ModelParams{c: params}
  86. }
  87. type Context struct {
  88. c *C.struct_llama_context
  89. }
  90. func (c *Context) KvCacheClear() {
  91. C.llama_kv_cache_clear(c.c)
  92. }
  93. func (c *Context) Decode(batch Batch) error {
  94. // Positive return values does not mean a fatal error, but rather a warning.
  95. // 0 - success
  96. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  97. // < 0 - error
  98. code := int(C.llama_decode(c.c, batch.c))
  99. if code < 0 {
  100. return fmt.Errorf("llama_decode failed with code %d", code)
  101. }
  102. if code > 0 {
  103. return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d", code)
  104. }
  105. return nil
  106. }
  107. func (c *Context) Model() *Model {
  108. return &Model{c: C.llama_get_model(c.c)}
  109. }
  110. func (c *Context) GetLogitsIth(i int) []float32 {
  111. return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_logits_ith(c.c, C.int(i)))), c.Model().NumVocab())
  112. }
  113. func (c *Context) SampleTokenGreedy(logits []float32) int {
  114. candidates := (*C.struct_llama_token_data)(C.malloc(C.size_t(len(logits)) * C.size_t(unsafe.Sizeof(C.struct_llama_token_data{}))))
  115. defer C.free(unsafe.Pointer(candidates))
  116. for i, logit := range logits {
  117. ptr := (*C.struct_llama_token_data)(unsafe.Pointer(uintptr(unsafe.Pointer(candidates)) + uintptr(i)*unsafe.Sizeof(C.struct_llama_token_data{})))
  118. ptr.id = C.int(i)
  119. ptr.logit = C.float(logit)
  120. ptr.p = 0.0
  121. }
  122. return int(C.llama_sample_token_greedy(c.c, &C.llama_token_data_array{
  123. data: candidates,
  124. size: C.size_t(len(logits)),
  125. sorted: C.bool(false),
  126. }))
  127. }
  128. func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
  129. return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
  130. }
  131. // Get the embeddings for a sequence id
  132. func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
  133. embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
  134. if embeddings == nil {
  135. return nil
  136. }
  137. return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
  138. }
  139. func (c *Context) GetEmbeddingsIth(i int) []float32 {
  140. return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))), c.Model().NEmbd())
  141. }
  142. func LoadModelFromFile(modelPath string, params ModelParams) *Model {
  143. return &Model{c: C.llama_load_model_from_file(C.CString(modelPath), params.c)}
  144. }
  145. func NewContextWithModel(model *Model, params ContextParams) *Context {
  146. return &Context{c: C.llama_new_context_with_model(model.c, params.c)}
  147. }
  148. func (m *Model) NumVocab() int {
  149. return int(C.llama_n_vocab(m.c))
  150. }
  151. func (m *Model) TokenIsEog(token int) bool {
  152. return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
  153. }
  154. func (m *Model) ApplyLoraFromFile(loraPath string, scale float32, baseModelPath string, threads int) error {
  155. cLoraPath := C.CString(loraPath)
  156. defer C.free(unsafe.Pointer(cLoraPath))
  157. var cBaseModelPath *C.char
  158. if baseModelPath != "" {
  159. cBaseModelPath = C.CString(baseModelPath)
  160. }
  161. code := int(C.llama_model_apply_lora_from_file(m.c, cLoraPath, C.float(scale), cBaseModelPath, C.int32_t(threads)))
  162. if code != 0 {
  163. return errors.New("error applying lora from file")
  164. }
  165. return nil
  166. }
  167. type Batch struct {
  168. c C.struct_llama_batch
  169. }
  170. func NewBatch(nTokens int, embd int, maxSeq int) Batch {
  171. return Batch{c: C.llama_batch_init(C.int(nTokens), C.int(embd), C.int(maxSeq))}
  172. }
  173. func (b *Batch) NumTokens() int {
  174. return int(b.c.n_tokens)
  175. }
  176. // Add adds a token to the batch with the given position for the given
  177. // sequence ids, and optionally instructs to include logits.
  178. func (b *Batch) Add(token int, pos int, seqIds []int, logits bool) {
  179. unsafe.Slice(b.c.token, 512)[b.c.n_tokens] = C.llama_token(token)
  180. unsafe.Slice(b.c.pos, 512)[b.c.n_tokens] = C.llama_pos(pos)
  181. unsafe.Slice(b.c.n_seq_id, 512)[b.c.n_tokens] = C.int(len(seqIds))
  182. for i, s := range seqIds {
  183. unsafe.Slice((unsafe.Slice(b.c.seq_id, 512)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
  184. }
  185. if logits {
  186. unsafe.Slice(b.c.logits, 512)[b.c.n_tokens] = 1
  187. }
  188. b.c.n_tokens += 1
  189. }
  190. func (b *Batch) Clear() {
  191. b.c.n_tokens = 0
  192. }
  193. func (b *Batch) Free() {
  194. C.llama_batch_free(b.c)
  195. }
  196. func BatchGetOne(tokens []int, pos0 int, seqId int) Batch {
  197. return Batch{c: C.llama_batch_get_one((*C.int)(unsafe.Pointer(&tokens[0])), C.int32_t(len(tokens)), C.int(pos0), C.int(seqId))}
  198. }
  199. type Model struct {
  200. c *C.struct_llama_model
  201. }
  202. func (m *Model) TokenToPiece(token int) string {
  203. buf := make([]byte, 12)
  204. C.llama_token_to_piece(
  205. m.c,
  206. C.int32_t(token),
  207. (*C.char)(unsafe.Pointer(&buf[0])),
  208. C.int32_t(12),
  209. C.bool(true),
  210. )
  211. return strings.TrimRight(string(buf), "\x00")
  212. }
  213. func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
  214. maxTokens := len(text) + 2
  215. cTokens := make([]C.llama_token, maxTokens)
  216. cText := C.CString(text)
  217. defer C.free(unsafe.Pointer(cText))
  218. result := C.llama_tokenize(
  219. m.c,
  220. cText,
  221. C.int32_t(len(text)),
  222. &cTokens[0],
  223. C.int32_t(maxTokens),
  224. C.bool(addSpecial),
  225. C.bool(parseSpecial),
  226. )
  227. if result < 0 {
  228. return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
  229. }
  230. tokens := make([]int, result)
  231. for i := 0; i < int(result); i++ {
  232. tokens[i] = int(cTokens[i])
  233. }
  234. return tokens, nil
  235. }
  236. func (m *Model) NEmbd() int {
  237. return int(C.llama_n_embd(m.c))
  238. }
  239. func Quantize(infile, outfile string, ftype uint32) error {
  240. cinfile := C.CString(infile)
  241. defer C.free(unsafe.Pointer(cinfile))
  242. coutfile := C.CString(outfile)
  243. defer C.free(unsafe.Pointer(coutfile))
  244. params := C.llama_model_quantize_default_params()
  245. params.nthread = -1
  246. params.ftype = ftype
  247. if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
  248. return fmt.Errorf("llama_model_quantize: %d", rc)
  249. }
  250. return nil
  251. }
  252. // llava
  253. type ClipContext struct {
  254. c *C.struct_clip_ctx
  255. }
  256. func NewClipContext(modelPath string) *ClipContext {
  257. mp := C.CString(modelPath)
  258. defer C.free(unsafe.Pointer(mp))
  259. cc := C.clip_model_load(mp, 1)
  260. return &ClipContext{c: cc}
  261. }
  262. type LlavaContext struct {
  263. c *C.struct_llava_context
  264. }
  265. type LlavaImageEmbed struct {
  266. c *C.struct_llava_image_embed
  267. }
  268. func NewLlavaImageEmbed(clipContext *ClipContext, data []byte) *LlavaImageEmbed {
  269. return &LlavaImageEmbed{c: C.llava_image_embed_make_with_bytes(clipContext.c, C.int(runtime.NumCPU()), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))}
  270. }
  271. func LlavaEvalImageEmbed(llamaContext *Context, embed *LlavaImageEmbed, nBatch int, nPast *int) {
  272. C.llava_eval_image_embed(llamaContext.c, embed.c, C.int(nBatch), (*C.int)(unsafe.Pointer(nPast)))
  273. }
  274. // sampling
  275. // TODO: this is a temporary wrapper to allow calling C++ code from CGo
  276. type SamplingContext struct {
  277. c *C.struct_llama_sampling_context
  278. }
  279. type SamplingParams struct {
  280. TopK int
  281. TopP float32
  282. TfsZ float32
  283. TypicalP float32
  284. Temp float32
  285. PenaltyRepeat float32
  286. PenaltyFreq float32
  287. PenaltyPresent float32
  288. Mirostat int
  289. MirostatTau float32
  290. MirostatEta float32
  291. PenalizeNl bool
  292. Seed uint32
  293. Grammar string
  294. }
  295. func NewSamplingContext(params SamplingParams) *SamplingContext {
  296. var cparams C.struct_llama_sampling_cparams
  297. cparams.top_k = C.int32_t(params.TopK)
  298. cparams.top_p = C.float(params.TopP)
  299. cparams.tfs_z = C.float(params.TfsZ)
  300. cparams.typical_p = C.float(params.TypicalP)
  301. cparams.temp = C.float(params.Temp)
  302. cparams.penalty_repeat = C.float(params.PenaltyRepeat)
  303. cparams.penalty_freq = C.float(params.PenaltyFreq)
  304. cparams.penalty_present = C.float(params.PenaltyFreq)
  305. cparams.mirostat = C.int32_t(params.Mirostat)
  306. cparams.mirostat_tau = C.float(params.MirostatTau)
  307. cparams.mirostat_eta = C.float(params.MirostatEta)
  308. cparams.penalize_nl = C.bool(params.PenalizeNl)
  309. cparams.seed = C.uint32_t(params.Seed)
  310. grammar := C.CString(params.Grammar)
  311. defer C.free(unsafe.Pointer(grammar))
  312. cparams.grammar = grammar
  313. return &SamplingContext{c: C.llama_sampling_cinit(&cparams)}
  314. }
  315. func (s *SamplingContext) Free() {
  316. C.llama_sampling_cfree(s.c)
  317. }
  318. func (s *SamplingContext) Reset() {
  319. C.llama_sampling_creset(s.c)
  320. }
  321. func (s *SamplingContext) Sample(ctxMain *Context, ctxConfig *Context, idx int) int {
  322. // TODO (jmorganca): handle nil for all args
  323. if ctxConfig == nil {
  324. return int(C.llama_sampling_csample(s.c, ctxMain.c, nil, C.int(idx)))
  325. }
  326. return int(C.llama_sampling_csample(s.c, ctxMain.c, ctxConfig.c, C.int(idx)))
  327. }
  328. func (s *SamplingContext) Accept(ctxMain *Context, id int, applyGrammar bool) {
  329. C.llama_sampling_caccept(s.c, ctxMain.c, C.llama_token(id), C.bool(applyGrammar))
  330. }