sched.go 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805
  1. package server
  2. import (
  3. "context"
  4. "errors"
  5. "fmt"
  6. "log/slog"
  7. "reflect"
  8. "runtime"
  9. "sort"
  10. "strings"
  11. "sync"
  12. "time"
  13. "github.com/ollama/ollama/api"
  14. "github.com/ollama/ollama/envconfig"
  15. "github.com/ollama/ollama/format"
  16. "github.com/ollama/ollama/gpu"
  17. "github.com/ollama/ollama/llm"
  18. )
  19. type LlmRequest struct {
  20. ctx context.Context //nolint:containedctx
  21. model *Model
  22. opts api.Options
  23. origNumCtx int // Track the initial ctx request
  24. sessionDuration *api.Duration
  25. successCh chan *runnerRef
  26. errCh chan error
  27. schedAttempts uint
  28. }
  29. type Scheduler struct {
  30. pendingReqCh chan *LlmRequest
  31. finishedReqCh chan *LlmRequest
  32. expiredCh chan *runnerRef
  33. unloadedCh chan interface{}
  34. loaded map[string]*runnerRef
  35. loadedMu sync.Mutex
  36. loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int)
  37. newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
  38. getGpuFn func() gpu.GpuInfoList
  39. getCpuFn func() gpu.GpuInfoList
  40. reschedDelay time.Duration
  41. }
  42. // Default automatic value for number of models we allow per GPU
  43. // Model will still need to fit in VRAM, but loading many small models
  44. // on a large GPU can cause stalling
  45. var defaultModelsPerGPU = 3
  46. // Default automatic value for parallel setting
  47. // Model will still need to fit in VRAM. If this setting wont fit
  48. // we'll back off down to 1 to try to get it to fit
  49. var defaultParallel = 4
  50. var ErrMaxQueue = fmt.Errorf("server busy, please try again. maximum pending requests exceeded")
  51. func InitScheduler(ctx context.Context) *Scheduler {
  52. sched := &Scheduler{
  53. pendingReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests),
  54. finishedReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests),
  55. expiredCh: make(chan *runnerRef, envconfig.MaxQueuedRequests),
  56. unloadedCh: make(chan interface{}, envconfig.MaxQueuedRequests),
  57. loaded: make(map[string]*runnerRef),
  58. newServerFn: llm.NewLlamaServer,
  59. getGpuFn: gpu.GetGPUInfo,
  60. getCpuFn: gpu.GetCPUInfo,
  61. reschedDelay: 250 * time.Millisecond,
  62. }
  63. sched.loadFn = sched.load
  64. return sched
  65. }
  66. // context must be canceled to decrement ref count and release the runner
  67. func (s *Scheduler) GetRunner(c context.Context, model *Model, opts api.Options, sessionDuration *api.Duration) (chan *runnerRef, chan error) {
  68. if opts.NumCtx < 4 {
  69. opts.NumCtx = 4
  70. }
  71. req := &LlmRequest{
  72. ctx: c,
  73. model: model,
  74. opts: opts,
  75. sessionDuration: sessionDuration,
  76. successCh: make(chan *runnerRef),
  77. errCh: make(chan error, 1),
  78. }
  79. select {
  80. case s.pendingReqCh <- req:
  81. default:
  82. req.errCh <- ErrMaxQueue
  83. }
  84. return req.successCh, req.errCh
  85. }
  86. // Returns immediately, spawns go routines for the scheduler which will shutdown when ctx is done
  87. func (s *Scheduler) Run(ctx context.Context) {
  88. slog.Debug("starting llm scheduler")
  89. go func() {
  90. s.processPending(ctx)
  91. }()
  92. go func() {
  93. s.processCompleted(ctx)
  94. }()
  95. }
  96. func (s *Scheduler) processPending(ctx context.Context) {
  97. for {
  98. select {
  99. case <-ctx.Done():
  100. slog.Debug("shutting down scheduler pending loop")
  101. return
  102. case pending := <-s.pendingReqCh:
  103. // Block other requests until we get this pending request running
  104. pending.schedAttempts++
  105. if pending.origNumCtx == 0 {
  106. pending.origNumCtx = pending.opts.NumCtx
  107. }
  108. if pending.ctx.Err() != nil {
  109. slog.Debug("pending request cancelled or timed out, skipping scheduling")
  110. continue
  111. }
  112. numParallel := envconfig.NumParallel
  113. // TODO (jmorganca): multimodal models don't support parallel yet
  114. // see https://github.com/ollama/ollama/issues/4165
  115. if len(pending.model.ProjectorPaths) > 0 && numParallel != 1 {
  116. numParallel = 1
  117. slog.Warn("multimodal models don't support parallel requests yet")
  118. }
  119. for {
  120. var runnerToExpire *runnerRef
  121. s.loadedMu.Lock()
  122. runner := s.loaded[pending.model.ModelPath]
  123. loadedCount := len(s.loaded)
  124. s.loadedMu.Unlock()
  125. if runner != nil {
  126. if runner.needsReload(ctx, pending) {
  127. runnerToExpire = runner
  128. } else {
  129. // Runner is usable, return it
  130. pending.useLoadedRunner(runner, s.finishedReqCh)
  131. break
  132. }
  133. } else if envconfig.MaxRunners > 0 && loadedCount >= envconfig.MaxRunners {
  134. slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount)
  135. runnerToExpire = s.findRunnerToUnload()
  136. } else {
  137. // Either no models are loaded or below envconfig.MaxRunners
  138. // Get a refreshed GPU list
  139. var gpus gpu.GpuInfoList
  140. if pending.opts.NumGPU == 0 {
  141. gpus = s.getCpuFn()
  142. } else {
  143. gpus = s.getGpuFn()
  144. }
  145. if envconfig.MaxRunners <= 0 {
  146. // No user specified MaxRunners, so figure out what automatic setting to use
  147. // If all GPUs have reliable free memory reporting, defaultModelsPerGPU * the number of GPUs
  148. // if any GPU has unreliable free memory reporting, 1x the number of GPUs
  149. allReliable := true
  150. for _, gpu := range gpus {
  151. if gpu.UnreliableFreeMemory {
  152. allReliable = false
  153. break
  154. }
  155. }
  156. if allReliable {
  157. envconfig.MaxRunners = defaultModelsPerGPU * len(gpus)
  158. slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", envconfig.MaxRunners, "gpu_count", len(gpus))
  159. } else {
  160. slog.Info("one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency")
  161. envconfig.MaxRunners = len(gpus)
  162. }
  163. }
  164. // Load model for fitting
  165. ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
  166. if err != nil {
  167. pending.errCh <- err
  168. break
  169. }
  170. // Evaluate if the model will fit in the available system memory, or if we should unload a model first
  171. if len(gpus) == 1 && gpus[0].Library == "cpu" {
  172. // simplifying assumption of defaultParallel when in CPU mode
  173. if numParallel <= 0 {
  174. numParallel = defaultParallel
  175. }
  176. pending.opts.NumCtx = pending.origNumCtx * numParallel
  177. if loadedCount == 0 {
  178. slog.Debug("cpu mode with first model, loading")
  179. s.loadFn(pending, ggml, gpus, numParallel)
  180. break
  181. }
  182. runnerToExpire = s.maybeFindCPURunnerToUnload(pending, ggml, gpus)
  183. if runnerToExpire == nil {
  184. slog.Debug("cpu mode with available system memory or first model, loading")
  185. s.loadFn(pending, ggml, gpus, numParallel)
  186. break
  187. }
  188. // else we need to expire a runner
  189. } else if loadedCount == 0 {
  190. // No models loaded. Load the model but prefer the best fit.
  191. slog.Debug("loading first model", "model", pending.model.ModelPath)
  192. g := pickBestFullFitByLibrary(pending, ggml, gpus, &numParallel)
  193. if g != nil {
  194. gpus = g
  195. } else {
  196. // Only allow partial loads when this is the first model
  197. gpus = pickBestPartialFitByLibrary(pending, ggml, gpus, &numParallel)
  198. }
  199. s.loadFn(pending, ggml, gpus, numParallel)
  200. break
  201. }
  202. if runnerToExpire == nil {
  203. // More than one loaded model, so we have to see if the
  204. // new one fits
  205. //
  206. // We want to avoid loading on any GPUs that have other
  207. // models still loading on them to avoid potential races
  208. // with VRAM consumption ramping up during load
  209. availGpus := s.filterGPUsWithoutLoadingModels(gpus)
  210. // Update free memory from currently loaded models
  211. s.updateFreeSpace(availGpus)
  212. fitGpus := pickBestFullFitByLibrary(pending, ggml, availGpus, &numParallel)
  213. if fitGpus != nil {
  214. slog.Debug("new model fits with existing models, loading")
  215. s.loadFn(pending, ggml, fitGpus, numParallel)
  216. break
  217. }
  218. // We couldn't find a set of GPUs to fully load the new
  219. // model. If no other models are loading (both GPU lists
  220. // are the same) then we need to unload another model to
  221. // make room
  222. if len(availGpus) < len(gpus) {
  223. // There are other requests pending, and this one
  224. // needs more time, so put it on the back of the
  225. // queue so that we might satisfy other pending
  226. // requests that aren't blocked
  227. go func() {
  228. // Process in a go routine to avoid deadlocking
  229. // the scheduler if our queue is full
  230. slog.Debug("delaying scheduling while other models finish loading", "attempts", pending.schedAttempts, "model", pending.model.ModelPath)
  231. time.Sleep(s.reschedDelay)
  232. s.pendingReqCh <- pending
  233. }()
  234. break
  235. }
  236. runnerToExpire = s.findRunnerToUnload()
  237. }
  238. }
  239. if runnerToExpire == nil {
  240. // Shouildn't happen
  241. slog.Error("runner to expire was nil!")
  242. continue
  243. }
  244. // Trigger an expiration to unload once it's done
  245. runnerToExpire.refMu.Lock()
  246. slog.Debug("resetting model to expire immediately to make room", "modelPath", runnerToExpire.modelPath, "refCount", runnerToExpire.refCount)
  247. if runnerToExpire.expireTimer != nil {
  248. runnerToExpire.expireTimer.Stop()
  249. runnerToExpire.expireTimer = nil
  250. }
  251. runnerToExpire.sessionDuration = 0
  252. if runnerToExpire.refCount <= 0 {
  253. s.expiredCh <- runnerToExpire
  254. }
  255. runnerToExpire.refMu.Unlock()
  256. // Wait for the unload to happen
  257. // Note: at this point we're queueing up all incoming requests, even if they were for
  258. // a different model that's loaded and not scheduled to be removed.
  259. slog.Debug("waiting for pending requests to complete and unload to occur", "modelPath", runnerToExpire.modelPath)
  260. select {
  261. case <-ctx.Done():
  262. slog.Debug("shutting down scheduler pending loop")
  263. return
  264. case <-s.unloadedCh:
  265. slog.Debug("unload completed", "modelPath", runnerToExpire.modelPath)
  266. continue
  267. }
  268. }
  269. case <-s.unloadedCh:
  270. // An unload request when there are no pending request can be ignored
  271. slog.Debug("ignoring unload event with no pending requests")
  272. }
  273. }
  274. }
  275. func (s *Scheduler) processCompleted(ctx context.Context) {
  276. // Process completed requests, expired timers, and unloading models
  277. for {
  278. select {
  279. case <-ctx.Done():
  280. slog.Debug("shutting down scheduler completed loop")
  281. return
  282. case finished := <-s.finishedReqCh:
  283. s.loadedMu.Lock()
  284. runner := s.loaded[finished.model.ModelPath]
  285. s.loadedMu.Unlock()
  286. if runner == nil {
  287. slog.Error("finished request signal received after model unloaded", "modelPath", finished.model.ModelPath)
  288. continue
  289. }
  290. runner.refMu.Lock()
  291. runner.refCount--
  292. if runner.refCount <= 0 {
  293. if runner.sessionDuration <= 0 {
  294. slog.Debug("runner with zero duration has gone idle, expiring to unload", "modelPath", runner.modelPath)
  295. if runner.expireTimer != nil {
  296. runner.expireTimer.Stop()
  297. runner.expireTimer = nil
  298. }
  299. s.expiredCh <- runner
  300. } else if runner.expireTimer == nil {
  301. slog.Debug("runner with non-zero duration has gone idle, adding timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
  302. runner.expireTimer = time.AfterFunc(runner.sessionDuration, func() {
  303. slog.Debug("timer expired, expiring to unload", "modelPath", runner.modelPath)
  304. runner.refMu.Lock()
  305. defer runner.refMu.Unlock()
  306. if runner.expireTimer != nil {
  307. runner.expireTimer.Stop()
  308. runner.expireTimer = nil
  309. }
  310. s.expiredCh <- runner
  311. })
  312. runner.expiresAt = time.Now().Add(runner.sessionDuration)
  313. } else {
  314. slog.Debug("runner with non-zero duration has gone idle, resetting timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
  315. runner.expireTimer.Reset(runner.sessionDuration)
  316. runner.expiresAt = time.Now().Add(runner.sessionDuration)
  317. }
  318. }
  319. slog.Debug("after processing request finished event", "modelPath", runner.modelPath, "refCount", runner.refCount)
  320. runner.refMu.Unlock()
  321. case runner := <-s.expiredCh:
  322. slog.Debug("runner expired event received", "modelPath", runner.modelPath)
  323. runner.refMu.Lock()
  324. if runner.refCount > 0 {
  325. // Shouldn't happen, but safeguard to ensure no leaked runners
  326. slog.Debug("expired event with positive ref count, retrying", "modelPath", runner.modelPath, "refCount", runner.refCount)
  327. go func(runner *runnerRef) {
  328. // We can't unload yet, but want to as soon as the current request completes
  329. // So queue up another expired event
  330. time.Sleep(10 * time.Millisecond)
  331. s.expiredCh <- runner
  332. }(runner)
  333. runner.refMu.Unlock()
  334. continue
  335. }
  336. s.loadedMu.Lock()
  337. slog.Debug("got lock to unload", "modelPath", runner.modelPath)
  338. finished := runner.waitForVRAMRecovery()
  339. runner.unload()
  340. delete(s.loaded, runner.modelPath)
  341. s.loadedMu.Unlock()
  342. slog.Debug("runner released", "modelPath", runner.modelPath)
  343. runner.refMu.Unlock()
  344. <-finished
  345. slog.Debug("sending an unloaded event", "modelPath", runner.modelPath)
  346. s.unloadedCh <- struct{}{}
  347. }
  348. }
  349. }
  350. // Complete the pending request and send the runner back to the requester
  351. // Wires up a finished event after the request context is completed
  352. // Updates session duration, and resets expiration timer
  353. func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *LlmRequest) {
  354. runner.refMu.Lock()
  355. defer runner.refMu.Unlock()
  356. runner.refCount++
  357. if runner.expireTimer != nil {
  358. runner.expireTimer.Stop()
  359. runner.expireTimer = nil
  360. }
  361. if pending.sessionDuration != nil {
  362. runner.sessionDuration = pending.sessionDuration.Duration
  363. }
  364. pending.successCh <- runner
  365. go func() {
  366. <-pending.ctx.Done()
  367. slog.Debug("context for request finished")
  368. finished <- pending
  369. }()
  370. }
  371. func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
  372. if numParallel < 1 {
  373. numParallel = 1
  374. }
  375. sessionDuration := envconfig.KeepAlive
  376. if req.sessionDuration != nil {
  377. sessionDuration = req.sessionDuration.Duration
  378. }
  379. llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
  380. if err != nil {
  381. // some older models are not compatible with newer versions of llama.cpp
  382. // show a generalized compatibility error until there is a better way to
  383. // check for model compatibility
  384. if errors.Is(llm.ErrUnsupportedFormat, err) || strings.Contains(err.Error(), "failed to load model") {
  385. err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName)
  386. }
  387. slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err)
  388. req.errCh <- err
  389. return
  390. }
  391. runner := &runnerRef{
  392. model: req.model,
  393. modelPath: req.model.ModelPath,
  394. llama: llama,
  395. Options: &req.opts,
  396. sessionDuration: sessionDuration,
  397. gpus: gpus,
  398. estimatedVRAM: llama.EstimatedVRAM(),
  399. estimatedTotal: llama.EstimatedTotal(),
  400. loading: true,
  401. refCount: 1,
  402. }
  403. runner.numParallel = numParallel
  404. runner.refMu.Lock()
  405. s.loadedMu.Lock()
  406. s.loaded[req.model.ModelPath] = runner
  407. slog.Info("loaded runners", "count", len(s.loaded))
  408. s.loadedMu.Unlock()
  409. go func() {
  410. defer runner.refMu.Unlock()
  411. if err = llama.WaitUntilRunning(req.ctx); err != nil {
  412. slog.Error("error loading llama server", "error", err)
  413. runner.refCount--
  414. req.errCh <- err
  415. slog.Debug("triggering expiration for failed load", "model", runner.modelPath)
  416. s.expiredCh <- runner
  417. return
  418. }
  419. slog.Debug("finished setting up runner", "model", req.model.ModelPath)
  420. runner.loading = false
  421. go func() {
  422. <-req.ctx.Done()
  423. slog.Debug("context for request finished")
  424. s.finishedReqCh <- req
  425. }()
  426. req.successCh <- runner
  427. }()
  428. }
  429. func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
  430. type predKey struct {
  431. Library string
  432. ID string
  433. }
  434. predMap := map[predKey]uint64{} // Sum up the total predicted usage per GPU for all runners
  435. s.loadedMu.Lock()
  436. for _, r := range s.loaded {
  437. r.refMu.Lock()
  438. if r.llama != nil {
  439. for _, gpu := range allGpus {
  440. predMap[predKey{gpu.Library, gpu.ID}] += r.llama.EstimatedVRAMByGPU(gpu.ID)
  441. }
  442. } else {
  443. slog.Warn("unexpected nil runner reference, memory prediction may be incorrect")
  444. }
  445. r.refMu.Unlock()
  446. }
  447. s.loadedMu.Unlock()
  448. // Now that we've summed up all the GPU usage predictions across all the loaded runners, update the gpu list
  449. for i := range allGpus {
  450. if p, ok := predMap[predKey{allGpus[i].Library, allGpus[i].ID}]; ok {
  451. slog.Debug("gpu reported", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "available", format.HumanBytes2(allGpus[i].FreeMemory))
  452. if p > allGpus[i].TotalMemory {
  453. // Shouldn't happen
  454. slog.Warn("predicted usage exceeds VRAM", "gpu", allGpus[i].ID, "totalMemory", allGpus[i].TotalMemory, "predicted", p)
  455. allGpus[i].FreeMemory = 0
  456. } else if (allGpus[i].TotalMemory - p) < allGpus[i].FreeMemory { // predicted free is smaller than reported free, use it
  457. // TODO maybe we should just always trust our numbers, since cuda's free memory reporting is laggy
  458. // and we might unload models we didn't actually need to. The risk is if some other GPU intensive app is loaded
  459. // after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent.
  460. allGpus[i].FreeMemory = allGpus[i].TotalMemory - p
  461. }
  462. slog.Info("updated VRAM based on existing loaded models", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory))
  463. }
  464. }
  465. }
  466. // While models are loading the VRAM consumption numbers will be indeterminate, so we have
  467. // to avoid scheduling another model on the same GPU(s) that haven't stabilized.
  468. // This routine returns the set of GPUs that do not have an active loading model.
  469. // If all GPUs have loading models, an empty list will be returned (not a single CPU entry)
  470. func (s *Scheduler) filterGPUsWithoutLoadingModels(allGpus gpu.GpuInfoList) gpu.GpuInfoList {
  471. ret := append(gpu.GpuInfoList{}, allGpus...)
  472. s.loadedMu.Lock()
  473. defer s.loadedMu.Unlock()
  474. for _, runner := range s.loaded {
  475. if runner.loading {
  476. slog.Debug("overlapping loads detected", "gpus", runner.gpus, "model", runner.modelPath)
  477. for _, busyGPU := range runner.gpus {
  478. for i := range ret {
  479. if ret[i].ID == busyGPU.ID {
  480. ret = append(ret[:i], ret[i+1:]...)
  481. break
  482. }
  483. }
  484. }
  485. }
  486. }
  487. return ret
  488. }
  489. // TODO consolidate sched_types.go
  490. type runnerRef struct {
  491. refMu sync.Mutex
  492. // refCond sync.Cond // Signaled on transition from 1 -> 0 refCount
  493. refCount uint // prevent unloading if > 0
  494. // unloading bool // set to true when we are trying to unload the runner
  495. llama llm.LlamaServer
  496. loading bool // True only during initial load, then false forever
  497. gpus gpu.GpuInfoList // Recorded at time of provisioning
  498. estimatedVRAM uint64
  499. estimatedTotal uint64
  500. sessionDuration time.Duration
  501. expireTimer *time.Timer
  502. expiresAt time.Time
  503. model *Model
  504. modelPath string
  505. numParallel int
  506. *api.Options
  507. }
  508. // The refMu must already be held when calling unload
  509. func (runner *runnerRef) unload() {
  510. if runner.expireTimer != nil {
  511. runner.expireTimer.Stop()
  512. runner.expireTimer = nil
  513. }
  514. if runner.llama != nil {
  515. runner.llama.Close()
  516. }
  517. runner.model = nil
  518. runner.llama = nil
  519. runner.Options = nil
  520. runner.gpus = nil
  521. }
  522. func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool {
  523. slog.Debug("evaluating already loaded", "model", req.model.ModelPath)
  524. runner.refMu.Lock()
  525. defer runner.refMu.Unlock()
  526. timeout := 10 * time.Second
  527. if runner.loading {
  528. timeout = 2 * time.Minute // Initial load can take a long time for big models on slow systems...
  529. }
  530. if runner.Options == nil {
  531. return true
  532. }
  533. // Don't reload runner if num_gpu=-1 was provided
  534. optsExisting := runner.Options.Runner
  535. optsNew := req.opts.Runner
  536. if optsNew.NumGPU < 0 {
  537. optsExisting.NumGPU = -1
  538. optsNew.NumGPU = -1
  539. }
  540. // Normalize the NumCtx for parallelism
  541. optsExisting.NumCtx = optsExisting.NumCtx / runner.numParallel
  542. ctx, cancel := context.WithTimeout(ctx, timeout)
  543. defer cancel()
  544. if !reflect.DeepEqual(runner.model.AdapterPaths, req.model.AdapterPaths) || // have the adapters changed?
  545. !reflect.DeepEqual(runner.model.ProjectorPaths, req.model.ProjectorPaths) || // have the projectors changed?
  546. !reflect.DeepEqual(optsExisting, optsNew) || // have the runner options changed?
  547. runner.llama.Ping(ctx) != nil {
  548. return true
  549. }
  550. return false
  551. }
  552. // Free memory reporting on GPUs can lag for a while even after the runner
  553. // exits, so we have to keep checking until we see the available memory recover,
  554. // otherwise subsequent model loads will get far less layers loaded or worse
  555. // case, may completely fall back to CPU mode.
  556. // This routine must be called before the runner unloads so it can establish
  557. // a before and after GPU memory allocation. The returned channel
  558. // will be notified when we're done waiting, or have timed out and should
  559. // proceed anyway
  560. func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
  561. finished := make(chan interface{}, 1)
  562. // CPU or Metal don't need checking, so no waiting required
  563. // windows can page VRAM, only cuda currently can report accurate used vram usage
  564. if len(runner.gpus) == 0 ||
  565. (len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) ||
  566. (runtime.GOOS == "windows" && runner.gpus[0].Library != "cuda") {
  567. finished <- struct{}{}
  568. return finished
  569. }
  570. start := time.Now()
  571. // Establish a baseline before we unload
  572. gpusBefore := gpu.GetGPUInfo()
  573. var totalMemoryBefore, freeMemoryBefore uint64
  574. for _, gpu := range gpusBefore {
  575. totalMemoryBefore += gpu.TotalMemory
  576. freeMemoryBefore += gpu.FreeMemory
  577. }
  578. go func() {
  579. expiresAt := start.Add(5 * time.Second) // typical convergence is 0.5-1.5s
  580. ticker := time.NewTicker(250 * time.Millisecond)
  581. defer ticker.Stop()
  582. for {
  583. <-ticker.C
  584. if time.Now().After(expiresAt) {
  585. slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds(), "model", runner.modelPath)
  586. finished <- struct{}{}
  587. }
  588. // Query GPUs, look for free to go back up
  589. gpusNow := gpu.GetGPUInfo()
  590. var totalMemoryNow, freeMemoryNow uint64
  591. for _, gpu := range gpusNow {
  592. totalMemoryNow += gpu.TotalMemory
  593. freeMemoryNow += gpu.FreeMemory
  594. }
  595. // If we're within ~80% of the estimated memory usage recovered, bail out
  596. if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 {
  597. slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()), "model", runner.modelPath)
  598. finished <- struct{}{}
  599. return
  600. }
  601. }
  602. }()
  603. return finished
  604. }
  605. type ByDuration []*runnerRef
  606. func (a ByDuration) Len() int { return len(a) }
  607. func (a ByDuration) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
  608. func (a ByDuration) Less(i, j int) bool {
  609. // uint64 to turn negative time (never unload) to largest
  610. return uint64(a[i].sessionDuration) < uint64(a[j].sessionDuration)
  611. }
  612. // TODO - future consideration to pick runners based on size
  613. // type BySize []*runnerRef
  614. // func (a BySize) Len() int { return len(a) }
  615. // func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
  616. // func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM }
  617. // pickBestFullFitByLibrary will try to find the optimal placement of the model in the available GPUs where the model fully fits
  618. // The list of GPUs returned will always be the same brand (library)
  619. // If the model can not be fit fully within the available GPU(s) nil is returned
  620. // If numParallel is <= 0, this will attempt try to optimize parallism based on available VRAM, and adjust
  621. // opts.NumCtx accordingly
  622. func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
  623. var estimatedVRAM uint64
  624. var numParallelToTry []int
  625. if *numParallel <= 0 {
  626. // If no specific parallel setting was provided, try larger then smaller, always end with 1
  627. numParallelToTry = append(numParallelToTry, defaultParallel, 1)
  628. } else {
  629. numParallelToTry = []int{*numParallel}
  630. }
  631. for _, gl := range gpus.ByLibrary() {
  632. var ok bool
  633. sgl := append(make(gpu.GpuInfoList, 0, len(gl)), gl...)
  634. // TODO - potentially sort by performance capability, existing models loaded, etc.
  635. // TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them
  636. // Note: at present, this will favor more VRAM over faster GPU speed in mixed setups
  637. sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl)))
  638. // First attempt to fit the model into a single GPU
  639. for _, p := range numParallelToTry {
  640. req.opts.NumCtx = req.origNumCtx * p
  641. if !envconfig.SchedSpread {
  642. for _, g := range sgl {
  643. if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
  644. slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
  645. *numParallel = p
  646. return []gpu.GpuInfo{g}
  647. }
  648. }
  649. }
  650. }
  651. // TODO future refinements
  652. // - if multiple Libraries, see if any single GPU in any Library will fit
  653. // - try subsets of GPUs instead of just falling back to 1 or all in a family
  654. // Now try all the GPUs
  655. for _, p := range numParallelToTry {
  656. req.opts.NumCtx = req.origNumCtx * p
  657. if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
  658. slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
  659. *numParallel = p
  660. return sgl
  661. }
  662. }
  663. }
  664. return nil
  665. }
  666. // If multiple Libraries are detected, pick the Library which loads the most layers for the model
  667. func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
  668. *numParallel = 1
  669. byLibrary := gpus.ByLibrary()
  670. if len(byLibrary) <= 1 {
  671. return gpus
  672. }
  673. var bestEstimate uint64
  674. var bestFit int
  675. for i, gl := range byLibrary {
  676. _, estimatedVRAM := llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
  677. if estimatedVRAM > bestEstimate {
  678. bestEstimate = estimatedVRAM
  679. bestFit = i
  680. }
  681. }
  682. return byLibrary[bestFit]
  683. }
  684. // findRunnerToUnload finds a runner to unload to make room for a new model
  685. func (s *Scheduler) findRunnerToUnload() *runnerRef {
  686. s.loadedMu.Lock()
  687. runnerList := make([]*runnerRef, 0, len(s.loaded))
  688. for _, r := range s.loaded {
  689. runnerList = append(runnerList, r)
  690. }
  691. s.loadedMu.Unlock()
  692. if len(runnerList) == 0 {
  693. slog.Debug("no loaded runner to unload")
  694. return nil
  695. }
  696. // In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
  697. // e.g., if we have multiple options, will one make room for the request?
  698. sort.Sort(ByDuration(runnerList))
  699. // First try to find a runner that's already idle
  700. for _, runner := range runnerList {
  701. runner.refMu.Lock()
  702. rc := runner.refCount
  703. runner.refMu.Unlock()
  704. if rc == 0 {
  705. slog.Debug("found an idle runner to unload")
  706. return runner
  707. }
  708. }
  709. // None appear idle, just wait for the one with the shortest duration
  710. slog.Debug("no idle runners, picking the shortest duration", "count", len(runnerList))
  711. return runnerList[0]
  712. }
  713. func (s *Scheduler) unloadAllRunners() {
  714. s.loadedMu.Lock()
  715. defer s.loadedMu.Unlock()
  716. for model, runner := range s.loaded {
  717. if runner.llama != nil {
  718. slog.Debug("shutting down runner", "model", model)
  719. runner.llama.Close()
  720. }
  721. }
  722. }
  723. // If other runners are loaded, make sure the pending request will fit in system memory
  724. // If not, pick a runner to unload, else return nil and the request can be loaded
  725. func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) *runnerRef {
  726. slog.Debug("evaluating if CPU model load will fit in available system memory")
  727. estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts)
  728. if estimate.TotalSize <= gpus[0].FreeMemory {
  729. slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
  730. return nil
  731. }
  732. // TODO - optimization: try to find CPU only runners first, or partial offloads with enough in system memory to make room
  733. return s.findRunnerToUnload()
  734. }