convert_gemma.go 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. package convert
  2. import (
  3. "strings"
  4. "github.com/pdevine/tensor"
  5. "github.com/pdevine/tensor/native"
  6. "github.com/ollama/ollama/llm"
  7. )
  8. type gemma struct {
  9. Parameters
  10. MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
  11. HiddenSize uint32 `json:"hidden_size"`
  12. HiddenLayers uint32 `json:"num_hidden_layers"`
  13. IntermediateSize uint32 `json:"intermediate_size"`
  14. NumAttentionHeads uint32 `json:"num_attention_heads"`
  15. NumKeyValueHeads uint32 `json:"num_key_value_heads"`
  16. RMSNormEPS float32 `json:"rms_norm_eps"`
  17. HeadDim uint32 `json:"head_dim"`
  18. }
  19. var _ Converter = (*gemma)(nil)
  20. func (p *gemma) KV(t *Tokenizer) llm.KV {
  21. kv := p.Parameters.KV(t)
  22. kv["general.architecture"] = "gemma"
  23. kv["general.name"] = "gemma"
  24. kv["gemma.context_length"] = p.MaxPositionEmbeddings
  25. kv["gemma.embedding_length"] = p.HiddenSize
  26. kv["gemma.block_count"] = p.HiddenLayers
  27. kv["gemma.feed_forward_length"] = p.IntermediateSize
  28. kv["gemma.attention.head_count"] = p.NumAttentionHeads
  29. kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads
  30. kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
  31. kv["gemma.attention.key_length"] = p.HeadDim
  32. kv["gemma.attention.value_length"] = p.HeadDim
  33. kv["tokenizer.ggml.eot_token_id"] = uint32(107)
  34. kv["tokenizer.ggml.middle_token_id"] = uint32(68)
  35. kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
  36. kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
  37. return kv
  38. }
  39. func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
  40. out := make([]llm.Tensor, 0, len(ts))
  41. for _, t := range ts {
  42. if strings.HasSuffix(t.Name(), "_norm.weight") {
  43. t.SetRepacker(p.addOne)
  44. }
  45. out = append(out, llm.Tensor{
  46. Name: t.Name(),
  47. Kind: t.Kind(),
  48. Shape: t.Shape(),
  49. WriterTo: t,
  50. })
  51. }
  52. return out
  53. }
  54. func (p *gemma) Replacements() []string {
  55. return []string{
  56. "model.embed_tokens", "token_embd",
  57. "model.norm", "output_norm",
  58. "model.layers", "blk",
  59. "input_layernorm", "attn_norm",
  60. "self_attn.q_proj", "attn_q",
  61. "self_attn.k_proj", "attn_k",
  62. "self_attn.v_proj", "attn_v",
  63. "self_attn.o_proj", "attn_output",
  64. "mlp.gate_proj", "ffn_gate",
  65. "mlp.down_proj", "ffn_down",
  66. "mlp.up_proj", "ffn_up",
  67. "post_attention_layernorm", "ffn_norm",
  68. }
  69. }
  70. func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
  71. n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
  72. ones := tensor.Ones(tensor.Float32, int(shape[0]))
  73. n, err := n.Add(ones)
  74. if err != nil {
  75. return nil, err
  76. }
  77. ts, err := native.SelectF32(n, 0)
  78. if err != nil {
  79. return nil, err
  80. }
  81. var f32s []float32
  82. for _, t := range ts {
  83. f32s = append(f32s, t...)
  84. }
  85. return f32s, nil
  86. }