llama.go 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. package llama
  2. /*
  3. #cgo CPPFLAGS: -O3 -DNDEBUG=1
  4. #cgo CXXFLAGS: -std=c++11
  5. #cgo darwin CPPFLAGS: -DGGML_USE_METAL=1 -DGGML_METAL_NDEBUG=1
  6. #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
  7. #include <stdlib.h>
  8. #include "llama.h"
  9. struct llama_sample_options
  10. {
  11. float repeat_penalty;
  12. float frequency_penalty;
  13. float presence_penalty;
  14. float temperature;
  15. int32_t top_k;
  16. float top_p;
  17. float tfs_z;
  18. float typical_p;
  19. int mirostat;
  20. float mirostat_tau;
  21. float mirostat_eta;
  22. };
  23. llama_token llama_sample(
  24. struct llama_context *ctx,
  25. struct llama_token_data *candidates,
  26. size_t n_candidates,
  27. const llama_token *last_tokens,
  28. size_t n_last_tokens,
  29. struct llama_sample_options *opts)
  30. {
  31. llama_token_data_array candidates_p = {
  32. candidates,
  33. n_candidates,
  34. false,
  35. };
  36. llama_sample_repetition_penalty(
  37. ctx, &candidates_p,
  38. last_tokens, n_last_tokens,
  39. opts->repeat_penalty);
  40. llama_sample_frequency_and_presence_penalties(
  41. ctx, &candidates_p,
  42. last_tokens, n_last_tokens,
  43. opts->frequency_penalty, opts->presence_penalty);
  44. if (opts->temperature <= 0) {
  45. return llama_sample_token_greedy(ctx, &candidates_p);
  46. }
  47. if (opts->mirostat == 1) {
  48. int mirostat_m = 100;
  49. float mirostat_mu = 2.0f * opts->mirostat_tau;
  50. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  51. return llama_sample_token_mirostat(
  52. ctx, &candidates_p,
  53. opts->mirostat_tau, opts->mirostat_eta,
  54. mirostat_m, &mirostat_mu);
  55. } else if (opts->mirostat == 2) {
  56. float mirostat_mu = 2.0f * opts->mirostat_tau;
  57. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  58. return llama_sample_token_mirostat_v2(
  59. ctx, &candidates_p,
  60. opts->mirostat_tau, opts->mirostat_eta,
  61. &mirostat_mu);
  62. } else {
  63. llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
  64. llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
  65. llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
  66. llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
  67. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  68. return llama_sample_token(ctx, &candidates_p);
  69. }
  70. }
  71. */
  72. import "C"
  73. import (
  74. "errors"
  75. "io"
  76. "os"
  77. "strings"
  78. "unsafe"
  79. "github.com/jmorganca/ollama/api"
  80. )
  81. type llama struct {
  82. params *C.struct_llama_context_params
  83. model *C.struct_llama_model
  84. ctx *C.struct_llama_context
  85. api.Options
  86. }
  87. func New(model string, opts api.Options) (*llama, error) {
  88. if _, err := os.Stat(model); err != nil {
  89. return nil, err
  90. }
  91. llm := llama{Options: opts}
  92. C.llama_backend_init(C.bool(llm.UseNUMA))
  93. params := C.llama_context_default_params()
  94. params.seed = C.uint(llm.Seed)
  95. params.n_ctx = C.int(llm.NumCtx)
  96. params.n_batch = C.int(llm.NumBatch)
  97. params.n_gpu_layers = C.int(llm.NumGPU)
  98. params.main_gpu = C.int(llm.MainGPU)
  99. params.low_vram = C.bool(llm.LowVRAM)
  100. params.f16_kv = C.bool(llm.F16KV)
  101. params.logits_all = C.bool(llm.LogitsAll)
  102. params.vocab_only = C.bool(llm.VocabOnly)
  103. params.use_mmap = C.bool(llm.UseMMap)
  104. params.use_mlock = C.bool(llm.UseMLock)
  105. params.embedding = C.bool(llm.EmbeddingOnly)
  106. llm.params = &params
  107. cModel := C.CString(model)
  108. defer C.free(unsafe.Pointer(cModel))
  109. llm.model = C.llama_load_model_from_file(cModel, params)
  110. llm.ctx = C.llama_new_context_with_model(llm.model, params)
  111. // warm up the model
  112. bos := []C.llama_token{C.llama_token_bos()}
  113. C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
  114. C.llama_reset_timings(llm.ctx)
  115. return &llm, nil
  116. }
  117. func (llm *llama) Close() {
  118. defer C.llama_free_model(llm.model)
  119. defer C.llama_free(llm.ctx)
  120. C.llama_print_timings(llm.ctx)
  121. }
  122. func (llm *llama) Predict(prompt string, fn func(string)) error {
  123. if tokens := llm.tokenize(prompt); tokens != nil {
  124. return llm.generate(tokens, fn)
  125. }
  126. return errors.New("llama: tokenize")
  127. }
  128. func (llm *llama) tokenize(prompt string) []C.llama_token {
  129. cPrompt := C.CString(prompt)
  130. defer C.free(unsafe.Pointer(cPrompt))
  131. tokens := make([]C.llama_token, llm.NumCtx)
  132. if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(tokens), C.int(len(tokens)), true); n > 0 {
  133. return tokens[:n]
  134. }
  135. return nil
  136. }
  137. func (llm *llama) detokenize(tokens ...C.llama_token) string {
  138. var sb strings.Builder
  139. for _, token := range tokens {
  140. sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, token)))
  141. }
  142. return sb.String()
  143. }
  144. func (llm *llama) generate(tokens []C.llama_token, fn func(string)) error {
  145. var opts C.struct_llama_sample_options
  146. opts.repeat_penalty = C.float(llm.RepeatPenalty)
  147. opts.frequency_penalty = C.float(llm.FrequencyPenalty)
  148. opts.presence_penalty = C.float(llm.PresencePenalty)
  149. opts.temperature = C.float(llm.Temperature)
  150. opts.top_k = C.int(llm.TopK)
  151. opts.top_p = C.float(llm.TopP)
  152. opts.tfs_z = C.float(llm.TFSZ)
  153. opts.typical_p = C.float(llm.TypicalP)
  154. opts.mirostat = C.int(llm.Mirostat)
  155. opts.mirostat_tau = C.float(llm.MirostatTau)
  156. opts.mirostat_eta = C.float(llm.MirostatEta)
  157. pastTokens := deque[C.llama_token]{capacity: llm.RepeatLastN}
  158. for C.llama_get_kv_cache_token_count(llm.ctx) < C.int(llm.NumCtx) {
  159. if retval := C.llama_eval(llm.ctx, unsafe.SliceData(tokens), C.int(len(tokens)), C.llama_get_kv_cache_token_count(llm.ctx), C.int(llm.NumThread)); retval != 0 {
  160. return errors.New("llama: eval")
  161. }
  162. token, err := llm.sample(pastTokens, &opts)
  163. switch {
  164. case err != nil:
  165. return err
  166. case errors.Is(err, io.EOF):
  167. return nil
  168. }
  169. fn(llm.detokenize(token))
  170. tokens = []C.llama_token{token}
  171. pastTokens.PushLeft(token)
  172. }
  173. return nil
  174. }
  175. func (llm *llama) sample(pastTokens deque[C.llama_token], opts *C.struct_llama_sample_options) (C.llama_token, error) {
  176. numVocab := int(C.llama_n_vocab(llm.ctx))
  177. logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
  178. candidates := make([]C.struct_llama_token_data, 0, numVocab)
  179. for i := 0; i < numVocab; i++ {
  180. candidates = append(candidates, C.llama_token_data{
  181. id: C.int(i),
  182. logit: logits[i],
  183. p: 0,
  184. })
  185. }
  186. token := C.llama_sample(
  187. llm.ctx,
  188. unsafe.SliceData(candidates), C.ulong(len(candidates)),
  189. unsafe.SliceData(pastTokens.Data()), C.ulong(pastTokens.Len()),
  190. opts)
  191. if token != C.llama_token_eos() {
  192. return token, nil
  193. }
  194. return 0, io.EOF
  195. }