123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- package sample
- import (
- "container/heap"
- "math"
- "slices"
- )
- // tokenHeap implements heap.Interface and holds tokens as a min-heap to track k largest elements
- type tokenHeap []token
- func (h tokenHeap) Len() int { return len(h) }
- func (h tokenHeap) Less(i, j int) bool { return h[i].value < h[j].value } // Use < for min-heap to track largest elements
- func (h tokenHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
- func (h *tokenHeap) Push(x any) {
- *h = append(*h, x.(token))
- }
- func (h *tokenHeap) Pop() any {
- old := *h
- n := len(old)
- x := old[n-1]
- *h = old[0 : n-1]
- return x
- }
- // temperature applies scaling and softmax to the logits
- func temperature(ts []token, temp float32) []token {
- // Find max logit for numerical stability
- maxLogit := float32(math.Inf(-1))
- for _, t := range ts {
- if t.value > maxLogit {
- maxLogit = t.value
- }
- }
- // Apply temperature and compute exp(x - max)
- temp = max(temp, 1e-7)
- var sum float32
- for i, v := range ts {
- ts[i].value = float32(math.Exp(float64((v.value - maxLogit) / temp)))
- sum += ts[i].value
- }
- // Normalize
- for i := range ts {
- ts[i].value /= sum
- }
- return ts
- }
- // topK limits the number of tokens considered to the k highest logits
- func topK(ts []token, k int) []token {
- if k >= len(ts) {
- sortLogits(ts)
- return ts
- }
- // Initialize min-heap with first k elements
- h := make(tokenHeap, k)
- copy(h, ts[:k])
- heap.Init(&h)
- // Process remaining elements
- for i := k; i < len(ts); i++ {
- if ts[i].value > h[0].value {
- heap.Pop(&h)
- heap.Push(&h, ts[i])
- }
- }
- // Convert heap to sorted slice in descending order
- result := make([]token, k)
- for i := k - 1; i >= 0; i-- {
- result[i] = heap.Pop(&h).(token)
- }
- return result
- }
- // topP limits tokens to those with cumulative probability p
- func topP(ts []token, p float32) []token {
- if p == 1.0 {
- return ts
- }
- // Find cutoff index where cumulative sum exceeds p
- var sum float32
- for i, t := range ts {
- sum += t.value
- if sum > float32(p) {
- ts = ts[:i+1]
- return ts
- }
- }
- return ts
- }
- // minP limits tokens to those with cumulative probability p
- func minP(ts []token, p float32) []token {
- if p == 1.0 {
- return ts
- }
- maxProb := float32(math.Inf(-1))
- for _, token := range ts {
- if token.value > maxProb {
- maxProb = token.value
- }
- }
- threshold := maxProb * float32(p)
- // Filter tokens in-place
- validTokens := ts[:0]
- for i, token := range ts {
- if token.value >= threshold {
- validTokens = append(validTokens, ts[i])
- }
- }
- ts = validTokens
- return ts
- }
- // TODO(parthsareen): possibly replace with simpler implementation https://github.com/ollama/ollama/issues/9584
- // sortLogits sorts implementation to sort tokens by logits using counting sort
- // counting sort is faster than built-in sort for this use case
- func sortLogits(tokens []token) {
- if len(tokens) <= 1 {
- return
- }
- // Find max/min in a single pass
- minLogit, maxLogit := tokens[0].value, tokens[0].value
- for _, t := range tokens[1:] {
- if t.value < minLogit {
- minLogit = t.value
- } else if t.value > maxLogit {
- maxLogit = t.value
- }
- }
- // Calculate scaling to map to uint32 range
- logitRange := maxLogit - minLogit
- if logitRange < 1e-6 {
- return // All values effectively equal
- }
- // Count frequencies directly from tokens
- const maxInt = (1 << 24) - 1 // Use 24 bits for good granularity
- var counts [256]int // For first byte
- // First pass: count frequencies
- for _, t := range tokens {
- // Map to [0, maxInt] range
- score := min(uint32((t.value-minLogit)*float32(maxInt)/logitRange), maxInt)
- counts[score>>16]++
- }
- // Calculate offsets
- var offset int
- for i := range counts {
- count := counts[i]
- counts[i] = offset
- offset += count
- }
- // Second pass: place elements in correct position
- output := make([]token, len(tokens))
- // Track current positions
- countsCopy := counts
- for i, t := range tokens {
- score := min(uint32((t.value-minLogit)*float32(maxInt)/logitRange), maxInt)
- pos := countsCopy[score>>16]
- countsCopy[score>>16]++
- output[len(tokens)-1-pos] = tokens[i]
- }
- copy(tokens, output)
- }
|