123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726 |
- package main
- import (
- "context"
- "encoding/base64"
- "encoding/json"
- "flag"
- "fmt"
- "log"
- "log/slog"
- "math"
- "net"
- "net/http"
- "os"
- "path/filepath"
- "regexp"
- "runtime"
- "strconv"
- "strings"
- "sync"
- "time"
- "github.com/ollama/ollama/api"
- "github.com/ollama/ollama/llama"
- )
- // input is an element of the prompt to process, either
- // a token or an embedding (e.g. generated from a vision projector)
- type input struct {
- token int
- // embd is an image embedding
- // important to note, embd contains a series of embeddings, all backed
- // by a single float* buffer
- // TODO (jmorganca):
- embd *llama.LlavaImageEmbed
- }
- type Sequence struct {
- // number of tokens evaluated
- nPast int
- // batch index
- iBatch int
- // number of tokens predicted so far
- numPredicted int
- // prompt inputs left to evaluate
- inputs []input
- // channel to send responses over
- responses chan string
- // number of tokens to predict
- numPredict int
- samplingCtx *llama.SamplingContext
- // channel to send back the embedding if embedding only
- embedding chan []float32
- // stop sequences
- stop []string
- // true if an embedding are to be returned instead of text generation
- embeddingOnly bool
- doneReason string
- pieces []string
- // Metrics
- t_start_process_prompt time.Time
- t_start_genereration time.Time
- n_decoded int
- n_prompt_tokens int
- }
- // prompt returns true if the prompt is still being processed
- // TODO (jmorganca): clean up this logic
- func (s *Sequence) isPromptProcessing() bool {
- var total int
- for _, i := range s.inputs {
- if i.embd == nil {
- total++
- continue
- }
- total += i.embd.Tokens()
- }
- return s.nPast < total-1
- }
- // inputs processes the prompt and images into a list of inputs
- // by splitting the prompt on [img-<n>] tags, tokenizing text and
- // generating image embeddings for each image
- func (s *Server) inputs(prompt string, images []string) ([]input, error) {
- var inputs []input
- re := regexp.MustCompile(`\[img-(\d+)\]`)
- parts := re.Split(prompt, -1)
- matches := re.FindAllStringSubmatch(prompt, -1)
- for i, part := range parts {
- // text - tokenize
- if strings.TrimSpace(part) != "" {
- tokens, err := s.lc.Model().Tokenize(prompt, false, true)
- if err != nil {
- return nil, err
- }
- for _, t := range tokens {
- inputs = append(inputs, input{token: t})
- }
- }
- // image - generate image embedding
- if i < len(matches) {
- n, _ := strconv.Atoi(matches[i][1])
- if n < 0 || n >= len(images) {
- return nil, fmt.Errorf("invalid image index: %d", n)
- }
- decoded, err := base64.StdEncoding.DecodeString(images[n])
- if err != nil {
- // TODO (jmorganca): return an error?
- slog.Error("Failed to decode image", "error", err)
- return nil, err
- }
- // Vision models can not be used concurrently
- s.clip.mu.Lock()
- // todo: check for duplicates so we don't encode the same image twice
- slog.Info("encoding image", "n", n)
- embd := llama.NewLlavaImageEmbed(s.clip.cc, decoded)
- s.clip.mu.Unlock()
- inputs = append(inputs, input{embd: embd})
- }
- }
- return inputs, nil
- }
- func (s *Server) NewSequence(prompt string, images []string, numPredict int, stop []string, params *llama.SamplingParams, embedding bool) (*Sequence, error) {
- inputs, err := s.inputs(prompt, images)
- if err != nil {
- return nil, fmt.Errorf("failed to process inputs: %w", err)
- }
- var sc *llama.SamplingContext
- if params != nil {
- sc = llama.NewSamplingContext(*params)
- for _, t := range inputs {
- if t.embd == nil {
- sc.Accept(s.lc, t.token, false)
- }
- }
- }
- return &Sequence{
- inputs: inputs,
- n_prompt_tokens: len(inputs),
- responses: make(chan string, 1),
- embedding: make(chan []float32, 1),
- samplingCtx: sc,
- embeddingOnly: embedding,
- stop: stop,
- }, nil
- }
- type clip struct {
- cc *llama.ClipContext
- mu sync.Mutex
- }
- type Server struct {
- model *llama.Model
- lc *llama.Context
- // required for image embeddings
- clip clip
- // batchSize is the number of tokens or image embeddings
- // to process in a batch
- batchSize int
- // parallel is the number of parallel requests to handle
- parallel int
- // seqs is the list of parallel sequences being evaluated
- // TODO (jmorganca): this can probably be moved into run()
- seqs []*Sequence
- // context window size
- numCtx int
- mu sync.Mutex
- cond *sync.Cond
- progress float32
- status string
- }
- // waiting is true if there are no sequences to process
- func (s *Server) waiting() bool {
- for _, item := range s.seqs {
- if item != nil {
- return false
- }
- }
- return true
- }
- // processImage processes an image embedding if it's next in any sequence
- func (s *Server) processImage() bool {
- for _, seq := range s.seqs {
- if len(seq.inputs) > 0 && seq.inputs[0].embd != nil {
- llama.LlavaEvalImageEmbed(s.lc, seq.inputs[0].embd, s.batchSize, &seq.nPast)
- llama.LlavaImageEmbedFree(seq.inputs[0].embd)
- seq.iBatch = seq.inputs[0].embd.Tokens() - 1
- seq.inputs = seq.inputs[1:]
- return true
- }
- }
- return false
- }
- func (s *Server) run(ctx context.Context) {
- batch := llama.NewBatch(s.batchSize, 0, s.parallel)
- defer batch.Free()
- for {
- select {
- case <-ctx.Done():
- return
- default:
- s.mu.Lock()
- for s.waiting() {
- s.cond.Wait()
- }
- s.mu.Unlock()
- // first process an image embedding if is it next on any sequence
- // TODO (jmorganca): this will block calls to `Decode` below
- // until images are processed
- if s.processImage() {
- continue
- }
- // create a token batch to process
- for i, seq := range s.seqs {
- if seq == nil {
- continue
- }
- hitLimit := seq.numPredict > 0 && seq.numPredicted > seq.numPredict
- // if past the num predict limit
- // TODO (jmorganca): should context shift
- if hitLimit || seq.nPast > s.numCtx {
- seq.doneReason = "limit"
- close(seq.responses)
- s.lc.KvCacheSeqRm(i, 0, -1)
- s.seqs[i] = nil
- continue
- }
- if seq.t_start_process_prompt.IsZero() {
- seq.t_start_process_prompt = time.Now()
- }
- for j, t := range seq.inputs {
- // break if this is an image embedding to be handled in a follow up batch
- if t.embd != nil {
- break
- }
- if j > s.batchSize {
- break
- }
- batch.Add(t.token, seq.nPast, []int{i}, !seq.isPromptProcessing())
- seq.nPast++
- }
- seq.iBatch = batch.NumTokens() - 1
- }
- if batch.NumTokens() > 0 {
- err := s.lc.Decode(batch)
- if err != nil {
- slog.Error("failed to decode batch", "error", err)
- // TODO (jmorganca): handle this better by returning an error
- panic(err)
- }
- }
- // sample and send responses
- for i, seq := range s.seqs {
- if seq == nil {
- continue
- }
- // don't sample while prompt processing
- if seq.isPromptProcessing() {
- if batch.NumTokens() > 0 {
- seq.inputs = seq.inputs[batch.NumTokens():]
- } else {
- // image case
- // TODO (jmorganca): simplify this
- seq.inputs = seq.inputs[1:]
- }
- continue
- }
- // if done processing the prompt, send an embedding
- if seq.embeddingOnly {
- embd := s.lc.GetEmbeddingsSeq(i)
- if embd == nil {
- embd = s.lc.GetEmbeddingsIth(seq.iBatch)
- }
- seq.embedding <- embd
- close(seq.embedding)
- s.lc.KvCacheSeqRm(i, 0, -1)
- s.seqs[i] = nil
- continue
- }
- token := seq.samplingCtx.Sample(s.lc, nil, seq.iBatch)
- seq.samplingCtx.Accept(s.lc, token, true)
- seq.n_decoded += 1
- if seq.n_decoded == 1 {
- seq.t_start_genereration = time.Now()
- }
- piece := s.model.TokenToPiece(token)
- seq.numPredicted++
- slog.Debug("sampled", "piece", piece)
- // if it's an end of sequence token, break
- // TODO: just end this sequence
- if s.model.TokenIsEog(token) {
- // TODO: end the sequence instead of quitting the pool
- s.lc.KvCacheSeqRm(i, 0, -1)
- // TODO (jmorganca): we should send this back
- // as it's important for the /api/generate context
- // seq.responses <- piece
- seq.doneReason = "stop"
- close(seq.responses)
- seq.samplingCtx.Free()
- s.seqs[i] = nil
- continue
- }
- seq.inputs = []input{{token: token}}
- seq.pieces = append(seq.pieces, piece)
- sequence := strings.Join(seq.pieces, "")
- if ok, stop := findStop(sequence, seq.stop); ok {
- slog.Info("hit stop token", "stop", seq.stop)
- truncated := truncateStop(seq.pieces, stop)
- for _, p := range truncated {
- seq.responses <- p
- }
- s.lc.KvCacheSeqRm(i, 0, -1)
- seq.doneReason = "stop"
- close(seq.responses)
- seq.samplingCtx.Free()
- s.seqs[i] = nil
- continue
- }
- if maybeStop(sequence, seq.stop) {
- continue
- }
- for _, p := range seq.pieces {
- seq.responses <- p
- }
- seq.pieces = []string{}
- }
- batch.Clear()
- }
- }
- }
- // TODO (jmorganca): use structs from the api package to avoid duplication
- // this way the api acts as a proxy instead of using a different api for the
- // runner
- type CompletionRequest struct {
- Prompt string `json:"prompt"`
- Images []string `json:"images"`
- Grammar string `json:"grammar"`
- Stop []string `json:"stop"`
- api.Options
- }
- type Timings struct {
- PredictedN int `json:"predicted_n"`
- PredictedMS float64 `json:"predicted_ms"`
- PromptN int `json:"prompt_n"`
- PromptMS float64 `json:"prompt_ms"`
- }
- type CompletionResponse struct {
- Content string `json:"content"`
- Stop bool `json:"stop"`
- Model string `json:"model,omitempty"`
- Prompt string `json:"prompt,omitempty"`
- StoppedLimit bool `json:"stopped_limit,omitempty"`
- PredictedN int `json:"predicted_n,omitempty"`
- PredictedMS float64 `json:"predicted_ms,omitempty"`
- PromptN int `json:"prompt_n,omitempty"`
- PromptMS float64 `json:"prompt_ms,omitempty"`
- Timings Timings `json:"timings"`
- }
- func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
- var req CompletionRequest
- req.Options = api.DefaultOptions()
- if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
- http.Error(w, "Bad request", http.StatusBadRequest)
- return
- }
- // Set the headers to indicate streaming
- w.Header().Set("Content-Type", "application/json")
- w.Header().Set("Transfer-Encoding", "chunked")
- w.WriteHeader(http.StatusOK)
- var samplingParams llama.SamplingParams
- samplingParams.TopK = req.TopK
- samplingParams.TopP = req.TopP
- samplingParams.TfsZ = req.TFSZ
- samplingParams.TypicalP = req.TypicalP
- samplingParams.Temp = req.Temperature
- samplingParams.PenaltyRepeat = req.RepeatPenalty
- samplingParams.PenaltyFreq = req.FrequencyPenalty
- samplingParams.PenaltyPresent = req.PresencePenalty
- samplingParams.Mirostat = req.Mirostat
- samplingParams.MirostatTau = req.MirostatTau
- samplingParams.MirostatEta = req.MirostatEta
- samplingParams.PenalizeNl = req.PenalizeNewline
- samplingParams.Seed = uint32(req.Seed)
- samplingParams.Grammar = req.Grammar
- seq, err := s.NewSequence(req.Prompt, req.Images, req.NumPredict, req.Stop, &samplingParams, false)
- if err != nil {
- http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
- return
- }
- // TODO (jmorganca): add to sequence queue instead of
- // failing if a slot isn't available
- s.mu.Lock()
- for i, sq := range s.seqs {
- if sq == nil {
- s.seqs[i] = seq
- s.cond.Signal()
- break
- }
- }
- s.mu.Unlock()
- // stream the response
- for content := range seq.responses {
- if err := json.NewEncoder(w).Encode(&CompletionResponse{
- Content: content,
- }); err != nil {
- http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
- return
- }
- flusher, ok := w.(http.Flusher)
- if !ok {
- http.Error(w, "could not get flusher", http.StatusInternalServerError)
- return
- }
- flusher.Flush()
- }
- // Send the stop
- if err := json.NewEncoder(w).Encode(&CompletionResponse{
- Stop: true,
- Timings: Timings{
- PromptN: seq.n_prompt_tokens,
- PromptMS: float64(seq.t_start_genereration.Sub(seq.t_start_process_prompt).Milliseconds()),
- PredictedN: seq.n_decoded,
- PredictedMS: float64(time.Since(seq.t_start_genereration).Milliseconds()),
- },
- }); err != nil {
- http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
- return
- }
- flusher, ok := w.(http.Flusher)
- if !ok {
- http.Error(w, "could not get flusher", http.StatusInternalServerError)
- return
- }
- flusher.Flush()
- }
- type EmbeddingRequest struct {
- Content []string `json:"content"`
- }
- type EmbeddingResponse struct {
- Embedding [][]float32 `json:"embedding"`
- }
- // TODO (jmorganca): is it safe to do this concurrently with decoding?
- func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
- var req EmbeddingRequest
- if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
- http.Error(w, "Bad request", http.StatusBadRequest)
- return
- }
- w.Header().Set("Content-Type", "application/json")
- slog.Debug("embedding request", "content", req.Content)
- seqs := make([]*Sequence, len(req.Content))
- embeddings := make([][]float32, len(req.Content))
- var processed int
- var err error
- for i, content := range req.Content {
- seqs[i], err = s.NewSequence(content, nil, 0, nil, nil, true)
- if err != nil {
- http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
- return
- }
- }
- // TODO - refactor to go routines to add seq's and drain the responses
- // so we don't stall until each set is iterated through
- for processed < len(seqs) {
- s.mu.Lock()
- for i, sq := range s.seqs {
- if processed >= len(seqs) {
- break
- }
- if sq == nil {
- s.seqs[i] = seqs[processed]
- processed += 1
- }
- }
- s.cond.Signal()
- s.mu.Unlock()
- for i := range processed {
- embeddings[i] = <-seqs[i].embedding
- }
- }
- if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
- Embedding: embeddings,
- }); err != nil {
- log.Println("Failed to encode result:", err)
- return
- }
- }
- type HealthResponse struct {
- Status string `json:"status"`
- Progress float32 `json:"progress"`
- }
- // TODO (jmorganca): is it safe to do this concurrently with decoding?
- func (s *Server) health(w http.ResponseWriter, r *http.Request) {
- w.Header().Set("Content-Type", "application/json")
- if err := json.NewEncoder(w).Encode(&HealthResponse{
- Status: s.status,
- Progress: s.progress,
- }); err != nil {
- log.Println("Failed to encode result:", err)
- return
- }
- }
- func main() {
- mpath := flag.String("model", "", "Path to model binary file")
- ppath := flag.String("mmproj", "", "Path to projector binary file")
- parallel := flag.Int("parallel", 1, "Number of sequences to handle simultaneously")
- batchSize := flag.Int("batch-size", 512, "Batch size")
- nGpuLayers := flag.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
- mainGpu := flag.Int("main-gpu", 0, "Main GPU")
- flashAttention := flag.Bool("flash-attn", false, "Enable flash attention")
- numCtx := flag.Int("ctx-size", 2048, "Context (or KV cache) size")
- lpath := flag.String("lora", "", "Path to lora layer file")
- port := flag.Int("port", 8080, "Port to expose the server on")
- threads := flag.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
- // TODO not yet implemented but wired to keep the parsing aligned
- embedding := flag.Bool("embedding", false, "enable embedding vector output (default: disabled)")
- logDisable := flag.Bool("log-disable", false, "disables logging to a file")
- verbose := flag.Bool("verbose", false, "verbose output (default: disabled)")
- f32 := flag.Bool("memory-f32", false, "use f32 instead of f16 for memory key+value (default: disabled) not recommended: doubles context memory required and no measurable increase in quality")
- noMmap := flag.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
- mlock := flag.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
- tensorSplit := flag.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
- flag.Parse()
- level := slog.LevelInfo
- if *verbose {
- level = slog.LevelDebug
- }
- handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
- Level: level,
- AddSource: true,
- ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
- if attr.Key == slog.SourceKey {
- source := attr.Value.Any().(*slog.Source)
- source.File = filepath.Base(source.File)
- }
- return attr
- },
- })
- slog.SetDefault(slog.New(handler))
- // TODO actually implement...
- if *embedding {
- slog.Warn("embeddings not yet support")
- }
- if *logDisable {
- slog.Info("ignoring --log-disable")
- }
- if *f32 {
- slog.Warn("memory-f32 not yet supported")
- }
- if *noMmap {
- slog.Warn("no-mmap not yet supported")
- }
- if *mlock {
- slog.Warn("mlock not yet supported")
- }
- if *tensorSplit != "" {
- slog.Warn("tensor-split not yet implemented")
- }
- server := &Server{
- numCtx: *numCtx,
- batchSize: *batchSize,
- parallel: *parallel,
- seqs: make([]*Sequence, *parallel),
- status: "loading",
- }
- // load the model
- llama.BackendInit()
- params := llama.NewModelParams(*nGpuLayers, *mainGpu, func(progress float32) {
- slog.Debug("Loading model", "progress %", math.Round(float64(progress*100)))
- server.progress = progress
- })
- server.model = llama.LoadModelFromFile(*mpath, params)
- if *lpath != "" {
- err := server.model.ApplyLoraFromFile(*lpath, 1.0, "", *threads)
- if err != nil {
- panic(err)
- }
- }
- ctxParams := llama.NewContextParams(*numCtx, *threads, *flashAttention)
- server.lc = llama.NewContextWithModel(server.model, ctxParams)
- if *ppath != "" {
- server.clip.cc = llama.NewClipContext(*ppath)
- }
- server.cond = sync.NewCond(&server.mu)
- ctx, cancel := context.WithCancel(context.Background())
- go server.run(ctx)
- addr := "127.0.0.1:" + strconv.Itoa(*port)
- listener, err := net.Listen("tcp", addr)
- if err != nil {
- fmt.Println("Listen error:", err)
- return
- }
- defer listener.Close()
- mux := http.NewServeMux()
- mux.HandleFunc("/embedding", server.embeddings)
- mux.HandleFunc("/completion", server.completion)
- mux.HandleFunc("/health", server.health)
- httpServer := http.Server{
- Handler: mux,
- }
- server.status = "ok"
- log.Println("Server listening on", addr)
- if err := httpServer.Serve(listener); err != nil {
- log.Fatal("server error:", err)
- }
- cancel()
- }
|