common.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. /**
  2. * llama.cpp - git e95beeb1fc4621826ddd616776dbdf717366bf5c
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. // Various helper functions and utilities
  27. #pragma once
  28. #include "llama.h"
  29. #include "sampling.h"
  30. #define LOG_NO_FILE_LINE_FUNCTION
  31. #include "log.h"
  32. #include <cmath>
  33. #include <string>
  34. #include <vector>
  35. #include <random>
  36. #include <thread>
  37. #include <unordered_map>
  38. #include <tuple>
  39. #ifdef _WIN32
  40. #define DIRECTORY_SEPARATOR '\\'
  41. #else
  42. #define DIRECTORY_SEPARATOR '/'
  43. #endif // _WIN32
  44. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  45. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  46. #define print_build_info() do { \
  47. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  48. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  49. } while(0)
  50. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  51. // build info
  52. extern int LLAMA_BUILD_NUMBER;
  53. extern char const * LLAMA_COMMIT;
  54. extern char const * LLAMA_COMPILER;
  55. extern char const * LLAMA_BUILD_TARGET;
  56. struct llama_control_vector_load_info;
  57. //
  58. // CPU utils
  59. //
  60. int32_t cpu_get_num_physical_cores();
  61. int32_t cpu_get_num_math();
  62. //
  63. // CLI argument parsing
  64. //
  65. struct gpt_params {
  66. uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
  67. int32_t n_threads = cpu_get_num_math();
  68. int32_t n_threads_draft = -1;
  69. int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
  70. int32_t n_threads_batch_draft = -1;
  71. int32_t n_predict = -1; // new tokens to predict
  72. int32_t n_ctx = 0; // context size
  73. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  74. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  75. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  76. int32_t n_draft = 5; // number of tokens to draft during speculative decoding
  77. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  78. int32_t n_parallel = 1; // number of parallel sequences to decode
  79. int32_t n_sequences = 1; // number of sequences to decode
  80. float p_split = 0.1f; // speculative decoding split probability
  81. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  82. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  83. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  84. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  85. int32_t n_beams = 0; // if non-zero then use beam search of given width.
  86. int32_t grp_attn_n = 1; // group-attention factor
  87. int32_t grp_attn_w = 512; // group-attention width
  88. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  89. float rope_freq_base = 0.0f; // RoPE base frequency
  90. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  91. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  92. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  93. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  94. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  95. int32_t yarn_orig_ctx = 0; // YaRN original context length
  96. float defrag_thold = -1.0f; // KV cache defragmentation threshold
  97. ggml_backend_sched_eval_callback cb_eval = nullptr;
  98. void * cb_eval_user_data = nullptr;
  99. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  100. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  101. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  102. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  103. // // sampling parameters
  104. struct llama_sampling_params sparams;
  105. std::string model = ""; // model path
  106. std::string model_draft = ""; // draft model for speculative decoding
  107. std::string model_alias = "unknown"; // model alias
  108. std::string model_url = ""; // model url to download
  109. std::string hf_repo = ""; // HF repo
  110. std::string hf_file = ""; // HF file
  111. std::string prompt = "";
  112. std::string prompt_file = ""; // store the external prompt file name
  113. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  114. std::string input_prefix = ""; // string to prefix user inputs with
  115. std::string input_suffix = ""; // string to suffix user inputs with
  116. std::string logdir = ""; // directory in which to save YAML log files
  117. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
  118. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
  119. std::string logits_file = ""; // file for saving *all* logits
  120. std::string rpc_servers = ""; // comma separated list of RPC servers
  121. std::vector<std::string> in_files; // all input files
  122. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  123. std::vector<llama_model_kv_override> kv_overrides;
  124. // TODO: avoid tuple, use struct
  125. std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
  126. std::string lora_base = ""; // base model path for the lora adapter
  127. std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
  128. int32_t verbosity = 0;
  129. int32_t control_vector_layer_start = -1; // layer range for control vector
  130. int32_t control_vector_layer_end = -1; // layer range for control vector
  131. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  132. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  133. // (which is more convenient to use for plotting)
  134. //
  135. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  136. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  137. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  138. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  139. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  140. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  141. bool kl_divergence = false; // compute KL divergence
  142. bool usage = false; // print usage
  143. bool use_color = false; // use color to distinguish generations and inputs
  144. bool special = false; // enable special token output
  145. bool interactive = false; // interactive mode
  146. bool interactive_first = false; // wait for user input immediately
  147. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  148. bool prompt_cache_all = false; // save user input and generations to prompt cache
  149. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  150. bool embedding = false; // get only sentence embedding
  151. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  152. bool multiline_input = false; // reverse the usage of `\`
  153. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  154. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  155. bool flash_attn = false; // flash attention
  156. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  157. bool ignore_eos = false; // ignore generated EOS tokens
  158. bool logits_all = false; // return logits for all tokens in the batch
  159. bool use_mmap = true; // use mmap for faster loads
  160. bool use_mlock = false; // use mlock to keep model in memory
  161. bool verbose_prompt = false; // print prompt tokens before generation
  162. bool display_prompt = true; // print prompt before generation
  163. bool infill = false; // use infill mode
  164. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  165. bool no_kv_offload = false; // disable KV offloading
  166. bool warmup = true; // warmup run
  167. bool check_tensors = false; // validate tensor data
  168. std::string cache_type_k = "f16"; // KV cache data type for the K
  169. std::string cache_type_v = "f16"; // KV cache data type for the V
  170. // multimodal models (see examples/llava)
  171. std::string mmproj = ""; // path to multimodal projector
  172. std::vector<std::string> image; // path to image file(s)
  173. // server params
  174. int32_t port = 8080; // server listens on this network port
  175. int32_t timeout_read = 600; // http read timeout in seconds
  176. int32_t timeout_write = timeout_read; // http write timeout in seconds
  177. int32_t n_threads_http = -1; // number of threads to process HTTP requests
  178. std::string hostname = "127.0.0.1";
  179. std::string public_path = "";
  180. std::string chat_template = "";
  181. std::string system_prompt = "";
  182. std::vector<std::string> api_keys;
  183. std::string ssl_file_key = "";
  184. std::string ssl_file_cert = "";
  185. bool endpoint_slots = true;
  186. bool endpoint_metrics = false;
  187. bool log_json = false;
  188. std::string slot_save_path;
  189. float slot_prompt_similarity = 0.5f;
  190. // batched-bench params
  191. bool is_pp_shared = false;
  192. std::vector<int32_t> n_pp;
  193. std::vector<int32_t> n_tg;
  194. std::vector<int32_t> n_pl;
  195. // retrieval params
  196. std::vector<std::string> context_files; // context files to embed
  197. int32_t chunk_size = 64; // chunk size for context embedding
  198. std::string chunk_separator = "\n"; // chunk separator for context embedding
  199. // passkey params
  200. int32_t n_junk = 250; // number of times to repeat the junk text
  201. int32_t i_pos = -1; // position of the passkey in the junk text
  202. // imatrix params
  203. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  204. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  205. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  206. int32_t i_chunk = 0; // start processing from this chunk
  207. bool process_output = false; // collect data for the output tensor
  208. bool compute_ppl = true; // whether to compute perplexity
  209. };
  210. void gpt_params_handle_model_default(gpt_params & params);
  211. bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
  212. bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
  213. bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
  214. void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
  215. std::string gpt_params_get_system_info(const gpt_params & params);
  216. //
  217. // String utils
  218. //
  219. std::vector<std::string> string_split(std::string input, char separator);
  220. std::string string_strip(const std::string & str);
  221. std::string string_get_sortable_timestamp();
  222. template<class T>
  223. static std::vector<T> string_split(const std::string & str, char delim) {
  224. std::vector<T> values;
  225. std::istringstream str_stream(str);
  226. std::string token;
  227. while (std::getline(str_stream, token, delim)) {
  228. T value;
  229. std::istringstream token_stream(token);
  230. token_stream >> value;
  231. values.push_back(value);
  232. }
  233. return values;
  234. }
  235. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  236. void string_process_escapes(std::string & input);
  237. //
  238. // Filesystem utils
  239. //
  240. bool fs_validate_filename(const std::string & filename);
  241. bool fs_create_directory_with_parents(const std::string & path);
  242. std::string fs_get_cache_directory();
  243. std::string fs_get_cache_file(const std::string & filename);
  244. //
  245. // Model utils
  246. //
  247. // TODO: avoid tuplue, use struct
  248. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
  249. struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
  250. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
  251. struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params);
  252. struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params);
  253. // Batch utils
  254. void llama_batch_clear(struct llama_batch & batch);
  255. void llama_batch_add(
  256. struct llama_batch & batch,
  257. llama_token id,
  258. llama_pos pos,
  259. const std::vector<llama_seq_id> & seq_ids,
  260. bool logits);
  261. //
  262. // Vocab utils
  263. //
  264. // tokenizes a string into a vector of tokens
  265. // should work similar to Python's `tokenizer.encode`
  266. std::vector<llama_token> llama_tokenize(
  267. const struct llama_context * ctx,
  268. const std::string & text,
  269. bool add_special,
  270. bool parse_special = false);
  271. std::vector<llama_token> llama_tokenize(
  272. const struct llama_model * model,
  273. const std::string & text,
  274. bool add_special,
  275. bool parse_special = false);
  276. // tokenizes a token into a piece, optionally renders special/control tokens
  277. // should work similar to Python's `tokenizer.id_to_piece`
  278. std::string llama_token_to_piece(
  279. const struct llama_context * ctx,
  280. llama_token token,
  281. bool special = true);
  282. // TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
  283. // that takes into account the tokenizer type and decides how to handle the leading space
  284. //
  285. // detokenizes a vector of tokens into a string
  286. // should work similar to Python's `tokenizer.decode`
  287. // removes the leading space from the first non-BOS token
  288. std::string llama_detokenize_spm(
  289. llama_context * ctx,
  290. const std::vector<llama_token> & tokens);
  291. // detokenizes a vector of tokens into a string
  292. // should work similar to Python's `tokenizer.decode`
  293. std::string llama_detokenize_bpe(
  294. llama_context * ctx,
  295. const std::vector<llama_token> & tokens);
  296. // Uses the value from the model metadata if possible, otherwise
  297. // defaults to true when model type is SPM, otherwise false.
  298. bool llama_should_add_bos_token(const llama_model * model);
  299. //
  300. // Chat template utils
  301. //
  302. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  303. bool llama_chat_verify_template(const std::string & tmpl);
  304. //
  305. // KV cache utils
  306. //
  307. // Dump the KV cache view with the number of sequences per cell.
  308. void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  309. // Dump the KV cache view showing individual sequences in each cell (long output).
  310. void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  311. //
  312. // Embedding utils
  313. //
  314. void llama_embd_normalize(const float * inp, float * out, int n);
  315. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  316. //
  317. // Control vector utils
  318. //
  319. struct llama_control_vector_data {
  320. int n_embd;
  321. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  322. std::vector<float> data;
  323. };
  324. struct llama_control_vector_load_info {
  325. float strength;
  326. std::string fname;
  327. };
  328. // Load control vectors, scale each by strength, and add them together.
  329. // On error, returns {-1, empty}
  330. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
  331. //
  332. // Split utils
  333. //
  334. static const char * const LLM_KV_SPLIT_NO = "split.no";
  335. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  336. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  337. //
  338. // YAML utils
  339. //
  340. void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
  341. void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
  342. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
  343. void yaml_dump_non_result_info(
  344. FILE * stream, const gpt_params & params, const llama_context * lctx,
  345. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);