sampling.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. #include "sampling.h"
  2. #include "common.h"
  3. #include <cmath>
  4. #include <unordered_map>
  5. // the ring buffer works similarly to std::deque, but with a fixed capacity
  6. // TODO: deduplicate with llama-impl.h
  7. template<typename T>
  8. struct ring_buffer {
  9. ring_buffer(size_t cap) : capacity(cap), data(cap) {}
  10. T & front() {
  11. if (sz == 0) {
  12. throw std::runtime_error("ring buffer is empty");
  13. }
  14. return data[first];
  15. }
  16. const T & front() const {
  17. if (sz == 0) {
  18. throw std::runtime_error("ring buffer is empty");
  19. }
  20. return data[first];
  21. }
  22. T & back() {
  23. if (sz == 0) {
  24. throw std::runtime_error("ring buffer is empty");
  25. }
  26. return data[pos];
  27. }
  28. const T & back() const {
  29. if (sz == 0) {
  30. throw std::runtime_error("ring buffer is empty");
  31. }
  32. return data[pos];
  33. }
  34. void push_back(const T & value) {
  35. if (sz == capacity) {
  36. // advance the start when buffer is full
  37. first = (first + 1) % capacity;
  38. } else {
  39. sz++;
  40. }
  41. data[pos] = value;
  42. pos = (pos + 1) % capacity;
  43. }
  44. T pop_front() {
  45. if (sz == 0) {
  46. throw std::runtime_error("ring buffer is empty");
  47. }
  48. T value = data[first];
  49. first = (first + 1) % capacity;
  50. sz--;
  51. return value;
  52. }
  53. const T & rat(size_t i) const {
  54. if (i >= sz) {
  55. throw std::runtime_error("ring buffer: index out of bounds");
  56. }
  57. return data[(first + sz - i - 1) % capacity];
  58. }
  59. std::vector<T> to_vector() const {
  60. std::vector<T> result;
  61. result.reserve(sz);
  62. for (size_t i = 0; i < sz; i++) {
  63. result.push_back(data[(first + i) % capacity]);
  64. }
  65. return result;
  66. }
  67. void clear() {
  68. // here only reset the status of the buffer
  69. sz = 0;
  70. first = 0;
  71. pos = 0;
  72. }
  73. bool empty() const {
  74. return sz == 0;
  75. }
  76. size_t size() const {
  77. return sz;
  78. }
  79. size_t capacity = 0;
  80. size_t sz = 0;
  81. size_t first = 0;
  82. size_t pos = 0;
  83. std::vector<T> data;
  84. };
  85. struct common_sampler {
  86. common_params_sampling params;
  87. struct llama_sampler * grmr;
  88. struct llama_sampler * chain;
  89. ring_buffer<llama_token> prev;
  90. std::vector<llama_token_data> cur;
  91. llama_token_data_array cur_p;
  92. void set_logits(struct llama_context * ctx, int idx) {
  93. const auto * logits = llama_get_logits_ith(ctx, idx);
  94. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  95. cur.resize(n_vocab);
  96. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  97. cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
  98. }
  99. cur_p = { cur.data(), cur.size(), -1, false };
  100. }
  101. };
  102. std::string common_params_sampling::print() const {
  103. char result[1024];
  104. snprintf(result, sizeof(result),
  105. "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
  106. "\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
  107. "\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
  108. "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
  109. penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
  110. dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
  111. top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
  112. mirostat, mirostat_eta, mirostat_tau);
  113. return std::string(result);
  114. }
  115. struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
  116. llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
  117. lparams.no_perf = params.no_perf;
  118. auto * result = new common_sampler {
  119. /* .params = */ params,
  120. /* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
  121. /* .chain = */ llama_sampler_chain_init(lparams),
  122. /* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
  123. /* .cur = */ {},
  124. /* .cur_p = */ {},
  125. };
  126. llama_sampler_chain_add(result->chain,
  127. llama_sampler_init_logit_bias(
  128. llama_n_vocab(model),
  129. params.logit_bias.size(),
  130. params.logit_bias.data()));
  131. if (params.mirostat == 0) {
  132. for (const auto & cnstr : params.samplers) {
  133. switch (cnstr) {
  134. case COMMON_SAMPLER_TYPE_DRY:
  135. {
  136. std::vector<const char *> c_breakers;
  137. c_breakers.reserve(params.dry_sequence_breakers.size());
  138. for (const auto & str : params.dry_sequence_breakers) {
  139. c_breakers.push_back(str.c_str());
  140. }
  141. llama_sampler_chain_add(result->chain, llama_sampler_init_dry (model, params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
  142. }
  143. break;
  144. case COMMON_SAMPLER_TYPE_TOP_K:
  145. llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
  146. break;
  147. case COMMON_SAMPLER_TYPE_TOP_P:
  148. llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
  149. break;
  150. case COMMON_SAMPLER_TYPE_MIN_P:
  151. llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
  152. break;
  153. case COMMON_SAMPLER_TYPE_XTC:
  154. llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
  155. break;
  156. case COMMON_SAMPLER_TYPE_TYPICAL_P:
  157. llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
  158. break;
  159. case COMMON_SAMPLER_TYPE_TEMPERATURE:
  160. llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
  161. break;
  162. case COMMON_SAMPLER_TYPE_INFILL:
  163. llama_sampler_chain_add(result->chain, llama_sampler_init_infill (model));
  164. break;
  165. case COMMON_SAMPLER_TYPE_PENALTIES:
  166. llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
  167. break;
  168. default:
  169. GGML_ASSERT(false && "unknown sampler type");
  170. }
  171. }
  172. llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
  173. } else if (params.mirostat == 1) {
  174. llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
  175. llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
  176. } else if (params.mirostat == 2) {
  177. llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
  178. llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
  179. } else {
  180. GGML_ASSERT(false && "unknown mirostat version");
  181. }
  182. return result;
  183. }
  184. void common_sampler_free(struct common_sampler * gsmpl) {
  185. if (gsmpl) {
  186. llama_sampler_free(gsmpl->grmr);
  187. llama_sampler_free(gsmpl->chain);
  188. delete gsmpl;
  189. }
  190. }
  191. void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
  192. if (accept_grammar) {
  193. llama_sampler_accept(gsmpl->grmr, token);
  194. }
  195. llama_sampler_accept(gsmpl->chain, token);
  196. gsmpl->prev.push_back(token);
  197. }
  198. void common_sampler_reset(struct common_sampler * gsmpl) {
  199. llama_sampler_reset(gsmpl->grmr);
  200. llama_sampler_reset(gsmpl->chain);
  201. }
  202. struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
  203. return new common_sampler {
  204. /* .params = */ gsmpl->params,
  205. /* .grmr = */ llama_sampler_clone(gsmpl->grmr),
  206. /* .chain = */ llama_sampler_clone(gsmpl->chain),
  207. /* .prev = */ gsmpl->prev,
  208. /* .cur = */ gsmpl->cur,
  209. /* .cur_p = */ gsmpl->cur_p,
  210. };
  211. }
  212. void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
  213. // TODO: measure grammar performance
  214. if (gsmpl) {
  215. llama_perf_sampler_print(gsmpl->chain);
  216. }
  217. if (ctx) {
  218. llama_perf_context_print(ctx);
  219. }
  220. }
  221. llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
  222. gsmpl->set_logits(ctx, idx);
  223. auto & grmr = gsmpl->grmr;
  224. auto & chain = gsmpl->chain;
  225. auto & cur_p = gsmpl->cur_p; // initialized by set_logits
  226. if (grammar_first) {
  227. llama_sampler_apply(grmr, &cur_p);
  228. }
  229. llama_sampler_apply(chain, &cur_p);
  230. GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
  231. const llama_token id = cur_p.data[cur_p.selected].id;
  232. if (grammar_first) {
  233. return id;
  234. }
  235. // check if it the sampled token fits the grammar
  236. {
  237. llama_token_data single_token_data = { id, 1.0f, 0.0f };
  238. llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
  239. llama_sampler_apply(grmr, &single_token_data_array);
  240. const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
  241. if (is_valid) {
  242. return id;
  243. }
  244. }
  245. // resampling:
  246. // if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
  247. gsmpl->set_logits(ctx, idx);
  248. llama_sampler_apply(grmr, &cur_p);
  249. llama_sampler_apply(chain, &cur_p);
  250. GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
  251. return cur_p.data[cur_p.selected].id;
  252. }
  253. std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
  254. GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
  255. std::vector<llama_token> result;
  256. result.reserve(idxs.size());
  257. size_t i = 0;
  258. for (; i < draft.size(); i++) {
  259. const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
  260. common_sampler_accept(gsmpl, id, true);
  261. result.push_back(id);
  262. if (draft[i] != id) {
  263. break;
  264. }
  265. }
  266. if (i == draft.size()) {
  267. const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
  268. common_sampler_accept(gsmpl, id, true);
  269. result.push_back(id);
  270. }
  271. return result;
  272. }
  273. std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
  274. std::vector<int> idxs(draft.size() + 1);
  275. for (size_t i = 0; i < idxs.size(); ++i) {
  276. idxs[i] = i;
  277. }
  278. return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
  279. }
  280. uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
  281. return llama_sampler_get_seed(gsmpl->chain);
  282. }
  283. // helpers
  284. llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
  285. return &gsmpl->cur_p;
  286. }
  287. llama_token common_sampler_last(const struct common_sampler * gsmpl) {
  288. return gsmpl->prev.rat(0);
  289. }
  290. std::string common_sampler_print(const struct common_sampler * gsmpl) {
  291. std::string result = "logits ";
  292. for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
  293. const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
  294. result += std::string("-> ") + llama_sampler_name(smpl) + " ";
  295. }
  296. return result;
  297. }
  298. std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
  299. n = std::min(n, (int) gsmpl->prev.size());
  300. if (n <= 0) {
  301. return "";
  302. }
  303. std::string result;
  304. result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
  305. for (int i = n - 1; i >= 0; i--) {
  306. const llama_token id = gsmpl->prev.rat(i);
  307. GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
  308. result += common_token_to_piece(ctx_main, id);
  309. }
  310. return result;
  311. }
  312. char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
  313. switch (cnstr) {
  314. case COMMON_SAMPLER_TYPE_DRY: return 'd';
  315. case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
  316. case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
  317. case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
  318. case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
  319. case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
  320. case COMMON_SAMPLER_TYPE_XTC: return 'x';
  321. case COMMON_SAMPLER_TYPE_INFILL: return 'i';
  322. case COMMON_SAMPLER_TYPE_PENALTIES: return 'e';
  323. default : return '?';
  324. }
  325. }
  326. std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
  327. switch (cnstr) {
  328. case COMMON_SAMPLER_TYPE_DRY: return "dry";
  329. case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
  330. case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
  331. case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
  332. case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
  333. case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
  334. case COMMON_SAMPLER_TYPE_XTC: return "xtc";
  335. case COMMON_SAMPLER_TYPE_INFILL: return "infill";
  336. case COMMON_SAMPLER_TYPE_PENALTIES: return "penalties";
  337. default : return "";
  338. }
  339. }
  340. std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
  341. std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
  342. { "dry", COMMON_SAMPLER_TYPE_DRY },
  343. { "top_k", COMMON_SAMPLER_TYPE_TOP_K },
  344. { "top_p", COMMON_SAMPLER_TYPE_TOP_P },
  345. { "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
  346. { "min_p", COMMON_SAMPLER_TYPE_MIN_P },
  347. { "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
  348. { "xtc", COMMON_SAMPLER_TYPE_XTC },
  349. { "infill", COMMON_SAMPLER_TYPE_INFILL },
  350. { "penalties", COMMON_SAMPLER_TYPE_PENALTIES },
  351. };
  352. // since samplers names are written multiple ways
  353. // make it ready for both system names and input names
  354. std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
  355. { "top-k", COMMON_SAMPLER_TYPE_TOP_K },
  356. { "top-p", COMMON_SAMPLER_TYPE_TOP_P },
  357. { "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
  358. { "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
  359. { "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
  360. { "typ-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
  361. { "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
  362. { "min-p", COMMON_SAMPLER_TYPE_MIN_P },
  363. { "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
  364. };
  365. std::vector<common_sampler_type> samplers;
  366. samplers.reserve(names.size());
  367. for (const auto & name : names) {
  368. auto sampler = sampler_canonical_name_map.find(name);
  369. if (sampler != sampler_canonical_name_map.end()) {
  370. samplers.push_back(sampler->second);
  371. } else {
  372. if (allow_alt_names) {
  373. sampler = sampler_alt_name_map.find(name);
  374. if (sampler != sampler_alt_name_map.end()) {
  375. samplers.push_back(sampler->second);
  376. }
  377. }
  378. }
  379. }
  380. return samplers;
  381. }
  382. std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
  383. std::unordered_map<char, common_sampler_type> sampler_name_map = {
  384. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY), COMMON_SAMPLER_TYPE_DRY },
  385. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
  386. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
  387. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
  388. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
  389. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
  390. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
  391. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL), COMMON_SAMPLER_TYPE_INFILL },
  392. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES), COMMON_SAMPLER_TYPE_PENALTIES },
  393. };
  394. std::vector<common_sampler_type> samplers;
  395. samplers.reserve(chars.size());
  396. for (const auto & c : chars) {
  397. const auto sampler = sampler_name_map.find(c);
  398. if (sampler != sampler_name_map.end()) {
  399. samplers.push_back(sampler->second);
  400. }
  401. }
  402. return samplers;
  403. }