123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683 |
- #pragma once
- #include "ggml.h"
- #include "ggml-cuda.h"
- #include <memory>
- #if defined(GGML_USE_HIPBLAS)
- #define GGML_COMMON_DECL_HIP
- #define GGML_COMMON_IMPL_HIP
- #else
- #define GGML_COMMON_DECL_CUDA
- #define GGML_COMMON_IMPL_CUDA
- #endif
- #include "ggml-common.h"
- #include <cstdio>
- #include <array>
- #include <cassert>
- #include <cfloat>
- #include <string>
- #include <vector>
- #if defined(GGML_USE_HIPBLAS)
- #include <hip/hip_runtime.h>
- #include <hipblas/hipblas.h>
- #include <hip/hip_fp16.h>
- #ifdef __HIP_PLATFORM_AMD__
- // for rocblas_initialize()
- #include "rocblas/rocblas.h"
- #endif // __HIP_PLATFORM_AMD__
- #define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
- #define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
- #define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
- #define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
- #define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
- #define CUBLAS_OP_N HIPBLAS_OP_N
- #define CUBLAS_OP_T HIPBLAS_OP_T
- #define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
- #define CUBLAS_TF32_TENSOR_OP_MATH 0
- #define CUDA_R_16F HIPBLAS_R_16F
- #define CUDA_R_32F HIPBLAS_R_32F
- #define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
- #define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
- #define cublasCreate hipblasCreate
- #define cublasDestroy hipblasDestroy
- #define cublasGemmEx hipblasGemmEx
- #define cublasGemmBatchedEx hipblasGemmBatchedEx
- #define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
- #define cublasHandle_t hipblasHandle_t
- #define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
- #define cublasSetStream hipblasSetStream
- #define cublasSgemm hipblasSgemm
- #define cublasStatus_t hipblasStatus_t
- #define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
- #define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
- #define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
- #define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
- #define cudaDeviceProp hipDeviceProp_t
- #define cudaDeviceSynchronize hipDeviceSynchronize
- #define cudaError_t hipError_t
- #define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
- #define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
- #define cudaEventCreateWithFlags hipEventCreateWithFlags
- #define cudaEventDisableTiming hipEventDisableTiming
- #define cudaEventRecord hipEventRecord
- #define cudaEventSynchronize hipEventSynchronize
- #define cudaEvent_t hipEvent_t
- #define cudaEventDestroy hipEventDestroy
- #define cudaFree hipFree
- #define cudaFreeHost hipHostFree
- #define cudaGetDevice hipGetDevice
- #define cudaGetDeviceCount hipGetDeviceCount
- #define cudaGetDeviceProperties hipGetDeviceProperties
- #define cudaGetErrorString hipGetErrorString
- #define cudaGetLastError hipGetLastError
- #define cudaHostRegister hipHostRegister
- #define cudaHostRegisterPortable hipHostRegisterPortable
- #define cudaHostRegisterReadOnly hipHostRegisterReadOnly
- #define cudaHostUnregister hipHostUnregister
- #define cudaLaunchHostFunc hipLaunchHostFunc
- #ifdef GGML_HIP_UMA
- #define cudaMalloc hipMallocManaged
- #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
- #else
- #define cudaMalloc hipMalloc
- #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
- #endif
- #define cudaMemcpy hipMemcpy
- #define cudaMemcpyAsync hipMemcpyAsync
- #define cudaMemcpyPeerAsync hipMemcpyPeerAsync
- #define cudaMemcpy2DAsync hipMemcpy2DAsync
- #define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
- #define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
- #define cudaMemcpyHostToDevice hipMemcpyHostToDevice
- #define cudaMemcpyKind hipMemcpyKind
- #define cudaMemset hipMemset
- #define cudaMemsetAsync hipMemsetAsync
- #define cudaMemGetInfo hipMemGetInfo
- #define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
- #define cudaSetDevice hipSetDevice
- #define cudaStreamCreateWithFlags hipStreamCreateWithFlags
- #define cudaStreamDestroy hipStreamDestroy
- #define cudaStreamFireAndForget hipStreamFireAndForget
- #define cudaStreamNonBlocking hipStreamNonBlocking
- #define cudaStreamPerThread hipStreamPerThread
- #define cudaStreamSynchronize hipStreamSynchronize
- #define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
- #define cudaStream_t hipStream_t
- #define cudaSuccess hipSuccess
- #define __trap abort
- #define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
- #define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
- #define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
- #define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
- #define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
- #define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
- #define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
- #define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
- #define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
- #else
- #include <cuda_runtime.h>
- #include <cuda.h>
- #include <cublas_v2.h>
- #include <cuda_fp16.h>
- #if CUDART_VERSION < 11020
- #define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
- #define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
- #define CUBLAS_COMPUTE_16F CUDA_R_16F
- #define CUBLAS_COMPUTE_32F CUDA_R_32F
- #define cublasComputeType_t cudaDataType_t
- #endif // CUDART_VERSION < 11020
- #endif // defined(GGML_USE_HIPBLAS)
- #define STRINGIZE_IMPL(...) #__VA_ARGS__
- #define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
- #define WARP_SIZE 32
- #define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
- #define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons
- #define CC_PASCAL 600
- #define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
- #define CC_VOLTA 700
- #define CC_AMPERE 800
- #define CC_OFFSET_AMD 1000000
- #define CC_RDNA1 (CC_OFFSET_AMD + 1010)
- #define CC_RDNA2 (CC_OFFSET_AMD + 1030)
- #define CC_RDNA3 (CC_OFFSET_AMD + 1100)
- // define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
- // on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
- // for large computational tasks. the drawback is that this requires some extra amount of VRAM:
- // - 7B quantum model: +100-200 MB
- // - 13B quantum model: +200-400 MB
- //
- //#define GGML_CUDA_FORCE_MMQ
- // TODO: improve this to be correct for more hardware
- // for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
- #if !defined(GGML_CUDA_FORCE_MMQ)
- #define CUDA_USE_TENSOR_CORES
- #endif
- #define MMVQ_MAX_BATCH_SIZE 8 // max batch size to use MMVQ kernels
- #define MMQ_MAX_BATCH_SIZE 32 // max batch size to use MMQ kernels when tensor cores are available
- #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #define GGML_CUDA_MAX_STREAMS 8
- [[noreturn]]
- void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
- #define CUDA_CHECK_GEN(err, success, error_fn) \
- do { \
- auto err_ = (err); \
- if (err_ != (success)) { \
- ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \
- } \
- } while (0)
- #define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
- #if CUDART_VERSION >= 12000
- static const char * cublas_get_error_str(const cublasStatus_t err) {
- return cublasGetStatusString(err);
- }
- #else
- static const char * cublas_get_error_str(const cublasStatus_t err) {
- switch (err) {
- case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
- case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
- case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
- case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
- case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
- case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
- case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
- case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
- case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
- default: return "unknown error";
- }
- }
- #endif // CUDART_VERSION >= 12000
- #define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
- #if !defined(GGML_USE_HIPBLAS)
- static const char * cu_get_error_str(CUresult err) {
- const char * err_str;
- cuGetErrorString(err, &err_str);
- return err_str;
- }
- #define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
- #endif
- #if CUDART_VERSION >= 11100
- #define GGML_CUDA_ASSUME(x) __builtin_assume(x)
- #else
- #define GGML_CUDA_ASSUME(x)
- #endif // CUDART_VERSION >= 11100
- #ifdef GGML_CUDA_F16
- typedef half dfloat; // dequantize float
- typedef half2 dfloat2;
- #else
- typedef float dfloat; // dequantize float
- typedef float2 dfloat2;
- #endif //GGML_CUDA_F16
- #if defined(GGML_USE_HIPBLAS)
- #define __CUDA_ARCH__ 1300
- #if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
- defined(__gfx1150__) || defined(__gfx1151__)
- #define RDNA3
- #endif
- #if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
- defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
- #define RDNA2
- #endif
- #ifndef __has_builtin
- #define __has_builtin(x) 0
- #endif
- typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
- typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
- static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
- const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
- const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
- #if __has_builtin(__builtin_elementwise_sub_sat)
- const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
- return reinterpret_cast<const int &>(c);
- #else
- int8x4_t c;
- int16_t tmp;
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- tmp = va[i] - vb[i];
- if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
- if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
- c[i] = tmp;
- }
- return reinterpret_cast<int &>(c);
- #endif // __has_builtin(__builtin_elementwise_sub_sat)
- }
- static __device__ __forceinline__ int __vsub4(const int a, const int b) {
- return __vsubss4(a, b);
- }
- static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
- const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
- const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
- unsigned int c;
- uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
- #pragma unroll
- for (int i = 0; i < 4; ++i) {
- vc[i] = va[i] == vb[i] ? 0xff : 0x00;
- }
- return c;
- }
- static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
- #if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
- c = __builtin_amdgcn_sdot4(a, b, c, false);
- #elif defined(RDNA3)
- c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
- #elif defined(__gfx1010__) || defined(__gfx900__)
- int tmp1;
- int tmp2;
- asm("\n \
- v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
- v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
- v_add3_u32 %0, %1, %2, %0 \n \
- v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
- v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
- v_add3_u32 %0, %1, %2, %0 \n \
- "
- : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
- : "v"(a), "v"(b)
- );
- #else
- const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
- const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
- c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
- #endif
- return c;
- }
- #if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
- // __shfl_xor() for half2 was added in ROCm 5.6
- static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int width) {
- typedef union half2_b32 {
- half2 val;
- int b32;
- } half2_b32_t;
- half2_b32_t tmp;
- tmp.val = var;
- tmp.b32 = __shfl_xor(tmp.b32, laneMask, width);
- return tmp.val;
- }
- #endif // defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
- #endif // defined(GGML_USE_HIPBLAS)
- #define FP16_AVAILABLE (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
- #define FP16_MMA_AVAILABLE !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
- static bool fast_fp16_available(const int cc) {
- return cc >= CC_PASCAL && cc != 610;
- }
- static bool fp16_mma_available(const int cc) {
- return cc < CC_OFFSET_AMD && cc >= CC_VOLTA;
- }
- [[noreturn]]
- static __device__ void no_device_code(
- const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
- file_name, line, function_name, arch);
- GGML_UNUSED(arch_list);
- #else
- printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
- file_name, line, function_name, arch, arch_list);
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- __trap();
- GGML_UNUSED(no_device_code); // suppress unused function warning
- }
- #ifdef __CUDA_ARCH__
- #define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
- #else
- #define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
- #endif // __CUDA_ARCH__
- static __device__ __forceinline__ float warp_reduce_sum(float x) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x += __shfl_xor_sync(0xffffffff, x, mask, 32);
- }
- return x;
- }
- static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
- a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
- }
- return a;
- }
- static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
- #if FP16_AVAILABLE
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32);
- reinterpret_cast<half&>(a.x) += __low2half(a_other);
- reinterpret_cast<half&>(a.y) += __high2half(a_other);
- }
- return a;
- #else
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
- }
- return a;
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #else
- NO_DEVICE_CODE;
- return a;
- #endif // FP16_AVAILABLE
- }
- static __device__ __forceinline__ float warp_reduce_max(float x) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
- }
- return x;
- }
- static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
- #if FP16_AVAILABLE
- #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
- return __float2half(fmaxf(__half2float(a), __half2float(b)));
- #else
- return __hmax(a, b);
- #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
- #else
- NO_DEVICE_CODE;
- GGML_UNUSED(b);
- return a;
- #endif // FP16_AVAILABLE
- }
- static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
- #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- #if CUDART_VERSION >= CUDART_HMAX
- return __hmax2(a, b);
- #else
- half2 ret;
- reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a), __low2float(b)));
- reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
- return ret;
- #endif // CUDART_VERSION >= CUDART_HMAX
- #else
- GGML_UNUSED(a);
- GGML_UNUSED(b);
- NO_DEVICE_CODE;
- #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- }
- static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
- #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
- }
- return x;
- #else
- GGML_UNUSED(x);
- NO_DEVICE_CODE;
- #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
- }
- #if CUDART_VERSION < CUDART_HMASK
- static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
- const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
- const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
- return mask_low | mask_high;
- }
- #endif // CUDART_VERSION < 12000
- // TODO: move to ggml-common.h
- static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
- typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
- static __device__ __forceinline__ float get_alibi_slope(
- const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1
- ) {
- if (max_bias <= 0.0f) {
- return 1.0f;
- }
- const float base = h < n_head_log2 ? m0 : m1;
- const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
- return powf(base, exph);
- }
- //////////////////////
- struct ggml_cuda_device_info {
- int device_count;
- struct cuda_device_info {
- int cc; // compute capability
- int nsm; // number of streaming multiprocessors
- size_t smpb; // max. shared memory per block
- bool vmm; // virtual memory support
- size_t vmm_granularity; // granularity of virtual memory
- size_t total_vram;
- };
- cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
- std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
- };
- const ggml_cuda_device_info & ggml_cuda_info();
- void ggml_cuda_set_device(int device);
- int ggml_cuda_get_device();
- struct ggml_cuda_pool {
- virtual ~ggml_cuda_pool() = default;
- virtual void * alloc(size_t size, size_t * actual_size) = 0;
- virtual void free(void * ptr, size_t size) = 0;
- };
- template<typename T>
- struct ggml_cuda_pool_alloc {
- ggml_cuda_pool * pool = nullptr;
- T * ptr = nullptr;
- size_t actual_size = 0;
- ggml_cuda_pool_alloc() = default;
- explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
- }
- ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
- alloc(size);
- }
- ~ggml_cuda_pool_alloc() {
- if (ptr != nullptr) {
- pool->free(ptr, actual_size);
- }
- }
- // size is in number of elements
- T * alloc(size_t size) {
- GGML_ASSERT(pool != nullptr);
- GGML_ASSERT(ptr == nullptr);
- ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
- return ptr;
- }
- T * alloc(ggml_cuda_pool & pool, size_t size) {
- this->pool = &pool;
- return alloc(size);
- }
- T * get() {
- return ptr;
- }
- ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
- ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
- ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
- ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
- };
- // backend interface
- struct ggml_tensor_extra_gpu {
- void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
- cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
- };
- #if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)
- #define USE_CUDA_GRAPH
- #endif
- struct ggml_graph_node_properties {
- void * node_address;
- ggml_op node_op;
- int64_t ne[GGML_MAX_DIMS];
- size_t nb[GGML_MAX_DIMS];
- void * src_address[GGML_MAX_SRC];
- };
- struct ggml_cuda_graph {
- #ifdef USE_CUDA_GRAPH
- ~ggml_cuda_graph() {
- if (instance != nullptr) {
- CUDA_CHECK(cudaGraphExecDestroy(instance));
- }
- if (graph != nullptr) {
- CUDA_CHECK(cudaGraphDestroy(graph));
- }
- }
- cudaGraph_t graph = nullptr;
- cudaGraphExec_t instance = nullptr;
- size_t num_nodes = 0;
- std::vector<cudaGraphNode_t> nodes;
- std::vector<cudaKernelNodeParams> params;
- bool disable_due_to_gpu_arch = false;
- bool disable_due_to_too_many_updates = false;
- bool disable_due_to_failed_graph_capture = false;
- int number_consecutive_updates = 0;
- std::vector<ggml_graph_node_properties> ggml_graph_properties;
- std::vector<char **> updated_kernel_arg;
- #endif
- };
- struct ggml_backend_cuda_context {
- int device;
- std::string name;
- cudaEvent_t copy_event = nullptr;
- cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
- cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
- std::unique_ptr<ggml_cuda_graph> cuda_graph;
- explicit ggml_backend_cuda_context(int device) :
- device(device),
- name(GGML_CUDA_NAME + std::to_string(device)) {
- }
- ~ggml_backend_cuda_context() {
- if (copy_event != nullptr) {
- CUDA_CHECK(cudaEventDestroy(copy_event));
- }
- for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
- for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
- if (streams[i][j] != nullptr) {
- CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
- }
- }
- if (cublas_handles[i] != nullptr) {
- CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
- }
- }
- }
- cudaStream_t stream(int device, int stream) {
- if (streams[device][stream] == nullptr) {
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
- }
- return streams[device][stream];
- }
- cudaStream_t stream() {
- return stream(device, 0);
- }
- cublasHandle_t cublas_handle(int device) {
- if (cublas_handles[device] == nullptr) {
- ggml_cuda_set_device(device);
- CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
- CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
- }
- return cublas_handles[device];
- }
- cublasHandle_t cublas_handle() {
- return cublas_handle(device);
- }
- // pool
- std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
- static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
- ggml_cuda_pool & pool(int device) {
- if (pools[device] == nullptr) {
- pools[device] = new_pool_for_device(device);
- }
- return *pools[device];
- }
- ggml_cuda_pool & pool() {
- return pool(device);
- }
- };
|