diagmask.cu 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. #include "diagmask.cuh"
  2. static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
  3. const int col = blockDim.y*blockIdx.y + threadIdx.y;
  4. const int row = blockDim.x*blockIdx.x + threadIdx.x;
  5. if (col >= ncols) {
  6. return;
  7. }
  8. const int i = row*ncols + col;
  9. //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
  10. //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
  11. dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
  12. }
  13. static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
  14. const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
  15. const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
  16. const dim3 block_nums(nrows_x, block_num_x, 1);
  17. diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
  18. }
  19. void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
  20. const ggml_tensor * src0 = dst->src[0];
  21. const float * src0_d = (const float *)src0->data;
  22. float * dst_d = (float *)dst->data;
  23. cudaStream_t stream = ctx.stream();
  24. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  25. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  26. const int64_t ne00 = src0->ne[0];
  27. const int64_t ne01 = src0->ne[1];
  28. const int nrows0 = ggml_nrows(src0);
  29. const int n_past = ((int32_t *) dst->op_params)[0];
  30. diag_mask_inf_f32_cuda(src0_d, dst_d, ne00, nrows0, ne01, n_past, stream);
  31. }