123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 |
- #include "common.cuh"
- #include "fattn-common.cuh"
- #include "fattn-vec-f32.cuh"
- template<int D, int ncols, int parallel_blocks> // D == head size
- #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- __launch_bounds__(D, 1)
- #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- static __global__ void flash_attn_vec_ext_f32(
- const char * __restrict__ Q,
- const char * __restrict__ K,
- const char * __restrict__ V,
- const char * __restrict__ mask,
- float * __restrict__ dst,
- float2 * __restrict__ dst_meta,
- const float scale,
- const float max_bias,
- const float m0,
- const float m1,
- const uint32_t n_head_log2,
- const int ne00,
- const int ne01,
- const int ne02,
- const int ne03,
- const int ne10,
- const int ne11,
- const int ne12,
- const int ne13,
- const int ne31,
- const int nb31,
- const int nb01,
- const int nb02,
- const int nb03,
- const int nb11,
- const int nb12,
- const int nb13,
- const int ne0,
- const int ne1,
- const int ne2,
- const int ne3) {
- //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
- const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
- const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
- const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
- const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
- const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
- const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
- const half * maskh = (const half *) mask + ne11*ic0;
- const int stride_KV = nb11 / sizeof(half);
- const int stride_KV2 = nb11 / sizeof(half2);
- const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
- static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
- constexpr int nwarps = D / WARP_SIZE;
- const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
- __builtin_assume(tid < D);
- __shared__ float KQ[ncols*D];
- #pragma unroll
- for (int j = 0; j < ncols; ++j) {
- KQ[j*D + tid] = -FLT_MAX/2.0f;
- }
- float kqmax[ncols];
- #pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqmax[j] = -FLT_MAX/2.0f;
- }
- float kqsum[ncols] = {0.0f};
- __shared__ float kqmax_shared[ncols][WARP_SIZE];
- __shared__ float kqsum_shared[ncols][WARP_SIZE];
- #pragma unroll
- for (int j = 0; j < ncols; ++j) {
- if (threadIdx.y == 0) {
- kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
- kqsum_shared[j][threadIdx.x] = 0.0f;
- }
- }
- __syncthreads();
- // Convert Q to half2 and store in registers:
- float2 Q_h2[ncols][D/(2*WARP_SIZE)];
- #pragma unroll
- for (int j = 0; j < ncols; ++j) {
- #pragma unroll
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- Q_h2[j][i0/WARP_SIZE] = Q_f2[j*(nb01/sizeof(float2)) + i];
- Q_h2[j][i0/WARP_SIZE].x *= scale;
- Q_h2[j][i0/WARP_SIZE].y *= scale;
- }
- }
- float VKQ[ncols] = {0.0f};
- const int k_start = parallel_blocks == 1 ? 0 : ip*D;
- for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
- // Calculate KQ tile and keep track of new maximum KQ values:
- float kqmax_new_arr[ncols];
- #pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqmax_new_arr[j] = kqmax[j];
- }
- #pragma unroll
- for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
- const int i_KQ = i_KQ_0 + threadIdx.y;
- if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
- break;
- }
- float sum[ncols] = {0.0f};
- #pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
- const int k_KQ = k_KQ_0 + threadIdx.x;
- const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
- #pragma unroll
- for (int j = 0; j < ncols; ++j) {
- sum[j] += __low2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].x;
- sum[j] += __high2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].y;
- }
- }
- #pragma unroll
- for (int j = 0; j < ncols; ++j) {
- sum[j] = warp_reduce_sum(sum[j]);
- sum[j] += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
- kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum[j]);
- if (threadIdx.x == 0) {
- KQ[j*D + i_KQ] = sum[j];
- }
- }
- }
- #pragma unroll
- for (int j = 0; j < ncols; ++j) {
- float kqmax_new_j = kqmax_new_arr[j];
- kqmax_new_j = warp_reduce_max(kqmax_new_j);
- if (threadIdx.x == 0) {
- kqmax_shared[j][threadIdx.y] = kqmax_new_j;
- }
- }
- __syncthreads();
- #pragma unroll
- for (int j = 0; j < ncols; ++j) {
- float kqmax_new_j = kqmax_shared[j][threadIdx.x];
- kqmax_new_j = warp_reduce_max(kqmax_new_j);
- const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
- kqmax[j] = kqmax_new_j;
- const float val = expf(KQ[j*D + tid] - kqmax[j]);
- kqsum[j] = kqsum[j]*KQ_max_scale + val;
- KQ[j*D + tid] = val;
- VKQ[j] *= KQ_max_scale;
- }
- __syncthreads();
- #pragma unroll
- for (int k = 0; k < D; ++k) {
- if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
- break;
- }
- const float V_ki = __half2float(V_h[(k_VKQ_0 + k)*stride_KV + tid]);
- #pragma unroll
- for (int j = 0; j < ncols; ++j) {
- VKQ[j] += V_ki*KQ[j*D + k];
- }
- }
- __syncthreads();
- }
- #pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqsum[j] = warp_reduce_sum(kqsum[j]);
- if (threadIdx.x == 0) {
- kqsum_shared[j][threadIdx.y] = kqsum[j];
- }
- }
- __syncthreads();
- #pragma unroll
- for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
- kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
- kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
- float dst_val = VKQ[j_VKQ];
- if (parallel_blocks == 1) {
- dst_val /= kqsum[j_VKQ];
- }
- const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
- dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
- }
- if (parallel_blocks != 1 && tid < ncols) {
- dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
- }
- }
- template <int cols_per_block, int parallel_blocks>
- void launch_fattn_vec_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
- switch (Q->ne[0]) {
- case 64: {
- constexpr int D = 64;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- case 128: {
- constexpr int D = 128;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- default: {
- GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
- } break;
- }
- }
- void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
- if (Q->ne[1] == 1) {
- constexpr int cols_per_block = 1;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
- return;
- }
- if (Q->ne[1] == 2) {
- constexpr int cols_per_block = 2;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
- return;
- }
- if (Q->ne[1] <= 4) {
- constexpr int cols_per_block = 4;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
- return;
- }
- if (Q->ne[1] <= 8) {
- constexpr int cols_per_block = 8;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
- return;
- }
- constexpr int cols_per_block = 8;
- constexpr int parallel_blocks = 1;
- launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
- }
|