12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 |
- #include "pad.cuh"
- static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
- // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
- // blockIdx.y: idx of ne1
- // blockIDx.x: idx of ne0 / BLOCK_SIZE
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- // operation
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
- int offset_src =
- nidx +
- blockIdx.y * ne00 +
- blockIdx.z * ne00 * ne01;
- dst[offset_dst] = x[offset_src];
- } else {
- dst[offset_dst] = 0.0f;
- }
- }
- static void pad_f32_cuda(const float * x, float * dst,
- const int ne00, const int ne01, const int ne02, const int ne03,
- const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
- int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
- dim3 gridDim(num_blocks, ne1, ne2*ne3);
- pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
- }
- void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const float * src0_d = (const float *)src0->data;
- float * dst_d = (float *)dst->data;
- cudaStream_t stream = ctx.stream();
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- pad_f32_cuda(src0_d, dst_d,
- src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
- dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
- }
|