pad.cu 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. #include "pad.cuh"
  2. static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
  3. // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
  4. // blockIdx.y: idx of ne1
  5. // blockIDx.x: idx of ne0 / BLOCK_SIZE
  6. int nidx = threadIdx.x + blockIdx.x * blockDim.x;
  7. if (nidx >= ne0) {
  8. return;
  9. }
  10. // operation
  11. int offset_dst =
  12. nidx +
  13. blockIdx.y * ne0 +
  14. blockIdx.z * ne0 * gridDim.y;
  15. if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
  16. int offset_src =
  17. nidx +
  18. blockIdx.y * ne00 +
  19. blockIdx.z * ne00 * ne01;
  20. dst[offset_dst] = x[offset_src];
  21. } else {
  22. dst[offset_dst] = 0.0f;
  23. }
  24. }
  25. static void pad_f32_cuda(const float * x, float * dst,
  26. const int ne00, const int ne01, const int ne02, const int ne03,
  27. const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
  28. int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
  29. dim3 gridDim(num_blocks, ne1, ne2*ne3);
  30. pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
  31. }
  32. void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
  33. const ggml_tensor * src0 = dst->src[0];
  34. const float * src0_d = (const float *)src0->data;
  35. float * dst_d = (float *)dst->data;
  36. cudaStream_t stream = ctx.stream();
  37. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  38. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  39. GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
  40. pad_f32_cuda(src0_d, dst_d,
  41. src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
  42. dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
  43. }