ggml-quants.c 621 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893
  1. /**
  2. * llama.cpp - git 059031b8c40e1f4ba60586842c5b1ed3ddf61842
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define GGML_COMMON_IMPL_C
  27. #include "ggml-common.h"
  28. #include "ggml-quants.h"
  29. #include "ggml-impl.h"
  30. #define GGML_COMMON_IMPL_C
  31. #include "ggml-common.h"
  32. #include <math.h>
  33. #include <string.h>
  34. #include <assert.h>
  35. #include <float.h>
  36. #include <stdlib.h> // for qsort
  37. #include <stdio.h> // for GGML_ASSERT
  38. #define GROUP_MAX_EPS 1e-15f
  39. #define GROUP_MAX_EPS_IQ3_XXS 1e-8f
  40. #define GROUP_MAX_EPS_IQ2_S 1e-8f
  41. #define GROUP_MAX_EPS_IQ1_M 1e-7f
  42. #define GROUP_MAX_EPS_IQ1_S 1e-12f
  43. #if defined(_MSC_VER)
  44. // disable "possible loss of data" to avoid warnings for hundreds of casts
  45. // we should just be careful :)
  46. #pragma warning(disable: 4244 4267)
  47. #endif
  48. #define UNUSED GGML_UNUSED
  49. // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
  50. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  51. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  52. // multiply int8_t, add results pairwise twice
  53. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  54. // Get absolute values of x vectors
  55. const __m128i ax = _mm_sign_epi8(x, x);
  56. // Sign the values of the y vectors
  57. const __m128i sy = _mm_sign_epi8(y, x);
  58. // Perform multiplication and create 16-bit values
  59. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  60. const __m128i ones = _mm_set1_epi16(1);
  61. return _mm_madd_epi16(ones, dot);
  62. }
  63. #if __AVX__ || __AVX2__ || __AVX512F__
  64. // horizontally add 8 floats
  65. static inline float hsum_float_8(const __m256 x) {
  66. __m128 res = _mm256_extractf128_ps(x, 1);
  67. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  68. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  69. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  70. return _mm_cvtss_f32(res);
  71. }
  72. // horizontally add 8 int32_t
  73. static inline int hsum_i32_8(const __m256i a) {
  74. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  75. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  76. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  77. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  78. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  79. }
  80. // horizontally add 4 int32_t
  81. static inline int hsum_i32_4(const __m128i a) {
  82. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  83. const __m128i sum64 = _mm_add_epi32(hi64, a);
  84. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  85. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  86. }
  87. #if defined(__AVX2__) || defined(__AVX512F__)
  88. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  89. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  90. uint32_t x32;
  91. memcpy(&x32, x, sizeof(uint32_t));
  92. const __m256i shuf_mask = _mm256_set_epi64x(
  93. 0x0303030303030303, 0x0202020202020202,
  94. 0x0101010101010101, 0x0000000000000000);
  95. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  96. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  97. bytes = _mm256_or_si256(bytes, bit_mask);
  98. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  99. }
  100. // Unpack 32 4-bit fields into 32 bytes
  101. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  102. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  103. {
  104. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  105. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  106. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  107. return _mm256_and_si256(lowMask, bytes);
  108. }
  109. // add int16_t pairwise and return as float vector
  110. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  111. const __m256i ones = _mm256_set1_epi16(1);
  112. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  113. return _mm256_cvtepi32_ps(summed_pairs);
  114. }
  115. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  116. #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
  117. const __m256i zero = _mm256_setzero_si256();
  118. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  119. return _mm256_cvtepi32_ps(summed_pairs);
  120. #else
  121. // Perform multiplication and create 16-bit values
  122. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  123. return sum_i16_pairs_float(dot);
  124. #endif
  125. }
  126. // multiply int8_t, add results pairwise twice and return as float vector
  127. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  128. #if __AVXVNNIINT8__
  129. const __m256i zero = _mm256_setzero_si256();
  130. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  131. return _mm256_cvtepi32_ps(summed_pairs);
  132. #else
  133. // Get absolute values of x vectors
  134. const __m256i ax = _mm256_sign_epi8(x, x);
  135. // Sign the values of the y vectors
  136. const __m256i sy = _mm256_sign_epi8(y, x);
  137. return mul_sum_us8_pairs_float(ax, sy);
  138. #endif
  139. }
  140. static inline __m128i packNibbles( __m256i bytes )
  141. {
  142. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  143. #if __AVX512F__
  144. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  145. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  146. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  147. #else
  148. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  149. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  150. __m256i low = _mm256_and_si256( lowByte, bytes );
  151. high = _mm256_srli_epi16( high, 4 );
  152. bytes = _mm256_or_si256( low, high );
  153. // Compress uint16_t lanes into bytes
  154. __m128i r0 = _mm256_castsi256_si128( bytes );
  155. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  156. return _mm_packus_epi16( r0, r1 );
  157. #endif
  158. }
  159. #elif defined(__AVX__)
  160. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  161. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  162. uint32_t x32;
  163. memcpy(&x32, x, sizeof(uint32_t));
  164. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  165. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  166. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  167. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  168. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  169. bytesl = _mm_or_si128(bytesl, bit_mask);
  170. bytesh = _mm_or_si128(bytesh, bit_mask);
  171. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  172. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  173. return MM256_SET_M128I(bytesh, bytesl);
  174. }
  175. // Unpack 32 4-bit fields into 32 bytes
  176. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  177. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  178. {
  179. // Load 16 bytes from memory
  180. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  181. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  182. const __m128i lowMask = _mm_set1_epi8(0xF);
  183. tmpl = _mm_and_si128(lowMask, tmpl);
  184. tmph = _mm_and_si128(lowMask, tmph);
  185. return MM256_SET_M128I(tmph, tmpl);
  186. }
  187. // add int16_t pairwise and return as float vector
  188. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  189. const __m128i ones = _mm_set1_epi16(1);
  190. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  191. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  192. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  193. return _mm256_cvtepi32_ps(summed_pairs);
  194. }
  195. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  196. const __m128i axl = _mm256_castsi256_si128(ax);
  197. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  198. const __m128i syl = _mm256_castsi256_si128(sy);
  199. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  200. // Perform multiplication and create 16-bit values
  201. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  202. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  203. return sum_i16_pairs_float(doth, dotl);
  204. }
  205. // multiply int8_t, add results pairwise twice and return as float vector
  206. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  207. const __m128i xl = _mm256_castsi256_si128(x);
  208. const __m128i xh = _mm256_extractf128_si256(x, 1);
  209. const __m128i yl = _mm256_castsi256_si128(y);
  210. const __m128i yh = _mm256_extractf128_si256(y, 1);
  211. // Get absolute values of x vectors
  212. const __m128i axl = _mm_sign_epi8(xl, xl);
  213. const __m128i axh = _mm_sign_epi8(xh, xh);
  214. // Sign the values of the y vectors
  215. const __m128i syl = _mm_sign_epi8(yl, xl);
  216. const __m128i syh = _mm_sign_epi8(yh, xh);
  217. // Perform multiplication and create 16-bit values
  218. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  219. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  220. return sum_i16_pairs_float(doth, dotl);
  221. }
  222. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  223. {
  224. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  225. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  226. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  227. __m128i low = _mm_and_si128( lowByte, bytes1 );
  228. high = _mm_srli_epi16( high, 4 );
  229. bytes1 = _mm_or_si128( low, high );
  230. high = _mm_andnot_si128( lowByte, bytes2 );
  231. low = _mm_and_si128( lowByte, bytes2 );
  232. high = _mm_srli_epi16( high, 4 );
  233. bytes2 = _mm_or_si128( low, high );
  234. return _mm_packus_epi16( bytes1, bytes2);
  235. }
  236. #endif
  237. #elif defined(__SSSE3__)
  238. // horizontally add 4x4 floats
  239. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  240. __m128 res_0 =_mm_hadd_ps(a, b);
  241. __m128 res_1 =_mm_hadd_ps(c, d);
  242. __m128 res =_mm_hadd_ps(res_0, res_1);
  243. res =_mm_hadd_ps(res, res);
  244. res =_mm_hadd_ps(res, res);
  245. return _mm_cvtss_f32(res);
  246. }
  247. #endif // __AVX__ || __AVX2__ || __AVX512F__
  248. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  249. #if defined(__ARM_NEON) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  250. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  251. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  252. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  253. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  254. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  255. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  256. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  257. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  258. // precomputed tables for expanding 8bits to 8 bytes:
  259. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  260. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  261. #endif
  262. // reference implementation for deterministic creation of model files
  263. void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int64_t k) {
  264. static const int qk = QK4_0;
  265. assert(k % qk == 0);
  266. const int nb = k / qk;
  267. for (int i = 0; i < nb; i++) {
  268. float amax = 0.0f; // absolute max
  269. float max = 0.0f;
  270. for (int j = 0; j < qk; j++) {
  271. const float v = x[i*qk + j];
  272. if (amax < fabsf(v)) {
  273. amax = fabsf(v);
  274. max = v;
  275. }
  276. }
  277. const float d = max / -8;
  278. const float id = d ? 1.0f/d : 0.0f;
  279. y[i].d = GGML_FP32_TO_FP16(d);
  280. for (int j = 0; j < qk/2; ++j) {
  281. const float x0 = x[i*qk + 0 + j]*id;
  282. const float x1 = x[i*qk + qk/2 + j]*id;
  283. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  284. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  285. y[i].qs[j] = xi0;
  286. y[i].qs[j] |= xi1 << 4;
  287. }
  288. }
  289. }
  290. void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) {
  291. quantize_row_q4_0_reference(x, y, k);
  292. }
  293. void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int64_t k) {
  294. const int qk = QK4_1;
  295. assert(k % qk == 0);
  296. const int nb = k / qk;
  297. for (int i = 0; i < nb; i++) {
  298. float min = FLT_MAX;
  299. float max = -FLT_MAX;
  300. for (int j = 0; j < qk; j++) {
  301. const float v = x[i*qk + j];
  302. if (v < min) min = v;
  303. if (v > max) max = v;
  304. }
  305. const float d = (max - min) / ((1 << 4) - 1);
  306. const float id = d ? 1.0f/d : 0.0f;
  307. y[i].d = GGML_FP32_TO_FP16(d);
  308. y[i].m = GGML_FP32_TO_FP16(min);
  309. for (int j = 0; j < qk/2; ++j) {
  310. const float x0 = (x[i*qk + 0 + j] - min)*id;
  311. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  312. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  313. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  314. y[i].qs[j] = xi0;
  315. y[i].qs[j] |= xi1 << 4;
  316. }
  317. }
  318. }
  319. void quantize_row_q4_1(const float * restrict x, void * restrict y, int64_t k) {
  320. quantize_row_q4_1_reference(x, y, k);
  321. }
  322. void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int64_t k) {
  323. static const int qk = QK5_0;
  324. assert(k % qk == 0);
  325. const int nb = k / qk;
  326. for (int i = 0; i < nb; i++) {
  327. float amax = 0.0f; // absolute max
  328. float max = 0.0f;
  329. for (int j = 0; j < qk; j++) {
  330. const float v = x[i*qk + j];
  331. if (amax < fabsf(v)) {
  332. amax = fabsf(v);
  333. max = v;
  334. }
  335. }
  336. const float d = max / -16;
  337. const float id = d ? 1.0f/d : 0.0f;
  338. y[i].d = GGML_FP32_TO_FP16(d);
  339. uint32_t qh = 0;
  340. for (int j = 0; j < qk/2; ++j) {
  341. const float x0 = x[i*qk + 0 + j]*id;
  342. const float x1 = x[i*qk + qk/2 + j]*id;
  343. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  344. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  345. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  346. // get the 5-th bit and store it in qh at the right position
  347. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  348. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  349. }
  350. memcpy(&y[i].qh, &qh, sizeof(qh));
  351. }
  352. }
  353. void quantize_row_q5_0(const float * restrict x, void * restrict y, int64_t k) {
  354. quantize_row_q5_0_reference(x, y, k);
  355. }
  356. void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int64_t k) {
  357. const int qk = QK5_1;
  358. assert(k % qk == 0);
  359. const int nb = k / qk;
  360. for (int i = 0; i < nb; i++) {
  361. float min = FLT_MAX;
  362. float max = -FLT_MAX;
  363. for (int j = 0; j < qk; j++) {
  364. const float v = x[i*qk + j];
  365. if (v < min) min = v;
  366. if (v > max) max = v;
  367. }
  368. const float d = (max - min) / ((1 << 5) - 1);
  369. const float id = d ? 1.0f/d : 0.0f;
  370. y[i].d = GGML_FP32_TO_FP16(d);
  371. y[i].m = GGML_FP32_TO_FP16(min);
  372. uint32_t qh = 0;
  373. for (int j = 0; j < qk/2; ++j) {
  374. const float x0 = (x[i*qk + 0 + j] - min)*id;
  375. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  376. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  377. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  378. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  379. // get the 5-th bit and store it in qh at the right position
  380. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  381. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  382. }
  383. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  384. }
  385. }
  386. void quantize_row_q5_1(const float * restrict x, void * restrict y, int64_t k) {
  387. quantize_row_q5_1_reference(x, y, k);
  388. }
  389. // reference implementation for deterministic creation of model files
  390. void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int64_t k) {
  391. assert(k % QK8_0 == 0);
  392. const int nb = k / QK8_0;
  393. for (int i = 0; i < nb; i++) {
  394. float amax = 0.0f; // absolute max
  395. for (int j = 0; j < QK8_0; j++) {
  396. const float v = x[i*QK8_0 + j];
  397. amax = MAX(amax, fabsf(v));
  398. }
  399. const float d = amax / ((1 << 7) - 1);
  400. const float id = d ? 1.0f/d : 0.0f;
  401. y[i].d = GGML_FP32_TO_FP16(d);
  402. for (int j = 0; j < QK8_0; ++j) {
  403. const float x0 = x[i*QK8_0 + j]*id;
  404. y[i].qs[j] = roundf(x0);
  405. }
  406. }
  407. }
  408. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) {
  409. assert(QK8_0 == 32);
  410. assert(k % QK8_0 == 0);
  411. const int nb = k / QK8_0;
  412. block_q8_0 * restrict y = vy;
  413. #if defined(__ARM_NEON)
  414. for (int i = 0; i < nb; i++) {
  415. float32x4_t srcv [8];
  416. float32x4_t asrcv[8];
  417. float32x4_t amaxv[8];
  418. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  419. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  420. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  421. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  422. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  423. const float amax = vmaxvq_f32(amaxv[0]);
  424. const float d = amax / ((1 << 7) - 1);
  425. const float id = d ? 1.0f/d : 0.0f;
  426. y[i].d = GGML_FP32_TO_FP16(d);
  427. for (int j = 0; j < 8; j++) {
  428. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  429. const int32x4_t vi = vcvtnq_s32_f32(v);
  430. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  431. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  432. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  433. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  434. }
  435. }
  436. #elif defined(__wasm_simd128__)
  437. for (int i = 0; i < nb; i++) {
  438. v128_t srcv [8];
  439. v128_t asrcv[8];
  440. v128_t amaxv[8];
  441. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  442. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  443. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  444. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  445. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  446. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  447. wasm_f32x4_extract_lane(amaxv[0], 1)),
  448. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  449. wasm_f32x4_extract_lane(amaxv[0], 3)));
  450. const float d = amax / ((1 << 7) - 1);
  451. const float id = d ? 1.0f/d : 0.0f;
  452. y[i].d = GGML_FP32_TO_FP16(d);
  453. for (int j = 0; j < 8; j++) {
  454. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  455. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  456. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  457. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  458. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  459. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  460. }
  461. }
  462. #elif defined(__AVX2__) || defined(__AVX__)
  463. for (int i = 0; i < nb; i++) {
  464. // Load elements into 4 AVX vectors
  465. __m256 v0 = _mm256_loadu_ps( x );
  466. __m256 v1 = _mm256_loadu_ps( x + 8 );
  467. __m256 v2 = _mm256_loadu_ps( x + 16 );
  468. __m256 v3 = _mm256_loadu_ps( x + 24 );
  469. x += 32;
  470. // Compute max(abs(e)) for the block
  471. const __m256 signBit = _mm256_set1_ps( -0.0f );
  472. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  473. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  474. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  475. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  476. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  477. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  478. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  479. const float maxScalar = _mm_cvtss_f32( max4 );
  480. // Quantize these floats
  481. const float d = maxScalar / 127.f;
  482. y[i].d = GGML_FP32_TO_FP16(d);
  483. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  484. const __m256 mul = _mm256_set1_ps( id );
  485. // Apply the multiplier
  486. v0 = _mm256_mul_ps( v0, mul );
  487. v1 = _mm256_mul_ps( v1, mul );
  488. v2 = _mm256_mul_ps( v2, mul );
  489. v3 = _mm256_mul_ps( v3, mul );
  490. // Round to nearest integer
  491. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  492. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  493. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  494. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  495. // Convert floats to integers
  496. __m256i i0 = _mm256_cvtps_epi32( v0 );
  497. __m256i i1 = _mm256_cvtps_epi32( v1 );
  498. __m256i i2 = _mm256_cvtps_epi32( v2 );
  499. __m256i i3 = _mm256_cvtps_epi32( v3 );
  500. #if defined(__AVX2__)
  501. // Convert int32 to int16
  502. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  503. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  504. // Convert int16 to int8
  505. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  506. // We got our precious signed bytes, but the order is now wrong
  507. // These AVX2 pack instructions process 16-byte pieces independently
  508. // The following instruction is fixing the order
  509. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  510. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  511. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  512. #else
  513. // Since we don't have in AVX some necessary functions,
  514. // we split the registers in half and call AVX2 analogs from SSE
  515. __m128i ni0 = _mm256_castsi256_si128( i0 );
  516. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  517. __m128i ni2 = _mm256_castsi256_si128( i1 );
  518. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  519. __m128i ni4 = _mm256_castsi256_si128( i2 );
  520. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  521. __m128i ni6 = _mm256_castsi256_si128( i3 );
  522. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  523. // Convert int32 to int16
  524. ni0 = _mm_packs_epi32( ni0, ni1 );
  525. ni2 = _mm_packs_epi32( ni2, ni3 );
  526. ni4 = _mm_packs_epi32( ni4, ni5 );
  527. ni6 = _mm_packs_epi32( ni6, ni7 );
  528. // Convert int16 to int8
  529. ni0 = _mm_packs_epi16( ni0, ni2 );
  530. ni4 = _mm_packs_epi16( ni4, ni6 );
  531. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  532. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  533. #endif
  534. }
  535. #elif defined(__riscv_v_intrinsic)
  536. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  537. for (int i = 0; i < nb; i++) {
  538. // load elements
  539. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  540. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  541. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  542. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  543. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  544. const float d = amax / ((1 << 7) - 1);
  545. const float id = d ? 1.0f/d : 0.0f;
  546. y[i].d = GGML_FP32_TO_FP16(d);
  547. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  548. // convert to integer
  549. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  550. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  551. // store result
  552. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  553. }
  554. #elif defined(__POWER9_VECTOR__)
  555. for (int i = 0; i < nb; i++) {
  556. vector float srcv [8];
  557. vector float asrcv[8];
  558. vector float amaxv[8];
  559. vector signed int vi[8];
  560. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  561. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  562. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  563. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  564. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  565. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  566. vec_extract(amaxv[0], 1)),
  567. MAX(vec_extract(amaxv[0], 2),
  568. vec_extract(amaxv[0], 3)));
  569. const float d = amax / ((1 << 7) - 1);
  570. const float id = d ? 1.0f/d : 0.0f;
  571. const vector float vid = vec_splats(id);
  572. y[i].d = GGML_FP32_TO_FP16(d);
  573. for (int j = 0; j < 8; j++) {
  574. const vector float v = vec_round(vec_mul(srcv[j], vid));
  575. vi[j] = vec_cts(v, 0);
  576. }
  577. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  578. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  579. }
  580. #else
  581. GGML_UNUSED(nb);
  582. // scalar
  583. quantize_row_q8_0_reference(x, y, k);
  584. #endif
  585. }
  586. // reference implementation for deterministic creation of model files
  587. void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int64_t k) {
  588. assert(QK8_1 == 32);
  589. assert(k % QK8_1 == 0);
  590. const int nb = k / QK8_1;
  591. for (int i = 0; i < nb; i++) {
  592. float amax = 0.0f; // absolute max
  593. for (int j = 0; j < QK8_1; j++) {
  594. const float v = x[i*QK8_1 + j];
  595. amax = MAX(amax, fabsf(v));
  596. }
  597. const float d = amax / ((1 << 7) - 1);
  598. const float id = d ? 1.0f/d : 0.0f;
  599. y[i].d = GGML_FP32_TO_FP16(d);
  600. int sum = 0;
  601. for (int j = 0; j < QK8_1/2; ++j) {
  602. const float v0 = x[i*QK8_1 + j]*id;
  603. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  604. y[i].qs[ j] = roundf(v0);
  605. y[i].qs[QK8_1/2 + j] = roundf(v1);
  606. sum += y[i].qs[ j];
  607. sum += y[i].qs[QK8_1/2 + j];
  608. }
  609. y[i].s = GGML_FP32_TO_FP16(sum*d);
  610. }
  611. }
  612. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) {
  613. assert(k % QK8_1 == 0);
  614. const int nb = k / QK8_1;
  615. block_q8_1 * restrict y = vy;
  616. #if defined(__ARM_NEON)
  617. for (int i = 0; i < nb; i++) {
  618. float32x4_t srcv [8];
  619. float32x4_t asrcv[8];
  620. float32x4_t amaxv[8];
  621. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  622. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  623. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  624. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  625. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  626. const float amax = vmaxvq_f32(amaxv[0]);
  627. const float d = amax / ((1 << 7) - 1);
  628. const float id = d ? 1.0f/d : 0.0f;
  629. y[i].d = GGML_FP32_TO_FP16(d);
  630. int32x4_t accv = vdupq_n_s32(0);
  631. for (int j = 0; j < 8; j++) {
  632. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  633. const int32x4_t vi = vcvtnq_s32_f32(v);
  634. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  635. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  636. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  637. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  638. accv = vaddq_s32(accv, vi);
  639. }
  640. y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv));
  641. }
  642. #elif defined(__wasm_simd128__)
  643. for (int i = 0; i < nb; i++) {
  644. v128_t srcv [8];
  645. v128_t asrcv[8];
  646. v128_t amaxv[8];
  647. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  648. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  649. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  650. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  651. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  652. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  653. wasm_f32x4_extract_lane(amaxv[0], 1)),
  654. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  655. wasm_f32x4_extract_lane(amaxv[0], 3)));
  656. const float d = amax / ((1 << 7) - 1);
  657. const float id = d ? 1.0f/d : 0.0f;
  658. y[i].d = GGML_FP32_TO_FP16(d);
  659. v128_t accv = wasm_i32x4_splat(0);
  660. for (int j = 0; j < 8; j++) {
  661. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  662. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  663. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  664. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  665. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  666. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  667. accv = wasm_i32x4_add(accv, vi);
  668. }
  669. y[i].s = GGML_FP32_TO_FP16(
  670. d * (wasm_i32x4_extract_lane(accv, 0) +
  671. wasm_i32x4_extract_lane(accv, 1) +
  672. wasm_i32x4_extract_lane(accv, 2) +
  673. wasm_i32x4_extract_lane(accv, 3)));
  674. }
  675. #elif defined(__AVX2__) || defined(__AVX__)
  676. for (int i = 0; i < nb; i++) {
  677. // Load elements into 4 AVX vectors
  678. __m256 v0 = _mm256_loadu_ps( x );
  679. __m256 v1 = _mm256_loadu_ps( x + 8 );
  680. __m256 v2 = _mm256_loadu_ps( x + 16 );
  681. __m256 v3 = _mm256_loadu_ps( x + 24 );
  682. x += 32;
  683. // Compute max(abs(e)) for the block
  684. const __m256 signBit = _mm256_set1_ps( -0.0f );
  685. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  686. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  687. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  688. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  689. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  690. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  691. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  692. const float maxScalar = _mm_cvtss_f32( max4 );
  693. // Quantize these floats
  694. const float d = maxScalar / 127.f;
  695. y[i].d = GGML_FP32_TO_FP16(d);
  696. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  697. const __m256 mul = _mm256_set1_ps( id );
  698. // Apply the multiplier
  699. v0 = _mm256_mul_ps( v0, mul );
  700. v1 = _mm256_mul_ps( v1, mul );
  701. v2 = _mm256_mul_ps( v2, mul );
  702. v3 = _mm256_mul_ps( v3, mul );
  703. // Round to nearest integer
  704. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  705. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  706. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  707. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  708. // Convert floats to integers
  709. __m256i i0 = _mm256_cvtps_epi32( v0 );
  710. __m256i i1 = _mm256_cvtps_epi32( v1 );
  711. __m256i i2 = _mm256_cvtps_epi32( v2 );
  712. __m256i i3 = _mm256_cvtps_epi32( v3 );
  713. #if defined(__AVX2__)
  714. // Compute the sum of the quants and set y[i].s
  715. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))));
  716. // Convert int32 to int16
  717. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  718. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  719. // Convert int16 to int8
  720. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  721. // We got our precious signed bytes, but the order is now wrong
  722. // These AVX2 pack instructions process 16-byte pieces independently
  723. // The following instruction is fixing the order
  724. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  725. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  726. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  727. #else
  728. // Since we don't have in AVX some necessary functions,
  729. // we split the registers in half and call AVX2 analogs from SSE
  730. __m128i ni0 = _mm256_castsi256_si128( i0 );
  731. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  732. __m128i ni2 = _mm256_castsi256_si128( i1 );
  733. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  734. __m128i ni4 = _mm256_castsi256_si128( i2 );
  735. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  736. __m128i ni6 = _mm256_castsi256_si128( i3 );
  737. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  738. // Compute the sum of the quants and set y[i].s
  739. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  740. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  741. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1)));
  742. // Convert int32 to int16
  743. ni0 = _mm_packs_epi32( ni0, ni1 );
  744. ni2 = _mm_packs_epi32( ni2, ni3 );
  745. ni4 = _mm_packs_epi32( ni4, ni5 );
  746. ni6 = _mm_packs_epi32( ni6, ni7 );
  747. // Convert int16 to int8
  748. ni0 = _mm_packs_epi16( ni0, ni2 );
  749. ni4 = _mm_packs_epi16( ni4, ni6 );
  750. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  751. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  752. #endif
  753. }
  754. #elif defined(__riscv_v_intrinsic)
  755. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  756. for (int i = 0; i < nb; i++) {
  757. // load elements
  758. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  759. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  760. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  761. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  762. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  763. const float d = amax / ((1 << 7) - 1);
  764. const float id = d ? 1.0f/d : 0.0f;
  765. y[i].d = GGML_FP32_TO_FP16(d);
  766. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  767. // convert to integer
  768. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  769. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  770. // store result
  771. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  772. // compute sum for y[i].s
  773. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  774. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  775. // set y[i].s
  776. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  777. y[i].s = GGML_FP32_TO_FP16(sum*d);
  778. }
  779. #elif defined(__POWER9_VECTOR__)
  780. for (int i = 0; i < nb; i++) {
  781. vector float srcv [8];
  782. vector float asrcv[8];
  783. vector float amaxv[8];
  784. vector signed int vi[8];
  785. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  786. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  787. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  788. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  789. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  790. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  791. vec_extract(amaxv[0], 1)),
  792. MAX(vec_extract(amaxv[0], 2),
  793. vec_extract(amaxv[0], 3)));
  794. const float d = amax / ((1 << 7) - 1);
  795. const float id = d ? 1.0f/d : 0.0f;
  796. const vector float vid = vec_splats(id);
  797. y[i].d = GGML_FP32_TO_FP16(d);
  798. vector int accv = vec_splats(0);
  799. for (int j = 0; j < 8; j++) {
  800. const vector float v = vec_round(vec_mul(srcv[j], vid));
  801. vi[j] = vec_cts(v, 0);
  802. accv = vec_add(accv, vi[j]);
  803. }
  804. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  805. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  806. accv = vec_add(accv, vec_sld(accv, accv, 4));
  807. accv = vec_add(accv, vec_sld(accv, accv, 8));
  808. y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0));
  809. }
  810. #else
  811. GGML_UNUSED(nb);
  812. // scalar
  813. quantize_row_q8_1_reference(x, y, k);
  814. #endif
  815. }
  816. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int64_t k) {
  817. static const int qk = QK4_0;
  818. assert(k % qk == 0);
  819. const int nb = k / qk;
  820. for (int i = 0; i < nb; i++) {
  821. const float d = GGML_FP16_TO_FP32(x[i].d);
  822. for (int j = 0; j < qk/2; ++j) {
  823. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  824. const int x1 = (x[i].qs[j] >> 4) - 8;
  825. y[i*qk + j + 0 ] = x0*d;
  826. y[i*qk + j + qk/2] = x1*d;
  827. }
  828. }
  829. }
  830. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int64_t k) {
  831. static const int qk = QK4_1;
  832. assert(k % qk == 0);
  833. const int nb = k / qk;
  834. for (int i = 0; i < nb; i++) {
  835. const float d = GGML_FP16_TO_FP32(x[i].d);
  836. const float m = GGML_FP16_TO_FP32(x[i].m);
  837. for (int j = 0; j < qk/2; ++j) {
  838. const int x0 = (x[i].qs[j] & 0x0F);
  839. const int x1 = (x[i].qs[j] >> 4);
  840. y[i*qk + j + 0 ] = x0*d + m;
  841. y[i*qk + j + qk/2] = x1*d + m;
  842. }
  843. }
  844. }
  845. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int64_t k) {
  846. static const int qk = QK5_0;
  847. assert(k % qk == 0);
  848. const int nb = k / qk;
  849. for (int i = 0; i < nb; i++) {
  850. const float d = GGML_FP16_TO_FP32(x[i].d);
  851. uint32_t qh;
  852. memcpy(&qh, x[i].qh, sizeof(qh));
  853. for (int j = 0; j < qk/2; ++j) {
  854. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  855. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  856. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  857. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  858. y[i*qk + j + 0 ] = x0*d;
  859. y[i*qk + j + qk/2] = x1*d;
  860. }
  861. }
  862. }
  863. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int64_t k) {
  864. static const int qk = QK5_1;
  865. assert(k % qk == 0);
  866. const int nb = k / qk;
  867. for (int i = 0; i < nb; i++) {
  868. const float d = GGML_FP16_TO_FP32(x[i].d);
  869. const float m = GGML_FP16_TO_FP32(x[i].m);
  870. uint32_t qh;
  871. memcpy(&qh, x[i].qh, sizeof(qh));
  872. for (int j = 0; j < qk/2; ++j) {
  873. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  874. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  875. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  876. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  877. y[i*qk + j + 0 ] = x0*d + m;
  878. y[i*qk + j + qk/2] = x1*d + m;
  879. }
  880. }
  881. }
  882. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int64_t k) {
  883. static const int qk = QK8_0;
  884. assert(k % qk == 0);
  885. const int nb = k / qk;
  886. for (int i = 0; i < nb; i++) {
  887. const float d = GGML_FP16_TO_FP32(x[i].d);
  888. for (int j = 0; j < qk; ++j) {
  889. y[i*qk + j] = x[i].qs[j]*d;
  890. }
  891. }
  892. }
  893. //
  894. // 2-6 bit quantization in super-blocks
  895. //
  896. //
  897. // ===================== Helper functions
  898. //
  899. static inline int nearest_int(float fval) {
  900. assert(fval <= 4194303.f);
  901. float val = fval + 12582912.f;
  902. int i; memcpy(&i, &val, sizeof(int));
  903. return (i & 0x007fffff) - 0x00400000;
  904. }
  905. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  906. const float * restrict qw) {
  907. float max = 0;
  908. float amax = 0;
  909. for (int i = 0; i < n; ++i) {
  910. float ax = fabsf(x[i]);
  911. if (ax > amax) { amax = ax; max = x[i]; }
  912. }
  913. if (amax < GROUP_MAX_EPS) { // all zero
  914. for (int i = 0; i < n; ++i) {
  915. L[i] = 0;
  916. }
  917. return 0.f;
  918. }
  919. float iscale = -nmax / max;
  920. if (rmse_type == 0) {
  921. for (int i = 0; i < n; ++i) {
  922. int l = nearest_int(iscale * x[i]);
  923. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  924. }
  925. return 1/iscale;
  926. }
  927. bool return_early = false;
  928. if (rmse_type < 0) {
  929. rmse_type = -rmse_type;
  930. return_early = true;
  931. }
  932. float sumlx = 0;
  933. float suml2 = 0;
  934. #ifdef HAVE_BUGGY_APPLE_LINKER
  935. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  936. for (volatile int i = 0; i < n; ++i) {
  937. #else
  938. for (int i = 0; i < n; ++i) {
  939. #endif
  940. int l = nearest_int(iscale * x[i]);
  941. l = MAX(-nmax, MIN(nmax-1, l));
  942. L[i] = l + nmax;
  943. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  944. sumlx += w*x[i]*l;
  945. suml2 += w*l*l;
  946. }
  947. float scale = sumlx/suml2;
  948. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  949. float best = scale * sumlx;
  950. for (int is = -9; is <= 9; ++is) {
  951. if (is == 0) {
  952. continue;
  953. }
  954. iscale = -(nmax + 0.1f*is) / max;
  955. sumlx = suml2 = 0;
  956. for (int i = 0; i < n; ++i) {
  957. int l = nearest_int(iscale * x[i]);
  958. l = MAX(-nmax, MIN(nmax-1, l));
  959. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  960. sumlx += w*x[i]*l;
  961. suml2 += w*l*l;
  962. }
  963. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  964. for (int i = 0; i < n; ++i) {
  965. int l = nearest_int(iscale * x[i]);
  966. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  967. }
  968. scale = sumlx/suml2; best = scale*sumlx;
  969. }
  970. }
  971. return scale;
  972. }
  973. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  974. float max = 0;
  975. float amax = 0;
  976. for (int i = 0; i < n; ++i) {
  977. float ax = fabsf(x[i]);
  978. if (ax > amax) { amax = ax; max = x[i]; }
  979. }
  980. if (amax < GROUP_MAX_EPS) { // all zero
  981. for (int i = 0; i < n; ++i) { L[i] = 0; }
  982. return 0.f;
  983. }
  984. float iscale = -nmax / max;
  985. if (do_rmse) {
  986. float sumlx = 0;
  987. float suml2 = 0;
  988. for (int i = 0; i < n; ++i) {
  989. int l = nearest_int(iscale * x[i]);
  990. l = MAX(-nmax, MIN(nmax-1, l));
  991. L[i] = l;
  992. float w = x[i]*x[i];
  993. sumlx += w*x[i]*l;
  994. suml2 += w*l*l;
  995. }
  996. for (int itry = 0; itry < 5; ++itry) {
  997. int n_changed = 0;
  998. for (int i = 0; i < n; ++i) {
  999. float w = x[i]*x[i];
  1000. float slx = sumlx - w*x[i]*L[i];
  1001. if (slx > 0) {
  1002. float sl2 = suml2 - w*L[i]*L[i];
  1003. int new_l = nearest_int(x[i] * sl2 / slx);
  1004. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1005. if (new_l != L[i]) {
  1006. slx += w*x[i]*new_l;
  1007. sl2 += w*new_l*new_l;
  1008. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1009. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1010. ++n_changed;
  1011. }
  1012. }
  1013. }
  1014. }
  1015. if (!n_changed) {
  1016. break;
  1017. }
  1018. }
  1019. for (int i = 0; i < n; ++i) {
  1020. L[i] += nmax;
  1021. }
  1022. return sumlx / suml2;
  1023. }
  1024. for (int i = 0; i < n; ++i) {
  1025. int l = nearest_int(iscale * x[i]);
  1026. l = MAX(-nmax, MIN(nmax-1, l));
  1027. L[i] = l + nmax;
  1028. }
  1029. return 1/iscale;
  1030. }
  1031. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1032. int ntry, float alpha) {
  1033. float min = x[0];
  1034. float max = x[0];
  1035. for (int i = 1; i < n; ++i) {
  1036. if (x[i] < min) min = x[i];
  1037. if (x[i] > max) max = x[i];
  1038. }
  1039. if (max == min) {
  1040. for (int i = 0; i < n; ++i) L[i] = 0;
  1041. *the_min = 0;
  1042. return 0.f;
  1043. }
  1044. if (min > 0) min = 0;
  1045. float iscale = nmax/(max - min);
  1046. float scale = 1/iscale;
  1047. for (int itry = 0; itry < ntry; ++itry) {
  1048. float sumlx = 0; int suml2 = 0;
  1049. bool did_change = false;
  1050. for (int i = 0; i < n; ++i) {
  1051. int l = nearest_int(iscale*(x[i] - min));
  1052. l = MAX(0, MIN(nmax, l));
  1053. if (l != L[i]) {
  1054. L[i] = l;
  1055. did_change = true;
  1056. }
  1057. sumlx += (x[i] - min)*l;
  1058. suml2 += l*l;
  1059. }
  1060. scale = sumlx/suml2;
  1061. float sum = 0;
  1062. for (int i = 0; i < n; ++i) {
  1063. sum += x[i] - scale*L[i];
  1064. }
  1065. min = alpha*min + (1 - alpha)*sum/n;
  1066. if (min > 0) min = 0;
  1067. iscale = 1/scale;
  1068. if (!did_change) break;
  1069. }
  1070. *the_min = -min;
  1071. return scale;
  1072. }
  1073. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1074. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1075. float rmin, float rdelta, int nstep, bool use_mad) {
  1076. float min = x[0];
  1077. float max = x[0];
  1078. float sum_w = weights[0];
  1079. float sum_x = sum_w * x[0];
  1080. #ifdef HAVE_BUGGY_APPLE_LINKER
  1081. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1082. for (volatile int i = 1; i < n; ++i) {
  1083. #else
  1084. for (int i = 1; i < n; ++i) {
  1085. #endif
  1086. if (x[i] < min) min = x[i];
  1087. if (x[i] > max) max = x[i];
  1088. float w = weights[i];
  1089. sum_w += w;
  1090. sum_x += w * x[i];
  1091. }
  1092. if (min > 0) min = 0;
  1093. if (max == min) {
  1094. for (int i = 0; i < n; ++i) L[i] = 0;
  1095. *the_min = -min;
  1096. return 0.f;
  1097. }
  1098. float iscale = nmax/(max - min);
  1099. float scale = 1/iscale;
  1100. float best_mad = 0;
  1101. for (int i = 0; i < n; ++i) {
  1102. int l = nearest_int(iscale*(x[i] - min));
  1103. L[i] = MAX(0, MIN(nmax, l));
  1104. float diff = scale * L[i] + min - x[i];
  1105. diff = use_mad ? fabsf(diff) : diff * diff;
  1106. float w = weights[i];
  1107. best_mad += w * diff;
  1108. }
  1109. if (nstep < 1) {
  1110. *the_min = -min;
  1111. return scale;
  1112. }
  1113. for (int is = 0; is <= nstep; ++is) {
  1114. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1115. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1116. for (int i = 0; i < n; ++i) {
  1117. int l = nearest_int(iscale*(x[i] - min));
  1118. l = MAX(0, MIN(nmax, l));
  1119. Laux[i] = l;
  1120. float w = weights[i];
  1121. sum_l += w*l;
  1122. sum_l2 += w*l*l;
  1123. sum_xl += w*l*x[i];
  1124. }
  1125. float D = sum_w * sum_l2 - sum_l * sum_l;
  1126. if (D > 0) {
  1127. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1128. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1129. if (this_min > 0) {
  1130. this_min = 0;
  1131. this_scale = sum_xl / sum_l2;
  1132. }
  1133. float mad = 0;
  1134. for (int i = 0; i < n; ++i) {
  1135. float diff = this_scale * Laux[i] + this_min - x[i];
  1136. diff = use_mad ? fabsf(diff) : diff * diff;
  1137. float w = weights[i];
  1138. mad += w * diff;
  1139. }
  1140. if (mad < best_mad) {
  1141. for (int i = 0; i < n; ++i) {
  1142. L[i] = Laux[i];
  1143. }
  1144. best_mad = mad;
  1145. scale = this_scale;
  1146. min = this_min;
  1147. }
  1148. }
  1149. }
  1150. *the_min = -min;
  1151. return scale;
  1152. }
  1153. #if QK_K == 256
  1154. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1155. if (j < 4) {
  1156. *d = q[j] & 63; *m = q[j + 4] & 63;
  1157. } else {
  1158. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1159. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1160. }
  1161. }
  1162. #endif
  1163. //========================- 2-bit (de)-quantization
  1164. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int64_t k) {
  1165. assert(k % QK_K == 0);
  1166. const int nb = k / QK_K;
  1167. uint8_t L[QK_K];
  1168. uint8_t Laux[16];
  1169. float weights[16];
  1170. float mins[QK_K/16];
  1171. float scales[QK_K/16];
  1172. const float q4scale = 15.f;
  1173. for (int i = 0; i < nb; i++) {
  1174. float max_scale = 0; // as we are deducting the min, scales are always positive
  1175. float max_min = 0;
  1176. for (int j = 0; j < QK_K/16; ++j) {
  1177. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1178. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1179. float scale = scales[j];
  1180. if (scale > max_scale) {
  1181. max_scale = scale;
  1182. }
  1183. float min = mins[j];
  1184. if (min > max_min) {
  1185. max_min = min;
  1186. }
  1187. }
  1188. if (max_scale > 0) {
  1189. float iscale = q4scale/max_scale;
  1190. for (int j = 0; j < QK_K/16; ++j) {
  1191. int l = nearest_int(iscale*scales[j]);
  1192. y[i].scales[j] = l;
  1193. }
  1194. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1195. } else {
  1196. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1197. y[i].d = GGML_FP32_TO_FP16(0.f);
  1198. }
  1199. if (max_min > 0) {
  1200. float iscale = q4scale/max_min;
  1201. for (int j = 0; j < QK_K/16; ++j) {
  1202. int l = nearest_int(iscale*mins[j]);
  1203. y[i].scales[j] |= (l << 4);
  1204. }
  1205. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1206. } else {
  1207. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1208. }
  1209. for (int j = 0; j < QK_K/16; ++j) {
  1210. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1211. if (!d) continue;
  1212. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1213. for (int ii = 0; ii < 16; ++ii) {
  1214. int l = nearest_int((x[16*j + ii] + dm)/d);
  1215. l = MAX(0, MIN(3, l));
  1216. L[16*j + ii] = l;
  1217. }
  1218. }
  1219. #if QK_K == 256
  1220. for (int j = 0; j < QK_K; j += 128) {
  1221. for (int l = 0; l < 32; ++l) {
  1222. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1223. }
  1224. }
  1225. #else
  1226. for (int l = 0; l < 16; ++l) {
  1227. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1228. }
  1229. #endif
  1230. x += QK_K;
  1231. }
  1232. }
  1233. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int64_t k) {
  1234. assert(k % QK_K == 0);
  1235. const int nb = k / QK_K;
  1236. for (int i = 0; i < nb; i++) {
  1237. const float d = GGML_FP16_TO_FP32(x[i].d);
  1238. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1239. const uint8_t * q = x[i].qs;
  1240. #if QK_K == 256
  1241. int is = 0;
  1242. float dl, ml;
  1243. for (int n = 0; n < QK_K; n += 128) {
  1244. int shift = 0;
  1245. for (int j = 0; j < 4; ++j) {
  1246. uint8_t sc = x[i].scales[is++];
  1247. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1248. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1249. sc = x[i].scales[is++];
  1250. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1251. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1252. shift += 2;
  1253. }
  1254. q += 32;
  1255. }
  1256. #else
  1257. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  1258. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  1259. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  1260. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  1261. for (int l = 0; l < 16; ++l) {
  1262. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  1263. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  1264. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  1265. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  1266. }
  1267. y += QK_K;
  1268. #endif
  1269. }
  1270. }
  1271. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int64_t k) {
  1272. quantize_row_q2_K_reference(x, vy, k);
  1273. }
  1274. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1275. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1276. float rmin, float rdelta, int nstep, bool use_mad) {
  1277. float min = x[0];
  1278. float max = x[0];
  1279. float sum_w = weights ? weights[0] : x[0]*x[0];
  1280. float sum_x = sum_w * x[0];
  1281. #ifdef HAVE_BUGGY_APPLE_LINKER
  1282. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1283. for (volatile int i = 1; i < n; ++i) {
  1284. #else
  1285. for (int i = 1; i < n; ++i) {
  1286. #endif
  1287. if (x[i] < min) min = x[i];
  1288. if (x[i] > max) max = x[i];
  1289. float w = weights ? weights[i] : x[i]*x[i];
  1290. sum_w += w;
  1291. sum_x += w * x[i];
  1292. }
  1293. if (min > 0) {
  1294. min = 0;
  1295. }
  1296. if (max <= min) {
  1297. memset(L, 0, n);
  1298. *the_min = -min;
  1299. return 0.f;
  1300. }
  1301. float iscale = nmax/(max - min);
  1302. float scale = 1/iscale;
  1303. float best_mad = 0;
  1304. for (int i = 0; i < n; ++i) {
  1305. int l = nearest_int(iscale*(x[i] - min));
  1306. L[i] = MAX(0, MIN(nmax, l));
  1307. float diff = scale * L[i] + min - x[i];
  1308. diff = use_mad ? fabsf(diff) : diff*diff;
  1309. float w = weights ? weights[i] : x[i]*x[i];
  1310. best_mad += w * diff;
  1311. }
  1312. if (nstep < 1) {
  1313. *the_min = -min;
  1314. return scale;
  1315. }
  1316. for (int is = 0; is <= nstep; ++is) {
  1317. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1318. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1319. for (int i = 0; i < n; ++i) {
  1320. int l = nearest_int(iscale*(x[i] - min));
  1321. l = MAX(0, MIN(nmax, l));
  1322. Laux[i] = l;
  1323. float w = weights ? weights[i] : x[i]*x[i];
  1324. sum_l += w*l;
  1325. sum_l2 += w*l*l;
  1326. sum_xl += w*l*x[i];
  1327. }
  1328. float D = sum_w * sum_l2 - sum_l * sum_l;
  1329. if (D > 0) {
  1330. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1331. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1332. if (this_min > 0) {
  1333. this_min = 0;
  1334. this_scale = sum_xl / sum_l2;
  1335. }
  1336. float mad = 0;
  1337. for (int i = 0; i < n; ++i) {
  1338. float diff = this_scale * Laux[i] + this_min - x[i];
  1339. diff = use_mad ? fabsf(diff) : diff*diff;
  1340. float w = weights ? weights[i] : x[i]*x[i];
  1341. mad += w * diff;
  1342. }
  1343. if (mad < best_mad) {
  1344. for (int i = 0; i < n; ++i) {
  1345. L[i] = Laux[i];
  1346. }
  1347. best_mad = mad;
  1348. scale = this_scale;
  1349. min = this_min;
  1350. }
  1351. }
  1352. }
  1353. *the_min = -min;
  1354. return scale;
  1355. }
  1356. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1357. float max = 0;
  1358. for (int i = 0; i < n; ++i) {
  1359. max = MAX(max, x[i]);
  1360. }
  1361. if (!max) { // all zero
  1362. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1363. return 0.f;
  1364. }
  1365. float iscale = nmax / max;
  1366. for (int i = 0; i < n; ++i) {
  1367. L[i] = nearest_int(iscale * x[i]);
  1368. }
  1369. float scale = 1/iscale;
  1370. float best_mse = 0;
  1371. for (int i = 0; i < n; ++i) {
  1372. float diff = x[i] - scale*L[i];
  1373. float w = quant_weights[i];
  1374. best_mse += w*diff*diff;
  1375. }
  1376. for (int is = -4; is <= 4; ++is) {
  1377. if (is == 0) continue;
  1378. float iscale_is = (0.1f*is + nmax)/max;
  1379. float scale_is = 1/iscale_is;
  1380. float mse = 0;
  1381. for (int i = 0; i < n; ++i) {
  1382. int l = nearest_int(iscale_is*x[i]);
  1383. l = MIN(nmax, l);
  1384. float diff = x[i] - scale_is*l;
  1385. float w = quant_weights[i];
  1386. mse += w*diff*diff;
  1387. }
  1388. if (mse < best_mse) {
  1389. best_mse = mse;
  1390. iscale = iscale_is;
  1391. }
  1392. }
  1393. float sumlx = 0;
  1394. float suml2 = 0;
  1395. for (int i = 0; i < n; ++i) {
  1396. int l = nearest_int(iscale * x[i]);
  1397. l = MIN(nmax, l);
  1398. L[i] = l;
  1399. float w = quant_weights[i];
  1400. sumlx += w*x[i]*l;
  1401. suml2 += w*l*l;
  1402. }
  1403. for (int itry = 0; itry < 5; ++itry) {
  1404. int n_changed = 0;
  1405. for (int i = 0; i < n; ++i) {
  1406. float w = quant_weights[i];
  1407. float slx = sumlx - w*x[i]*L[i];
  1408. float sl2 = suml2 - w*L[i]*L[i];
  1409. if (slx > 0 && sl2 > 0) {
  1410. int new_l = nearest_int(x[i] * sl2 / slx);
  1411. new_l = MIN(nmax, new_l);
  1412. if (new_l != L[i]) {
  1413. slx += w*x[i]*new_l;
  1414. sl2 += w*new_l*new_l;
  1415. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1416. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1417. ++n_changed;
  1418. }
  1419. }
  1420. }
  1421. }
  1422. if (!n_changed) {
  1423. break;
  1424. }
  1425. }
  1426. return sumlx/suml2;
  1427. }
  1428. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1429. GGML_ASSERT(quant_weights);
  1430. assert(k % QK_K == 0);
  1431. const int nb = k / QK_K;
  1432. const bool requantize = true;
  1433. uint8_t L[QK_K];
  1434. uint8_t Laux[16];
  1435. float mins[QK_K/16];
  1436. float scales[QK_K/16];
  1437. float sw[QK_K/16];
  1438. float weight[16];
  1439. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1440. for (int i = 0; i < nb; i++) {
  1441. memset(sw, 0, QK_K/16*sizeof(float));
  1442. float sumx2 = 0;
  1443. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1444. float sigma2 = sumx2/QK_K;
  1445. for (int j = 0; j < QK_K/16; ++j) {
  1446. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1447. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1448. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1449. scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1450. }
  1451. float dm, mm;
  1452. #if QK_K == 64
  1453. float max_scale = 0, max_min = 0;
  1454. for (int j = 0; j < QK_K/16; ++j) {
  1455. max_scale = MAX(max_scale, scales[j]);
  1456. max_min = MAX(max_min, mins[j]);
  1457. }
  1458. dm = max_scale/15;
  1459. mm = max_min/15;
  1460. if (max_scale) {
  1461. float id = 1/dm;
  1462. for (int j = 0; j < QK_K/16; ++j) {
  1463. int l = nearest_int(id*scales[j]);
  1464. Ls[j] = MAX(0, MIN(15, l));
  1465. }
  1466. } else {
  1467. memset(Ls, 0, QK_K/16);
  1468. }
  1469. if (max_min) {
  1470. float id = 1/mm;
  1471. for (int j = 0; j < QK_K/16; ++j) {
  1472. int l = nearest_int(id*mins[j]);
  1473. Lm[j] = MAX(0, MIN(15, l));
  1474. }
  1475. } else {
  1476. memset(Lm, 0, QK_K/16);
  1477. }
  1478. #else
  1479. dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1480. mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1481. #endif
  1482. y[i].d = GGML_FP32_TO_FP16(dm);
  1483. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1484. dm = GGML_FP16_TO_FP32(y[i].d);
  1485. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1486. for (int j = 0; j < QK_K/16; ++j) {
  1487. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1488. }
  1489. if (requantize) {
  1490. for (int j = 0; j < QK_K/16; ++j) {
  1491. const float d = dm * (y[i].scales[j] & 0xF);
  1492. if (!d) continue;
  1493. const float m = mm * (y[i].scales[j] >> 4);
  1494. for (int ii = 0; ii < 16; ++ii) {
  1495. int l = nearest_int((x[16*j + ii] + m)/d);
  1496. l = MAX(0, MIN(3, l));
  1497. L[16*j + ii] = l;
  1498. }
  1499. }
  1500. }
  1501. #if QK_K == 256
  1502. for (int j = 0; j < QK_K; j += 128) {
  1503. for (int l = 0; l < 32; ++l) {
  1504. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1505. }
  1506. }
  1507. #else
  1508. for (int l = 0; l < 16; ++l) {
  1509. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1510. }
  1511. #endif
  1512. x += QK_K;
  1513. }
  1514. }
  1515. size_t quantize_q2_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  1516. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1517. if (!quant_weights) {
  1518. quantize_row_q2_K_reference(src, dst, (int64_t)nrow*n_per_row);
  1519. }
  1520. else {
  1521. char * qrow = (char *)dst;
  1522. for (int64_t row = 0; row < nrow; ++row) {
  1523. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1524. src += n_per_row;
  1525. qrow += row_size;
  1526. }
  1527. }
  1528. return nrow * row_size;
  1529. }
  1530. //========================= 3-bit (de)-quantization
  1531. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int64_t k) {
  1532. assert(k % QK_K == 0);
  1533. const int nb = k / QK_K;
  1534. int8_t L[QK_K];
  1535. float scales[QK_K / 16];
  1536. for (int i = 0; i < nb; i++) {
  1537. float max_scale = 0;
  1538. float amax = 0;
  1539. for (int j = 0; j < QK_K/16; ++j) {
  1540. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1541. float scale = fabsf(scales[j]);
  1542. if (scale > amax) {
  1543. amax = scale; max_scale = scales[j];
  1544. }
  1545. }
  1546. #if QK_K == 256
  1547. memset(y[i].scales, 0, 12);
  1548. if (max_scale) {
  1549. float iscale = -32.f/max_scale;
  1550. for (int j = 0; j < QK_K/16; ++j) {
  1551. int8_t l = nearest_int(iscale*scales[j]);
  1552. l = MAX(-32, MIN(31, l)) + 32;
  1553. if (j < 8) {
  1554. y[i].scales[j] = l & 0xF;
  1555. } else {
  1556. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1557. }
  1558. l >>= 4;
  1559. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1560. }
  1561. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1562. } else {
  1563. y[i].d = GGML_FP32_TO_FP16(0.f);
  1564. }
  1565. int8_t sc;
  1566. for (int j = 0; j < QK_K/16; ++j) {
  1567. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1568. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1569. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1570. if (!d) {
  1571. continue;
  1572. }
  1573. for (int ii = 0; ii < 16; ++ii) {
  1574. int l = nearest_int(x[16*j + ii]/d);
  1575. l = MAX(-4, MIN(3, l));
  1576. L[16*j + ii] = l + 4;
  1577. }
  1578. }
  1579. #else
  1580. if (max_scale) {
  1581. float iscale = -8.f/max_scale;
  1582. for (int j = 0; j < QK_K/16; j+=2) {
  1583. int l1 = nearest_int(iscale*scales[j]);
  1584. l1 = 8 + MAX(-8, MIN(7, l1));
  1585. int l2 = nearest_int(iscale*scales[j+1]);
  1586. l2 = 8 + MAX(-8, MIN(7, l2));
  1587. y[i].scales[j/2] = l1 | (l2 << 4);
  1588. }
  1589. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1590. } else {
  1591. for (int j = 0; j < QK_K/16; j+=2) {
  1592. y[i].scales[j/2] = 0;
  1593. }
  1594. y[i].d = GGML_FP32_TO_FP16(0.f);
  1595. }
  1596. for (int j = 0; j < QK_K/16; ++j) {
  1597. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  1598. float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8);
  1599. if (!d) {
  1600. continue;
  1601. }
  1602. for (int ii = 0; ii < 16; ++ii) {
  1603. int l = nearest_int(x[16*j + ii]/d);
  1604. l = MAX(-4, MIN(3, l));
  1605. L[16*j + ii] = l + 4;
  1606. }
  1607. }
  1608. #endif
  1609. memset(y[i].hmask, 0, QK_K/8);
  1610. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1611. int m = 0;
  1612. uint8_t hm = 1;
  1613. for (int j = 0; j < QK_K; ++j) {
  1614. if (L[j] > 3) {
  1615. y[i].hmask[m] |= hm;
  1616. L[j] -= 4;
  1617. }
  1618. if (++m == QK_K/8) {
  1619. m = 0; hm <<= 1;
  1620. }
  1621. }
  1622. #if QK_K == 256
  1623. for (int j = 0; j < QK_K; j += 128) {
  1624. for (int l = 0; l < 32; ++l) {
  1625. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1626. }
  1627. }
  1628. #else
  1629. for (int l = 0; l < 16; ++l) {
  1630. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1631. }
  1632. #endif
  1633. x += QK_K;
  1634. }
  1635. }
  1636. #if QK_K == 256
  1637. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) {
  1638. assert(k % QK_K == 0);
  1639. const int nb = k / QK_K;
  1640. const uint32_t kmask1 = 0x03030303;
  1641. const uint32_t kmask2 = 0x0f0f0f0f;
  1642. uint32_t aux[4];
  1643. const int8_t * scales = (const int8_t*)aux;
  1644. for (int i = 0; i < nb; i++) {
  1645. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1646. const uint8_t * restrict q = x[i].qs;
  1647. const uint8_t * restrict hm = x[i].hmask;
  1648. uint8_t m = 1;
  1649. memcpy(aux, x[i].scales, 12);
  1650. uint32_t tmp = aux[2];
  1651. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1652. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1653. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1654. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1655. int is = 0;
  1656. float dl;
  1657. for (int n = 0; n < QK_K; n += 128) {
  1658. int shift = 0;
  1659. for (int j = 0; j < 4; ++j) {
  1660. dl = d_all * (scales[is++] - 32);
  1661. for (int l = 0; l < 16; ++l) {
  1662. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  1663. }
  1664. dl = d_all * (scales[is++] - 32);
  1665. for (int l = 0; l < 16; ++l) {
  1666. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  1667. }
  1668. shift += 2;
  1669. m <<= 1;
  1670. }
  1671. q += 32;
  1672. }
  1673. }
  1674. }
  1675. #else
  1676. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) {
  1677. assert(k % QK_K == 0);
  1678. assert(QK_K == 64);
  1679. const int nb = k / QK_K;
  1680. for (int i = 0; i < nb; i++) {
  1681. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1682. const uint8_t * restrict q = x[i].qs;
  1683. const uint8_t * restrict hm = x[i].hmask;
  1684. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  1685. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  1686. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  1687. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  1688. for (int l=0; l<8; ++l) {
  1689. uint8_t h = hm[l];
  1690. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  1691. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  1692. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  1693. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  1694. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  1695. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  1696. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  1697. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  1698. }
  1699. y += QK_K;
  1700. }
  1701. }
  1702. #endif
  1703. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) {
  1704. quantize_row_q3_K_reference(x, vy, k);
  1705. }
  1706. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int64_t n_per_row, const float * restrict quant_weights) {
  1707. #if QK_K != 256
  1708. (void)quant_weights;
  1709. quantize_row_q3_K_reference(x, y, n_per_row);
  1710. #else
  1711. assert(n_per_row % QK_K == 0);
  1712. const int nb = n_per_row / QK_K;
  1713. int8_t L[QK_K];
  1714. float scales[QK_K / 16];
  1715. float weight[16];
  1716. float sw[QK_K / 16];
  1717. int8_t Ls[QK_K / 16];
  1718. for (int i = 0; i < nb; i++) {
  1719. float sumx2 = 0;
  1720. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1721. float sigma2 = 2*sumx2/QK_K;
  1722. for (int j = 0; j < QK_K/16; ++j) {
  1723. if (quant_weights) {
  1724. const float * qw = quant_weights + QK_K * i + 16*j;
  1725. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  1726. } else {
  1727. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  1728. }
  1729. float sumw = 0;
  1730. for (int l = 0; l < 16; ++l) sumw += weight[l];
  1731. sw[j] = sumw;
  1732. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  1733. }
  1734. memset(y[i].scales, 0, 12);
  1735. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  1736. for (int j = 0; j < QK_K/16; ++j) {
  1737. int l = Ls[j];
  1738. if (j < 8) {
  1739. y[i].scales[j] = l & 0xF;
  1740. } else {
  1741. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1742. }
  1743. l >>= 4;
  1744. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1745. }
  1746. y[i].d = GGML_FP32_TO_FP16(d_block);
  1747. int8_t sc;
  1748. for (int j = 0; j < QK_K/16; ++j) {
  1749. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1750. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1751. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1752. if (!d) {
  1753. continue;
  1754. }
  1755. for (int ii = 0; ii < 16; ++ii) {
  1756. int l = nearest_int(x[16*j + ii]/d);
  1757. l = MAX(-4, MIN(3, l));
  1758. L[16*j + ii] = l + 4;
  1759. }
  1760. }
  1761. memset(y[i].hmask, 0, QK_K/8);
  1762. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1763. int m = 0;
  1764. uint8_t hm = 1;
  1765. for (int j = 0; j < QK_K; ++j) {
  1766. if (L[j] > 3) {
  1767. y[i].hmask[m] |= hm;
  1768. L[j] -= 4;
  1769. }
  1770. if (++m == QK_K/8) {
  1771. m = 0; hm <<= 1;
  1772. }
  1773. }
  1774. for (int j = 0; j < QK_K; j += 128) {
  1775. for (int l = 0; l < 32; ++l) {
  1776. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1777. }
  1778. }
  1779. x += QK_K;
  1780. }
  1781. #endif
  1782. }
  1783. size_t quantize_q3_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  1784. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  1785. if (!quant_weights) {
  1786. quantize_row_q3_K_reference(src, dst, (int64_t)nrow*n_per_row);
  1787. }
  1788. else {
  1789. char * qrow = (char *)dst;
  1790. for (int64_t row = 0; row < nrow; ++row) {
  1791. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  1792. src += n_per_row;
  1793. qrow += row_size;
  1794. }
  1795. }
  1796. return nrow * row_size;
  1797. }
  1798. // ====================== 4-bit (de)-quantization
  1799. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int64_t k) {
  1800. assert(k % QK_K == 0);
  1801. const int nb = k / QK_K;
  1802. uint8_t L[QK_K];
  1803. uint8_t Laux[32];
  1804. float weights[32];
  1805. float mins[QK_K/32];
  1806. float scales[QK_K/32];
  1807. for (int i = 0; i < nb; i++) {
  1808. float max_scale = 0; // as we are deducting the min, scales are always positive
  1809. float max_min = 0;
  1810. for (int j = 0; j < QK_K/32; ++j) {
  1811. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  1812. float sum_x2 = 0;
  1813. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  1814. float av_x = sqrtf(sum_x2/32);
  1815. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  1816. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  1817. float scale = scales[j];
  1818. if (scale > max_scale) {
  1819. max_scale = scale;
  1820. }
  1821. float min = mins[j];
  1822. if (min > max_min) {
  1823. max_min = min;
  1824. }
  1825. }
  1826. #if QK_K == 256
  1827. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  1828. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  1829. for (int j = 0; j < QK_K/32; ++j) {
  1830. uint8_t ls = nearest_int(inv_scale*scales[j]);
  1831. uint8_t lm = nearest_int(inv_min*mins[j]);
  1832. ls = MIN(63, ls);
  1833. lm = MIN(63, lm);
  1834. if (j < 4) {
  1835. y[i].scales[j] = ls;
  1836. y[i].scales[j+4] = lm;
  1837. } else {
  1838. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  1839. y[i].scales[j-4] |= ((ls >> 4) << 6);
  1840. y[i].scales[j-0] |= ((lm >> 4) << 6);
  1841. }
  1842. }
  1843. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  1844. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  1845. uint8_t sc, m;
  1846. for (int j = 0; j < QK_K/32; ++j) {
  1847. get_scale_min_k4(j, y[i].scales, &sc, &m);
  1848. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1849. if (!d) continue;
  1850. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  1851. for (int ii = 0; ii < 32; ++ii) {
  1852. int l = nearest_int((x[32*j + ii] + dm)/d);
  1853. l = MAX(0, MIN(15, l));
  1854. L[32*j + ii] = l;
  1855. }
  1856. }
  1857. #else
  1858. const float s_factor = 15.f;
  1859. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  1860. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  1861. int d1 = nearest_int(inv_scale*scales[0]);
  1862. int m1 = nearest_int(inv_min*mins[0]);
  1863. int d2 = nearest_int(inv_scale*scales[1]);
  1864. int m2 = nearest_int(inv_min*mins[1]);
  1865. y[i].scales[0] = d1 | (m1 << 4);
  1866. y[i].scales[1] = d2 | (m2 << 4);
  1867. y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor);
  1868. y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor);
  1869. float sumlx = 0;
  1870. int suml2 = 0;
  1871. for (int j = 0; j < QK_K/32; ++j) {
  1872. const uint8_t sd = y[i].scales[j] & 0xF;
  1873. const uint8_t sm = y[i].scales[j] >> 4;
  1874. const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd;
  1875. if (!d) continue;
  1876. const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm;
  1877. for (int ii = 0; ii < 32; ++ii) {
  1878. int l = nearest_int((x[32*j + ii] + m)/d);
  1879. l = MAX(0, MIN(15, l));
  1880. L[32*j + ii] = l;
  1881. sumlx += (x[32*j + ii] + m)*l*sd;
  1882. suml2 += l*l*sd*sd;
  1883. }
  1884. }
  1885. if (suml2) {
  1886. y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2);
  1887. }
  1888. #endif
  1889. uint8_t * q = y[i].qs;
  1890. for (int j = 0; j < QK_K; j += 64) {
  1891. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  1892. q += 32;
  1893. }
  1894. x += QK_K;
  1895. }
  1896. }
  1897. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int64_t k) {
  1898. assert(k % QK_K == 0);
  1899. const int nb = k / QK_K;
  1900. for (int i = 0; i < nb; i++) {
  1901. const uint8_t * q = x[i].qs;
  1902. #if QK_K == 256
  1903. const float d = GGML_FP16_TO_FP32(x[i].d);
  1904. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1905. int is = 0;
  1906. uint8_t sc, m;
  1907. for (int j = 0; j < QK_K; j += 64) {
  1908. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  1909. const float d1 = d * sc; const float m1 = min * m;
  1910. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  1911. const float d2 = d * sc; const float m2 = min * m;
  1912. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  1913. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  1914. q += 32; is += 2;
  1915. }
  1916. #else
  1917. const float dall = GGML_FP16_TO_FP32(x[i].d[0]);
  1918. const float mall = GGML_FP16_TO_FP32(x[i].d[1]);
  1919. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  1920. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  1921. for (int l = 0; l < 32; ++l) {
  1922. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  1923. y[l+32] = d2 * (q[l] >> 4) - m2;
  1924. }
  1925. y += QK_K;
  1926. #endif
  1927. }
  1928. }
  1929. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) {
  1930. assert(k % QK_K == 0);
  1931. block_q4_K * restrict y = vy;
  1932. quantize_row_q4_K_reference(x, y, k);
  1933. }
  1934. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  1935. #if QK_K != 256
  1936. (void)quant_weights;
  1937. quantize_row_q4_K_reference(x, y, n_per_row);
  1938. #else
  1939. assert(n_per_row % QK_K == 0);
  1940. const int64_t nb = n_per_row / QK_K;
  1941. uint8_t L[QK_K];
  1942. uint8_t Laux[32];
  1943. uint8_t Ls[QK_K/32];
  1944. uint8_t Lm[QK_K/32];
  1945. float weights[32];
  1946. float sw[QK_K/32];
  1947. float mins[QK_K/32];
  1948. float scales[QK_K/32];
  1949. for (int i = 0; i < nb; i++) {
  1950. float sum_x2 = 0;
  1951. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  1952. float sigma2 = 2*sum_x2/QK_K;
  1953. float av_x = sqrtf(sigma2);
  1954. for (int j = 0; j < QK_K/32; ++j) {
  1955. if (quant_weights) {
  1956. const float * qw = quant_weights + QK_K*i + 32*j;
  1957. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  1958. } else {
  1959. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  1960. }
  1961. float sumw = 0;
  1962. for (int l = 0; l < 32; ++l) sumw += weights[l];
  1963. sw[j] = sumw;
  1964. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1965. }
  1966. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  1967. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  1968. for (int j = 0; j < QK_K/32; ++j) {
  1969. uint8_t ls = Ls[j];
  1970. uint8_t lm = Lm[j];
  1971. if (j < 4) {
  1972. y[i].scales[j] = ls;
  1973. y[i].scales[j+4] = lm;
  1974. } else {
  1975. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  1976. y[i].scales[j-4] |= ((ls >> 4) << 6);
  1977. y[i].scales[j-0] |= ((lm >> 4) << 6);
  1978. }
  1979. }
  1980. y[i].d = GGML_FP32_TO_FP16(d_block);
  1981. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  1982. uint8_t sc, m;
  1983. for (int j = 0; j < QK_K/32; ++j) {
  1984. get_scale_min_k4(j, y[i].scales, &sc, &m);
  1985. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1986. if (!d) continue;
  1987. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  1988. for (int ii = 0; ii < 32; ++ii) {
  1989. int l = nearest_int((x[32*j + ii] + dm)/d);
  1990. l = MAX(0, MIN(15, l));
  1991. L[32*j + ii] = l;
  1992. }
  1993. }
  1994. uint8_t * q = y[i].qs;
  1995. for (int j = 0; j < QK_K; j += 64) {
  1996. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  1997. q += 32;
  1998. }
  1999. x += QK_K;
  2000. }
  2001. #endif
  2002. }
  2003. size_t quantize_q4_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2004. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2005. if (!quant_weights) {
  2006. quantize_row_q4_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2007. }
  2008. else {
  2009. char * qrow = (char *)dst;
  2010. for (int64_t row = 0; row < nrow; ++row) {
  2011. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2012. src += n_per_row;
  2013. qrow += row_size;
  2014. }
  2015. }
  2016. return nrow * row_size;
  2017. }
  2018. // ====================== 5-bit (de)-quantization
  2019. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int64_t k) {
  2020. assert(k % QK_K == 0);
  2021. const int64_t nb = k / QK_K;
  2022. #if QK_K == 256
  2023. uint8_t L[QK_K];
  2024. float mins[QK_K/32];
  2025. float scales[QK_K/32];
  2026. float weights[32];
  2027. uint8_t Laux[32];
  2028. #else
  2029. int8_t L[QK_K];
  2030. float scales[QK_K/16];
  2031. #endif
  2032. for (int i = 0; i < nb; i++) {
  2033. #if QK_K == 256
  2034. float max_scale = 0; // as we are deducting the min, scales are always positive
  2035. float max_min = 0;
  2036. for (int j = 0; j < QK_K/32; ++j) {
  2037. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2038. float sum_x2 = 0;
  2039. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2040. float av_x = sqrtf(sum_x2/32);
  2041. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2042. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2043. float scale = scales[j];
  2044. if (scale > max_scale) {
  2045. max_scale = scale;
  2046. }
  2047. float min = mins[j];
  2048. if (min > max_min) {
  2049. max_min = min;
  2050. }
  2051. }
  2052. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2053. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2054. for (int j = 0; j < QK_K/32; ++j) {
  2055. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2056. uint8_t lm = nearest_int(inv_min*mins[j]);
  2057. ls = MIN(63, ls);
  2058. lm = MIN(63, lm);
  2059. if (j < 4) {
  2060. y[i].scales[j] = ls;
  2061. y[i].scales[j+4] = lm;
  2062. } else {
  2063. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2064. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2065. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2066. }
  2067. }
  2068. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2069. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2070. uint8_t sc, m;
  2071. for (int j = 0; j < QK_K/32; ++j) {
  2072. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2073. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2074. if (!d) continue;
  2075. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2076. for (int ii = 0; ii < 32; ++ii) {
  2077. int l = nearest_int((x[32*j + ii] + dm)/d);
  2078. l = MAX(0, MIN(31, l));
  2079. L[32*j + ii] = l;
  2080. }
  2081. }
  2082. uint8_t * restrict qh = y[i].qh;
  2083. uint8_t * restrict ql = y[i].qs;
  2084. memset(qh, 0, QK_K/8);
  2085. uint8_t m1 = 1, m2 = 2;
  2086. for (int n = 0; n < QK_K; n += 64) {
  2087. for (int j = 0; j < 32; ++j) {
  2088. int l1 = L[n + j];
  2089. if (l1 > 15) {
  2090. l1 -= 16; qh[j] |= m1;
  2091. }
  2092. int l2 = L[n + j + 32];
  2093. if (l2 > 15) {
  2094. l2 -= 16; qh[j] |= m2;
  2095. }
  2096. ql[j] = l1 | (l2 << 4);
  2097. }
  2098. m1 <<= 2; m2 <<= 2;
  2099. ql += 32;
  2100. }
  2101. #else
  2102. float max_scale = 0, amax = 0;
  2103. for (int j = 0; j < QK_K/16; ++j) {
  2104. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL);
  2105. float abs_scale = fabsf(scales[j]);
  2106. if (abs_scale > amax) {
  2107. amax = abs_scale;
  2108. max_scale = scales[j];
  2109. }
  2110. }
  2111. float iscale = -128.f/max_scale;
  2112. for (int j = 0; j < QK_K/16; ++j) {
  2113. int l = nearest_int(iscale*scales[j]);
  2114. y[i].scales[j] = MAX(-128, MIN(127, l));
  2115. }
  2116. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2117. for (int j = 0; j < QK_K/16; ++j) {
  2118. const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2119. if (!d) continue;
  2120. for (int ii = 0; ii < 16; ++ii) {
  2121. int l = nearest_int(x[16*j + ii]/d);
  2122. l = MAX(-16, MIN(15, l));
  2123. L[16*j + ii] = l + 16;
  2124. }
  2125. }
  2126. uint8_t * restrict qh = y[i].qh;
  2127. uint8_t * restrict ql = y[i].qs;
  2128. memset(qh, 0, QK_K/8);
  2129. for (int j = 0; j < 32; ++j) {
  2130. int jm = j%8;
  2131. int is = j/8;
  2132. int l1 = L[j];
  2133. if (l1 > 15) {
  2134. l1 -= 16; qh[jm] |= (1 << is);
  2135. }
  2136. int l2 = L[j + 32];
  2137. if (l2 > 15) {
  2138. l2 -= 16; qh[jm] |= (1 << (4 + is));
  2139. }
  2140. ql[j] = l1 | (l2 << 4);
  2141. }
  2142. #endif
  2143. x += QK_K;
  2144. }
  2145. }
  2146. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int64_t k) {
  2147. assert(k % QK_K == 0);
  2148. const int64_t nb = k / QK_K;
  2149. for (int i = 0; i < nb; i++) {
  2150. const uint8_t * ql = x[i].qs;
  2151. const uint8_t * qh = x[i].qh;
  2152. #if QK_K == 256
  2153. const float d = GGML_FP16_TO_FP32(x[i].d);
  2154. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2155. int is = 0;
  2156. uint8_t sc, m;
  2157. uint8_t u1 = 1, u2 = 2;
  2158. for (int j = 0; j < QK_K; j += 64) {
  2159. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2160. const float d1 = d * sc; const float m1 = min * m;
  2161. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2162. const float d2 = d * sc; const float m2 = min * m;
  2163. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2164. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2165. ql += 32; is += 2;
  2166. u1 <<= 2; u2 <<= 2;
  2167. }
  2168. #else
  2169. float d = GGML_FP16_TO_FP32(x[i].d);
  2170. const int8_t * restrict s = x[i].scales;
  2171. for (int l = 0; l < 8; ++l) {
  2172. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  2173. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  2174. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  2175. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  2176. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  2177. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  2178. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  2179. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  2180. }
  2181. y += QK_K;
  2182. #endif
  2183. }
  2184. }
  2185. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) {
  2186. assert(k % QK_K == 0);
  2187. block_q5_K * restrict y = vy;
  2188. quantize_row_q5_K_reference(x, y, k);
  2189. }
  2190. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2191. #if QK_K != 256
  2192. (void)quant_weights;
  2193. quantize_row_q5_K_reference(x, y, n_per_row);
  2194. #else
  2195. assert(n_per_row % QK_K == 0);
  2196. const int64_t nb = n_per_row / QK_K;
  2197. uint8_t L[QK_K];
  2198. uint8_t Laux[32];
  2199. uint8_t Ls[QK_K/32];
  2200. uint8_t Lm[QK_K/32];
  2201. float mins[QK_K/32];
  2202. float scales[QK_K/32];
  2203. float sw[QK_K/32];
  2204. float weights[32];
  2205. for (int i = 0; i < nb; i++) {
  2206. float sum_x2 = 0;
  2207. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2208. float sigma2 = 2*sum_x2/QK_K;
  2209. float av_x = sqrtf(sigma2);
  2210. for (int j = 0; j < QK_K/32; ++j) {
  2211. if (quant_weights) {
  2212. const float * qw = quant_weights + QK_K*i + 32*j;
  2213. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2214. } else {
  2215. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2216. }
  2217. float sumw = 0;
  2218. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2219. sw[j] = sumw;
  2220. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2221. }
  2222. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2223. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2224. for (int j = 0; j < QK_K/32; ++j) {
  2225. uint8_t ls = Ls[j];
  2226. uint8_t lm = Lm[j];
  2227. ls = MIN(63, ls);
  2228. lm = MIN(63, lm);
  2229. if (j < 4) {
  2230. y[i].scales[j] = ls;
  2231. y[i].scales[j+4] = lm;
  2232. } else {
  2233. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2234. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2235. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2236. }
  2237. }
  2238. y[i].d = GGML_FP32_TO_FP16(d_block);
  2239. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2240. uint8_t sc, m;
  2241. for (int j = 0; j < QK_K/32; ++j) {
  2242. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2243. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2244. if (!d) continue;
  2245. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2246. for (int ii = 0; ii < 32; ++ii) {
  2247. int l = nearest_int((x[32*j + ii] + dm)/d);
  2248. l = MAX(0, MIN(31, l));
  2249. L[32*j + ii] = l;
  2250. }
  2251. }
  2252. uint8_t * restrict qh = y[i].qh;
  2253. uint8_t * restrict ql = y[i].qs;
  2254. memset(qh, 0, QK_K/8);
  2255. uint8_t m1 = 1, m2 = 2;
  2256. for (int n = 0; n < QK_K; n += 64) {
  2257. for (int j = 0; j < 32; ++j) {
  2258. int l1 = L[n + j];
  2259. if (l1 > 15) {
  2260. l1 -= 16; qh[j] |= m1;
  2261. }
  2262. int l2 = L[n + j + 32];
  2263. if (l2 > 15) {
  2264. l2 -= 16; qh[j] |= m2;
  2265. }
  2266. ql[j] = l1 | (l2 << 4);
  2267. }
  2268. m1 <<= 2; m2 <<= 2;
  2269. ql += 32;
  2270. }
  2271. x += QK_K;
  2272. }
  2273. #endif
  2274. }
  2275. size_t quantize_q5_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2276. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2277. if (!quant_weights) {
  2278. quantize_row_q5_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2279. }
  2280. else {
  2281. char * qrow = (char *)dst;
  2282. for (int64_t row = 0; row < nrow; ++row) {
  2283. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2284. src += n_per_row;
  2285. qrow += row_size;
  2286. }
  2287. }
  2288. return nrow * row_size;
  2289. }
  2290. // ====================== 6-bit (de)-quantization
  2291. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int64_t k) {
  2292. assert(k % QK_K == 0);
  2293. const int64_t nb = k / QK_K;
  2294. int8_t L[QK_K];
  2295. float scales[QK_K/16];
  2296. for (int i = 0; i < nb; i++) {
  2297. float max_scale = 0;
  2298. float max_abs_scale = 0;
  2299. for (int ib = 0; ib < QK_K/16; ++ib) {
  2300. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2301. scales[ib] = scale;
  2302. const float abs_scale = fabsf(scale);
  2303. if (abs_scale > max_abs_scale) {
  2304. max_abs_scale = abs_scale;
  2305. max_scale = scale;
  2306. }
  2307. }
  2308. if (max_abs_scale < GROUP_MAX_EPS) {
  2309. memset(&y[i], 0, sizeof(block_q6_K));
  2310. y[i].d = GGML_FP32_TO_FP16(0.f);
  2311. x += QK_K;
  2312. continue;
  2313. }
  2314. float iscale = -128.f/max_scale;
  2315. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2316. for (int ib = 0; ib < QK_K/16; ++ib) {
  2317. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2318. }
  2319. for (int j = 0; j < QK_K/16; ++j) {
  2320. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2321. if (!d) {
  2322. continue;
  2323. }
  2324. for (int ii = 0; ii < 16; ++ii) {
  2325. int l = nearest_int(x[16*j + ii]/d);
  2326. l = MAX(-32, MIN(31, l));
  2327. L[16*j + ii] = l + 32;
  2328. }
  2329. }
  2330. uint8_t * restrict ql = y[i].ql;
  2331. uint8_t * restrict qh = y[i].qh;
  2332. #if QK_K == 256
  2333. for (int j = 0; j < QK_K; j += 128) {
  2334. for (int l = 0; l < 32; ++l) {
  2335. const uint8_t q1 = L[j + l + 0] & 0xF;
  2336. const uint8_t q2 = L[j + l + 32] & 0xF;
  2337. const uint8_t q3 = L[j + l + 64] & 0xF;
  2338. const uint8_t q4 = L[j + l + 96] & 0xF;
  2339. ql[l+ 0] = q1 | (q3 << 4);
  2340. ql[l+32] = q2 | (q4 << 4);
  2341. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2342. }
  2343. ql += 64;
  2344. qh += 32;
  2345. }
  2346. #else
  2347. for (int l = 0; l < 32; ++l) {
  2348. const uint8_t q1 = L[l + 0] & 0xF;
  2349. const uint8_t q2 = L[l + 32] & 0xF;
  2350. ql[l] = q1 | (q2 << 4);
  2351. }
  2352. for (int l = 0; l < 16; ++l) {
  2353. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  2354. }
  2355. #endif
  2356. x += QK_K;
  2357. }
  2358. }
  2359. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int64_t k) {
  2360. assert(k % QK_K == 0);
  2361. const int64_t nb = k / QK_K;
  2362. for (int i = 0; i < nb; i++) {
  2363. const float d = GGML_FP16_TO_FP32(x[i].d);
  2364. const uint8_t * restrict ql = x[i].ql;
  2365. const uint8_t * restrict qh = x[i].qh;
  2366. const int8_t * restrict sc = x[i].scales;
  2367. #if QK_K == 256
  2368. for (int n = 0; n < QK_K; n += 128) {
  2369. for (int l = 0; l < 32; ++l) {
  2370. int is = l/16;
  2371. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2372. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2373. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2374. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2375. y[l + 0] = d * sc[is + 0] * q1;
  2376. y[l + 32] = d * sc[is + 2] * q2;
  2377. y[l + 64] = d * sc[is + 4] * q3;
  2378. y[l + 96] = d * sc[is + 6] * q4;
  2379. }
  2380. y += 128;
  2381. ql += 64;
  2382. qh += 32;
  2383. sc += 8;
  2384. }
  2385. #else
  2386. for (int l = 0; l < 16; ++l) {
  2387. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2388. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2389. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2390. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2391. y[l+ 0] = d * sc[0] * q1;
  2392. y[l+16] = d * sc[1] * q2;
  2393. y[l+32] = d * sc[2] * q3;
  2394. y[l+48] = d * sc[3] * q4;
  2395. }
  2396. y += 64;
  2397. #endif
  2398. }
  2399. }
  2400. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) {
  2401. assert(k % QK_K == 0);
  2402. block_q6_K * restrict y = vy;
  2403. quantize_row_q6_K_reference(x, y, k);
  2404. }
  2405. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2406. #if QK_K != 256
  2407. (void)quant_weights;
  2408. quantize_row_q6_K_reference(x, y, n_per_row);
  2409. #else
  2410. assert(n_per_row % QK_K == 0);
  2411. const int64_t nb = n_per_row / QK_K;
  2412. int8_t L[QK_K];
  2413. float scales[QK_K/16];
  2414. //float weights[16];
  2415. for (int i = 0; i < nb; i++) {
  2416. //float sum_x2 = 0;
  2417. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2418. //float sigma2 = sum_x2/QK_K;
  2419. float max_scale = 0;
  2420. float max_abs_scale = 0;
  2421. for (int ib = 0; ib < QK_K/16; ++ib) {
  2422. float scale;
  2423. if (quant_weights) {
  2424. const float * qw = quant_weights + QK_K*i + 16*ib;
  2425. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2426. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2427. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2428. } else {
  2429. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2430. }
  2431. scales[ib] = scale;
  2432. const float abs_scale = fabsf(scale);
  2433. if (abs_scale > max_abs_scale) {
  2434. max_abs_scale = abs_scale;
  2435. max_scale = scale;
  2436. }
  2437. }
  2438. if (max_abs_scale < GROUP_MAX_EPS) {
  2439. memset(&y[i], 0, sizeof(block_q6_K));
  2440. y[i].d = GGML_FP32_TO_FP16(0.f);
  2441. x += QK_K;
  2442. continue;
  2443. }
  2444. float iscale = -128.f/max_scale;
  2445. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2446. for (int ib = 0; ib < QK_K/16; ++ib) {
  2447. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2448. }
  2449. for (int j = 0; j < QK_K/16; ++j) {
  2450. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2451. if (!d) {
  2452. continue;
  2453. }
  2454. for (int ii = 0; ii < 16; ++ii) {
  2455. int l = nearest_int(x[16*j + ii]/d);
  2456. l = MAX(-32, MIN(31, l));
  2457. L[16*j + ii] = l + 32;
  2458. }
  2459. }
  2460. uint8_t * restrict ql = y[i].ql;
  2461. uint8_t * restrict qh = y[i].qh;
  2462. for (int j = 0; j < QK_K; j += 128) {
  2463. for (int l = 0; l < 32; ++l) {
  2464. const uint8_t q1 = L[j + l + 0] & 0xF;
  2465. const uint8_t q2 = L[j + l + 32] & 0xF;
  2466. const uint8_t q3 = L[j + l + 64] & 0xF;
  2467. const uint8_t q4 = L[j + l + 96] & 0xF;
  2468. ql[l+ 0] = q1 | (q3 << 4);
  2469. ql[l+32] = q2 | (q4 << 4);
  2470. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2471. }
  2472. ql += 64;
  2473. qh += 32;
  2474. }
  2475. x += QK_K;
  2476. }
  2477. #endif
  2478. }
  2479. size_t quantize_q6_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2480. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2481. if (!quant_weights) {
  2482. quantize_row_q6_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2483. }
  2484. else {
  2485. char * qrow = (char *)dst;
  2486. for (int64_t row = 0; row < nrow; ++row) {
  2487. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2488. src += n_per_row;
  2489. qrow += row_size;
  2490. }
  2491. }
  2492. return nrow * row_size;
  2493. }
  2494. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2495. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2496. if (!quant_weights) {
  2497. quantize_row_q4_0_reference(x, y, n_per_row);
  2498. return;
  2499. }
  2500. float weight[QK4_0];
  2501. int8_t L[QK4_0];
  2502. float sum_x2 = 0;
  2503. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2504. float sigma2 = sum_x2/n_per_row;
  2505. const int64_t nb = n_per_row/QK4_0;
  2506. for (int ib = 0; ib < nb; ++ib) {
  2507. const float * xb = x + QK4_0 * ib;
  2508. const float * qw = quant_weights + QK4_0 * ib;
  2509. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2510. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2511. y[ib].d = GGML_FP32_TO_FP16(d);
  2512. for (int j = 0; j < 16; ++j) {
  2513. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2514. }
  2515. }
  2516. }
  2517. size_t quantize_q4_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2518. if (!quant_weights) {
  2519. quantize_row_q4_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2520. return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2521. }
  2522. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2523. char * qrow = (char *)dst;
  2524. for (int64_t row = 0; row < nrow; ++row) {
  2525. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2526. src += n_per_row;
  2527. qrow += row_size;
  2528. }
  2529. return nrow * row_size;
  2530. }
  2531. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2532. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2533. if (!quant_weights) {
  2534. quantize_row_q4_1_reference(x, y, n_per_row);
  2535. return;
  2536. }
  2537. float weight[QK4_1];
  2538. uint8_t L[QK4_1], Laux[QK4_1];
  2539. float sum_x2 = 0;
  2540. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2541. float sigma2 = sum_x2/n_per_row;
  2542. const int64_t nb = n_per_row/QK4_1;
  2543. for (int ib = 0; ib < nb; ++ib) {
  2544. const float * xb = x + QK4_1 * ib;
  2545. const float * qw = quant_weights + QK4_1 * ib;
  2546. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2547. float min;
  2548. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2549. y[ib].d = GGML_FP32_TO_FP16(d);
  2550. y[ib].m = GGML_FP32_TO_FP16(-min);
  2551. for (int j = 0; j < 16; ++j) {
  2552. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2553. }
  2554. }
  2555. }
  2556. size_t quantize_q4_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2557. if (!quant_weights) {
  2558. quantize_row_q4_1_reference(src, dst, (int64_t)nrow*n_per_row);
  2559. return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2560. }
  2561. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2562. char * qrow = (char *)dst;
  2563. for (int64_t row = 0; row < nrow; ++row) {
  2564. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2565. src += n_per_row;
  2566. qrow += row_size;
  2567. }
  2568. return nrow * row_size;
  2569. }
  2570. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2571. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  2572. if (!quant_weights) {
  2573. quantize_row_q5_0_reference(x, y, n_per_row);
  2574. return;
  2575. }
  2576. float weight[QK5_0];
  2577. int8_t L[QK5_0];
  2578. float sum_x2 = 0;
  2579. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2580. float sigma2 = sum_x2/n_per_row;
  2581. const int64_t nb = n_per_row/QK5_0;
  2582. for (int ib = 0; ib < nb; ++ib) {
  2583. const float * xb = x + QK5_0 * ib;
  2584. const float * qw = quant_weights + QK5_0 * ib;
  2585. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2586. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  2587. y[ib].d = GGML_FP32_TO_FP16(d);
  2588. uint32_t qh = 0;
  2589. for (int j = 0; j < 16; ++j) {
  2590. const uint8_t xi0 = L[j];
  2591. const uint8_t xi1 = L[j+16];
  2592. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2593. // get the 5-th bit and store it in qh at the right position
  2594. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2595. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2596. }
  2597. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2598. }
  2599. }
  2600. size_t quantize_q5_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2601. if (!quant_weights) {
  2602. quantize_row_q5_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2603. return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2604. }
  2605. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2606. char * qrow = (char *)dst;
  2607. for (int64_t row = 0; row < nrow; ++row) {
  2608. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  2609. src += n_per_row;
  2610. qrow += row_size;
  2611. }
  2612. return nrow * row_size;
  2613. }
  2614. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2615. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  2616. if (!quant_weights) {
  2617. quantize_row_q5_1_reference(x, y, n_per_row);
  2618. return;
  2619. }
  2620. float weight[QK5_1];
  2621. uint8_t L[QK5_1], Laux[QK5_1];
  2622. float sum_x2 = 0;
  2623. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2624. float sigma2 = sum_x2/n_per_row;
  2625. const int64_t nb = n_per_row/QK5_1;
  2626. for (int ib = 0; ib < nb; ++ib) {
  2627. const float * xb = x + QK5_1 * ib;
  2628. const float * qw = quant_weights + QK5_1 * ib;
  2629. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2630. float min;
  2631. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2632. y[ib].d = GGML_FP32_TO_FP16(d);
  2633. y[ib].m = GGML_FP32_TO_FP16(-min);
  2634. uint32_t qh = 0;
  2635. for (int j = 0; j < 16; ++j) {
  2636. const uint8_t xi0 = L[j];
  2637. const uint8_t xi1 = L[j+16];
  2638. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2639. // get the 5-th bit and store it in qh at the right position
  2640. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2641. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2642. }
  2643. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2644. }
  2645. }
  2646. size_t quantize_q5_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2647. if (!quant_weights) {
  2648. quantize_row_q5_1_reference(src, dst, (int64_t)nrow*n_per_row);
  2649. return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2650. }
  2651. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2652. char * qrow = (char *)dst;
  2653. for (int64_t row = 0; row < nrow; ++row) {
  2654. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  2655. src += n_per_row;
  2656. qrow += row_size;
  2657. }
  2658. return nrow * row_size;
  2659. }
  2660. size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2661. (void)quant_weights; // not used
  2662. const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
  2663. quantize_row_q8_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2664. return nrow * row_size;
  2665. }
  2666. // ====================== "True" 2-bit (de)-quantization
  2667. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int64_t k) {
  2668. assert(k % QK_K == 0);
  2669. const int64_t nb = k / QK_K;
  2670. uint32_t aux32[2];
  2671. const uint8_t * aux8 = (const uint8_t *)aux32;
  2672. for (int i = 0; i < nb; i++) {
  2673. const float d = GGML_FP16_TO_FP32(x[i].d);
  2674. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2675. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  2676. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  2677. for (int l = 0; l < 4; ++l) {
  2678. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  2679. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  2680. for (int j = 0; j < 8; ++j) {
  2681. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2682. }
  2683. y += 8;
  2684. }
  2685. }
  2686. }
  2687. }
  2688. // ====================== 2.3125 bpw (de)-quantization
  2689. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int64_t k) {
  2690. assert(k % QK_K == 0);
  2691. const int64_t nb = k / QK_K;
  2692. float db[2];
  2693. for (int i = 0; i < nb; i++) {
  2694. const float d = GGML_FP16_TO_FP32(x[i].d);
  2695. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2696. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  2697. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  2698. for (int l = 0; l < 4; ++l) {
  2699. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  2700. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  2701. for (int j = 0; j < 8; ++j) {
  2702. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2703. }
  2704. y += 8;
  2705. }
  2706. }
  2707. }
  2708. }
  2709. // ====================== 2.5625 bpw (de)-quantization
  2710. void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int64_t k) {
  2711. assert(k % QK_K == 0);
  2712. const int64_t nb = k / QK_K;
  2713. float db[2];
  2714. for (int i = 0; i < nb; i++) {
  2715. const float d = GGML_FP16_TO_FP32(x[i].d);
  2716. const uint8_t * qs = x[i].qs;
  2717. const uint8_t * qh = x[i].qh;
  2718. const uint8_t * signs = qs + QK_K/8;
  2719. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2720. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  2721. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  2722. for (int l = 0; l < 4; ++l) {
  2723. const float dl = db[l/2];
  2724. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  2725. for (int j = 0; j < 8; ++j) {
  2726. y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
  2727. }
  2728. y += 8;
  2729. }
  2730. qs += 4;
  2731. signs += 4;
  2732. }
  2733. }
  2734. }
  2735. // ====================== 3.0625 bpw (de)-quantization
  2736. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int64_t k) {
  2737. assert(k % QK_K == 0);
  2738. const int64_t nb = k / QK_K;
  2739. uint32_t aux32;
  2740. for (int i = 0; i < nb; i++) {
  2741. const float d = GGML_FP16_TO_FP32(x[i].d);
  2742. const uint8_t * qs = x[i].qs;
  2743. const uint8_t * scales_and_signs = qs + QK_K/4;
  2744. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2745. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  2746. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  2747. for (int l = 0; l < 4; ++l) {
  2748. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  2749. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  2750. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  2751. for (int j = 0; j < 4; ++j) {
  2752. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2753. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2754. }
  2755. y += 8;
  2756. }
  2757. qs += 8;
  2758. }
  2759. }
  2760. }
  2761. // ====================== 3.3125 bpw (de)-quantization
  2762. void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int64_t k) {
  2763. assert(k % QK_K == 0);
  2764. const int64_t nb = k / QK_K;
  2765. for (int i = 0; i < nb; i++) {
  2766. const float d = GGML_FP16_TO_FP32(x[i].d);
  2767. const uint8_t * qs = x[i].qs;
  2768. const uint8_t * qh = x[i].qh;
  2769. const uint8_t * signs = x[i].signs;
  2770. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  2771. const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  2772. const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4));
  2773. for (int l = 0; l < 4; ++l) {
  2774. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
  2775. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
  2776. for (int j = 0; j < 4; ++j) {
  2777. y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2778. y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2779. }
  2780. y += 8;
  2781. }
  2782. qs += 8;
  2783. signs += 4;
  2784. for (int l = 0; l < 4; ++l) {
  2785. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
  2786. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
  2787. for (int j = 0; j < 4; ++j) {
  2788. y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2789. y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2790. }
  2791. y += 8;
  2792. }
  2793. qh += 2;
  2794. qs += 8;
  2795. signs += 4;
  2796. }
  2797. }
  2798. }
  2799. // ====================== 1.5625 bpw (de)-quantization
  2800. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int64_t k) {
  2801. assert(k % QK_K == 0);
  2802. const int64_t nb = k / QK_K;
  2803. for (int i = 0; i < nb; i++) {
  2804. const float d = GGML_FP16_TO_FP32(x[i].d);
  2805. const uint8_t * qs = x[i].qs;
  2806. const uint16_t * qh = x[i].qh;
  2807. for (int ib = 0; ib < QK_K/32; ++ib) {
  2808. const float dl = d * (2*((qh[ib] >> 12) & 7) + 1);
  2809. const float delta = qh[ib] & 0x8000 ? -IQ1S_DELTA : IQ1S_DELTA;
  2810. for (int l = 0; l < 4; ++l) {
  2811. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  2812. for (int j = 0; j < 8; ++j) {
  2813. y[j] = dl * (grid[j] + delta);
  2814. }
  2815. y += 8;
  2816. }
  2817. qs += 4;
  2818. }
  2819. }
  2820. }
  2821. void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int64_t k) {
  2822. assert(k % QK_K == 0);
  2823. const int64_t nb = k / QK_K;
  2824. float delta[4];
  2825. uint16_t idx[4];
  2826. #if QK_K != 64
  2827. iq1m_scale_t scale;
  2828. #endif
  2829. for (int i = 0; i < nb; i++) {
  2830. const uint16_t * sc = (const uint16_t *)x[i].scales;
  2831. #if QK_K == 64
  2832. const float d = GGML_FP16_TO_FP32(x[i].d);
  2833. #else
  2834. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  2835. const float d = GGML_FP16_TO_FP32(scale.f16);
  2836. #endif
  2837. const uint8_t * qs = x[i].qs;
  2838. const uint8_t * qh = x[i].qh;
  2839. for (int ib = 0; ib < QK_K/32; ++ib) {
  2840. #if QK_K == 64
  2841. const float dl1 = d * (2*((sc[ib/2] >> (8*(ib%2)+0)) & 0xf) + 1);
  2842. const float dl2 = d * (2*((sc[ib/2] >> (8*(ib%2)+4)) & 0xf) + 1);
  2843. #else
  2844. const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1);
  2845. const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1);
  2846. #endif
  2847. idx[0] = qs[0] | ((qh[0] << 8) & 0x700);
  2848. idx[1] = qs[1] | ((qh[0] << 4) & 0x700);
  2849. idx[2] = qs[2] | ((qh[1] << 8) & 0x700);
  2850. idx[3] = qs[3] | ((qh[1] << 4) & 0x700);
  2851. delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  2852. delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  2853. delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  2854. delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  2855. for (int l = 0; l < 2; ++l) {
  2856. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  2857. for (int j = 0; j < 8; ++j) {
  2858. y[j] = dl1 * (grid[j] + delta[l]);
  2859. }
  2860. y += 8;
  2861. }
  2862. for (int l = 2; l < 4; ++l) {
  2863. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  2864. for (int j = 0; j < 8; ++j) {
  2865. y[j] = dl2 * (grid[j] + delta[l]);
  2866. }
  2867. y += 8;
  2868. }
  2869. qs += 4;
  2870. qh += 2;
  2871. }
  2872. }
  2873. }
  2874. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  2875. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int64_t k) {
  2876. assert(k % QK4_NL == 0);
  2877. const int64_t nb = k / QK4_NL;
  2878. for (int i = 0; i < nb; i++) {
  2879. const uint8_t * qs = x[i].qs;
  2880. const float d = GGML_FP16_TO_FP32(x[i].d);
  2881. for (int j = 0; j < QK4_NL/2; ++j) {
  2882. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  2883. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  2884. }
  2885. y += QK4_NL;
  2886. qs += QK4_NL/2;
  2887. }
  2888. }
  2889. void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int64_t k) {
  2890. assert(k % QK_K == 0);
  2891. #if QK_K == 64
  2892. dequantize_row_iq4_nl((const block_iq4_nl *)x, y, k);
  2893. #else
  2894. const int64_t nb = k / QK_K;
  2895. for (int i = 0; i < nb; i++) {
  2896. const uint8_t * qs = x[i].qs;
  2897. const float d = GGML_FP16_TO_FP32(x[i].d);
  2898. for (int ib = 0; ib < QK_K/32; ++ib) {
  2899. const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4);
  2900. const float dl = d * (ls - 32);
  2901. for (int j = 0; j < 16; ++j) {
  2902. y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf];
  2903. y[j+16] = dl * kvalues_iq4nl[qs[j] >> 4];
  2904. }
  2905. y += 32;
  2906. qs += 16;
  2907. }
  2908. }
  2909. #endif
  2910. }
  2911. //===================================== Q8_K ==============================================
  2912. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int64_t k) {
  2913. assert(k % QK_K == 0);
  2914. const int64_t nb = k / QK_K;
  2915. for (int i = 0; i < nb; i++) {
  2916. float max = 0;
  2917. float amax = 0;
  2918. for (int j = 0; j < QK_K; ++j) {
  2919. float ax = fabsf(x[j]);
  2920. if (ax > amax) {
  2921. amax = ax; max = x[j];
  2922. }
  2923. }
  2924. if (!amax) {
  2925. y[i].d = 0;
  2926. memset(y[i].qs, 0, QK_K);
  2927. x += QK_K;
  2928. continue;
  2929. }
  2930. //const float iscale = -128.f/max;
  2931. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  2932. const float iscale = -127.f/max;
  2933. for (int j = 0; j < QK_K; ++j) {
  2934. int v = nearest_int(iscale*x[j]);
  2935. y[i].qs[j] = MIN(127, v);
  2936. }
  2937. for (int j = 0; j < QK_K/16; ++j) {
  2938. int sum = 0;
  2939. for (int ii = 0; ii < 16; ++ii) {
  2940. sum += y[i].qs[j*16 + ii];
  2941. }
  2942. y[i].bsums[j] = sum;
  2943. }
  2944. y[i].d = 1/iscale;
  2945. x += QK_K;
  2946. }
  2947. }
  2948. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int64_t k) {
  2949. assert(k % QK_K == 0);
  2950. const int64_t nb = k / QK_K;
  2951. for (int i = 0; i < nb; i++) {
  2952. for (int j = 0; j < QK_K; ++j) {
  2953. *y++ = x[i].d * x[i].qs[j];
  2954. }
  2955. }
  2956. }
  2957. void quantize_row_q8_K(const float * restrict x, void * restrict y, int64_t k) {
  2958. quantize_row_q8_K_reference(x, y, k);
  2959. }
  2960. //===================================== Dot ptoducts =================================
  2961. //
  2962. // Helper functions
  2963. //
  2964. #if __AVX__ || __AVX2__ || __AVX512F__
  2965. // shuffles to pick the required scales in dot products
  2966. static inline __m256i get_scale_shuffle_q3k(int i) {
  2967. static const uint8_t k_shuffle[128] = {
  2968. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  2969. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  2970. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  2971. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  2972. };
  2973. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  2974. }
  2975. static inline __m256i get_scale_shuffle_k4(int i) {
  2976. static const uint8_t k_shuffle[256] = {
  2977. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  2978. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  2979. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  2980. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  2981. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  2982. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  2983. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  2984. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  2985. };
  2986. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  2987. }
  2988. static inline __m128i get_scale_shuffle(int i) {
  2989. static const uint8_t k_shuffle[128] = {
  2990. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  2991. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  2992. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  2993. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  2994. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  2995. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  2996. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  2997. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  2998. };
  2999. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3000. }
  3001. #endif
  3002. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3003. const int qk = QK8_0;
  3004. const int nb = n / qk;
  3005. assert(n % qk == 0);
  3006. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3007. assert((nrc == 2) || (nrc == 1));
  3008. #else
  3009. assert(nrc == 1);
  3010. #endif
  3011. UNUSED(nrc);
  3012. UNUSED(bx);
  3013. UNUSED(by);
  3014. UNUSED(bs);
  3015. const block_q4_0 * restrict x = vx;
  3016. const block_q8_0 * restrict y = vy;
  3017. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3018. if (nrc == 2) {
  3019. const block_q4_0 * restrict vx0 = vx;
  3020. const block_q4_0 * restrict vx1 = (const block_q4_0 *) ((const uint8_t*)vx + bx);
  3021. const block_q8_0 * restrict vy0 = vy;
  3022. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  3023. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3024. for (int i = 0; i < nb; i++) {
  3025. const block_q4_0 * restrict b_x0 = &vx0[i];
  3026. const block_q4_0 * restrict b_x1 = &vx1[i];
  3027. const block_q8_0 * restrict b_y0 = &vy0[i];
  3028. const block_q8_0 * restrict b_y1 = &vy1[i];
  3029. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3030. const int8x16_t s8b = vdupq_n_s8(0x8);
  3031. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3032. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3033. // 4-bit -> 8-bit
  3034. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3035. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3036. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3037. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3038. // sub 8
  3039. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3040. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3041. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3042. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3043. // load y
  3044. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3045. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3046. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3047. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3048. float32_t _scale[4] = { GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3049. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3050. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3051. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3052. float32x4_t scale = vld1q_f32(_scale);
  3053. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3054. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3055. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3056. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3057. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3058. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3059. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3060. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3061. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3062. l1, r1)), l2, r2)), l3, r3))), scale);
  3063. }
  3064. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3065. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3066. vst1_f32(s, vget_low_f32(sumv2));
  3067. vst1_f32(s + bs, vget_high_f32(sumv2));
  3068. return;
  3069. }
  3070. #endif
  3071. #if defined(__ARM_NEON)
  3072. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3073. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3074. assert(nb % 2 == 0); // TODO: handle odd nb
  3075. for (int i = 0; i < nb; i += 2) {
  3076. const block_q4_0 * restrict x0 = &x[i + 0];
  3077. const block_q4_0 * restrict x1 = &x[i + 1];
  3078. const block_q8_0 * restrict y0 = &y[i + 0];
  3079. const block_q8_0 * restrict y1 = &y[i + 1];
  3080. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3081. const int8x16_t s8b = vdupq_n_s8(0x8);
  3082. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3083. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3084. // 4-bit -> 8-bit
  3085. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3086. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3087. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3088. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3089. // sub 8
  3090. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3091. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3092. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3093. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3094. // load y
  3095. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3096. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3097. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3098. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3099. // dot product into int32x4_t
  3100. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3101. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3102. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3103. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3104. }
  3105. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3106. #elif defined(__AVX2__)
  3107. // Initialize accumulator with zeros
  3108. __m256 acc = _mm256_setzero_ps();
  3109. // Main loop
  3110. for (int i = 0; i < nb; ++i) {
  3111. /* Compute combined scale for the block */
  3112. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3113. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3114. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3115. const __m256i off = _mm256_set1_epi8( 8 );
  3116. qx = _mm256_sub_epi8( qx, off );
  3117. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3118. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3119. /* Multiply q with scale and accumulate */
  3120. acc = _mm256_fmadd_ps( d, q, acc );
  3121. }
  3122. *s = hsum_float_8(acc);
  3123. #elif defined(__AVX__)
  3124. // Initialize accumulator with zeros
  3125. __m256 acc = _mm256_setzero_ps();
  3126. // Main loop
  3127. for (int i = 0; i < nb; ++i) {
  3128. // Compute combined scale for the block
  3129. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3130. const __m128i lowMask = _mm_set1_epi8(0xF);
  3131. const __m128i off = _mm_set1_epi8(8);
  3132. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  3133. __m128i bx_0 = _mm_and_si128(lowMask, tmp);
  3134. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3135. bx_0 = _mm_sub_epi8(bx_0, off);
  3136. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3137. bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  3138. by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3139. bx_0 = _mm_sub_epi8(bx_0, off);
  3140. const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
  3141. // Convert int32_t to float
  3142. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  3143. // Apply the scale, and accumulate
  3144. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  3145. }
  3146. *s = hsum_float_8(acc);
  3147. #elif defined(__SSSE3__)
  3148. // set constants
  3149. const __m128i lowMask = _mm_set1_epi8(0xF);
  3150. const __m128i off = _mm_set1_epi8(8);
  3151. // Initialize accumulator with zeros
  3152. __m128 acc_0 = _mm_setzero_ps();
  3153. __m128 acc_1 = _mm_setzero_ps();
  3154. __m128 acc_2 = _mm_setzero_ps();
  3155. __m128 acc_3 = _mm_setzero_ps();
  3156. // First round without accumulation
  3157. {
  3158. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3159. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3160. // Compute combined scale for the block 0 and 1
  3161. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3162. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  3163. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3164. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  3165. bx_0 = _mm_sub_epi8(bx_0, off);
  3166. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3167. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3168. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  3169. bx_1 = _mm_sub_epi8(bx_1, off);
  3170. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3171. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  3172. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  3173. // Compute combined scale for the block 2 and 3
  3174. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3175. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  3176. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3177. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  3178. bx_2 = _mm_sub_epi8(bx_2, off);
  3179. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3180. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3181. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  3182. bx_3 = _mm_sub_epi8(bx_3, off);
  3183. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3184. // Convert int32_t to float
  3185. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3186. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3187. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3188. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3189. // Apply the scale
  3190. acc_0 = _mm_mul_ps( d_0_1, p0 );
  3191. acc_1 = _mm_mul_ps( d_0_1, p1 );
  3192. acc_2 = _mm_mul_ps( d_2_3, p2 );
  3193. acc_3 = _mm_mul_ps( d_2_3, p3 );
  3194. }
  3195. assert(nb % 2 == 0); // TODO: handle odd nb
  3196. // Main loop
  3197. for (int i = 2; i < nb; i+=2) {
  3198. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  3199. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  3200. // Compute combined scale for the block 0 and 1
  3201. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3202. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  3203. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3204. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3205. bx_0 = _mm_sub_epi8(bx_0, off);
  3206. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3207. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3208. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3209. bx_1 = _mm_sub_epi8(bx_1, off);
  3210. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3211. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3212. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3213. // Compute combined scale for the block 2 and 3
  3214. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3215. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  3216. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3217. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  3218. bx_2 = _mm_sub_epi8(bx_2, off);
  3219. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3220. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3221. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  3222. bx_3 = _mm_sub_epi8(bx_3, off);
  3223. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3224. // Convert int32_t to float
  3225. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3226. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3227. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3228. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3229. // Apply the scale
  3230. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  3231. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  3232. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  3233. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  3234. // Acummulate
  3235. acc_0 = _mm_add_ps(p0_d, acc_0);
  3236. acc_1 = _mm_add_ps(p1_d, acc_1);
  3237. acc_2 = _mm_add_ps(p2_d, acc_2);
  3238. acc_3 = _mm_add_ps(p3_d, acc_3);
  3239. }
  3240. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3241. #elif defined(__riscv_v_intrinsic)
  3242. float sumf = 0.0;
  3243. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3244. for (int i = 0; i < nb; i++) {
  3245. // load elements
  3246. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3247. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3248. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3249. // mask and store lower part of x, and then upper part
  3250. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3251. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3252. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3253. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3254. // subtract offset
  3255. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  3256. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  3257. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3258. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3259. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3260. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3261. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3262. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3263. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3264. }
  3265. *s = sumf;
  3266. #elif defined(__POWER9_VECTOR__)
  3267. const vector signed char lowMask = vec_splats((signed char)0xF);
  3268. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3269. const vector signed char v8 = vec_splats((signed char)0x8);
  3270. vector float vsumf0 = vec_splats(0.0f);
  3271. #pragma GCC unroll 4
  3272. for (int i = 0; i < nb; i++) {
  3273. __builtin_prefetch(x[i].qs, 0, 1);
  3274. __builtin_prefetch(y[i].qs, 0, 1);
  3275. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3276. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  3277. vector float vd = vec_mul(vxd, vyd);
  3278. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  3279. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  3280. vector signed char q8y1 = vec_xl(16, y[i].qs);
  3281. vector signed char q4x0 = vec_and(qxs, lowMask);
  3282. vector signed char q4x1 = vec_sr(qxs, v4);
  3283. q4x0 = vec_sub(q4x0, v8);
  3284. q4x1 = vec_sub(q4x1, v8);
  3285. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  3286. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  3287. qv0 = vec_add(qv0, qv1);
  3288. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  3289. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3290. }
  3291. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3292. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3293. *s = vec_extract(vsumf0, 0);
  3294. #else
  3295. // scalar
  3296. float sumf = 0.0;
  3297. for (int i = 0; i < nb; i++) {
  3298. int sumi = 0;
  3299. for (int j = 0; j < qk/2; ++j) {
  3300. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  3301. const int v1 = (x[i].qs[j] >> 4) - 8;
  3302. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3303. }
  3304. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3305. }
  3306. *s = sumf;
  3307. #endif
  3308. }
  3309. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3310. const int qk = QK8_1;
  3311. const int nb = n / qk;
  3312. assert(n % qk == 0);
  3313. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3314. assert((nrc == 2) || (nrc == 1));
  3315. #else
  3316. assert(nrc == 1);
  3317. #endif
  3318. UNUSED(nrc);
  3319. UNUSED(bx);
  3320. UNUSED(by);
  3321. UNUSED(bs);
  3322. const block_q4_1 * restrict x = vx;
  3323. const block_q8_1 * restrict y = vy;
  3324. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3325. if (nrc == 2) {
  3326. const block_q4_1 * restrict vx0 = vx;
  3327. const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx);
  3328. const block_q8_1 * restrict vy0 = vy;
  3329. const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by);
  3330. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3331. float32x4_t summs0 = vdupq_n_f32(0.0f);
  3332. for (int i = 0; i < nb; i++) {
  3333. const block_q4_1 * restrict b_x0 = &vx0[i];
  3334. const block_q4_1 * restrict b_x1 = &vx1[i];
  3335. const block_q8_1 * restrict b_y0 = &vy0[i];
  3336. const block_q8_1 * restrict b_y1 = &vy1[i];
  3337. float32_t summs_t[4] = {GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
  3338. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
  3339. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
  3340. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)};
  3341. summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
  3342. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3343. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3344. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3345. // 4-bit -> 8-bit
  3346. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3347. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3348. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3349. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3350. // load y
  3351. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3352. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3353. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3354. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3355. // mmla into int32x4_t
  3356. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*b_y0->d,
  3357. GGML_FP16_TO_FP32(b_x0->d)*b_y1->d,
  3358. GGML_FP16_TO_FP32(b_x1->d)*b_y0->d,
  3359. GGML_FP16_TO_FP32(b_x1->d)*b_y1->d};
  3360. float32x4_t scale = vld1q_f32(_scale);
  3361. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3362. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3363. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3364. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3365. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3366. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3367. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3368. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3369. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3370. l1, r1)), l2, r2)), l3, r3))), scale);
  3371. }
  3372. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3373. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3374. sumv2 = vaddq_f32(sumv2, summs0);
  3375. vst1_f32(s, vget_low_f32(sumv2));
  3376. vst1_f32(s + bs, vget_high_f32(sumv2));
  3377. return;
  3378. }
  3379. #endif
  3380. // TODO: add WASM SIMD
  3381. #if defined(__ARM_NEON)
  3382. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3383. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3384. float summs = 0;
  3385. assert(nb % 2 == 0); // TODO: handle odd nb
  3386. for (int i = 0; i < nb; i += 2) {
  3387. const block_q4_1 * restrict x0 = &x[i + 0];
  3388. const block_q4_1 * restrict x1 = &x[i + 1];
  3389. const block_q8_1 * restrict y0 = &y[i + 0];
  3390. const block_q8_1 * restrict y1 = &y[i + 1];
  3391. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  3392. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3393. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3394. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3395. // 4-bit -> 8-bit
  3396. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3397. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3398. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3399. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3400. // load y
  3401. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3402. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3403. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3404. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3405. // dot product into int32x4_t
  3406. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  3407. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  3408. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3409. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3410. }
  3411. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  3412. #elif defined(__AVX2__) || defined(__AVX__)
  3413. // Initialize accumulator with zeros
  3414. __m256 acc = _mm256_setzero_ps();
  3415. float summs = 0;
  3416. // Main loop
  3417. for (int i = 0; i < nb; ++i) {
  3418. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  3419. const float d1 = GGML_FP16_TO_FP32(y[i].d);
  3420. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  3421. const __m256 d0v = _mm256_set1_ps( d0 );
  3422. const __m256 d1v = _mm256_set1_ps( d1 );
  3423. // Compute combined scales
  3424. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  3425. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3426. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3427. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  3428. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3429. // Accumulate d0*d1*x*y
  3430. #if defined(__AVX2__)
  3431. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  3432. #else
  3433. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  3434. #endif
  3435. }
  3436. *s = hsum_float_8(acc) + summs;
  3437. #elif defined(__riscv_v_intrinsic)
  3438. float sumf = 0.0;
  3439. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3440. for (int i = 0; i < nb; i++) {
  3441. // load elements
  3442. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3443. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3444. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3445. // mask and store lower part of x, and then upper part
  3446. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3447. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3448. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3449. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3450. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3451. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3452. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3453. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3454. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3455. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3456. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  3457. }
  3458. *s = sumf;
  3459. #elif defined(__POWER9_VECTOR__)
  3460. const vector signed char lowMask = vec_splats((signed char)0xF);
  3461. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3462. vector float vsumf0 = vec_splats(0.0f);
  3463. #pragma GCC unroll 4
  3464. for (int i = 0; i < nb; i++) {
  3465. __builtin_prefetch(x[i].qs, 0, 1);
  3466. __builtin_prefetch(y[i].qs, 0, 1);
  3467. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3468. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  3469. vector float vd = vec_mul(vxd, vyd);
  3470. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].m));
  3471. vector float vys = {GGML_FP16_TO_FP32(y[i].s), 0.0f, 0.0f, 0.0f};
  3472. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  3473. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  3474. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  3475. vector signed char q8y1 = vec_xl(16, y[i].qs);
  3476. vector signed char q4x0 = vec_and(qxs, lowMask);
  3477. vector signed char q4x1 = vec_sr(qxs, v4);
  3478. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  3479. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  3480. qv0 = vec_add(qv0, qv1);
  3481. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  3482. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3483. }
  3484. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3485. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3486. *s = vec_extract(vsumf0, 0);
  3487. #else
  3488. // scalar
  3489. float sumf = 0.0;
  3490. for (int i = 0; i < nb; i++) {
  3491. int sumi = 0;
  3492. for (int j = 0; j < qk/2; ++j) {
  3493. const int v0 = (x[i].qs[j] & 0x0F);
  3494. const int v1 = (x[i].qs[j] >> 4);
  3495. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3496. }
  3497. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  3498. }
  3499. *s = sumf;
  3500. #endif
  3501. }
  3502. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3503. const int qk = QK8_0;
  3504. const int nb = n / qk;
  3505. assert(n % qk == 0);
  3506. assert(qk == QK5_0);
  3507. assert(nrc == 1);
  3508. UNUSED(nrc);
  3509. UNUSED(bx);
  3510. UNUSED(by);
  3511. UNUSED(bs);
  3512. const block_q5_0 * restrict x = vx;
  3513. const block_q8_0 * restrict y = vy;
  3514. #if defined(__ARM_NEON)
  3515. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3516. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3517. uint32_t qh0;
  3518. uint32_t qh1;
  3519. uint64_t tmp0[4];
  3520. uint64_t tmp1[4];
  3521. assert(nb % 2 == 0); // TODO: handle odd nb
  3522. for (int i = 0; i < nb; i += 2) {
  3523. const block_q5_0 * restrict x0 = &x[i];
  3524. const block_q5_0 * restrict x1 = &x[i + 1];
  3525. const block_q8_0 * restrict y0 = &y[i];
  3526. const block_q8_0 * restrict y1 = &y[i + 1];
  3527. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3528. // extract the 5th bit via lookup table ((!b) << 4)
  3529. memcpy(&qh0, x0->qh, sizeof(qh0));
  3530. memcpy(&qh1, x1->qh, sizeof(qh1));
  3531. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  3532. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  3533. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  3534. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  3535. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  3536. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  3537. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  3538. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  3539. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  3540. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  3541. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  3542. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  3543. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3544. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3545. // 4-bit -> 8-bit
  3546. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3547. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3548. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3549. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3550. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3551. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  3552. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  3553. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  3554. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  3555. // load y
  3556. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3557. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3558. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3559. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3560. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  3561. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  3562. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3563. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  3564. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  3565. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3566. }
  3567. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3568. #elif defined(__wasm_simd128__)
  3569. v128_t sumv = wasm_f32x4_splat(0.0f);
  3570. uint32_t qh;
  3571. uint64_t tmp[4];
  3572. // TODO: check if unrolling this is better
  3573. for (int i = 0; i < nb; ++i) {
  3574. const block_q5_0 * restrict x0 = &x[i];
  3575. const block_q8_0 * restrict y0 = &y[i];
  3576. const v128_t m4b = wasm_i8x16_splat(0x0F);
  3577. // extract the 5th bit
  3578. memcpy(&qh, x0->qh, sizeof(qh));
  3579. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  3580. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  3581. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  3582. tmp[3] = table_b2b_1[(qh >> 24) ];
  3583. const v128_t qhl = wasm_v128_load(tmp + 0);
  3584. const v128_t qhh = wasm_v128_load(tmp + 2);
  3585. const v128_t v0 = wasm_v128_load(x0->qs);
  3586. // 4-bit -> 8-bit
  3587. const v128_t v0l = wasm_v128_and (v0, m4b);
  3588. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  3589. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3590. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  3591. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  3592. // load y
  3593. const v128_t v1l = wasm_v128_load(y0->qs);
  3594. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  3595. // int8x16 -> int16x8
  3596. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  3597. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  3598. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  3599. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  3600. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  3601. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  3602. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  3603. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  3604. // dot product
  3605. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  3606. wasm_i32x4_add(
  3607. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  3608. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  3609. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  3610. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  3611. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  3612. }
  3613. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  3614. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  3615. #elif defined(__AVX2__)
  3616. // Initialize accumulator with zeros
  3617. __m256 acc = _mm256_setzero_ps();
  3618. // Main loop
  3619. for (int i = 0; i < nb; i++) {
  3620. /* Compute combined scale for the block */
  3621. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  3622. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3623. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3624. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  3625. qx = _mm256_or_si256(qx, bxhi);
  3626. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3627. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3628. /* Multiply q with scale and accumulate */
  3629. acc = _mm256_fmadd_ps(d, q, acc);
  3630. }
  3631. *s = hsum_float_8(acc);
  3632. #elif defined(__AVX__)
  3633. // Initialize accumulator with zeros
  3634. __m256 acc = _mm256_setzero_ps();
  3635. __m128i mask = _mm_set1_epi8((char)0xF0);
  3636. // Main loop
  3637. for (int i = 0; i < nb; i++) {
  3638. /* Compute combined scale for the block */
  3639. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  3640. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  3641. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3642. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  3643. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  3644. bxhil = _mm_andnot_si128(bxhil, mask);
  3645. bxhih = _mm_andnot_si128(bxhih, mask);
  3646. __m128i bxl = _mm256_castsi256_si128(bx_0);
  3647. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  3648. bxl = _mm_or_si128(bxl, bxhil);
  3649. bxh = _mm_or_si128(bxh, bxhih);
  3650. bx_0 = MM256_SET_M128I(bxh, bxl);
  3651. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3652. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  3653. /* Multiply q with scale and accumulate */
  3654. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  3655. }
  3656. *s = hsum_float_8(acc);
  3657. #elif defined(__riscv_v_intrinsic)
  3658. float sumf = 0.0;
  3659. uint32_t qh;
  3660. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3661. // These temporary registers are for masking and shift operations
  3662. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  3663. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  3664. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  3665. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  3666. for (int i = 0; i < nb; i++) {
  3667. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  3668. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  3669. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  3670. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  3671. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  3672. // ((qh & (1u << (j + 16))) >> (j + 12));
  3673. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  3674. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  3675. // narrowing
  3676. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  3677. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  3678. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  3679. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  3680. // load
  3681. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3682. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3683. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3684. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3685. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3686. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  3687. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  3688. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3689. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3690. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  3691. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  3692. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3693. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3694. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3695. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3696. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3697. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3698. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  3699. }
  3700. *s = sumf;
  3701. #elif defined(__POWER9_VECTOR__)
  3702. const vector signed char lowMask = vec_splats((signed char)0xF);
  3703. const vector unsigned char v4 = vec_splats((unsigned char)4);
  3704. vector float vsumf0 = vec_splats(0.0f);
  3705. #pragma GCC unroll 4
  3706. for (int i = 0; i < nb; ++i) {
  3707. __builtin_prefetch(x[i].qs, 0, 1);
  3708. __builtin_prefetch(y[i].qs, 0, 1);
  3709. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3710. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  3711. vector float vd = vec_mul(vxd, vyd);
  3712. vector signed long long aux64x2_0 = {(uint64_t)(table_b2b_1[x[i].qh[0]]), (uint64_t)(table_b2b_1[x[i].qh[1]])};
  3713. vector signed long long aux64x2_1 = {(uint64_t)(table_b2b_1[x[i].qh[2]]), (uint64_t)(table_b2b_1[x[i].qh[3]])};
  3714. vector signed char qh0 = (vector signed char)aux64x2_0;
  3715. vector signed char qh1 = (vector signed char)aux64x2_1;
  3716. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  3717. vector signed char q5x0 = vec_sub(vec_and (qxs, lowMask), qh0);
  3718. vector signed char q5x1 = vec_sub(vec_sr(qxs, v4), qh1);
  3719. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  3720. vector signed char q8y1 = vec_xl( 16, y[i].qs);
  3721. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  3722. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  3723. qv0 = vec_add(qv0, qv1);
  3724. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  3725. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3726. }
  3727. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3728. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3729. *s = vec_extract(vsumf0, 0);
  3730. #else
  3731. // scalar
  3732. float sumf = 0.0;
  3733. for (int i = 0; i < nb; i++) {
  3734. uint32_t qh;
  3735. memcpy(&qh, x[i].qh, sizeof(qh));
  3736. int sumi = 0;
  3737. for (int j = 0; j < qk/2; ++j) {
  3738. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  3739. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  3740. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  3741. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  3742. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  3743. }
  3744. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  3745. }
  3746. *s = sumf;
  3747. #endif
  3748. }
  3749. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3750. const int qk = QK8_1;
  3751. const int nb = n / qk;
  3752. assert(n % qk == 0);
  3753. assert(qk == QK5_1);
  3754. assert(nrc == 1);
  3755. UNUSED(nrc);
  3756. UNUSED(bx);
  3757. UNUSED(by);
  3758. UNUSED(bs);
  3759. const block_q5_1 * restrict x = vx;
  3760. const block_q8_1 * restrict y = vy;
  3761. #if defined(__ARM_NEON)
  3762. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3763. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3764. float summs0 = 0.0f;
  3765. float summs1 = 0.0f;
  3766. uint32_t qh0;
  3767. uint32_t qh1;
  3768. uint64_t tmp0[4];
  3769. uint64_t tmp1[4];
  3770. assert(nb % 2 == 0); // TODO: handle odd nb
  3771. for (int i = 0; i < nb; i += 2) {
  3772. const block_q5_1 * restrict x0 = &x[i];
  3773. const block_q5_1 * restrict x1 = &x[i + 1];
  3774. const block_q8_1 * restrict y0 = &y[i];
  3775. const block_q8_1 * restrict y1 = &y[i + 1];
  3776. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3777. summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  3778. summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  3779. // extract the 5th bit via lookup table ((b) << 4)
  3780. memcpy(&qh0, x0->qh, sizeof(qh0));
  3781. memcpy(&qh1, x1->qh, sizeof(qh1));
  3782. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  3783. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  3784. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  3785. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  3786. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  3787. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  3788. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  3789. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  3790. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  3791. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  3792. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  3793. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  3794. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3795. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3796. // 4-bit -> 8-bit
  3797. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3798. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3799. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3800. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3801. // add high bit
  3802. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  3803. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  3804. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  3805. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  3806. // load y
  3807. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3808. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3809. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3810. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3811. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  3812. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  3813. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3814. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  3815. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  3816. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3817. }
  3818. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  3819. #elif defined(__wasm_simd128__)
  3820. v128_t sumv = wasm_f32x4_splat(0.0f);
  3821. float summs = 0.0f;
  3822. uint32_t qh;
  3823. uint64_t tmp[4];
  3824. // TODO: check if unrolling this is better
  3825. for (int i = 0; i < nb; ++i) {
  3826. const block_q5_1 * restrict x0 = &x[i];
  3827. const block_q8_1 * restrict y0 = &y[i];
  3828. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  3829. const v128_t m4b = wasm_i8x16_splat(0x0F);
  3830. // extract the 5th bit
  3831. memcpy(&qh, x0->qh, sizeof(qh));
  3832. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  3833. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  3834. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  3835. tmp[3] = table_b2b_0[(qh >> 24) ];
  3836. const v128_t qhl = wasm_v128_load(tmp + 0);
  3837. const v128_t qhh = wasm_v128_load(tmp + 2);
  3838. const v128_t v0 = wasm_v128_load(x0->qs);
  3839. // 4-bit -> 8-bit
  3840. const v128_t v0l = wasm_v128_and (v0, m4b);
  3841. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  3842. // add high bit
  3843. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  3844. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  3845. // load y
  3846. const v128_t v1l = wasm_v128_load(y0->qs);
  3847. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  3848. // int8x16 -> int16x8
  3849. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  3850. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  3851. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  3852. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  3853. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  3854. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  3855. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  3856. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  3857. // dot product
  3858. sumv = wasm_f32x4_add(sumv,
  3859. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  3860. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  3861. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  3862. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  3863. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  3864. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  3865. }
  3866. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  3867. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  3868. #elif defined(__AVX2__)
  3869. // Initialize accumulator with zeros
  3870. __m256 acc = _mm256_setzero_ps();
  3871. float summs = 0.0f;
  3872. // Main loop
  3873. for (int i = 0; i < nb; i++) {
  3874. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  3875. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  3876. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3877. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3878. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  3879. qx = _mm256_or_si256(qx, bxhi);
  3880. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[i].d));
  3881. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3882. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  3883. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  3884. }
  3885. *s = hsum_float_8(acc) + summs;
  3886. #elif defined(__AVX__)
  3887. // Initialize accumulator with zeros
  3888. __m256 acc = _mm256_setzero_ps();
  3889. __m128i mask = _mm_set1_epi8(0x10);
  3890. float summs = 0.0f;
  3891. // Main loop
  3892. for (int i = 0; i < nb; i++) {
  3893. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  3894. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  3895. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  3896. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3897. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  3898. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  3899. bxhil = _mm_and_si128(bxhil, mask);
  3900. bxhih = _mm_and_si128(bxhih, mask);
  3901. __m128i bxl = _mm256_castsi256_si128(bx_0);
  3902. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  3903. bxl = _mm_or_si128(bxl, bxhil);
  3904. bxh = _mm_or_si128(bxh, bxhih);
  3905. bx_0 = MM256_SET_M128I(bxh, bxl);
  3906. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[i].d));
  3907. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3908. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  3909. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  3910. }
  3911. *s = hsum_float_8(acc) + summs;
  3912. #elif defined(__riscv_v_intrinsic)
  3913. float sumf = 0.0;
  3914. uint32_t qh;
  3915. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3916. // temporary registers for shift operations
  3917. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  3918. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  3919. for (int i = 0; i < nb; i++) {
  3920. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  3921. // load qh
  3922. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  3923. // ((qh >> (j + 0)) << 4) & 0x10;
  3924. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  3925. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  3926. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  3927. // ((qh >> (j + 12)) ) & 0x10;
  3928. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  3929. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  3930. // narrowing
  3931. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  3932. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  3933. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  3934. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  3935. // load
  3936. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3937. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3938. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3939. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3940. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3941. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  3942. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  3943. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3944. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3945. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3946. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3947. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3948. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3949. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3950. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3951. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  3952. }
  3953. *s = sumf;
  3954. #elif defined(__POWER9_VECTOR__)
  3955. const vector signed char lowMask = vec_splats((signed char)0xF);
  3956. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3957. vector float vsumf0 = vec_splats(0.0f);
  3958. #pragma GCC unroll 4
  3959. for (int i = 0; i < nb; ++i) {
  3960. __builtin_prefetch(x[i].qs, 0, 1);
  3961. __builtin_prefetch(y[i].qs, 0, 1);
  3962. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3963. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  3964. vector float vd = vec_mul(vxd, vyd);
  3965. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].m));
  3966. vector float vys = {GGML_FP16_TO_FP32(y[i].s), 0.f, 0.f, 0.f};
  3967. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  3968. vector unsigned long long aux64x2_0 = {(uint64_t)(table_b2b_0[x[i].qh[0]]), (uint64_t)(table_b2b_0[x[i].qh[1]])};
  3969. vector unsigned long long aux64x2_1 = {(uint64_t)(table_b2b_0[x[i].qh[2]]), (uint64_t)(table_b2b_0[x[i].qh[3]])};
  3970. vector signed char qh0 = (vector signed char)aux64x2_0;
  3971. vector signed char qh1 = (vector signed char)aux64x2_1;
  3972. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  3973. vector signed char q5x0 = vec_or(vec_and(qxs, lowMask), qh0);
  3974. vector signed char q5x1 = vec_or(vec_sr(qxs, v4), qh1);
  3975. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  3976. vector signed char q8y1 = vec_xl( 16, y[i].qs);
  3977. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  3978. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  3979. qv0 = vec_add(qv0, qv1);
  3980. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  3981. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3982. }
  3983. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3984. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3985. *s = vec_extract(vsumf0, 0);
  3986. #else
  3987. // scalar
  3988. float sumf = 0.0;
  3989. for (int i = 0; i < nb; i++) {
  3990. uint32_t qh;
  3991. memcpy(&qh, x[i].qh, sizeof(qh));
  3992. int sumi = 0;
  3993. for (int j = 0; j < qk/2; ++j) {
  3994. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  3995. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  3996. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  3997. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  3998. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  3999. }
  4000. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  4001. }
  4002. *s = sumf;
  4003. #endif
  4004. }
  4005. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4006. const int qk = QK8_0;
  4007. const int nb = n / qk;
  4008. assert(n % qk == 0);
  4009. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4010. assert((nrc == 2) || (nrc == 1));
  4011. #else
  4012. assert(nrc == 1);
  4013. #endif
  4014. UNUSED(nrc);
  4015. UNUSED(bx);
  4016. UNUSED(by);
  4017. UNUSED(bs);
  4018. const block_q8_0 * restrict x = vx;
  4019. const block_q8_0 * restrict y = vy;
  4020. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4021. if (nrc == 2) {
  4022. const block_q8_0 * restrict vx0 = vx;
  4023. const block_q8_0 * restrict vx1 = (const block_q8_0 *) ((const uint8_t*)vx + bx);
  4024. const block_q8_0 * restrict vy0 = vy;
  4025. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  4026. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4027. for (int i = 0; i < nb; i++) {
  4028. const block_q8_0 * restrict b_x0 = &vx0[i];
  4029. const block_q8_0 * restrict b_y0 = &vy0[i];
  4030. const block_q8_0 * restrict b_x1 = &vx1[i];
  4031. const block_q8_0 * restrict b_y1 = &vy1[i];
  4032. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4033. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4034. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4035. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4036. // load y
  4037. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4038. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4039. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4040. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4041. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4042. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4043. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4044. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4045. float32x4_t scale = vld1q_f32(_scale);
  4046. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4047. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4048. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4049. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4050. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4051. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4052. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4053. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4054. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4055. l1, r1)), l2, r2)), l3, r3))), scale);
  4056. }
  4057. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4058. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4059. vst1_f32(s, vget_low_f32(sumv2));
  4060. vst1_f32(s + bs, vget_high_f32(sumv2));
  4061. return;
  4062. }
  4063. #endif
  4064. #if defined(__ARM_NEON)
  4065. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4066. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4067. assert(nb % 2 == 0); // TODO: handle odd nb
  4068. for (int i = 0; i < nb; i += 2) {
  4069. const block_q8_0 * restrict x0 = &x[i + 0];
  4070. const block_q8_0 * restrict x1 = &x[i + 1];
  4071. const block_q8_0 * restrict y0 = &y[i + 0];
  4072. const block_q8_0 * restrict y1 = &y[i + 1];
  4073. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4074. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4075. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4076. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4077. // load y
  4078. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4079. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4080. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4081. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4082. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4083. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4084. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4085. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4086. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4087. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4088. }
  4089. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4090. #elif defined(__AVX2__) || defined(__AVX__)
  4091. // Initialize accumulator with zeros
  4092. __m256 acc = _mm256_setzero_ps();
  4093. // Main loop
  4094. for (int i = 0; i < nb; ++i) {
  4095. // Compute combined scale for the block
  4096. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4097. __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  4098. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4099. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4100. // Multiply q with scale and accumulate
  4101. #if defined(__AVX2__)
  4102. acc = _mm256_fmadd_ps( d, q, acc );
  4103. #else
  4104. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4105. #endif
  4106. }
  4107. *s = hsum_float_8(acc);
  4108. #elif defined(__riscv_v_intrinsic)
  4109. float sumf = 0.0;
  4110. size_t vl = __riscv_vsetvl_e8m1(qk);
  4111. for (int i = 0; i < nb; i++) {
  4112. // load elements
  4113. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl);
  4114. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  4115. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4116. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4117. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4118. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4119. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4120. }
  4121. *s = sumf;
  4122. #elif defined(__POWER9_VECTOR__)
  4123. vector float vsumf0 = vec_splats(0.0f);
  4124. #pragma GCC unroll 4
  4125. for (int i = 0; i < nb; i++) {
  4126. __builtin_prefetch(x[i].qs, 0, 1);
  4127. __builtin_prefetch(y[i].qs, 0, 1);
  4128. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4129. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4130. vector float vd = vec_mul(vxd, vyd);
  4131. vector signed char q8x0 = vec_xl( 0, x[i].qs);
  4132. vector signed char q8x1 = vec_xl(16, x[i].qs);
  4133. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4134. vector signed char q8y1 = vec_xl(16, y[i].qs);
  4135. vector signed short qv0 = vec_mule(q8x0, q8y0);
  4136. vector signed short qv1 = vec_mulo(q8x0, q8y0);
  4137. vector signed short qv2 = vec_mule(q8x1, q8y1);
  4138. vector signed short qv3 = vec_mulo(q8x1, q8y1);
  4139. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackh(qv1));
  4140. vector signed int vsumi1 = vec_add(vec_unpackl(qv0), vec_unpackl(qv1));
  4141. vector signed int vsumi2 = vec_add(vec_unpackh(qv2), vec_unpackh(qv3));
  4142. vector signed int vsumi3 = vec_add(vec_unpackl(qv2), vec_unpackl(qv3));
  4143. vsumi0 = vec_add(vsumi0, vsumi2);
  4144. vsumi1 = vec_add(vsumi1, vsumi3);
  4145. vsumi0 = vec_add(vsumi0, vsumi1);
  4146. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4147. }
  4148. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4149. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4150. *s = vec_extract(vsumf0, 0);
  4151. #else
  4152. // scalar
  4153. float sumf = 0.0;
  4154. for (int i = 0; i < nb; i++) {
  4155. int sumi = 0;
  4156. for (int j = 0; j < qk; j++) {
  4157. sumi += x[i].qs[j]*y[i].qs[j];
  4158. }
  4159. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4160. }
  4161. *s = sumf;
  4162. #endif
  4163. }
  4164. #if QK_K == 256
  4165. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4166. assert(nrc == 1);
  4167. UNUSED(nrc);
  4168. UNUSED(bx);
  4169. UNUSED(by);
  4170. UNUSED(bs);
  4171. const block_q2_K * restrict x = vx;
  4172. const block_q8_K * restrict y = vy;
  4173. const int nb = n / QK_K;
  4174. #ifdef __ARM_NEON
  4175. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4176. const uint8x16_t m4 = vdupq_n_u8(0xF);
  4177. const int32x4_t vzero = vdupq_n_s32(0);
  4178. ggml_int8x16x2_t q2bytes;
  4179. uint8_t aux[16];
  4180. float sum = 0;
  4181. for (int i = 0; i < nb; ++i) {
  4182. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4183. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4184. const uint8_t * restrict q2 = x[i].qs;
  4185. const int8_t * restrict q8 = y[i].qs;
  4186. const uint8_t * restrict sc = x[i].scales;
  4187. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  4188. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  4189. vst1q_u8(aux, scales);
  4190. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  4191. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  4192. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  4193. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  4194. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  4195. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  4196. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  4197. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  4198. int isum = 0;
  4199. int is = 0;
  4200. // We use this macro instead of a function call because for some reason
  4201. // the code runs 2-3% slower, even if the function is declared inline
  4202. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  4203. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  4204. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  4205. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  4206. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  4207. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  4208. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  4209. MULTIPLY_ACCUM_WITH_SCALE((index));
  4210. for (int j = 0; j < QK_K/128; ++j) {
  4211. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  4212. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4213. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  4214. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  4215. MULTIPLY_ACCUM_WITH_SCALE(0);
  4216. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  4217. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  4218. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  4219. is += 8;
  4220. }
  4221. sum += d * isum;
  4222. }
  4223. *s = sum;
  4224. #elif defined __AVX2__
  4225. const __m256i m3 = _mm256_set1_epi8(3);
  4226. const __m128i m4 = _mm_set1_epi8(0xF);
  4227. __m256 acc = _mm256_setzero_ps();
  4228. for (int i = 0; i < nb; ++i) {
  4229. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4230. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4231. const uint8_t * restrict q2 = x[i].qs;
  4232. const int8_t * restrict q8 = y[i].qs;
  4233. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4234. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  4235. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4236. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  4237. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  4238. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  4239. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  4240. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4241. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4242. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4243. __m256i sumi = _mm256_setzero_si256();
  4244. for (int j = 0; j < QK_K/128; ++j) {
  4245. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  4246. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4247. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4248. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4249. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4250. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  4251. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  4252. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  4253. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  4254. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4255. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4256. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  4257. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  4258. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  4259. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  4260. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  4261. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  4262. p0 = _mm256_add_epi32(p0, p1);
  4263. p2 = _mm256_add_epi32(p2, p3);
  4264. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  4265. }
  4266. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4267. }
  4268. *s = hsum_float_8(acc);
  4269. #elif defined __AVX__
  4270. const __m128i m3 = _mm_set1_epi8(0x3);
  4271. const __m128i m4 = _mm_set1_epi8(0xF);
  4272. const __m128i m2 = _mm_set1_epi8(0x2);
  4273. __m256 acc = _mm256_setzero_ps();
  4274. for (int i = 0; i < nb; ++i) {
  4275. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4276. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4277. const uint8_t * restrict q2 = x[i].qs;
  4278. const int8_t * restrict q8 = y[i].qs;
  4279. // load mins and scales from block_q2_K.scales[QK_K/16]
  4280. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4281. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  4282. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4283. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  4284. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  4285. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  4286. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  4287. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  4288. // sumf += -dmin * summs in 32bits*8
  4289. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  4290. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  4291. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  4292. const __m128i scales[2] = { scales_0, scales_1 };
  4293. __m128i sumi_0 = _mm_setzero_si128();
  4294. __m128i sumi_1 = _mm_setzero_si128();
  4295. for (int j = 0; j < QK_K/128; ++j) {
  4296. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  4297. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4298. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4299. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4300. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4301. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4302. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4303. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4304. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4305. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  4306. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4307. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4308. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4309. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4310. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4311. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4312. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  4313. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4314. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4315. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4316. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  4317. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  4318. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  4319. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  4320. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  4321. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  4322. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  4323. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  4324. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  4325. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  4326. __m128i shuffle = _mm_set1_epi16(0x0100);
  4327. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  4328. shuffle = _mm_add_epi16(shuffle, m2);
  4329. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  4330. shuffle = _mm_add_epi16(shuffle, m2);
  4331. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  4332. shuffle = _mm_add_epi16(shuffle, m2);
  4333. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  4334. shuffle = _mm_add_epi16(shuffle, m2);
  4335. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  4336. shuffle = _mm_add_epi16(shuffle, m2);
  4337. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  4338. shuffle = _mm_add_epi16(shuffle, m2);
  4339. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  4340. shuffle = _mm_add_epi16(shuffle, m2);
  4341. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  4342. p0 = _mm_add_epi32(p0, p1);
  4343. p2 = _mm_add_epi32(p2, p3);
  4344. p4 = _mm_add_epi32(p4, p5);
  4345. p6 = _mm_add_epi32(p6, p7);
  4346. // isum in 32bits*4*2
  4347. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  4348. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  4349. }
  4350. // sumf += dall * isum - dmin * summs in 32bits
  4351. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4352. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  4353. }
  4354. *s = hsum_float_8(acc);
  4355. #elif defined __riscv_v_intrinsic
  4356. float sumf = 0;
  4357. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4358. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  4359. for (int i = 0; i < nb; ++i) {
  4360. const uint8_t * q2 = x[i].qs;
  4361. const int8_t * q8 = y[i].qs;
  4362. const uint8_t * sc = x[i].scales;
  4363. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4364. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4365. size_t vl = 16;
  4366. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  4367. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  4368. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  4369. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  4370. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  4371. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  4372. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  4373. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4374. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  4375. vl = 32;
  4376. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4377. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  4378. uint8_t is=0;
  4379. int isum=0;
  4380. for (int j = 0; j < QK_K/128; ++j) {
  4381. // load Q2
  4382. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  4383. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  4384. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  4385. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  4386. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  4387. // duplicate scale elements for product
  4388. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  4389. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  4390. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  4391. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  4392. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  4393. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  4394. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  4395. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  4396. // load Q8
  4397. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  4398. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  4399. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  4400. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  4401. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  4402. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  4403. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  4404. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  4405. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  4406. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  4407. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  4408. q2+=32; q8+=128; is=8;
  4409. }
  4410. sumf += dall * isum;
  4411. }
  4412. *s = sumf;
  4413. #elif defined(__POWER9_VECTOR__)
  4414. const vector signed char lowMask = vec_splats((signed char)0x3);
  4415. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  4416. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  4417. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  4418. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4419. vector float vsumf0 = vec_splats(0.0f);
  4420. vector float vsumf1 = vec_splats(0.0f);
  4421. vector float vsumf2 = vec_splats(0.0f);
  4422. vector float vsumf3 = vec_splats(0.0f);
  4423. for (int i = 0; i < nb; ++i) {
  4424. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4425. vector float vyd = vec_splats(y[i].d);
  4426. vector float vd = vec_mul(vxd, vyd);
  4427. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  4428. vector float vdmin = vec_mul(vxmin, vyd);
  4429. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  4430. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  4431. vector signed char q2xmins = (vector signed char)vec_xl( 0, x[i].scales);
  4432. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  4433. q2xmins = vec_sr(q2xmins, v4);
  4434. vector signed short q2xmins0 = vec_unpackh(q2xmins);
  4435. vector signed short q2xmins1 = vec_unpackl(q2xmins);
  4436. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  4437. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  4438. vector signed int prod2 = vec_mule(q2xmins1, q8ysums1);
  4439. vector signed int prod3 = vec_mulo(q2xmins1, q8ysums1);
  4440. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  4441. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  4442. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  4443. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  4444. vector signed int vsumi0 = vec_splats((int32_t)0);
  4445. vector signed int vsumi1 = vec_splats((int32_t)0);
  4446. vector signed int vsumi2 = vec_splats((int32_t)0);
  4447. vector signed int vsumi3 = vec_splats((int32_t)0);
  4448. vector signed int vsumi4 = vec_splats((int32_t)0);
  4449. vector signed int vsumi5 = vec_splats((int32_t)0);
  4450. vector signed int vsumi6 = vec_splats((int32_t)0);
  4451. vector signed int vsumi7 = vec_splats((int32_t)0);
  4452. const uint8_t * restrict q2 = x[i].qs;
  4453. const int8_t * restrict q8 = y[i].qs;
  4454. for (int j = 0; j < QK_K/128; ++j) {
  4455. __builtin_prefetch(q2, 0, 1);
  4456. __builtin_prefetch(q8, 0, 1);
  4457. vector signed char qxs0 = (vector signed char)vec_xl( 0, q2);
  4458. vector signed char qxs1 = (vector signed char)vec_xl(16, q2);
  4459. q2 += 32;
  4460. vector signed char q2x00 = vec_and(qxs0, lowMask);
  4461. vector signed char q2x01 = vec_and(vec_sr(qxs0, v2), lowMask);
  4462. vector signed char q2x02 = vec_and(vec_sr(qxs0, v4), lowMask);
  4463. vector signed char q2x03 = vec_and(vec_sr(qxs0, v6), lowMask);
  4464. vector signed char q2x10 = vec_and(qxs1, lowMask);
  4465. vector signed char q2x11 = vec_and(vec_sr(qxs1, v2), lowMask);
  4466. vector signed char q2x12 = vec_and(vec_sr(qxs1, v4), lowMask);
  4467. vector signed char q2x13 = vec_and(vec_sr(qxs1, v6), lowMask);
  4468. vector signed char q8y00 = vec_xl( 0, q8);
  4469. vector signed char q8y10 = vec_xl( 16, q8);
  4470. vector signed char q8y01 = vec_xl( 32, q8);
  4471. vector signed char q8y11 = vec_xl( 48, q8);
  4472. vector signed char q8y02 = vec_xl( 64, q8);
  4473. vector signed char q8y12 = vec_xl( 80, q8);
  4474. vector signed char q8y03 = vec_xl( 96, q8);
  4475. vector signed char q8y13 = vec_xl(112, q8);
  4476. q8 += 128;
  4477. vector signed short qv0 = vec_add(vec_mule(q2x00, q8y00), vec_mulo(q2x00, q8y00));
  4478. vector signed short qv1 = vec_add(vec_mule(q2x01, q8y01), vec_mulo(q2x01, q8y01));
  4479. vector signed short qv2 = vec_add(vec_mule(q2x02, q8y02), vec_mulo(q2x02, q8y02));
  4480. vector signed short qv3 = vec_add(vec_mule(q2x03, q8y03), vec_mulo(q2x03, q8y03));
  4481. vector signed short qv4 = vec_add(vec_mule(q2x10, q8y10), vec_mulo(q2x10, q8y10));
  4482. vector signed short qv5 = vec_add(vec_mule(q2x11, q8y11), vec_mulo(q2x11, q8y11));
  4483. vector signed short qv6 = vec_add(vec_mule(q2x12, q8y12), vec_mulo(q2x12, q8y12));
  4484. vector signed short qv7 = vec_add(vec_mule(q2x13, q8y13), vec_mulo(q2x13, q8y13));
  4485. vector signed short vscales_h = vec_unpackh(vscales);
  4486. vector signed short vs0 = vec_splat(vscales_h, 0);
  4487. vector signed short vs1 = vec_splat(vscales_h, 1);
  4488. vector signed short vs2 = vec_splat(vscales_h, 2);
  4489. vector signed short vs3 = vec_splat(vscales_h, 3);
  4490. vector signed short vs4 = vec_splat(vscales_h, 4);
  4491. vector signed short vs5 = vec_splat(vscales_h, 5);
  4492. vector signed short vs6 = vec_splat(vscales_h, 6);
  4493. vector signed short vs7 = vec_splat(vscales_h, 7);
  4494. vscales = vec_sld(vscales, vscales, 8);
  4495. qv0 = vec_mul(qv0, vs0);
  4496. qv1 = vec_mul(qv1, vs2);
  4497. qv2 = vec_mul(qv2, vs4);
  4498. qv3 = vec_mul(qv3, vs6);
  4499. qv0 = vec_madd(qv4, vs1, qv0);
  4500. qv1 = vec_madd(qv5, vs3, qv1);
  4501. qv2 = vec_madd(qv6, vs5, qv2);
  4502. qv3 = vec_madd(qv7, vs7, qv3);
  4503. vsumi0 = vec_add(vec_unpackh(qv0), vsumi0);
  4504. vsumi1 = vec_add(vec_unpackh(qv1), vsumi1);
  4505. vsumi2 = vec_add(vec_unpackh(qv2), vsumi2);
  4506. vsumi3 = vec_add(vec_unpackh(qv3), vsumi3);
  4507. vsumi4 = vec_add(vec_unpackl(qv0), vsumi4);
  4508. vsumi5 = vec_add(vec_unpackl(qv1), vsumi5);
  4509. vsumi6 = vec_add(vec_unpackl(qv2), vsumi6);
  4510. vsumi7 = vec_add(vec_unpackl(qv3), vsumi7);
  4511. }
  4512. vsumi0 = vec_add(vsumi0, vsumi4);
  4513. vsumi1 = vec_add(vsumi1, vsumi5);
  4514. vsumi2 = vec_add(vsumi2, vsumi6);
  4515. vsumi3 = vec_add(vsumi3, vsumi7);
  4516. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4517. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  4518. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  4519. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  4520. }
  4521. vsumf0 = vec_add(vsumf0, vsumf2);
  4522. vsumf1 = vec_add(vsumf1, vsumf3);
  4523. vsumf0 = vec_add(vsumf0, vsumf1);
  4524. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4525. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4526. *s = vec_extract(vsumf0, 0);
  4527. #else
  4528. float sumf = 0;
  4529. for (int i = 0; i < nb; ++i) {
  4530. const uint8_t * q2 = x[i].qs;
  4531. const int8_t * q8 = y[i].qs;
  4532. const uint8_t * sc = x[i].scales;
  4533. int summs = 0;
  4534. for (int j = 0; j < 16; ++j) {
  4535. summs += y[i].bsums[j] * (sc[j] >> 4);
  4536. }
  4537. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4538. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4539. int isum = 0;
  4540. int is = 0;
  4541. int d;
  4542. for (int k = 0; k < QK_K/128; ++k) {
  4543. int shift = 0;
  4544. for (int j = 0; j < 4; ++j) {
  4545. d = sc[is++] & 0xF;
  4546. int isuml = 0;
  4547. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4548. isum += d * isuml;
  4549. d = sc[is++] & 0xF;
  4550. isuml = 0;
  4551. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4552. isum += d * isuml;
  4553. shift += 2;
  4554. q8 += 32;
  4555. }
  4556. q2 += 32;
  4557. }
  4558. sumf += dall * isum - dmin * summs;
  4559. }
  4560. *s = sumf;
  4561. #endif
  4562. }
  4563. #else
  4564. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4565. assert(nrc == 1);
  4566. UNUSED(nrc);
  4567. UNUSED(bx);
  4568. UNUSED(by);
  4569. UNUSED(bs);
  4570. const block_q2_K * restrict x = vx;
  4571. const block_q8_K * restrict y = vy;
  4572. const int nb = n / QK_K;
  4573. #ifdef __ARM_NEON
  4574. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4575. const int32x4_t vzero = vdupq_n_s32(0);
  4576. ggml_int8x16x4_t q2bytes;
  4577. uint32_t aux32[2];
  4578. const uint8_t * scales = (const uint8_t *)aux32;
  4579. float sum = 0;
  4580. for (int i = 0; i < nb; ++i) {
  4581. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4582. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4583. const uint8_t * restrict q2 = x[i].qs;
  4584. const int8_t * restrict q8 = y[i].qs;
  4585. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4586. aux32[0] = sc[0] & 0x0f0f0f0f;
  4587. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  4588. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  4589. int isum1 = 0, isum2 = 0;
  4590. const uint8x16_t q2bits = vld1q_u8(q2);
  4591. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  4592. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  4593. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  4594. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  4595. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  4596. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  4597. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  4598. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  4599. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  4600. sum += d * (isum1 + isum2);
  4601. }
  4602. *s = sum;
  4603. #elif defined __AVX2__
  4604. const __m256i m3 = _mm256_set1_epi8(3);
  4605. __m256 acc = _mm256_setzero_ps();
  4606. uint32_t ud, um;
  4607. const uint8_t * restrict db = (const uint8_t *)&ud;
  4608. const uint8_t * restrict mb = (const uint8_t *)&um;
  4609. float summs = 0;
  4610. // TODO: optimize this
  4611. for (int i = 0; i < nb; ++i) {
  4612. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4613. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4614. const uint8_t * restrict q2 = x[i].qs;
  4615. const int8_t * restrict q8 = y[i].qs;
  4616. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4617. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  4618. um = (sc[0] >> 4) & 0x0f0f0f0f;
  4619. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  4620. summs += dmin * smin;
  4621. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  4622. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  4623. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  4624. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  4625. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  4626. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4627. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4628. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  4629. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  4630. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  4631. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  4632. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  4633. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  4634. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  4635. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  4636. }
  4637. *s = hsum_float_8(acc) + summs;
  4638. #elif defined __AVX__
  4639. const __m128i m3 = _mm_set1_epi8(3);
  4640. __m256 acc = _mm256_setzero_ps();
  4641. uint32_t ud, um;
  4642. const uint8_t * restrict db = (const uint8_t *)&ud;
  4643. const uint8_t * restrict mb = (const uint8_t *)&um;
  4644. float summs = 0;
  4645. // TODO: optimize this
  4646. for (int i = 0; i < nb; ++i) {
  4647. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4648. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4649. const uint8_t * restrict q2 = x[i].qs;
  4650. const int8_t * restrict q8 = y[i].qs;
  4651. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4652. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  4653. um = (sc[0] >> 4) & 0x0f0f0f0f;
  4654. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  4655. summs += dmin * smin;
  4656. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  4657. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4658. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4659. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4660. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4661. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  4662. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  4663. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  4664. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  4665. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  4666. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  4667. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  4668. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  4669. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  4670. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  4671. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  4672. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  4673. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  4674. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  4675. }
  4676. *s = hsum_float_8(acc) + summs;
  4677. #elif defined __riscv_v_intrinsic
  4678. uint32_t aux32[2];
  4679. const uint8_t * scales = (const uint8_t *)aux32;
  4680. float sumf = 0;
  4681. for (int i = 0; i < nb; ++i) {
  4682. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4683. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4684. const uint8_t * restrict q2 = x[i].qs;
  4685. const int8_t * restrict q8 = y[i].qs;
  4686. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4687. aux32[0] = sc[0] & 0x0f0f0f0f;
  4688. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  4689. sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  4690. int isum1 = 0;
  4691. int isum2 = 0;
  4692. size_t vl = 16;
  4693. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  4694. // load Q2
  4695. vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl);
  4696. vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl));
  4697. vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl));
  4698. vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl));
  4699. vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl));
  4700. // load Q8, and take product with Q2
  4701. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  4702. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  4703. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  4704. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  4705. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl);
  4706. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl);
  4707. vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl);
  4708. vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl);
  4709. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0];
  4710. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1];
  4711. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2];
  4712. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3];
  4713. sumf += d * (isum1 + isum2);
  4714. }
  4715. *s = sumf;
  4716. #elif defined(__POWER9_VECTOR__)
  4717. const vector signed char lowMask = vec_splats((signed char)0x3);
  4718. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  4719. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  4720. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4721. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  4722. vector float vsumf0 = vec_splats(0.0f);
  4723. vector float vsumf1 = vec_splats(0.0f);
  4724. vector float vsumf2 = vec_splats(0.0f);
  4725. vector float vsumf3 = vec_splats(0.0f);
  4726. #pragma GCC unroll 2
  4727. for (int i = 0; i < nb; ++i) {
  4728. __builtin_prefetch(x[i].qs, 0, 1);
  4729. __builtin_prefetch(y[i].qs, 0, 1);
  4730. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4731. vector float vyd = vec_splats(y[i].d);
  4732. vector float vd = vec_mul(vxd, vyd);
  4733. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  4734. vector float vdmin = vec_mul(vxmin, vyd);
  4735. vector signed short q8ysums0 = vec_xl_len(y[i].bsums, 8);
  4736. vector signed char q2xmins = (vector signed char)vec_xl_len(x[i].scales, 4);
  4737. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  4738. q2xmins = vec_sr(q2xmins, v4);
  4739. vector signed short q2xmins0 = vec_unpackh((vector signed char)q2xmins);
  4740. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  4741. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  4742. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  4743. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  4744. vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs);
  4745. vector signed char q2x00 = vec_and(qxs0, lowMask);
  4746. vector signed char q2x01 = vec_and(vec_sr(qxs0, v2), lowMask);
  4747. vector signed char q2x02 = vec_and(vec_sr(qxs0, v4), lowMask);
  4748. vector signed char q2x03 = vec_and(vec_sr(qxs0, v6), lowMask);
  4749. vector signed char q8y00 = vec_xl( 0, y[i].qs);
  4750. vector signed char q8y01 = vec_xl( 16, y[i].qs);
  4751. vector signed char q8y02 = vec_xl( 32, y[i].qs);
  4752. vector signed char q8y03 = vec_xl( 48, y[i].qs);
  4753. vector signed short qv0 = vec_add(vec_mule(q2x00, q8y00), vec_mulo(q2x00, q8y00));
  4754. vector signed short qv1 = vec_add(vec_mule(q2x01, q8y01), vec_mulo(q2x01, q8y01));
  4755. vector signed short qv2 = vec_add(vec_mule(q2x02, q8y02), vec_mulo(q2x02, q8y02));
  4756. vector signed short qv3 = vec_add(vec_mule(q2x03, q8y03), vec_mulo(q2x03, q8y03));
  4757. vector signed short vscales_h = vec_unpackh(vscales);
  4758. vector signed short vs0 = vec_splat(vscales_h, 0);
  4759. vector signed short vs1 = vec_splat(vscales_h, 1);
  4760. vector signed short vs2 = vec_splat(vscales_h, 2);
  4761. vector signed short vs3 = vec_splat(vscales_h, 3);
  4762. vector signed int vsumi0 = vec_add(vec_mule(qv0, vs0), vec_mulo(qv0, vs0));
  4763. vector signed int vsumi1 = vec_add(vec_mule(qv1, vs1), vec_mulo(qv1, vs1));
  4764. vector signed int vsumi2 = vec_add(vec_mule(qv2, vs2), vec_mulo(qv2, vs2));
  4765. vector signed int vsumi3 = vec_add(vec_mule(qv3, vs3), vec_mulo(qv3, vs3));
  4766. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4767. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  4768. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  4769. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  4770. }
  4771. vsumf0 = vec_add(vsumf0, vsumf2);
  4772. vsumf1 = vec_add(vsumf1, vsumf3);
  4773. vsumf0 = vec_add(vsumf0, vsumf1);
  4774. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4775. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4776. *s = vec_extract(vsumf0, 0);
  4777. #else
  4778. float sumf = 0;
  4779. int isum[QK_K/16];
  4780. for (int i = 0; i < nb; ++i) {
  4781. const uint8_t * q2 = x[i].qs;
  4782. const int8_t * q8 = y[i].qs;
  4783. const uint8_t * sc = x[i].scales;
  4784. int summs = 0;
  4785. for (int j = 0; j < QK_K/16; ++j) {
  4786. summs += y[i].bsums[j] * (sc[j] >> 4);
  4787. }
  4788. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4789. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4790. memset(isum, 0, (QK_K/16)*sizeof(int));
  4791. for (int l = 0; l < 16; ++l) {
  4792. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  4793. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  4794. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  4795. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  4796. }
  4797. for (int l = 0; l < QK_K/16; ++l) {
  4798. isum[l] *= (sc[l] & 0xF);
  4799. }
  4800. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  4801. }
  4802. *s = sumf;
  4803. #endif
  4804. }
  4805. #endif
  4806. #if QK_K == 256
  4807. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4808. assert(n % QK_K == 0);
  4809. assert(nrc == 1);
  4810. UNUSED(nrc);
  4811. UNUSED(bx);
  4812. UNUSED(by);
  4813. UNUSED(bs);
  4814. const uint32_t kmask1 = 0x03030303;
  4815. const uint32_t kmask2 = 0x0f0f0f0f;
  4816. const block_q3_K * restrict x = vx;
  4817. const block_q8_K * restrict y = vy;
  4818. const int nb = n / QK_K;
  4819. #ifdef __ARM_NEON
  4820. uint32_t aux[3];
  4821. uint32_t utmp[4];
  4822. const uint8x16_t m3b = vdupq_n_u8(0x3);
  4823. const int32x4_t vzero = vdupq_n_s32(0);
  4824. const uint8x16_t m0 = vdupq_n_u8(1);
  4825. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  4826. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  4827. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  4828. const int8_t m32 = 32;
  4829. ggml_int8x16x4_t q3bytes;
  4830. float sum = 0;
  4831. for (int i = 0; i < nb; ++i) {
  4832. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4833. const uint8_t * restrict q3 = x[i].qs;
  4834. const uint8_t * restrict qh = x[i].hmask;
  4835. const int8_t * restrict q8 = y[i].qs;
  4836. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  4837. ggml_uint8x16x4_t q3h;
  4838. int32_t isum = 0;
  4839. // Set up scales
  4840. memcpy(aux, x[i].scales, 12);
  4841. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  4842. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  4843. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  4844. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  4845. int8_t * scale = (int8_t *)utmp;
  4846. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  4847. for (int j = 0; j < QK_K/128; ++j) {
  4848. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  4849. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  4850. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  4851. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  4852. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  4853. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  4854. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  4855. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  4856. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  4857. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  4858. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  4859. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  4860. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  4861. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  4862. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  4863. scale += 4;
  4864. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  4865. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  4866. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  4867. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  4868. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  4869. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  4870. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  4871. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  4872. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  4873. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  4874. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  4875. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  4876. scale += 4;
  4877. if (j == 0) {
  4878. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  4879. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  4880. }
  4881. }
  4882. sum += d * isum;
  4883. }
  4884. *s = sum;
  4885. #elif defined __AVX2__
  4886. const __m256i m3 = _mm256_set1_epi8(3);
  4887. const __m256i mone = _mm256_set1_epi8(1);
  4888. const __m128i m32 = _mm_set1_epi8(32);
  4889. __m256 acc = _mm256_setzero_ps();
  4890. uint32_t aux[3];
  4891. for (int i = 0; i < nb; ++i) {
  4892. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4893. const uint8_t * restrict q3 = x[i].qs;
  4894. const int8_t * restrict q8 = y[i].qs;
  4895. // Set up scales
  4896. memcpy(aux, x[i].scales, 12);
  4897. __m128i scales128 = _mm_set_epi32(
  4898. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  4899. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  4900. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  4901. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  4902. scales128 = _mm_sub_epi8(scales128, m32);
  4903. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  4904. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4905. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4906. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4907. // high bit
  4908. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  4909. // integer accumulator
  4910. __m256i sumi = _mm256_setzero_si256();
  4911. int bit = 0;
  4912. int is = 0;
  4913. for (int j = 0; j < QK_K/128; ++j) {
  4914. // load low 2 bits
  4915. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  4916. // prepare low and high bits
  4917. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  4918. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  4919. ++bit;
  4920. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  4921. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  4922. ++bit;
  4923. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  4924. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  4925. ++bit;
  4926. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  4927. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  4928. ++bit;
  4929. // load Q8 quants
  4930. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4931. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4932. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4933. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4934. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  4935. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  4936. // and 2 if the high bit was set)
  4937. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  4938. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  4939. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  4940. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  4941. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  4942. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  4943. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  4944. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  4945. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  4946. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  4947. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  4948. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  4949. // multiply with scales
  4950. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  4951. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  4952. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  4953. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  4954. // accumulate
  4955. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  4956. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  4957. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  4958. }
  4959. // multiply with block scale and accumulate
  4960. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4961. }
  4962. *s = hsum_float_8(acc);
  4963. #elif defined __AVX__
  4964. const __m128i m3 = _mm_set1_epi8(3);
  4965. const __m128i mone = _mm_set1_epi8(1);
  4966. const __m128i m32 = _mm_set1_epi8(32);
  4967. const __m128i m2 = _mm_set1_epi8(2);
  4968. __m256 acc = _mm256_setzero_ps();
  4969. const uint32_t *aux;
  4970. for (int i = 0; i < nb; ++i) {
  4971. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4972. const uint8_t * restrict q3 = x[i].qs;
  4973. const int8_t * restrict q8 = y[i].qs;
  4974. // Set up scales
  4975. aux = (const uint32_t *)x[i].scales;
  4976. __m128i scales128 = _mm_set_epi32(
  4977. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  4978. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  4979. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  4980. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  4981. scales128 = _mm_sub_epi8(scales128, m32);
  4982. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  4983. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  4984. const __m128i scales[2] = { scales_0, scales_1 };
  4985. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  4986. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  4987. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  4988. // integer accumulator
  4989. __m128i sumi_0 = _mm_setzero_si128();
  4990. __m128i sumi_1 = _mm_setzero_si128();
  4991. for (int j = 0; j < QK_K/128; ++j) {
  4992. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  4993. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  4994. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  4995. // prepare low and high bits
  4996. const int bit = j << 2;
  4997. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  4998. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  4999. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  5000. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  5001. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  5002. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  5003. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5004. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5005. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  5006. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  5007. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5008. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5009. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  5010. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  5011. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5012. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5013. // load Q8 quants from block_q8_K.qs[QK_K]
  5014. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5015. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5016. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5017. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5018. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5019. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5020. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5021. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5022. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5023. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5024. // and 2 if the high bit was set)
  5025. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  5026. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  5027. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  5028. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  5029. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  5030. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  5031. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  5032. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  5033. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  5034. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  5035. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  5036. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  5037. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  5038. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  5039. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  5040. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  5041. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5042. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5043. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5044. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5045. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  5046. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  5047. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  5048. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  5049. // multiply with scales
  5050. __m128i shuffle = _mm_set1_epi16(0x0100);
  5051. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  5052. shuffle = _mm_add_epi16(shuffle, m2);
  5053. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  5054. shuffle = _mm_add_epi16(shuffle, m2);
  5055. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  5056. shuffle = _mm_add_epi16(shuffle, m2);
  5057. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  5058. shuffle = _mm_add_epi16(shuffle, m2);
  5059. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  5060. shuffle = _mm_add_epi16(shuffle, m2);
  5061. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  5062. shuffle = _mm_add_epi16(shuffle, m2);
  5063. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  5064. shuffle = _mm_add_epi16(shuffle, m2);
  5065. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  5066. // accumulate
  5067. p16_0 = _mm_add_epi32(p16_0, p16_1);
  5068. p16_2 = _mm_add_epi32(p16_2, p16_3);
  5069. p16_4 = _mm_add_epi32(p16_4, p16_5);
  5070. p16_6 = _mm_add_epi32(p16_6, p16_7);
  5071. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5072. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  5073. }
  5074. // multiply with block scale and accumulate
  5075. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5076. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  5077. }
  5078. *s = hsum_float_8(acc);
  5079. #elif defined __riscv_v_intrinsic
  5080. uint32_t aux[3];
  5081. uint32_t utmp[4];
  5082. float sumf = 0;
  5083. for (int i = 0; i < nb; ++i) {
  5084. const uint8_t * restrict q3 = x[i].qs;
  5085. const uint8_t * restrict qh = x[i].hmask;
  5086. const int8_t * restrict q8 = y[i].qs;
  5087. memcpy(aux, x[i].scales, 12);
  5088. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5089. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5090. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5091. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5092. int8_t * scale = (int8_t *)utmp;
  5093. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  5094. size_t vl = 32;
  5095. uint8_t m = 1;
  5096. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5097. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  5098. int sum_t = 0;
  5099. for (int j = 0; j < QK_K; j += 128) {
  5100. vl = 32;
  5101. // load Q3
  5102. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  5103. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  5104. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  5105. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  5106. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  5107. // compute mask for subtraction
  5108. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5109. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  5110. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
  5111. m <<= 1;
  5112. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5113. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  5114. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
  5115. m <<= 1;
  5116. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5117. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  5118. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
  5119. m <<= 1;
  5120. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5121. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  5122. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
  5123. m <<= 1;
  5124. // load Q8 and take product with Q3
  5125. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5126. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5127. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5128. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5129. vl = 16;
  5130. // retrieve lane to multiply with scale
  5131. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  5132. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  5133. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  5134. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  5135. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  5136. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  5137. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  5138. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  5139. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  5140. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  5141. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  5142. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  5143. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5144. q3 += 32; q8 += 128; scale += 8;
  5145. }
  5146. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5147. sumf += d*sum_t;
  5148. }
  5149. *s = sumf;
  5150. #elif defined(__POWER9_VECTOR__)
  5151. const vector signed char lowMask = vec_splats((signed char)0x3);
  5152. const vector signed char v1 = vec_splats((signed char)0x1);
  5153. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5154. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  5155. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5156. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5157. const vector signed char off = vec_splats((signed char)0x20);
  5158. vector float vsumf0 = vec_splats(0.0f);
  5159. vector float vsumf1 = vec_splats(0.0f);
  5160. vector float vsumf2 = vec_splats(0.0f);
  5161. vector float vsumf3 = vec_splats(0.0f);
  5162. for (int i = 0; i < nb; ++i) {
  5163. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5164. vector float vyd = vec_splats(y[i].d);
  5165. vector float vd = vec_mul(vxd, vyd);
  5166. uint32_t aux[3];
  5167. uint32_t utmp[4];
  5168. memcpy(aux, x[i].scales, 12);
  5169. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5170. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5171. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5172. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5173. vector signed char vscales = (vector signed char)vec_xl( 0, utmp);
  5174. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].hmask);
  5175. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].hmask);
  5176. vscales = vec_sub(vscales, off);
  5177. vector signed int vsumi0 = vec_splats((int32_t)0);
  5178. vector signed int vsumi1 = vec_splats((int32_t)0);
  5179. vector signed int vsumi2 = vec_splats((int32_t)0);
  5180. vector signed int vsumi3 = vec_splats((int32_t)0);
  5181. vector signed int vsumi4 = vec_splats((int32_t)0);
  5182. vector signed int vsumi5 = vec_splats((int32_t)0);
  5183. vector signed int vsumi6 = vec_splats((int32_t)0);
  5184. vector signed int vsumi7 = vec_splats((int32_t)0);
  5185. const uint8_t * restrict q3 = x[i].qs;
  5186. const int8_t * restrict q8 = y[i].qs;
  5187. for (int j = 0; j < QK_K/128; ++j) {
  5188. __builtin_prefetch(q3, 0, 1);
  5189. __builtin_prefetch(q8, 0, 1);
  5190. vector signed char qxs0 = (vector signed char)vec_xl( 0, q3);
  5191. vector signed char qxs1 = (vector signed char)vec_xl(16, q3);
  5192. q3 += 32;
  5193. //the low 2 bits
  5194. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5195. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  5196. vector signed char qxs02 = vec_and(vec_sr(qxs0, v4), lowMask);
  5197. vector signed char qxs03 = vec_and(vec_sr(qxs0, v6), lowMask);
  5198. vector signed char qxs10 = vec_and(qxs1, lowMask);
  5199. vector signed char qxs11 = vec_and(vec_sr(qxs1, v2), lowMask);
  5200. vector signed char qxs12 = vec_and(vec_sr(qxs1, v4), lowMask);
  5201. vector signed char qxs13 = vec_and(vec_sr(qxs1, v6), lowMask);
  5202. //the 3rd bit
  5203. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  5204. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, (vector unsigned char)v1)), v2);
  5205. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  5206. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v3)), v2);
  5207. vector signed char qxh10 = vec_sl(vec_andc(v1, qxhs1), v2);
  5208. vector signed char qxh11 = vec_sl(vec_andc(v1, vec_sr(qxhs1, (vector unsigned char)v1)), v2);
  5209. vector signed char qxh12 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v2)), v2);
  5210. vector signed char qxh13 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v3)), v2);
  5211. qxhs0 = vec_sr(qxhs0, v4);
  5212. qxhs1 = vec_sr(qxhs1, v4);
  5213. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  5214. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  5215. vector signed char q3x02 = vec_sub(qxs02, qxh02);
  5216. vector signed char q3x03 = vec_sub(qxs03, qxh03);
  5217. vector signed char q3x10 = vec_sub(qxs10, qxh10);
  5218. vector signed char q3x11 = vec_sub(qxs11, qxh11);
  5219. vector signed char q3x12 = vec_sub(qxs12, qxh12);
  5220. vector signed char q3x13 = vec_sub(qxs13, qxh13);
  5221. vector signed char q8y00 = vec_xl( 0, q8);
  5222. vector signed char q8y10 = vec_xl( 16, q8);
  5223. vector signed char q8y01 = vec_xl( 32, q8);
  5224. vector signed char q8y11 = vec_xl( 48, q8);
  5225. vector signed char q8y02 = vec_xl( 64, q8);
  5226. vector signed char q8y12 = vec_xl( 80, q8);
  5227. vector signed char q8y03 = vec_xl( 96, q8);
  5228. vector signed char q8y13 = vec_xl(112, q8);
  5229. q8 += 128;
  5230. vector signed short vscales_h = vec_unpackh(vscales);
  5231. vector signed short vs0 = vec_splat(vscales_h, 0);
  5232. vector signed short vs1 = vec_splat(vscales_h, 1);
  5233. vector signed short vs2 = vec_splat(vscales_h, 2);
  5234. vector signed short vs3 = vec_splat(vscales_h, 3);
  5235. vector signed short vs4 = vec_splat(vscales_h, 4);
  5236. vector signed short vs5 = vec_splat(vscales_h, 5);
  5237. vector signed short vs6 = vec_splat(vscales_h, 6);
  5238. vector signed short vs7 = vec_splat(vscales_h, 7);
  5239. vscales = vec_sld(vscales, vscales, 8);
  5240. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  5241. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  5242. vector signed short qv02 = vec_add(vec_mule(q3x02, q8y02), vec_mulo(q3x02, q8y02));
  5243. vector signed short qv03 = vec_add(vec_mule(q3x03, q8y03), vec_mulo(q3x03, q8y03));
  5244. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  5245. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  5246. vector signed short qv12 = vec_add(vec_mule(q3x12, q8y12), vec_mulo(q3x12, q8y12));
  5247. vector signed short qv13 = vec_add(vec_mule(q3x13, q8y13), vec_mulo(q3x13, q8y13));
  5248. vector signed int vsum0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0));
  5249. vector signed int vsum1 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2));
  5250. vector signed int vsum2 = vec_add(vec_mule(qv02, vs4), vec_mulo(qv02, vs4));
  5251. vector signed int vsum3 = vec_add(vec_mule(qv03, vs6), vec_mulo(qv03, vs6));
  5252. vector signed int vsum4 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1));
  5253. vector signed int vsum5 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3));
  5254. vector signed int vsum6 = vec_add(vec_mule(qv12, vs5), vec_mulo(qv12, vs5));
  5255. vector signed int vsum7 = vec_add(vec_mule(qv13, vs7), vec_mulo(qv13, vs7));
  5256. vsumi0 = vec_add(vsum0, vsumi0);
  5257. vsumi1 = vec_add(vsum1, vsumi1);
  5258. vsumi2 = vec_add(vsum2, vsumi2);
  5259. vsumi3 = vec_add(vsum3, vsumi3);
  5260. vsumi4 = vec_add(vsum4, vsumi4);
  5261. vsumi5 = vec_add(vsum5, vsumi5);
  5262. vsumi6 = vec_add(vsum6, vsumi6);
  5263. vsumi7 = vec_add(vsum7, vsumi7);
  5264. }
  5265. vsumi0 = vec_add(vsumi0, vsumi4);
  5266. vsumi1 = vec_add(vsumi1, vsumi5);
  5267. vsumi2 = vec_add(vsumi2, vsumi6);
  5268. vsumi3 = vec_add(vsumi3, vsumi7);
  5269. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5270. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5271. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5272. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5273. }
  5274. vsumf0 = vec_add(vsumf0, vsumf2);
  5275. vsumf1 = vec_add(vsumf1, vsumf3);
  5276. vsumf0 = vec_add(vsumf0, vsumf1);
  5277. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5278. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5279. *s = vec_extract(vsumf0, 0);
  5280. #else
  5281. // scalar version
  5282. // This function is written like this so the compiler can manage to vectorize most of it
  5283. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  5284. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  5285. // The ideal situation would be if we could just write the code once, and the compiler would
  5286. // automatically produce the best possible set of machine instructions, instead of us having to manually
  5287. // write vectorized versions for AVX, ARM_NEON, etc.
  5288. int8_t aux8[QK_K];
  5289. int16_t aux16[8];
  5290. float sums [8];
  5291. int32_t aux32[8];
  5292. memset(sums, 0, 8*sizeof(float));
  5293. uint32_t auxs[4];
  5294. const int8_t * scales = (const int8_t*)auxs;
  5295. float sumf = 0;
  5296. for (int i = 0; i < nb; ++i) {
  5297. const uint8_t * restrict q3 = x[i].qs;
  5298. const uint8_t * restrict hm = x[i].hmask;
  5299. const int8_t * restrict q8 = y[i].qs;
  5300. memset(aux32, 0, 8*sizeof(int32_t));
  5301. int8_t * restrict a = aux8;
  5302. uint8_t m = 1;
  5303. for (int j = 0; j < QK_K; j += 128) {
  5304. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  5305. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5306. a += 32; m <<= 1;
  5307. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  5308. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5309. a += 32; m <<= 1;
  5310. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  5311. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5312. a += 32; m <<= 1;
  5313. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  5314. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5315. a += 32; m <<= 1;
  5316. q3 += 32;
  5317. }
  5318. a = aux8;
  5319. memcpy(auxs, x[i].scales, 12);
  5320. uint32_t tmp = auxs[2];
  5321. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  5322. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  5323. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  5324. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  5325. for (int j = 0; j < QK_K/16; ++j) {
  5326. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5327. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5328. q8 += 8; a += 8;
  5329. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5330. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5331. q8 += 8; a += 8;
  5332. }
  5333. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5334. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5335. }
  5336. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5337. *s = sumf;
  5338. #endif
  5339. }
  5340. #else
  5341. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5342. assert(n % QK_K == 0);
  5343. assert(nrc == 1);
  5344. UNUSED(nrc);
  5345. UNUSED(bx);
  5346. UNUSED(by);
  5347. UNUSED(bs);
  5348. const block_q3_K * restrict x = vx;
  5349. const block_q8_K * restrict y = vy;
  5350. const int nb = n / QK_K;
  5351. #ifdef __ARM_NEON
  5352. const int32x4_t vzero = vdupq_n_s32(0);
  5353. const uint8x16_t m3b = vdupq_n_u8(0x3);
  5354. const uint8x16_t mh = vdupq_n_u8(4);
  5355. ggml_int8x16x4_t q3bytes;
  5356. uint16_t aux16[2];
  5357. int8_t * scales = (int8_t *)aux16;
  5358. float sum = 0;
  5359. for (int i = 0; i < nb; ++i) {
  5360. ggml_uint8x16x4_t q3h;
  5361. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  5362. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  5363. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
  5364. const uint16_t a = *(const uint16_t *)x[i].scales;
  5365. aux16[0] = a & 0x0f0f;
  5366. aux16[1] = (a >> 4) & 0x0f0f;
  5367. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  5368. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  5369. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5370. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  5371. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  5372. q3h.val[1] = vandq_u8(mh, htmp);
  5373. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  5374. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  5375. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  5376. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  5377. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  5378. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  5379. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  5380. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  5381. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  5382. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  5383. sum += d * isum;
  5384. }
  5385. *s = sum;
  5386. #elif defined __AVX2__
  5387. const __m256i m3 = _mm256_set1_epi8(3);
  5388. const __m256i m1 = _mm256_set1_epi8(1);
  5389. __m256 acc = _mm256_setzero_ps();
  5390. uint64_t aux64;
  5391. uint16_t aux16[2];
  5392. const int8_t * aux8 = (const int8_t *)aux16;
  5393. for (int i = 0; i < nb; ++i) {
  5394. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5395. const uint8_t * restrict q3 = x[i].qs;
  5396. const int8_t * restrict q8 = y[i].qs;
  5397. const uint16_t a = *(const uint16_t *)x[i].scales;
  5398. aux16[0] = a & 0x0f0f;
  5399. aux16[1] = (a >> 4) & 0x0f0f;
  5400. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  5401. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  5402. memcpy(&aux64, x[i].hmask, 8);
  5403. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  5404. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  5405. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  5406. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  5407. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  5408. // load low 2 bits
  5409. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  5410. // prepare low and high bits
  5411. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  5412. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  5413. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  5414. // load Q8 quants
  5415. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5416. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5417. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5418. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5419. // and 2 if the high bit was set)
  5420. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5421. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5422. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5423. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5424. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5425. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5426. // multiply with scales
  5427. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  5428. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  5429. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5430. // multiply with block scale and accumulate
  5431. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  5432. }
  5433. *s = hsum_float_8(acc);
  5434. #elif defined __AVX__
  5435. const __m128i m3 = _mm_set1_epi8(3);
  5436. const __m128i m1 = _mm_set1_epi8(1);
  5437. __m256 acc = _mm256_setzero_ps();
  5438. uint64_t aux64;
  5439. uint16_t aux16[2];
  5440. const int8_t * aux8 = (const int8_t *)aux16;
  5441. for (int i = 0; i < nb; ++i) {
  5442. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5443. const uint8_t * restrict q3 = x[i].qs;
  5444. const int8_t * restrict q8 = y[i].qs;
  5445. const uint16_t a = *(const uint16_t *)x[i].scales;
  5446. aux16[0] = a & 0x0f0f;
  5447. aux16[1] = (a >> 4) & 0x0f0f;
  5448. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  5449. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  5450. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  5451. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  5452. memcpy(&aux64, x[i].hmask, 8);
  5453. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  5454. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  5455. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  5456. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  5457. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  5458. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  5459. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  5460. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  5461. // load low 2 bits
  5462. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  5463. // prepare low and high bits
  5464. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  5465. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  5466. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  5467. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  5468. // load Q8 quants
  5469. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5470. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5471. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  5472. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5473. // and 2 if the high bit was set)
  5474. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  5475. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  5476. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  5477. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  5478. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  5479. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  5480. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  5481. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  5482. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5483. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5484. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5485. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5486. // multiply with scales
  5487. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  5488. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  5489. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  5490. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  5491. p16_0 = _mm_add_epi32(p16_0, p16_2);
  5492. p16_1 = _mm_add_epi32(p16_1, p16_3);
  5493. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  5494. // multiply with block scale and accumulate
  5495. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  5496. }
  5497. *s = hsum_float_8(acc);
  5498. #elif defined __riscv_v_intrinsic
  5499. uint16_t aux16[2];
  5500. int8_t * scales = (int8_t *)aux16;
  5501. float sumf = 0;
  5502. for (int i = 0; i < nb; ++i) {
  5503. const uint8_t * restrict q3 = x[i].qs;
  5504. const int8_t * restrict q8 = y[i].qs;
  5505. const uint16_t a = *(const uint16_t *)x[i].scales;
  5506. aux16[0] = a & 0x0f0f;
  5507. aux16[1] = (a >> 4) & 0x0f0f;
  5508. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  5509. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  5510. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5511. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5512. // load qh
  5513. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8);
  5514. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  5515. size_t vl = 16;
  5516. // extend and combine both qh_x1 and qh_x2
  5517. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  5518. vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  5519. vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl);
  5520. vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  5521. vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl);
  5522. // load Q3
  5523. vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl);
  5524. vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl);
  5525. vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl);
  5526. vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl);
  5527. vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl);
  5528. vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0);
  5529. vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1);
  5530. vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2);
  5531. vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3);
  5532. // load Q8 and take product with Q3
  5533. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  5534. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  5535. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  5536. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  5537. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  5538. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  5539. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  5540. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  5541. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0];
  5542. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2];
  5543. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1];
  5544. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3];
  5545. sumf += d * isum;
  5546. }
  5547. *s = sumf;
  5548. #elif defined(__POWER9_VECTOR__)
  5549. const vector signed char lowMask = vec_splats((signed char)0x3);
  5550. const vector signed char v1 = vec_splats((signed char)0x1);
  5551. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5552. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5553. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5554. const vector signed char off = vec_splats((signed char)0x8);
  5555. vector float vsumf0 = vec_splats(0.0f);
  5556. vector float vsumf1 = vec_splats(0.0f);
  5557. vector float vsumf2 = vec_splats(0.0f);
  5558. vector float vsumf3 = vec_splats(0.0f);
  5559. #pragma GCC unroll 2
  5560. for (int i = 0; i < nb; ++i) {
  5561. __builtin_prefetch(x[i].qs, 0, 1);
  5562. __builtin_prefetch(y[i].qs, 0, 1);
  5563. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5564. vector float vyd = vec_splats(y[i].d);
  5565. vector float vd = vec_mul(vxd, vyd);
  5566. uint16_t aux16[2];
  5567. int8_t * scales = (int8_t *)aux16;
  5568. const uint16_t a = *(const uint16_t *)x[i].scales;
  5569. aux16[0] = a & 0x0f0f;
  5570. aux16[1] = (a >> 4) & 0x0f0f;
  5571. vector signed char vscales = (vector signed char)vec_xl_len(scales, 8);
  5572. vector signed char qxhs0 = (vector signed char)vec_xl_len(x[i].hmask, 8);
  5573. qxhs0 = vec_or(qxhs0, vec_sr(vec_sld(qxhs0, qxhs0, 8), (vector unsigned char)v1));
  5574. vscales = vec_sub(vscales, off);
  5575. vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs);
  5576. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5577. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  5578. vector signed char qxs10 = vec_and(vec_sr(qxs0, v4), lowMask);
  5579. vector signed char qxs11 = vec_and(vec_sr(qxs0, v6), lowMask);
  5580. //the 3rd bit
  5581. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  5582. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  5583. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v4)), v2);
  5584. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v6)), v2);
  5585. qxhs0 = vec_sr(qxhs0, v4);
  5586. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  5587. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  5588. vector signed char q3x10 = vec_sub(qxs10, qxh02);
  5589. vector signed char q3x11 = vec_sub(qxs11, qxh03);
  5590. vector signed char q8y00 = vec_xl( 0, y[i].qs);
  5591. vector signed char q8y01 = vec_xl( 16, y[i].qs);
  5592. vector signed char q8y10 = vec_xl( 32, y[i].qs);
  5593. vector signed char q8y11 = vec_xl( 48, y[i].qs);
  5594. vector signed short vscales_h = vec_unpackh(vscales);
  5595. vector signed short vs0 = vec_splat(vscales_h, 0);
  5596. vector signed short vs1 = vec_splat(vscales_h, 1);
  5597. vector signed short vs2 = vec_splat(vscales_h, 2);
  5598. vector signed short vs3 = vec_splat(vscales_h, 3);
  5599. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  5600. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  5601. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  5602. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  5603. vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0));
  5604. vector signed int vsumi1 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1));
  5605. vector signed int vsumi2 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2));
  5606. vector signed int vsumi3 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3));
  5607. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5608. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5609. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5610. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5611. }
  5612. vsumf0 = vec_add(vsumf0, vsumf2);
  5613. vsumf1 = vec_add(vsumf1, vsumf3);
  5614. vsumf0 = vec_add(vsumf0, vsumf1);
  5615. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5616. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5617. *s = vec_extract(vsumf0, 0);
  5618. #else
  5619. int8_t aux8[QK_K];
  5620. int16_t aux16[8];
  5621. float sums [8];
  5622. int32_t aux32[8];
  5623. int32_t scales[4];
  5624. memset(sums, 0, 8*sizeof(float));
  5625. float sumf = 0;
  5626. for (int i = 0; i < nb; ++i) {
  5627. const uint8_t * restrict q3 = x[i].qs;
  5628. const uint8_t * restrict hm = x[i].hmask;
  5629. const int8_t * restrict q8 = y[i].qs;
  5630. int8_t * restrict a = aux8;
  5631. for (int l = 0; l < 8; ++l) {
  5632. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  5633. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  5634. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  5635. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  5636. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  5637. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  5638. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  5639. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  5640. }
  5641. scales[0] = (x[i].scales[0] & 0xF) - 8;
  5642. scales[1] = (x[i].scales[0] >> 4) - 8;
  5643. scales[2] = (x[i].scales[1] & 0xF) - 8;
  5644. scales[3] = (x[i].scales[1] >> 4) - 8;
  5645. memset(aux32, 0, 8*sizeof(int32_t));
  5646. for (int j = 0; j < QK_K/16; ++j) {
  5647. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5648. q8 += 8; a += 8;
  5649. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  5650. q8 += 8; a += 8;
  5651. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  5652. }
  5653. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5654. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5655. }
  5656. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5657. *s = sumf;
  5658. #endif
  5659. }
  5660. #endif
  5661. #if QK_K == 256
  5662. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5663. assert(n % QK_K == 0);
  5664. assert(nrc == 1);
  5665. UNUSED(nrc);
  5666. UNUSED(bx);
  5667. UNUSED(by);
  5668. UNUSED(bs);
  5669. const block_q4_K * restrict x = vx;
  5670. const block_q8_K * restrict y = vy;
  5671. const int nb = n / QK_K;
  5672. static const uint32_t kmask1 = 0x3f3f3f3f;
  5673. static const uint32_t kmask2 = 0x0f0f0f0f;
  5674. static const uint32_t kmask3 = 0x03030303;
  5675. uint32_t utmp[4];
  5676. #ifdef __ARM_NEON
  5677. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5678. const int32x4_t mzero = vdupq_n_s32(0);
  5679. ggml_int8x16x2_t q4bytes;
  5680. ggml_int8x16x2_t q8bytes;
  5681. float sumf = 0;
  5682. for (int i = 0; i < nb; ++i) {
  5683. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5684. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5685. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  5686. memcpy(utmp, x[i].scales, 12);
  5687. uint32x2_t mins8 = { 0 };
  5688. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  5689. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  5690. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5691. utmp[0] &= kmask1;
  5692. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  5693. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  5694. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  5695. sumf -= dmin * vaddvq_s32(prod);
  5696. const uint8_t * scales = (const uint8_t *)utmp;
  5697. const uint8_t * restrict q4 = x[i].qs;
  5698. const int8_t * restrict q8 = y[i].qs;
  5699. int32_t sumi1 = 0;
  5700. int32_t sumi2 = 0;
  5701. for (int j = 0; j < QK_K/64; ++j) {
  5702. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  5703. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5704. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5705. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5706. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5707. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  5708. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5709. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5710. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5711. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5712. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  5713. }
  5714. sumf += d * (sumi1 + sumi2);
  5715. }
  5716. *s = sumf;
  5717. #elif defined __AVX2__
  5718. const __m256i m4 = _mm256_set1_epi8(0xF);
  5719. __m256 acc = _mm256_setzero_ps();
  5720. __m128 acc_m = _mm_setzero_ps();
  5721. for (int i = 0; i < nb; ++i) {
  5722. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5723. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5724. memcpy(utmp, x[i].scales, 12);
  5725. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5726. const uint32_t uaux = utmp[1] & kmask1;
  5727. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5728. utmp[2] = uaux;
  5729. utmp[0] &= kmask1;
  5730. const uint8_t * restrict q4 = x[i].qs;
  5731. const int8_t * restrict q8 = y[i].qs;
  5732. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  5733. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  5734. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  5735. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  5736. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  5737. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  5738. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  5739. __m256i sumi = _mm256_setzero_si256();
  5740. for (int j = 0; j < QK_K/64; ++j) {
  5741. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  5742. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  5743. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5744. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5745. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5746. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5747. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5748. p16l = _mm256_madd_epi16(scale_l, p16l);
  5749. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5750. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5751. p16h = _mm256_madd_epi16(scale_h, p16h);
  5752. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  5753. sumi = _mm256_add_epi32(sumi, sumj);
  5754. }
  5755. __m256 vd = _mm256_set1_ps(d);
  5756. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  5757. }
  5758. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5759. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5760. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5761. #elif defined __AVX__
  5762. const __m128i m4 = _mm_set1_epi8(0xF);
  5763. const __m128i m2 = _mm_set1_epi8(0x2);
  5764. __m256 acc = _mm256_setzero_ps();
  5765. __m128 acc_m = _mm_setzero_ps();
  5766. for (int i = 0; i < nb; ++i) {
  5767. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5768. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5769. const uint8_t * restrict q4 = x[i].qs;
  5770. const int8_t * restrict q8 = y[i].qs;
  5771. memcpy(utmp, x[i].scales, 12);
  5772. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5773. const uint32_t uaux = utmp[1] & kmask1;
  5774. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5775. utmp[2] = uaux;
  5776. utmp[0] &= kmask1;
  5777. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5778. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5779. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5780. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5781. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5782. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5783. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5784. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  5785. __m128i sumi_0 = _mm_setzero_si128();
  5786. __m128i sumi_1 = _mm_setzero_si128();
  5787. __m128i shuffle = _mm_set1_epi16(0x0100);
  5788. for (int j = 0; j < QK_K/64; ++j) {
  5789. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  5790. shuffle = _mm_add_epi16(shuffle, m2);
  5791. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  5792. shuffle = _mm_add_epi16(shuffle, m2);
  5793. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5794. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  5795. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5796. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5797. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  5798. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5799. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5800. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  5801. p16l = _mm_madd_epi16(scale_l, p16l);
  5802. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  5803. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5804. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  5805. p16l = _mm_madd_epi16(scale_l, p16l);
  5806. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  5807. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5808. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  5809. p16h = _mm_madd_epi16(scale_h, p16h);
  5810. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  5811. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5812. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  5813. p16h = _mm_madd_epi16(scale_h, p16h);
  5814. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  5815. }
  5816. __m256 vd = _mm256_set1_ps(d);
  5817. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5818. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5819. }
  5820. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5821. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5822. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5823. #elif defined __riscv_v_intrinsic
  5824. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5825. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5826. float sumf = 0;
  5827. for (int i = 0; i < nb; ++i) {
  5828. size_t vl = 8;
  5829. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5830. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5831. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5832. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5833. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5834. memcpy(utmp, x[i].scales, 12);
  5835. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5836. const uint32_t uaux = utmp[1] & kmask1;
  5837. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5838. utmp[2] = uaux;
  5839. utmp[0] &= kmask1;
  5840. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5841. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5842. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5843. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5844. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5845. const uint8_t * restrict q4 = x[i].qs;
  5846. const int8_t * restrict q8 = y[i].qs;
  5847. vl = 32;
  5848. int32_t sum_1 = 0;
  5849. int32_t sum_2 = 0;
  5850. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5851. for (int j = 0; j < QK_K/64; ++j) {
  5852. // load Q4
  5853. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  5854. // load Q8 and multiply it with lower Q4 nibble
  5855. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5856. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  5857. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  5858. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  5859. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  5860. // load Q8 and multiply it with upper Q4 nibble
  5861. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5862. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  5863. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  5864. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  5865. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  5866. q4 += 32; q8 += 64;
  5867. }
  5868. sumf += d*(sum_1 + sum_2);
  5869. }
  5870. *s = sumf;
  5871. #elif defined(__POWER9_VECTOR__)
  5872. const vector signed char lowMask = vec_splats((signed char)0xF);
  5873. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5874. vector float vsumf0 = vec_splats(0.0f);
  5875. vector float vsumf1 = vec_splats(0.0f);
  5876. vector float vsumf2 = vec_splats(0.0f);
  5877. vector float vsumf3 = vec_splats(0.0f);
  5878. for (int i = 0; i < nb; ++i) {
  5879. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5880. vector float vyd = vec_splats(y[i].d);
  5881. vector float vd = vec_mul(vxd, vyd);
  5882. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  5883. vector float vdmin = vec_mul(vxmin, vyd);
  5884. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  5885. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  5886. memcpy(utmp, x[i].scales, 12);
  5887. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5888. const uint32_t uaux = utmp[1] & kmask1;
  5889. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5890. utmp[2] = uaux;
  5891. utmp[0] &= kmask1;
  5892. vector signed char utmps = (vector signed char)vec_xl( 0, utmp);
  5893. vector signed short vscales = vec_unpackh(utmps);
  5894. vector signed short q4xmins = vec_unpackl(utmps);
  5895. vector signed short q4xmins0 = vec_mergeh(q4xmins, q4xmins);
  5896. vector signed short q4xmins1 = vec_mergel(q4xmins, q4xmins);
  5897. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  5898. vector signed int prod1 = vec_mule(q4xmins1, q8ysums1);
  5899. vector signed int prod2 = vec_mulo(q4xmins0, q8ysums0);
  5900. vector signed int prod3 = vec_mulo(q4xmins1, q8ysums1);
  5901. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  5902. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  5903. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  5904. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  5905. vector signed int vsumi0 = vec_splats((int32_t)0);
  5906. vector signed int vsumi1 = vec_splats((int32_t)0);
  5907. vector signed int vsumi2 = vec_splats((int32_t)0);
  5908. vector signed int vsumi3 = vec_splats((int32_t)0);
  5909. vector signed int vsumi4 = vec_splats((int32_t)0);
  5910. vector signed int vsumi5 = vec_splats((int32_t)0);
  5911. vector signed int vsumi6 = vec_splats((int32_t)0);
  5912. vector signed int vsumi7 = vec_splats((int32_t)0);
  5913. const uint8_t * restrict q4 = x[i].qs;
  5914. const int8_t * restrict q8 = y[i].qs;
  5915. for (int j = 0; j < QK_K/64; j+=2) {
  5916. __builtin_prefetch(q4, 0, 1);
  5917. __builtin_prefetch(q8, 0, 1);
  5918. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  5919. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  5920. vector signed char qxs2 = (vector signed char)vec_xl(32, q4);
  5921. vector signed char qxs3 = (vector signed char)vec_xl(48, q4);
  5922. q4 += 64;
  5923. vector signed char q4x00 = vec_and(qxs0, lowMask);
  5924. vector signed char q4x01 = vec_sr(qxs0, v4);
  5925. vector signed char q4x10 = vec_and(qxs1, lowMask);
  5926. vector signed char q4x11 = vec_sr(qxs1, v4);
  5927. vector signed char q4x20 = vec_and(qxs2, lowMask);
  5928. vector signed char q4x21 = vec_sr(qxs2, v4);
  5929. vector signed char q4x30 = vec_and(qxs3, lowMask);
  5930. vector signed char q4x31 = vec_sr(qxs3, v4);
  5931. vector signed char q8y00 = vec_xl( 0, q8);
  5932. vector signed char q8y10 = vec_xl( 16, q8);
  5933. vector signed char q8y01 = vec_xl( 32, q8);
  5934. vector signed char q8y11 = vec_xl( 48, q8);
  5935. vector signed char q8y20 = vec_xl( 64, q8);
  5936. vector signed char q8y30 = vec_xl( 80, q8);
  5937. vector signed char q8y21 = vec_xl( 96, q8);
  5938. vector signed char q8y31 = vec_xl(112, q8);
  5939. q8 += 128;
  5940. vector signed short qv00 = vec_add(vec_mule(q4x00, q8y00), vec_mulo(q4x00, q8y00));
  5941. vector signed short qv01 = vec_add(vec_mule(q4x01, q8y01), vec_mulo(q4x01, q8y01));
  5942. vector signed short qv10 = vec_add(vec_mule(q4x10, q8y10), vec_mulo(q4x10, q8y10));
  5943. vector signed short qv11 = vec_add(vec_mule(q4x11, q8y11), vec_mulo(q4x11, q8y11));
  5944. vector signed short qv20 = vec_add(vec_mule(q4x20, q8y20), vec_mulo(q4x20, q8y20));
  5945. vector signed short qv21 = vec_add(vec_mule(q4x21, q8y21), vec_mulo(q4x21, q8y21));
  5946. vector signed short qv30 = vec_add(vec_mule(q4x30, q8y30), vec_mulo(q4x30, q8y30));
  5947. vector signed short qv31 = vec_add(vec_mule(q4x31, q8y31), vec_mulo(q4x31, q8y31));
  5948. vector signed short vs0 = vec_splat(vscales, 0);
  5949. vector signed short vs1 = vec_splat(vscales, 1);
  5950. vector signed short vs2 = vec_splat(vscales, 2);
  5951. vector signed short vs3 = vec_splat(vscales, 3);
  5952. vscales = vec_sld(vscales, vscales, 8);
  5953. qv00 = vec_add(qv00, qv10);
  5954. qv10 = vec_add(qv01, qv11);
  5955. qv20 = vec_add(qv20, qv30);
  5956. qv30 = vec_add(qv21, qv31);
  5957. vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0);
  5958. vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1);
  5959. vsumi2 = vec_add(vec_mule(qv10, vs1), vsumi2);
  5960. vsumi3 = vec_add(vec_mulo(qv10, vs1), vsumi3);
  5961. vsumi4 = vec_add(vec_mule(qv20, vs2), vsumi4);
  5962. vsumi5 = vec_add(vec_mulo(qv20, vs2), vsumi5);
  5963. vsumi6 = vec_add(vec_mule(qv30, vs3), vsumi6);
  5964. vsumi7 = vec_add(vec_mulo(qv30, vs3), vsumi7);
  5965. }
  5966. vsumi0 = vec_add(vsumi0, vsumi4);
  5967. vsumi1 = vec_add(vsumi1, vsumi5);
  5968. vsumi2 = vec_add(vsumi2, vsumi6);
  5969. vsumi3 = vec_add(vsumi3, vsumi7);
  5970. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5971. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5972. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5973. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5974. }
  5975. vsumf0 = vec_add(vsumf0, vsumf2);
  5976. vsumf1 = vec_add(vsumf1, vsumf3);
  5977. vsumf0 = vec_add(vsumf0, vsumf1);
  5978. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5979. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5980. *s = vec_extract(vsumf0, 0);
  5981. #else
  5982. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5983. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5984. int8_t aux8[QK_K];
  5985. int16_t aux16[8];
  5986. float sums [8];
  5987. int32_t aux32[8];
  5988. memset(sums, 0, 8*sizeof(float));
  5989. float sumf = 0;
  5990. for (int i = 0; i < nb; ++i) {
  5991. const uint8_t * restrict q4 = x[i].qs;
  5992. const int8_t * restrict q8 = y[i].qs;
  5993. memset(aux32, 0, 8*sizeof(int32_t));
  5994. int8_t * restrict a = aux8;
  5995. for (int j = 0; j < QK_K/64; ++j) {
  5996. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  5997. a += 32;
  5998. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  5999. a += 32; q4 += 32;
  6000. }
  6001. memcpy(utmp, x[i].scales, 12);
  6002. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6003. const uint32_t uaux = utmp[1] & kmask1;
  6004. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6005. utmp[2] = uaux;
  6006. utmp[0] &= kmask1;
  6007. int sumi = 0;
  6008. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6009. a = aux8;
  6010. int is = 0;
  6011. for (int j = 0; j < QK_K/32; ++j) {
  6012. int32_t scale = scales[is++];
  6013. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6014. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6015. q8 += 8; a += 8;
  6016. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6017. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6018. q8 += 8; a += 8;
  6019. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6020. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6021. q8 += 8; a += 8;
  6022. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6023. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6024. q8 += 8; a += 8;
  6025. }
  6026. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6027. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6028. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6029. sumf -= dmin * sumi;
  6030. }
  6031. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6032. *s = sumf;
  6033. #endif
  6034. }
  6035. #else
  6036. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6037. assert(n % QK_K == 0);
  6038. assert(nrc == 1);
  6039. UNUSED(nrc);
  6040. UNUSED(bx);
  6041. UNUSED(by);
  6042. UNUSED(bs);
  6043. const block_q4_K * restrict x = vx;
  6044. const block_q8_K * restrict y = vy;
  6045. const int nb = n / QK_K;
  6046. #ifdef __ARM_NEON
  6047. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6048. const int32x4_t mzero = vdupq_n_s32(0);
  6049. float sumf = 0;
  6050. ggml_int8x16x2_t q4bytes;
  6051. ggml_int8x16x4_t q8bytes;
  6052. float sum_mins = 0.f;
  6053. uint16_t aux16[2];
  6054. const uint8_t * restrict scales = (const uint8_t *)aux16;
  6055. for (int i = 0; i < nb; ++i) {
  6056. const uint8_t * restrict q4 = x[i].qs;
  6057. const int8_t * restrict q8 = y[i].qs;
  6058. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  6059. aux16[0] = a[0] & 0x0f0f;
  6060. aux16[1] = (a[0] >> 4) & 0x0f0f;
  6061. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  6062. sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi;
  6063. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  6064. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
  6065. q8bytes = ggml_vld1q_s8_x4(q8);
  6066. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  6067. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  6068. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  6069. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  6070. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  6071. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  6072. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  6073. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  6074. sumf += d * (sumi1 + sumi2);
  6075. }
  6076. *s = sumf - sum_mins;
  6077. #elif defined __AVX2__
  6078. const __m256i m4 = _mm256_set1_epi8(0xF);
  6079. __m256 acc = _mm256_setzero_ps();
  6080. float summs = 0;
  6081. uint16_t aux16[2];
  6082. const uint8_t * scales = (const uint8_t *)aux16;
  6083. for (int i = 0; i < nb; ++i) {
  6084. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  6085. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  6086. const __m256 vd = _mm256_set1_ps(d);
  6087. const uint16_t * a = (const uint16_t *)x[i].scales;
  6088. aux16[0] = a[0] & 0x0f0f;
  6089. aux16[1] = (a[0] >> 4) & 0x0f0f;
  6090. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  6091. const uint8_t * restrict q4 = x[i].qs;
  6092. const int8_t * restrict q8 = y[i].qs;
  6093. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  6094. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  6095. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  6096. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6097. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  6098. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  6099. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  6100. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  6101. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  6102. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  6103. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  6104. }
  6105. *s = hsum_float_8(acc) - summs;
  6106. #elif defined __AVX__
  6107. const __m128i m4 = _mm_set1_epi8(0xF);
  6108. __m256 acc = _mm256_setzero_ps();
  6109. float summs = 0;
  6110. uint16_t aux16[2];
  6111. const uint8_t * scales = (const uint8_t *)aux16;
  6112. for (int i = 0; i < nb; ++i) {
  6113. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  6114. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  6115. const __m256 vd = _mm256_set1_ps(d);
  6116. const uint16_t * a = (const uint16_t *)x[i].scales;
  6117. aux16[0] = a[0] & 0x0f0f;
  6118. aux16[1] = (a[0] >> 4) & 0x0f0f;
  6119. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  6120. const uint8_t * restrict q4 = x[i].qs;
  6121. const int8_t * restrict q8 = y[i].qs;
  6122. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  6123. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  6124. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  6125. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  6126. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  6127. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  6128. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  6129. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6130. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6131. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  6132. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  6133. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  6134. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  6135. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  6136. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  6137. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  6138. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  6139. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  6140. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  6141. }
  6142. *s = hsum_float_8(acc) - summs;
  6143. #elif defined __riscv_v_intrinsic
  6144. uint16_t s16[2];
  6145. const uint8_t * restrict scales = (const uint8_t *)s16;
  6146. float sumf = 0;
  6147. for (int i = 0; i < nb; ++i) {
  6148. const uint8_t * restrict q4 = x[i].qs;
  6149. const int8_t * restrict q8 = y[i].qs;
  6150. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  6151. s16[0] = b[0] & 0x0f0f;
  6152. s16[1] = (b[0] >> 4) & 0x0f0f;
  6153. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  6154. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  6155. size_t vl = 32;
  6156. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  6157. // load Q4
  6158. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  6159. // load Q8 and multiply it with lower Q4 nibble
  6160. vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  6161. vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl);
  6162. vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl);
  6163. sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1);
  6164. // load Q8 and multiply it with upper Q4 nibble
  6165. vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  6166. vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  6167. vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl);
  6168. sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2);
  6169. }
  6170. *s = sumf;
  6171. #elif defined(__POWER9_VECTOR__)
  6172. const vector signed char lowMask = vec_splats((signed char)0xF);
  6173. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6174. vector float vsumf0 = vec_splats(0.0f);
  6175. vector float vsumf1 = vec_splats(0.0f);
  6176. vector float vsumf2 = vec_splats(0.0f);
  6177. vector float vsumf3 = vec_splats(0.0f);
  6178. #pragma GCC unroll 2
  6179. for (int i = 0; i < nb; ++i) {
  6180. __builtin_prefetch(x[i].qs, 0, 1);
  6181. __builtin_prefetch(y[i].qs, 0, 1);
  6182. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d[1]));
  6183. vector float vyd = vec_splats(y[i].d);
  6184. vector float vd= vec_mul(vxd, vyd);
  6185. uint16_t s16[2];
  6186. const uint8_t * scales = (const uint8_t *)s16;
  6187. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  6188. s16[0] = b[0] & 0x0f0f;
  6189. s16[1] = (b[0] >> 4) & 0x0f0f;
  6190. vector signed char utmps = (vector signed char)vec_xl_len(scales, 4);
  6191. vector signed short vscales = (vector signed short)vec_unpackh(utmps);
  6192. vector signed short q4xmins0 = vec_mergeh(vscales, vscales);
  6193. q4xmins0 = vec_sld(q4xmins0, q4xmins0, 8);
  6194. vector signed short q8ysums0 = vec_xl_len((const int16_t *)(y[i].bsums), 8);
  6195. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  6196. vector signed int prod1 = vec_mulo(q4xmins0, q8ysums0);
  6197. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vd, vsumf0);
  6198. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vd, vsumf1);
  6199. vd = vec_mul(vyd, vec_splats(GGML_FP16_TO_FP32(x[i].d[0])));
  6200. vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs);
  6201. vector signed char qxs1 = (vector signed char)vec_xl(16, x[i].qs);
  6202. vector signed char q4x00 = vec_and(qxs0, lowMask);
  6203. vector signed char q4x01 = vec_sr(qxs0, v4);
  6204. vector signed char q4x10 = vec_and(qxs1, lowMask);
  6205. vector signed char q4x11 = vec_sr(qxs1, v4);
  6206. vector signed char q8y00 = vec_xl( 0, y[i].qs);
  6207. vector signed char q8y10 = vec_xl(16, y[i].qs);
  6208. vector signed char q8y01 = vec_xl(32, y[i].qs);
  6209. vector signed char q8y11 = vec_xl(48, y[i].qs);
  6210. vector signed short qv00 = vec_add(vec_mule(q4x00, q8y00), vec_mulo(q4x00, q8y00));
  6211. vector signed short qv01 = vec_add(vec_mule(q4x01, q8y01), vec_mulo(q4x01, q8y01));
  6212. vector signed short qv10 = vec_add(vec_mule(q4x10, q8y10), vec_mulo(q4x10, q8y10));
  6213. vector signed short qv11 = vec_add(vec_mule(q4x11, q8y11), vec_mulo(q4x11, q8y11));
  6214. vector signed short vs0 = vec_splat(vscales, 0);
  6215. vector signed short vs1 = vec_splat(vscales, 1);
  6216. vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0));
  6217. vector signed int vsumi1 = vec_add(vec_mule(qv10, vs0), vec_mulo(qv10, vs0));
  6218. vector signed int vsumi2 = vec_add(vec_mule(qv01, vs1), vec_mulo(qv01, vs1));
  6219. vector signed int vsumi3 = vec_add(vec_mule(qv11, vs1), vec_mulo(qv11, vs1));
  6220. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6221. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6222. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6223. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6224. }
  6225. vsumf0 = vec_add(vsumf0, vsumf2);
  6226. vsumf1 = vec_add(vsumf1, vsumf3);
  6227. vsumf0 = vec_add(vsumf0, vsumf1);
  6228. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6229. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6230. *s = vec_extract(vsumf0, 0);
  6231. #else
  6232. uint8_t aux8[QK_K];
  6233. int16_t aux16[16];
  6234. float sums [8];
  6235. memset(sums, 0, 8*sizeof(float));
  6236. uint16_t s16[2];
  6237. const uint8_t * restrict scales = (const uint8_t *)s16;
  6238. float sumf = 0;
  6239. for (int i = 0; i < nb; ++i) {
  6240. const uint8_t * restrict q4 = x[i].qs;
  6241. const int8_t * restrict q8 = y[i].qs;
  6242. uint8_t * restrict a = aux8;
  6243. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  6244. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  6245. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  6246. s16[0] = b[0] & 0x0f0f;
  6247. s16[1] = (b[0] >> 4) & 0x0f0f;
  6248. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  6249. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  6250. for (int j = 0; j < QK_K/32; ++j) {
  6251. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  6252. q8 += 16; a += 16;
  6253. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  6254. q8 += 16; a += 16;
  6255. const float dl = d * scales[j];
  6256. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  6257. }
  6258. }
  6259. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6260. *s = sumf;
  6261. #endif
  6262. }
  6263. #endif
  6264. #if QK_K == 256
  6265. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6266. assert(n % QK_K == 0);
  6267. assert(nrc == 1);
  6268. UNUSED(nrc);
  6269. UNUSED(bx);
  6270. UNUSED(by);
  6271. UNUSED(bs);
  6272. const block_q5_K * restrict x = vx;
  6273. const block_q8_K * restrict y = vy;
  6274. const int nb = n / QK_K;
  6275. static const uint32_t kmask1 = 0x3f3f3f3f;
  6276. static const uint32_t kmask2 = 0x0f0f0f0f;
  6277. static const uint32_t kmask3 = 0x03030303;
  6278. uint32_t utmp[4];
  6279. #ifdef __ARM_NEON
  6280. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6281. const uint8x16_t mone = vdupq_n_u8(1);
  6282. const uint8x16_t mtwo = vdupq_n_u8(2);
  6283. const int32x4_t mzero = vdupq_n_s32(0);
  6284. ggml_int8x16x4_t q5bytes;
  6285. float sumf = 0;
  6286. for (int i = 0; i < nb; ++i) {
  6287. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6288. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6289. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6290. memcpy(utmp, x[i].scales, 12);
  6291. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6292. const uint32_t uaux = utmp[1] & kmask1;
  6293. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6294. utmp[2] = uaux;
  6295. utmp[0] &= kmask1;
  6296. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  6297. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  6298. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6299. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6300. int32_t sumi_mins = vaddvq_s32(prod);
  6301. const uint8_t * scales = (const uint8_t *)utmp;
  6302. const uint8_t * restrict q5 = x[i].qs;
  6303. const uint8_t * restrict qh = x[i].qh;
  6304. const int8_t * restrict q8 = y[i].qs;
  6305. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  6306. ggml_uint8x16x4_t q5h;
  6307. int32_t sumi = 0;
  6308. for (int j = 0; j < QK_K/64; ++j) {
  6309. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  6310. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6311. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6312. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6313. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  6314. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  6315. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  6316. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  6317. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  6318. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  6319. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  6320. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  6321. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  6322. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  6323. }
  6324. sumf += d * sumi - dmin * sumi_mins;
  6325. }
  6326. *s = sumf;
  6327. #elif defined __AVX2__
  6328. const __m256i m4 = _mm256_set1_epi8(0xF);
  6329. const __m128i mzero = _mm_setzero_si128();
  6330. const __m256i mone = _mm256_set1_epi8(1);
  6331. __m256 acc = _mm256_setzero_ps();
  6332. float summs = 0.f;
  6333. for (int i = 0; i < nb; ++i) {
  6334. const uint8_t * restrict q5 = x[i].qs;
  6335. const int8_t * restrict q8 = y[i].qs;
  6336. #if QK_K == 256
  6337. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6338. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6339. memcpy(utmp, x[i].scales, 12);
  6340. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6341. const uint32_t uaux = utmp[1] & kmask1;
  6342. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6343. utmp[2] = uaux;
  6344. utmp[0] &= kmask1;
  6345. #else
  6346. // TODO
  6347. const float d = 0, dmin = 0;
  6348. #endif
  6349. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6350. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6351. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6352. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6353. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6354. summs += dmin * _mm_extract_epi32(hsum, 0);
  6355. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6356. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6357. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  6358. __m256i hmask = mone;
  6359. __m256i sumi = _mm256_setzero_si256();
  6360. int bit = 0;
  6361. for (int j = 0; j < QK_K/64; ++j) {
  6362. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6363. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6364. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  6365. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6366. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6367. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  6368. hmask = _mm256_slli_epi16(hmask, 1);
  6369. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6370. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6371. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  6372. hmask = _mm256_slli_epi16(hmask, 1);
  6373. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6374. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6375. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  6376. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  6377. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  6378. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  6379. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6380. }
  6381. __m256 vd = _mm256_set1_ps(d);
  6382. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6383. }
  6384. *s = hsum_float_8(acc) + summs;
  6385. #elif defined __AVX__
  6386. const __m128i m4 = _mm_set1_epi8(0xF);
  6387. const __m128i mzero = _mm_setzero_si128();
  6388. const __m128i mone = _mm_set1_epi8(1);
  6389. const __m128i m2 = _mm_set1_epi8(2);
  6390. __m256 acc = _mm256_setzero_ps();
  6391. float summs = 0.f;
  6392. for (int i = 0; i < nb; ++i) {
  6393. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6394. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6395. const uint8_t * restrict q5 = x[i].qs;
  6396. const int8_t * restrict q8 = y[i].qs;
  6397. memcpy(utmp, x[i].scales, 12);
  6398. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6399. const uint32_t uaux = utmp[1] & kmask1;
  6400. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6401. utmp[2] = uaux;
  6402. utmp[0] &= kmask1;
  6403. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6404. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6405. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6406. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6407. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6408. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6409. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6410. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6411. summs += dmin * _mm_extract_epi32(hsum, 0);
  6412. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  6413. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  6414. __m128i hmask = mone;
  6415. __m128i sumi_0 = _mm_setzero_si128();
  6416. __m128i sumi_1 = _mm_setzero_si128();
  6417. int bit = 0;
  6418. __m128i shuffle = _mm_set1_epi16(0x0100);
  6419. for (int j = 0; j < QK_K/64; ++j) {
  6420. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6421. shuffle = _mm_add_epi16(shuffle, m2);
  6422. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6423. shuffle = _mm_add_epi16(shuffle, m2);
  6424. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6425. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6426. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  6427. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  6428. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6429. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6430. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6431. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6432. hmask = _mm_slli_epi16(hmask, 1);
  6433. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6434. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6435. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  6436. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  6437. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  6438. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  6439. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  6440. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  6441. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6442. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6443. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6444. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6445. hmask = _mm_slli_epi16(hmask, 1);
  6446. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6447. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6448. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  6449. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  6450. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  6451. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  6452. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6453. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6454. }
  6455. __m256 vd = _mm256_set1_ps(d);
  6456. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6457. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6458. }
  6459. *s = hsum_float_8(acc) + summs;
  6460. #elif defined __riscv_v_intrinsic
  6461. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6462. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6463. float sumf = 0;
  6464. float sums = 0.0;
  6465. size_t vl;
  6466. for (int i = 0; i < nb; ++i) {
  6467. vl = 8;
  6468. const uint8_t * restrict q5 = x[i].qs;
  6469. const uint8_t * restrict hm = x[i].qh;
  6470. const int8_t * restrict q8 = y[i].qs;
  6471. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6472. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6473. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6474. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6475. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6476. memcpy(utmp, x[i].scales, 12);
  6477. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6478. const uint32_t uaux = utmp[1] & kmask1;
  6479. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6480. utmp[2] = uaux;
  6481. utmp[0] &= kmask1;
  6482. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6483. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6484. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6485. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6486. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6487. vl = 32;
  6488. int32_t aux32 = 0;
  6489. int is = 0;
  6490. uint8_t m = 1;
  6491. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6492. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  6493. for (int j = 0; j < QK_K/64; ++j) {
  6494. // load Q5 and Q8
  6495. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  6496. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  6497. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  6498. // compute mask for addition
  6499. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  6500. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6501. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  6502. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
  6503. m <<= 1;
  6504. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  6505. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6506. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  6507. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
  6508. m <<= 1;
  6509. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  6510. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  6511. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  6512. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  6513. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  6514. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  6515. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  6516. q5 += 32; q8 += 64;
  6517. }
  6518. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  6519. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  6520. }
  6521. *s = sumf+sums;
  6522. #elif defined(__POWER9_VECTOR__)
  6523. const vector signed char lowMask = vec_splats((signed char)0xF);
  6524. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  6525. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6526. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6527. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6528. vector float vsumf0 = vec_splats(0.0f);
  6529. vector float vsumf1 = vec_splats(0.0f);
  6530. vector float vsumf2 = vec_splats(0.0f);
  6531. vector float vsumf3 = vec_splats(0.0f);
  6532. for (int i = 0; i < nb; ++i) {
  6533. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6534. vector float vyd = vec_splats(y[i].d);
  6535. vector float vd = vec_mul(vxd, vyd);
  6536. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  6537. vector float vdmin = vec_mul(vxmin, vyd);
  6538. memcpy(utmp, x[i].scales, 12);
  6539. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6540. const uint32_t uaux = utmp[1] & kmask1;
  6541. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6542. utmp[2] = uaux;
  6543. utmp[0] &= kmask1;
  6544. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  6545. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  6546. vector signed char utmps = (vector signed char)vec_xl( 0, utmp);
  6547. vector signed short vscales = vec_unpackh(utmps);
  6548. vector signed short q5xmins = vec_unpackl(utmps);
  6549. vector signed short q5xmins0 = vec_mergeh(q5xmins, q5xmins);
  6550. vector signed short q5xmins1 = vec_mergel(q5xmins, q5xmins);
  6551. vector signed int prod0 = vec_mule(q5xmins0, q8ysums0);
  6552. vector signed int prod1 = vec_mule(q5xmins1, q8ysums1);
  6553. vector signed int prod2 = vec_mulo(q5xmins0, q8ysums0);
  6554. vector signed int prod3 = vec_mulo(q5xmins1, q8ysums1);
  6555. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  6556. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  6557. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  6558. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  6559. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  6560. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].qh);
  6561. vector signed int vsumi0 = vec_splats((int32_t)0);
  6562. vector signed int vsumi1 = vec_splats((int32_t)0);
  6563. vector signed int vsumi2 = vec_splats((int32_t)0);
  6564. vector signed int vsumi3 = vec_splats((int32_t)0);
  6565. const uint8_t * restrict q5 = x[i].qs;
  6566. const int8_t * restrict q8 = y[i].qs;
  6567. for (int j = 0; j < QK_K/64; ++j) {
  6568. __builtin_prefetch(q5, 0, 1);
  6569. __builtin_prefetch(q8, 0, 1);
  6570. vector signed char qxs0 = (vector signed char)vec_xl( 0, q5);
  6571. vector signed char qxs1 = (vector signed char)vec_xl(16, q5);
  6572. q5 += 32;
  6573. vector signed char qxs00 = vec_and(qxs0, lowMask);
  6574. vector signed char qxs01 = vec_sr(qxs0, v4);
  6575. vector signed char qxs10 = vec_and(qxs1, lowMask);
  6576. vector signed char qxs11 = vec_sr(qxs1, v4);
  6577. vector signed char q5h00 = vec_sl(vec_and((vector signed char)v1, qxhs0), v4);
  6578. vector signed char q5h01 = vec_sl(vec_and((vector signed char)v2, qxhs0), v3);
  6579. vector signed char q5h10 = vec_sl(vec_and((vector signed char)v1, qxhs1), v4);
  6580. vector signed char q5h11 = vec_sl(vec_and((vector signed char)v2, qxhs1), v3);
  6581. qxhs0 = vec_sr(qxhs0, v2);
  6582. qxhs1 = vec_sr(qxhs1, v2);
  6583. vector signed char q5x00 = vec_or(q5h00, qxs00);
  6584. vector signed char q5x01 = vec_or(q5h01, qxs01);
  6585. vector signed char q5x10 = vec_or(q5h10, qxs10);
  6586. vector signed char q5x11 = vec_or(q5h11, qxs11);
  6587. vector signed char q8y00 = vec_xl( 0, q8);
  6588. vector signed char q8y10 = vec_xl(16, q8);
  6589. vector signed char q8y01 = vec_xl(32, q8);
  6590. vector signed char q8y11 = vec_xl(48, q8);
  6591. q8 += 64;
  6592. vector signed short qv00 = vec_add(vec_mule(q5x00, q8y00), vec_mulo(q5x00, q8y00));
  6593. vector signed short qv01 = vec_add(vec_mule(q5x01, q8y01), vec_mulo(q5x01, q8y01));
  6594. vector signed short qv10 = vec_add(vec_mule(q5x10, q8y10), vec_mulo(q5x10, q8y10));
  6595. vector signed short qv11 = vec_add(vec_mule(q5x11, q8y11), vec_mulo(q5x11, q8y11));
  6596. vector signed short vs0 = vec_splat(vscales, 0);
  6597. vector signed short vs1 = vec_splat(vscales, 1);
  6598. vscales = vec_sld(vscales, vscales, 12);
  6599. qv00 = vec_add(qv00, qv10);
  6600. qv01 = vec_add(qv01, qv11);
  6601. vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0);
  6602. vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1);
  6603. vsumi2 = vec_add(vec_mule(qv01, vs1), vsumi2);
  6604. vsumi3 = vec_add(vec_mulo(qv01, vs1), vsumi3);
  6605. }
  6606. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6607. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6608. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6609. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6610. }
  6611. vsumf0 = vec_add(vsumf0, vsumf2);
  6612. vsumf1 = vec_add(vsumf1, vsumf3);
  6613. vsumf0 = vec_add(vsumf0, vsumf1);
  6614. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6615. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6616. *s = vec_extract(vsumf0, 0);
  6617. #else
  6618. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6619. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6620. int8_t aux8[QK_K];
  6621. int16_t aux16[8];
  6622. float sums [8];
  6623. int32_t aux32[8];
  6624. memset(sums, 0, 8*sizeof(float));
  6625. float sumf = 0;
  6626. for (int i = 0; i < nb; ++i) {
  6627. const uint8_t * restrict q4 = x[i].qs;
  6628. const uint8_t * restrict hm = x[i].qh;
  6629. const int8_t * restrict q8 = y[i].qs;
  6630. memset(aux32, 0, 8*sizeof(int32_t));
  6631. int8_t * restrict a = aux8;
  6632. uint8_t m = 1;
  6633. for (int j = 0; j < QK_K/64; ++j) {
  6634. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6635. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6636. a += 32; m <<= 1;
  6637. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6638. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6639. a += 32; m <<= 1;
  6640. q4 += 32;
  6641. }
  6642. memcpy(utmp, x[i].scales, 12);
  6643. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6644. const uint32_t uaux = utmp[1] & kmask1;
  6645. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6646. utmp[2] = uaux;
  6647. utmp[0] &= kmask1;
  6648. int sumi = 0;
  6649. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6650. a = aux8;
  6651. int is = 0;
  6652. for (int j = 0; j < QK_K/32; ++j) {
  6653. int32_t scale = scales[is++];
  6654. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6655. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6656. q8 += 8; a += 8;
  6657. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6658. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6659. q8 += 8; a += 8;
  6660. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6661. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6662. q8 += 8; a += 8;
  6663. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6664. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6665. q8 += 8; a += 8;
  6666. }
  6667. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6668. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6669. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6670. sumf -= dmin * sumi;
  6671. }
  6672. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6673. *s = sumf;
  6674. #endif
  6675. }
  6676. #else
  6677. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6678. assert(n % QK_K == 0);
  6679. assert(nrc == 1);
  6680. UNUSED(nrc);
  6681. UNUSED(bx);
  6682. UNUSED(by);
  6683. UNUSED(bs);
  6684. const block_q5_K * restrict x = vx;
  6685. const block_q8_K * restrict y = vy;
  6686. const int nb = n / QK_K;
  6687. #ifdef __ARM_NEON
  6688. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6689. const uint8x16_t mh = vdupq_n_u8(16);
  6690. const int32x4_t mzero = vdupq_n_s32(0);
  6691. ggml_int8x16x4_t q5bytes;
  6692. ggml_uint8x16x4_t q5h;
  6693. float sumf = 0;
  6694. for (int i = 0; i < nb; ++i) {
  6695. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6696. const int8_t * sc = x[i].scales;
  6697. const uint8_t * restrict q5 = x[i].qs;
  6698. const uint8_t * restrict qh = x[i].qh;
  6699. const int8_t * restrict q8 = y[i].qs;
  6700. const uint8x8_t qhbits = vld1_u8(qh);
  6701. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
  6702. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  6703. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  6704. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  6705. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  6706. q5h.val[2] = vbicq_u8(mh, htmp);
  6707. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  6708. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  6709. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  6710. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  6711. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  6712. int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  6713. int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  6714. int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  6715. int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  6716. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  6717. }
  6718. *s = sumf;
  6719. #elif defined __AVX2__
  6720. const __m256i m4 = _mm256_set1_epi8(0xF);
  6721. const __m256i mone = _mm256_set1_epi8(1);
  6722. __m256 acc = _mm256_setzero_ps();
  6723. for (int i = 0; i < nb; ++i) {
  6724. const uint8_t * restrict q5 = x[i].qs;
  6725. const int8_t * restrict q8 = y[i].qs;
  6726. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6727. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  6728. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  6729. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  6730. int64_t aux64;
  6731. memcpy(&aux64, x[i].qh, 8);
  6732. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  6733. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  6734. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  6735. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  6736. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6737. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6738. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6739. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6740. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  6741. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  6742. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  6743. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  6744. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  6745. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  6746. }
  6747. *s = hsum_float_8(acc);
  6748. #elif defined __AVX__
  6749. const __m128i m4 = _mm_set1_epi8(0xF);
  6750. const __m128i mone = _mm_set1_epi8(1);
  6751. __m256 acc = _mm256_setzero_ps();
  6752. for (int i = 0; i < nb; ++i) {
  6753. const uint8_t * restrict q5 = x[i].qs;
  6754. const int8_t * restrict q8 = y[i].qs;
  6755. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6756. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  6757. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  6758. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  6759. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  6760. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  6761. int64_t aux64;
  6762. memcpy(&aux64, x[i].qh, 8);
  6763. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  6764. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  6765. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  6766. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  6767. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  6768. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  6769. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  6770. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  6771. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  6772. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  6773. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6774. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6775. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  6776. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  6777. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  6778. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  6779. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  6780. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  6781. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  6782. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  6783. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  6784. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  6785. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  6786. }
  6787. *s = hsum_float_8(acc);
  6788. #elif defined __riscv_v_intrinsic
  6789. float sumf = 0;
  6790. for (int i = 0; i < nb; ++i) {
  6791. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6792. const int8_t * sc = x[i].scales;
  6793. const uint8_t * restrict q5 = x[i].qs;
  6794. const uint8_t * restrict qh = x[i].qh;
  6795. const int8_t * restrict q8 = y[i].qs;
  6796. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6797. // load qh
  6798. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8);
  6799. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  6800. size_t vl = 16;
  6801. // combine both qh_1 and qh_2
  6802. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  6803. vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  6804. vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl);
  6805. vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl);
  6806. vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  6807. vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0);
  6808. vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1);
  6809. vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2);
  6810. vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3);
  6811. // load q5
  6812. vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl);
  6813. vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl);
  6814. vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl));
  6815. vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl));
  6816. vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl));
  6817. vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl));
  6818. vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl);
  6819. vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl);
  6820. vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl);
  6821. vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl);
  6822. // load Q8 and multiply it with Q5
  6823. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  6824. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  6825. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  6826. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  6827. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  6828. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  6829. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  6830. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  6831. int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0);
  6832. int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1);
  6833. int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2);
  6834. int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3);
  6835. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  6836. }
  6837. *s = sumf;
  6838. #elif defined(__POWER9_VECTOR__)
  6839. const vector signed char lowMask = vec_splats((signed char)0xF);
  6840. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  6841. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6842. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6843. vector float vsumf0 = vec_splats(0.0f);
  6844. vector float vsumf1 = vec_splats(0.0f);
  6845. vector float vsumf2 = vec_splats(0.0f);
  6846. vector float vsumf3 = vec_splats(0.0f);
  6847. #pragma GCC unroll 2
  6848. for (int i = 0; i < nb; ++i) {
  6849. __builtin_prefetch(x[i].qs, 0, 1);
  6850. __builtin_prefetch(y[i].qs, 0, 1);
  6851. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6852. vector float vyd = vec_splats(y[i].d);
  6853. vector float vd= vec_mul(vxd, vyd);
  6854. vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs);
  6855. vector signed char qxs1 = (vector signed char)vec_xl(16, x[i].qs);
  6856. vector signed char qxs00 = (vector signed char)vec_and(qxs0, lowMask);
  6857. vector signed char qxs01 = (vector signed char)vec_sr(qxs0, v4);
  6858. vector signed char qxs10 = (vector signed char)vec_and(qxs1, lowMask);
  6859. vector signed char qxs11 = (vector signed char)vec_sr(qxs1, v4);
  6860. vector signed char qxhs = (vector signed char)vec_xl_len(x[i].qh, 8);
  6861. vector signed char qxhs0 = vec_or(qxhs, vec_sr(vec_sld(qxhs, qxhs, 8), v1));
  6862. vector signed char qxhs1 = vec_sr(qxhs0, v2);
  6863. vector signed char qxh00 = vec_sl(vec_andc((vector signed char)v1, qxhs0), v4);
  6864. vector signed char qxh10 = vec_sl(vec_andc((vector signed char)v1, qxhs1), v4);
  6865. vector signed char qxh01 = vec_sl(vec_andc((vector signed char)v1, vec_sr(qxhs0, v4)), v4);
  6866. vector signed char qxh11 = vec_sl(vec_andc((vector signed char)v1, vec_sr(qxhs1, v4)), v4);
  6867. vector signed char q5x00 = vec_sub(qxs00, qxh00);
  6868. vector signed char q5x10 = vec_sub(qxs10, qxh10);
  6869. vector signed char q5x01 = vec_sub(qxs01, qxh01);
  6870. vector signed char q5x11 = vec_sub(qxs11, qxh11);
  6871. vector signed char q8y00 = vec_xl( 0, y[i].qs);
  6872. vector signed char q8y10 = vec_xl(16, y[i].qs);
  6873. vector signed char q8y01 = vec_xl(32, y[i].qs);
  6874. vector signed char q8y11 = vec_xl(48, y[i].qs);
  6875. vector signed short qv00 = vec_add(vec_mule(q5x00, q8y00), vec_mulo(q5x00, q8y00));
  6876. vector signed short qv01 = vec_add(vec_mule(q5x01, q8y01), vec_mulo(q5x01, q8y01));
  6877. vector signed short qv10 = vec_add(vec_mule(q5x10, q8y10), vec_mulo(q5x10, q8y10));
  6878. vector signed short qv11 = vec_add(vec_mule(q5x11, q8y11), vec_mulo(q5x11, q8y11));
  6879. vector signed short vs = (vector signed short)vec_unpackh(vec_xl_len(x[i].scales, 4));
  6880. vector signed short vs0 = vec_splat(vs, 0);
  6881. vector signed short vs1 = vec_splat(vs, 1);
  6882. vector signed short vs2 = vec_splat(vs, 2);
  6883. vector signed short vs3 = vec_splat(vs, 3);
  6884. vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0));
  6885. vector signed int vsumi1 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1));
  6886. vector signed int vsumi2 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2));
  6887. vector signed int vsumi3 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3));
  6888. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6889. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6890. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6891. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6892. }
  6893. vsumf0 = vec_add(vsumf0, vsumf2);
  6894. vsumf1 = vec_add(vsumf1, vsumf3);
  6895. vsumf0 = vec_add(vsumf0, vsumf1);
  6896. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6897. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6898. *s = vec_extract(vsumf0, 0);
  6899. #else
  6900. int8_t aux8[QK_K];
  6901. int16_t aux16[16];
  6902. float sums [8];
  6903. memset(sums, 0, 8*sizeof(float));
  6904. float sumf = 0;
  6905. for (int i = 0; i < nb; ++i) {
  6906. const uint8_t * restrict q4 = x[i].qs;
  6907. const uint8_t * restrict hm = x[i].qh;
  6908. const int8_t * restrict q8 = y[i].qs;
  6909. int8_t * restrict a = aux8;
  6910. for (int l = 0; l < 32; ++l) {
  6911. a[l+ 0] = q4[l] & 0xF;
  6912. a[l+32] = q4[l] >> 4;
  6913. }
  6914. for (int is = 0; is < 8; ++is) {
  6915. uint8_t m = 1 << is;
  6916. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  6917. }
  6918. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6919. const int8_t * restrict sc = x[i].scales;
  6920. for (int j = 0; j < QK_K/16; ++j) {
  6921. const float dl = d * sc[j];
  6922. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  6923. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  6924. q8 += 16; a += 16;
  6925. }
  6926. }
  6927. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6928. *s = sumf;
  6929. #endif
  6930. }
  6931. #endif
  6932. #if QK_K == 256
  6933. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6934. assert(n % QK_K == 0);
  6935. assert(nrc == 1);
  6936. UNUSED(nrc);
  6937. UNUSED(bx);
  6938. UNUSED(by);
  6939. UNUSED(bs);
  6940. const block_q6_K * restrict x = vx;
  6941. const block_q8_K * restrict y = vy;
  6942. const int nb = n / QK_K;
  6943. #ifdef __ARM_NEON
  6944. float sum = 0;
  6945. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6946. const int32x4_t vzero = vdupq_n_s32(0);
  6947. //const int8x16_t m32s = vdupq_n_s8(32);
  6948. const uint8x16_t mone = vdupq_n_u8(3);
  6949. ggml_int8x16x4_t q6bytes;
  6950. ggml_uint8x16x4_t q6h;
  6951. for (int i = 0; i < nb; ++i) {
  6952. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6953. const uint8_t * restrict q6 = x[i].ql;
  6954. const uint8_t * restrict qh = x[i].qh;
  6955. const int8_t * restrict q8 = y[i].qs;
  6956. const int8_t * restrict scale = x[i].scales;
  6957. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  6958. const int8x16_t scales = vld1q_s8(scale);
  6959. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  6960. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  6961. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  6962. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  6963. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  6964. int32_t isum_mins = vaddvq_s32(prod);
  6965. int32_t isum = 0;
  6966. for (int j = 0; j < QK_K/128; ++j) {
  6967. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  6968. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  6969. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6970. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6971. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6972. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  6973. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6974. shifted = vshrq_n_u8(qhbits.val[1], 2);
  6975. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6976. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6977. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6978. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  6979. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  6980. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  6981. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  6982. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  6983. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  6984. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6985. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6986. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6987. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6988. scale += 4;
  6989. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6990. shifted = vshrq_n_u8(qhbits.val[0], 4);
  6991. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6992. shifted = vshrq_n_u8(qhbits.val[1], 4);
  6993. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6994. shifted = vshrq_n_u8(qhbits.val[0], 6);
  6995. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6996. shifted = vshrq_n_u8(qhbits.val[1], 6);
  6997. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6998. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  6999. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  7000. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  7001. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  7002. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  7003. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  7004. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  7005. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  7006. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  7007. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  7008. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  7009. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  7010. scale += 4;
  7011. }
  7012. //sum += isum * d_all * y[i].d;
  7013. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  7014. }
  7015. *s = sum;
  7016. #elif defined __AVX2__
  7017. const __m256i m4 = _mm256_set1_epi8(0xF);
  7018. const __m256i m2 = _mm256_set1_epi8(3);
  7019. const __m256i m32s = _mm256_set1_epi8(32);
  7020. __m256 acc = _mm256_setzero_ps();
  7021. for (int i = 0; i < nb; ++i) {
  7022. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7023. const uint8_t * restrict q4 = x[i].ql;
  7024. const uint8_t * restrict qh = x[i].qh;
  7025. const int8_t * restrict q8 = y[i].qs;
  7026. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  7027. __m256i sumi = _mm256_setzero_si256();
  7028. int is = 0;
  7029. for (int j = 0; j < QK_K/128; ++j) {
  7030. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  7031. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  7032. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  7033. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  7034. is += 4;
  7035. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  7036. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  7037. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  7038. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  7039. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  7040. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  7041. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  7042. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  7043. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  7044. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  7045. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  7046. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7047. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7048. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7049. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7050. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  7051. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  7052. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  7053. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  7054. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  7055. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  7056. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  7057. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  7058. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  7059. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  7060. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  7061. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  7062. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  7063. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  7064. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  7065. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  7066. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  7067. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  7068. }
  7069. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  7070. }
  7071. *s = hsum_float_8(acc);
  7072. #elif defined __AVX__
  7073. const __m128i m4 = _mm_set1_epi8(0xF);
  7074. const __m128i m3 = _mm_set1_epi8(3);
  7075. const __m128i m32s = _mm_set1_epi8(32);
  7076. const __m128i m2 = _mm_set1_epi8(2);
  7077. __m256 acc = _mm256_setzero_ps();
  7078. for (int i = 0; i < nb; ++i) {
  7079. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7080. const uint8_t * restrict q4 = x[i].ql;
  7081. const uint8_t * restrict qh = x[i].qh;
  7082. const int8_t * restrict q8 = y[i].qs;
  7083. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  7084. __m128i sumi_0 = _mm_setzero_si128();
  7085. __m128i sumi_1 = _mm_setzero_si128();
  7086. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  7087. for (int j = 0; j < QK_K/128; ++j) {
  7088. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  7089. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  7090. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  7091. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  7092. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  7093. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  7094. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  7095. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  7096. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  7097. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  7098. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7099. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7100. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7101. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7102. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  7103. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  7104. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  7105. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  7106. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  7107. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  7108. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  7109. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  7110. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7111. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7112. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7113. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7114. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7115. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7116. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7117. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7118. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  7119. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  7120. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  7121. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  7122. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  7123. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  7124. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  7125. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  7126. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  7127. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  7128. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  7129. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  7130. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  7131. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  7132. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  7133. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  7134. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  7135. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  7136. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  7137. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  7138. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  7139. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  7140. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  7141. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  7142. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  7143. shuffle = _mm_add_epi8(shuffle, m2);
  7144. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  7145. shuffle = _mm_add_epi8(shuffle, m2);
  7146. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  7147. shuffle = _mm_add_epi8(shuffle, m2);
  7148. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  7149. shuffle = _mm_add_epi8(shuffle, m2);
  7150. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  7151. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  7152. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  7153. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  7154. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  7155. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  7156. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  7157. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  7158. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  7159. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  7160. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  7161. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  7162. }
  7163. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  7164. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  7165. }
  7166. *s = hsum_float_8(acc);
  7167. #elif defined __riscv_v_intrinsic
  7168. float sumf = 0;
  7169. for (int i = 0; i < nb; ++i) {
  7170. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7171. const uint8_t * restrict q6 = x[i].ql;
  7172. const uint8_t * restrict qh = x[i].qh;
  7173. const int8_t * restrict q8 = y[i].qs;
  7174. const int8_t * restrict scale = x[i].scales;
  7175. size_t vl;
  7176. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  7177. int sum_t = 0;
  7178. int is = 0;
  7179. for (int j = 0; j < QK_K/128; ++j) {
  7180. vl = 32;
  7181. // load qh
  7182. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  7183. // load Q6
  7184. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  7185. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  7186. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  7187. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  7188. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  7189. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  7190. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  7191. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  7192. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  7193. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  7194. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  7195. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  7196. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  7197. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  7198. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  7199. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  7200. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  7201. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  7202. // load Q8 and take product
  7203. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  7204. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  7205. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  7206. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  7207. vl = 16;
  7208. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  7209. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  7210. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  7211. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  7212. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  7213. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  7214. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  7215. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  7216. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  7217. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  7218. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  7219. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  7220. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  7221. q6 += 64; qh += 32; q8 += 128; is=8;
  7222. }
  7223. sumf += d * sum_t;
  7224. }
  7225. *s = sumf;
  7226. #elif defined(__POWER9_VECTOR__)
  7227. const vector signed char lowMask = vec_splats((signed char)0xF);
  7228. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  7229. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  7230. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  7231. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  7232. const vector signed char off = vec_splats((signed char)0x20);
  7233. vector float vsumf0 = vec_splats(0.0f);
  7234. vector float vsumf1 = vec_splats(0.0f);
  7235. vector float vsumf2 = vec_splats(0.0f);
  7236. vector float vsumf3 = vec_splats(0.0f);
  7237. for (int i = 0; i < nb; ++i) {
  7238. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7239. vector float vyd = vec_splats(y[i].d);
  7240. vector float vd = vec_mul(vxd, vyd);
  7241. vector signed int vsumi0 = vec_splats((int32_t)0);
  7242. vector signed int vsumi1 = vec_splats((int32_t)0);
  7243. vector signed int vsumi2 = vec_splats((int32_t)0);
  7244. vector signed int vsumi3 = vec_splats((int32_t)0);
  7245. vector signed int vsumi4 = vec_splats((int32_t)0);
  7246. vector signed int vsumi5 = vec_splats((int32_t)0);
  7247. vector signed int vsumi6 = vec_splats((int32_t)0);
  7248. vector signed int vsumi7 = vec_splats((int32_t)0);
  7249. const uint8_t * restrict q6 = x[i].ql;
  7250. const uint8_t * restrict qh = x[i].qh;
  7251. const int8_t * restrict qs = x[i].scales;
  7252. const int8_t * restrict q8 = y[i].qs;
  7253. for (int j = 0; j < QK_K/128; ++j) {
  7254. __builtin_prefetch(q6, 0, 0);
  7255. __builtin_prefetch(qh, 0, 0);
  7256. __builtin_prefetch(q8, 0, 0);
  7257. vector signed char qxs0 = (vector signed char)vec_xl( 0, q6);
  7258. vector signed char qxs1 = (vector signed char)vec_xl(16, q6);
  7259. vector signed char qxs2 = (vector signed char)vec_xl(32, q6);
  7260. vector signed char qxs3 = (vector signed char)vec_xl(48, q6);
  7261. q6 += 64;
  7262. vector signed char qxs00 = vec_and(qxs0, lowMask);
  7263. vector signed char qxs01 = vec_sr(qxs0, v4);
  7264. vector signed char qxs10 = vec_and(qxs1, lowMask);
  7265. vector signed char qxs11 = vec_sr(qxs1, v4);
  7266. vector signed char qxs20 = vec_and(qxs2, lowMask);
  7267. vector signed char qxs21 = vec_sr(qxs2, v4);
  7268. vector signed char qxs30 = vec_and(qxs3, lowMask);
  7269. vector signed char qxs31 = vec_sr(qxs3, v4);
  7270. vector signed char qxhs0 = (vector signed char)vec_xl( 0, qh);
  7271. vector signed char qxhs1 = (vector signed char)vec_xl(16, qh);
  7272. qh += 32;
  7273. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  7274. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  7275. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, qxhs1), v4);
  7276. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v4)), v4);
  7277. vector signed char qxh20 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  7278. vector signed char qxh21 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  7279. vector signed char qxh30 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v2)), v4);
  7280. vector signed char qxh31 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v6)), v4);
  7281. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  7282. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  7283. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  7284. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  7285. vector signed char q6x20 = vec_sub(vec_or(qxh20, qxs20), off);
  7286. vector signed char q6x21 = vec_sub(vec_or(qxh21, qxs21), off);
  7287. vector signed char q6x30 = vec_sub(vec_or(qxh30, qxs30), off);
  7288. vector signed char q6x31 = vec_sub(vec_or(qxh31, qxs31), off);
  7289. vector signed char q8y00 = vec_xl( 0, q8);
  7290. vector signed char q8y10 = vec_xl( 16, q8);
  7291. vector signed char q8y20 = vec_xl( 32, q8);
  7292. vector signed char q8y30 = vec_xl( 48, q8);
  7293. vector signed char q8y01 = vec_xl( 64, q8);
  7294. vector signed char q8y11 = vec_xl( 80, q8);
  7295. vector signed char q8y21 = vec_xl( 96, q8);
  7296. vector signed char q8y31 = vec_xl(112, q8);
  7297. q8 += 128;
  7298. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  7299. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  7300. vector signed short qv20 = vec_add(vec_mule(q6x20, q8y20), vec_mulo(q6x20, q8y20));
  7301. vector signed short qv30 = vec_add(vec_mule(q6x30, q8y30), vec_mulo(q6x30, q8y30));
  7302. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  7303. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  7304. vector signed short qv21 = vec_add(vec_mule(q6x21, q8y21), vec_mulo(q6x21, q8y21));
  7305. vector signed short qv31 = vec_add(vec_mule(q6x31, q8y31), vec_mulo(q6x31, q8y31));
  7306. vector signed short vscales = vec_unpackh(vec_xl_len(qs, 8));
  7307. qs += 8;
  7308. vector signed short vs0 = vec_splat(vscales, 0);
  7309. vector signed short vs1 = vec_splat(vscales, 1);
  7310. vector signed short vs2 = vec_splat(vscales, 2);
  7311. vector signed short vs3 = vec_splat(vscales, 3);
  7312. vector signed short vs4 = vec_splat(vscales, 4);
  7313. vector signed short vs5 = vec_splat(vscales, 5);
  7314. vector signed short vs6 = vec_splat(vscales, 6);
  7315. vector signed short vs7 = vec_splat(vscales, 7);
  7316. vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0);
  7317. vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1);
  7318. vsumi2 = vec_add(vec_mule(qv01, vs4), vsumi2);
  7319. vsumi3 = vec_add(vec_mulo(qv01, vs4), vsumi3);
  7320. vsumi4 = vec_add(vec_mule(qv10, vs1), vsumi4);
  7321. vsumi5 = vec_add(vec_mulo(qv10, vs1), vsumi5);
  7322. vsumi6 = vec_add(vec_mule(qv11, vs5), vsumi6);
  7323. vsumi7 = vec_add(vec_mulo(qv11, vs5), vsumi7);
  7324. vsumi0 = vec_add(vec_mule(qv20, vs2), vsumi0);
  7325. vsumi1 = vec_add(vec_mulo(qv20, vs2), vsumi1);
  7326. vsumi2 = vec_add(vec_mule(qv21, vs6), vsumi2);
  7327. vsumi3 = vec_add(vec_mulo(qv21, vs6), vsumi3);
  7328. vsumi4 = vec_add(vec_mule(qv30, vs3), vsumi4);
  7329. vsumi5 = vec_add(vec_mulo(qv30, vs3), vsumi5);
  7330. vsumi6 = vec_add(vec_mule(qv31, vs7), vsumi6);
  7331. vsumi7 = vec_add(vec_mulo(qv31, vs7), vsumi7);
  7332. }
  7333. vsumi0 = vec_add(vsumi0, vsumi4);
  7334. vsumi1 = vec_add(vsumi1, vsumi5);
  7335. vsumi2 = vec_add(vsumi2, vsumi6);
  7336. vsumi3 = vec_add(vsumi3, vsumi7);
  7337. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7338. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7339. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7340. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7341. }
  7342. vsumf0 = vec_add(vsumf0, vsumf2);
  7343. vsumf1 = vec_add(vsumf1, vsumf3);
  7344. vsumf0 = vec_add(vsumf0, vsumf1);
  7345. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7346. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7347. *s = vec_extract(vsumf0, 0);
  7348. #else
  7349. int8_t aux8[QK_K];
  7350. int16_t aux16[8];
  7351. float sums [8];
  7352. int32_t aux32[8];
  7353. memset(sums, 0, 8*sizeof(float));
  7354. float sumf = 0;
  7355. for (int i = 0; i < nb; ++i) {
  7356. const uint8_t * restrict q4 = x[i].ql;
  7357. const uint8_t * restrict qh = x[i].qh;
  7358. const int8_t * restrict q8 = y[i].qs;
  7359. memset(aux32, 0, 8*sizeof(int32_t));
  7360. int8_t * restrict a = aux8;
  7361. for (int j = 0; j < QK_K; j += 128) {
  7362. for (int l = 0; l < 32; ++l) {
  7363. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  7364. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  7365. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  7366. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  7367. }
  7368. a += 128;
  7369. q4 += 64;
  7370. qh += 32;
  7371. }
  7372. a = aux8;
  7373. int is = 0;
  7374. for (int j = 0; j < QK_K/16; ++j) {
  7375. int scale = x[i].scales[is++];
  7376. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7377. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7378. q8 += 8; a += 8;
  7379. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7380. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7381. q8 += 8; a += 8;
  7382. }
  7383. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7384. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7385. }
  7386. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7387. *s = sumf;
  7388. #endif
  7389. }
  7390. #else
  7391. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7392. assert(n % QK_K == 0);
  7393. assert(nrc == 1);
  7394. UNUSED(nrc);
  7395. UNUSED(bx);
  7396. UNUSED(by);
  7397. UNUSED(bs);
  7398. const block_q6_K * restrict x = vx;
  7399. const block_q8_K * restrict y = vy;
  7400. const int nb = n / QK_K;
  7401. #ifdef __ARM_NEON
  7402. float sum = 0;
  7403. const uint8x16_t m4b = vdupq_n_u8(0xF);
  7404. const int8x16_t m32s = vdupq_n_s8(32);
  7405. const int32x4_t vzero = vdupq_n_s32(0);
  7406. const uint8x16_t mone = vdupq_n_u8(3);
  7407. ggml_int8x16x4_t q6bytes;
  7408. ggml_uint8x16x4_t q6h;
  7409. for (int i = 0; i < nb; ++i) {
  7410. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  7411. const uint8_t * restrict q6 = x[i].ql;
  7412. const uint8_t * restrict qh = x[i].qh;
  7413. const int8_t * restrict q8 = y[i].qs;
  7414. const int8_t * restrict scale = x[i].scales;
  7415. int32_t isum = 0;
  7416. uint8x16_t qhbits = vld1q_u8(qh);
  7417. ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
  7418. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  7419. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  7420. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  7421. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7422. shifted = vshrq_n_u8(qhbits, 4);
  7423. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7424. shifted = vshrq_n_u8(qhbits, 6);
  7425. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7426. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  7427. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  7428. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  7429. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  7430. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  7431. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  7432. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  7433. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  7434. sum += isum * d_all * y[i].d;
  7435. }
  7436. *s = sum;
  7437. #elif defined __AVX2__
  7438. const __m256i m4 = _mm256_set1_epi8(0xF);
  7439. const __m256i m2 = _mm256_set1_epi8(3);
  7440. const __m256i m32s = _mm256_set1_epi8(32);
  7441. __m256 acc = _mm256_setzero_ps();
  7442. for (int i = 0; i < nb; ++i) {
  7443. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7444. const uint8_t * restrict q4 = x[i].ql;
  7445. const uint8_t * restrict qh = x[i].qh;
  7446. const int8_t * restrict q8 = y[i].qs;
  7447. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  7448. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  7449. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  7450. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  7451. __m256i sumi = _mm256_setzero_si256();
  7452. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  7453. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  7454. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  7455. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  7456. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  7457. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  7458. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  7459. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  7460. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  7461. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  7462. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  7463. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  7464. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  7465. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  7466. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  7467. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  7468. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  7469. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  7470. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  7471. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  7472. }
  7473. *s = hsum_float_8(acc);
  7474. #elif defined __AVX__
  7475. const __m128i m4 = _mm_set1_epi8(0xF);
  7476. const __m128i m2 = _mm_set1_epi8(3);
  7477. const __m128i m32s = _mm_set1_epi8(32);
  7478. __m256 acc = _mm256_setzero_ps();
  7479. for (int i = 0; i < nb; ++i) {
  7480. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7481. const uint8_t * restrict q4 = x[i].ql;
  7482. const uint8_t * restrict qh = x[i].qh;
  7483. const int8_t * restrict q8 = y[i].qs;
  7484. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  7485. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  7486. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  7487. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  7488. __m128i sumi_0 = _mm_setzero_si128();
  7489. __m128i sumi_1 = _mm_setzero_si128();
  7490. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  7491. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  7492. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  7493. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  7494. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  7495. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  7496. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  7497. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  7498. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  7499. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  7500. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  7501. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  7502. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  7503. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  7504. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  7505. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  7506. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  7507. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  7508. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  7509. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  7510. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  7511. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  7512. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  7513. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  7514. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  7515. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  7516. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  7517. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  7518. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  7519. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  7520. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  7521. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  7522. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  7523. }
  7524. *s = hsum_float_8(acc);
  7525. #elif defined __riscv_v_intrinsic
  7526. float sumf = 0;
  7527. for (int i = 0; i < nb; ++i) {
  7528. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  7529. const uint8_t * restrict q6 = x[i].ql;
  7530. const uint8_t * restrict qh = x[i].qh;
  7531. const int8_t * restrict q8 = y[i].qs;
  7532. const int8_t * restrict scale = x[i].scales;
  7533. int32_t isum = 0;
  7534. size_t vl = 16;
  7535. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  7536. // load Q6
  7537. vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl);
  7538. vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl);
  7539. // load qh
  7540. vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl);
  7541. vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7542. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  7543. vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7544. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  7545. vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7546. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  7547. vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7548. vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl);
  7549. vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl);
  7550. vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl);
  7551. vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl);
  7552. vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl);
  7553. vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl);
  7554. vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl);
  7555. vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl);
  7556. // load Q8 and take product
  7557. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  7558. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  7559. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  7560. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  7561. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  7562. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  7563. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  7564. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  7565. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0];
  7566. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1];
  7567. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2];
  7568. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3];
  7569. sumf += isum * d_all * y[i].d;
  7570. }
  7571. *s = sumf;
  7572. #elif defined(__POWER9_VECTOR__)
  7573. const vector signed char lowMask = vec_splats((signed char)0xF);
  7574. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  7575. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  7576. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  7577. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  7578. const vector signed char off = vec_splats((signed char)0x20);
  7579. vector float vsumf0 = vec_splats(0.0f);
  7580. vector float vsumf1 = vec_splats(0.0f);
  7581. vector float vsumf2 = vec_splats(0.0f);
  7582. vector float vsumf3 = vec_splats(0.0f);
  7583. #pragma GCC unroll 2
  7584. for (int i = 0; i < nb; ++i) {
  7585. __builtin_prefetch(x[i].ql, 0, 1);
  7586. __builtin_prefetch(x[i].qh, 0, 1);
  7587. __builtin_prefetch(y[i].qs, 0, 1);
  7588. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7589. vector float vyd = vec_splats(y[i].d);
  7590. vector float vd= vec_mul(vxd, vyd);
  7591. vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].ql);
  7592. vector signed char qxs1 = (vector signed char)vec_xl(16, x[i].ql);
  7593. vector signed char qxs00 = vec_and(qxs0, lowMask);
  7594. vector signed char qxs01 = vec_sr(qxs0, v4);
  7595. vector signed char qxs10 = vec_and(qxs1, lowMask);
  7596. vector signed char qxs11 = vec_sr(qxs1, v4);
  7597. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  7598. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  7599. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  7600. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  7601. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  7602. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  7603. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  7604. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  7605. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  7606. vector signed char q8y00 = vec_xl( 0, y[i].qs);
  7607. vector signed char q8y10 = vec_xl(16, y[i].qs);
  7608. vector signed char q8y01 = vec_xl(32, y[i].qs);
  7609. vector signed char q8y11 = vec_xl(48, y[i].qs);
  7610. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  7611. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  7612. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  7613. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  7614. vector signed short vs = (vector signed short)vec_unpackh(vec_xl_len(x[i].scales, 4));
  7615. vector signed short vs0 = vec_splat(vs, 0);
  7616. vector signed short vs1 = vec_splat(vs, 1);
  7617. vector signed short vs2 = vec_splat(vs, 2);
  7618. vector signed short vs3 = vec_splat(vs, 3);
  7619. vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0));
  7620. vector signed int vsumi1 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1));
  7621. vector signed int vsumi2 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2));
  7622. vector signed int vsumi3 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3));
  7623. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7624. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7625. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7626. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7627. }
  7628. vsumf0 = vec_add(vsumf0, vsumf2);
  7629. vsumf1 = vec_add(vsumf1, vsumf3);
  7630. vsumf0 = vec_add(vsumf0, vsumf1);
  7631. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7632. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7633. *s = vec_extract(vsumf0, 0);
  7634. #else
  7635. int8_t aux8[QK_K];
  7636. int16_t aux16[8];
  7637. float sums [8];
  7638. int32_t aux32[8];
  7639. memset(sums, 0, 8*sizeof(float));
  7640. float sumf = 0;
  7641. for (int i = 0; i < nb; ++i) {
  7642. const uint8_t * restrict q4 = x[i].ql;
  7643. const uint8_t * restrict qh = x[i].qh;
  7644. const int8_t * restrict q8 = y[i].qs;
  7645. memset(aux32, 0, 8*sizeof(int32_t));
  7646. int8_t * restrict a = aux8;
  7647. for (int l = 0; l < 16; ++l) {
  7648. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  7649. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  7650. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  7651. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  7652. }
  7653. int is = 0;
  7654. for (int j = 0; j < QK_K/16; ++j) {
  7655. int scale = x[i].scales[is++];
  7656. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7657. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7658. q8 += 8; a += 8;
  7659. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7660. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7661. q8 += 8; a += 8;
  7662. }
  7663. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7664. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7665. }
  7666. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7667. *s = sumf;
  7668. #endif
  7669. }
  7670. #endif
  7671. #if defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__)
  7672. static const int8_t keven_signs_q2xs[1024] = {
  7673. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  7674. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  7675. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  7676. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  7677. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  7678. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  7679. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  7680. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  7681. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  7682. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  7683. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  7684. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  7685. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  7686. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  7687. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  7688. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  7689. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  7690. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  7691. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  7692. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  7693. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  7694. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  7695. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  7696. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  7697. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  7698. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  7699. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  7700. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  7701. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  7702. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  7703. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  7704. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  7705. };
  7706. #endif
  7707. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7708. assert(n % QK_K == 0);
  7709. assert(nrc == 1);
  7710. UNUSED(nrc);
  7711. UNUSED(bx);
  7712. UNUSED(by);
  7713. UNUSED(bs);
  7714. const block_iq2_xxs * restrict x = vx;
  7715. const block_q8_K * restrict y = vy;
  7716. const int nb = n / QK_K;
  7717. #if defined(__ARM_NEON)
  7718. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7719. uint32_t aux32[4];
  7720. const uint8_t * aux8 = (const uint8_t *)aux32;
  7721. ggml_int8x16x4_t q2u;
  7722. ggml_int8x16x4_t q2s;
  7723. ggml_int8x16x4_t q8b;
  7724. float sumf = 0;
  7725. for (int i = 0; i < nb; ++i) {
  7726. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7727. const uint16_t * restrict q2 = x[i].qs;
  7728. const int8_t * restrict q8 = y[i].qs;
  7729. float sumf1 = 0, sumf2 = 0;
  7730. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7731. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7732. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7733. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  7734. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  7735. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  7736. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  7737. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7738. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7739. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  7740. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  7741. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7742. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7743. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7744. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7745. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  7746. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  7747. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  7748. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  7749. }
  7750. sumf += d*(sumf1 + sumf2);
  7751. }
  7752. *s = 0.25f * sumf;
  7753. #elif defined(__AVX2__)
  7754. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7755. uint32_t aux32[4];
  7756. const uint8_t * aux8 = (const uint8_t *)aux32;
  7757. __m256 accumf = _mm256_setzero_ps();
  7758. for (int i = 0; i < nb; ++i) {
  7759. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7760. const uint16_t * restrict q2 = x[i].qs;
  7761. const int8_t * restrict q8 = y[i].qs;
  7762. __m256i sumi1 = _mm256_setzero_si256();
  7763. __m256i sumi2 = _mm256_setzero_si256();
  7764. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7765. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7766. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7767. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7768. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7769. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7770. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7771. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7772. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7773. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7774. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7775. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7776. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7777. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7778. const uint16_t ls1 = aux32[1] >> 28;
  7779. const uint16_t ls2 = aux32[3] >> 28;
  7780. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7781. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7782. sumi1 = _mm256_add_epi32(sumi1, p1);
  7783. sumi2 = _mm256_add_epi32(sumi2, p2);
  7784. }
  7785. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7786. }
  7787. *s = 0.125f * hsum_float_8(accumf);
  7788. #elif defined(__POWER9_VECTOR__)
  7789. vector float vsumf0 = vec_splats(0.0f);
  7790. vector float vsumf1 = vec_splats(0.0f);
  7791. vector float vsumf2 = vec_splats(0.0f);
  7792. vector float vsumf3 = vec_splats(0.0f);
  7793. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7794. for (int i = 0; i < nb; ++i) {
  7795. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7796. vector float vyd = vec_splats(y[i].d);
  7797. vector float vd = vec_mul(vxd, vyd);
  7798. vector signed int vsumi0 = vec_splats((int32_t)0);
  7799. vector signed int vsumi1 = vec_splats((int32_t)0);
  7800. vector signed int vsumi2 = vec_splats((int32_t)0);
  7801. vector signed int vsumi3 = vec_splats((int32_t)0);
  7802. vector signed int vsumi4 = vec_splats((int32_t)0);
  7803. vector signed int vsumi5 = vec_splats((int32_t)0);
  7804. vector signed int vsumi6 = vec_splats((int32_t)0);
  7805. vector signed int vsumi7 = vec_splats((int32_t)0);
  7806. const uint16_t * restrict q2 = x[i].qs;
  7807. const int8_t * restrict q8 = y[i].qs;
  7808. for (int j = 0; j < QK_K/32; j += 2) {
  7809. __builtin_prefetch(q2, 0, 1);
  7810. __builtin_prefetch(q8, 0, 1);
  7811. uint32_t aux32[4];
  7812. const uint8_t * aux8 = (const uint8_t *)aux32;
  7813. memcpy(aux32, q2, 4*sizeof(uint32_t));
  7814. q2 += 8;
  7815. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xxs_grid + aux8[ 0]), *(const int64_t *)(iq2xxs_grid + aux8[ 1])};
  7816. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xxs_grid + aux8[ 2]), *(const int64_t *)(iq2xxs_grid + aux8[ 3])};
  7817. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xxs_grid + aux8[ 8]), *(const int64_t *)(iq2xxs_grid + aux8[ 9])};
  7818. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xxs_grid + aux8[10]), *(const int64_t *)(iq2xxs_grid + aux8[11])};
  7819. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((aux32[1] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 7) & 127))};
  7820. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((aux32[1] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 21) & 127))};
  7821. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((aux32[3] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 7) & 127))};
  7822. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((aux32[3] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 21) & 127))};
  7823. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  7824. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  7825. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  7826. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  7827. vector signed char q8y0 = vec_xl( 0, q8);
  7828. vector signed char q8y1 = vec_xl(16, q8);
  7829. vector signed char q8y2 = vec_xl(32, q8);
  7830. vector signed char q8y3 = vec_xl(48, q8);
  7831. q8 += 64;
  7832. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7833. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7834. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7835. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7836. const uint16_t ls0 = aux32[1] >> 28;
  7837. const uint16_t ls1 = aux32[3] >> 28;
  7838. vector signed short vscales01 = vec_splats((int16_t)(2*ls0+1));
  7839. vector signed short vscales23 = vec_splats((int16_t)(2*ls1+1));
  7840. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  7841. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  7842. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  7843. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  7844. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  7845. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  7846. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  7847. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  7848. }
  7849. vsumi0 = vec_add(vsumi0, vsumi4);
  7850. vsumi1 = vec_add(vsumi1, vsumi5);
  7851. vsumi2 = vec_add(vsumi2, vsumi6);
  7852. vsumi3 = vec_add(vsumi3, vsumi7);
  7853. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7854. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7855. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7856. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7857. }
  7858. vsumf0 = vec_add(vsumf0, vsumf2);
  7859. vsumf1 = vec_add(vsumf1, vsumf3);
  7860. vsumf0 = vec_add(vsumf0, vsumf1);
  7861. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7862. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7863. *s = 0.125f * vec_extract(vsumf0, 0);
  7864. #else
  7865. uint32_t aux32[2];
  7866. const uint8_t * aux8 = (const uint8_t *)aux32;
  7867. float sumf = 0.f;
  7868. for (int i = 0; i < nb; ++i) {
  7869. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7870. const uint16_t * restrict q2 = x[i].qs;
  7871. const int8_t * restrict q8 = y[i].qs;
  7872. int32_t bsum = 0;
  7873. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7874. memcpy(aux32, q2, 2*sizeof(uint32_t));
  7875. q2 += 4;
  7876. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  7877. int32_t sumi = 0;
  7878. for (int l = 0; l < 4; ++l) {
  7879. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  7880. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  7881. for (int j = 0; j < 8; ++j) {
  7882. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7883. }
  7884. q8 += 8;
  7885. }
  7886. bsum += sumi * ls;
  7887. }
  7888. sumf += d * bsum;
  7889. }
  7890. *s = 0.125f * sumf;
  7891. #endif
  7892. }
  7893. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7894. assert(n % QK_K == 0);
  7895. assert(nrc == 1);
  7896. UNUSED(nrc);
  7897. UNUSED(bx);
  7898. UNUSED(by);
  7899. UNUSED(bs);
  7900. const block_iq2_xs * restrict x = vx;
  7901. const block_q8_K * restrict y = vy;
  7902. const int nb = n / QK_K;
  7903. #if defined(__ARM_NEON)
  7904. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7905. ggml_int8x16x4_t q2u;
  7906. ggml_int8x16x4_t q2s;
  7907. ggml_int8x16x4_t q8b;
  7908. int32x4x4_t scales32;
  7909. float sumf = 0;
  7910. for (int i = 0; i < nb; ++i) {
  7911. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7912. const uint16_t * restrict q2 = x[i].qs;
  7913. const int8_t * restrict q8 = y[i].qs;
  7914. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  7915. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  7916. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  7917. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  7918. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  7919. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  7920. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  7921. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  7922. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  7923. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  7924. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  7925. int32x4_t sumi = vdupq_n_s32(0);
  7926. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  7927. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7928. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  7929. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  7930. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  7931. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  7932. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  7933. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  7934. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  7935. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  7936. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7937. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7938. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7939. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7940. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  7941. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  7942. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  7943. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  7944. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  7945. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  7946. q2 += 8;
  7947. }
  7948. sumf += d*vaddvq_s32(sumi);
  7949. }
  7950. *s = 0.125f * sumf;
  7951. #elif defined(__AVX2__)
  7952. const __m256i mone = _mm256_set1_epi8(1);
  7953. static const char block_sign_shuffle_mask_1[32] = {
  7954. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7955. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7956. };
  7957. static const char block_sign_shuffle_mask_2[32] = {
  7958. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7959. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7960. };
  7961. static const uint8_t bit_selector_mask_bytes[32] = {
  7962. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7963. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7964. };
  7965. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  7966. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  7967. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  7968. #if QK_K == 64
  7969. static const uint8_t k_bit_helper[16] = {
  7970. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7971. };
  7972. const __m128i bit_helper = _mm_loadu_si128((const __m128i*)k_bit_helper);
  7973. const __m128i m511 = _mm_set1_epi16(511);
  7974. typedef union {
  7975. __m128i vec_index;
  7976. uint16_t index[8];
  7977. } index_t;
  7978. index_t idx;
  7979. __m256 accumf = _mm256_setzero_ps();
  7980. for (int i = 0; i < nb; ++i) {
  7981. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7982. const __m128i q2_data = _mm_loadu_si128((const __m128i*)x[i].qs);
  7983. idx.vec_index = _mm_and_si128(q2_data, m511);
  7984. const __m128i partial_sign_bits = _mm_srli_epi16(q2_data, 9);
  7985. const __m128i partial_sign_bits_upper = _mm_srli_epi16(q2_data, 13);
  7986. const __m128i partial_sign_bits_for_counting = _mm_xor_si128(partial_sign_bits, partial_sign_bits_upper);
  7987. const __m128i odd_bits = _mm_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  7988. const __m128i full_sign_bits = _mm_or_si128(partial_sign_bits, odd_bits);
  7989. const __m256i full_signs = MM256_SET_M128I(full_sign_bits, full_sign_bits);
  7990. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  7991. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)(y[i].qs+32));
  7992. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[idx.index[3]], iq2xs_grid[idx.index[2]],
  7993. iq2xs_grid[idx.index[1]], iq2xs_grid[idx.index[0]]);
  7994. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[idx.index[7]], iq2xs_grid[idx.index[6]],
  7995. iq2xs_grid[idx.index[5]], iq2xs_grid[idx.index[4]]);
  7996. __m256i signs;
  7997. signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_1);
  7998. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7999. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  8000. signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_2);
  8001. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8002. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  8003. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8004. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8005. const __m256i sc1 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[0] & 0xf)+1));
  8006. const __m256i sc2 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[1] & 0xf)+1));
  8007. const __m256i sum = _mm256_add_epi32(_mm256_madd_epi16(sc1, dot1), _mm256_madd_epi16(sc2, dot2));
  8008. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sum), accumf);
  8009. }
  8010. *s = 0.125f * hsum_float_8(accumf);
  8011. #else
  8012. static const uint8_t k_bit_helper[32] = {
  8013. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8014. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8015. };
  8016. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  8017. const __m256i m511 = _mm256_set1_epi16(511);
  8018. const __m128i m4 = _mm_set1_epi8(0xf);
  8019. const __m128i m1 = _mm_set1_epi8(1);
  8020. uint64_t aux64;
  8021. // somewhat hacky, but gives a significant boost in performance
  8022. __m256i aux_gindex;
  8023. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  8024. __m256 accumf = _mm256_setzero_ps();
  8025. for (int i = 0; i < nb; ++i) {
  8026. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8027. const uint16_t * restrict q2 = x[i].qs;
  8028. const int8_t * restrict q8 = y[i].qs;
  8029. memcpy(&aux64, x[i].scales, 8);
  8030. __m128i stmp = _mm_set1_epi64x(aux64);
  8031. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  8032. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  8033. __m256i sumi1 = _mm256_setzero_si256();
  8034. __m256i sumi2 = _mm256_setzero_si256();
  8035. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  8036. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  8037. aux_gindex = _mm256_and_si256(q2_data, m511);
  8038. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  8039. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  8040. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  8041. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  8042. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  8043. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8044. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8045. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8046. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8047. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  8048. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  8049. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  8050. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  8051. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  8052. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  8053. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  8054. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  8055. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  8056. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  8057. const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
  8058. const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
  8059. __m256i signs;
  8060. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  8061. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8062. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  8063. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  8064. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8065. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  8066. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  8067. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8068. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  8069. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  8070. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8071. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  8072. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8073. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8074. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  8075. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  8076. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  8077. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  8078. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  8079. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  8080. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  8081. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  8082. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  8083. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  8084. }
  8085. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8086. }
  8087. *s = 0.125f * hsum_float_8(accumf);
  8088. #endif
  8089. #elif defined(__POWER9_VECTOR__)
  8090. vector float vsumf0 = vec_splats(0.0f);
  8091. vector float vsumf1 = vec_splats(0.0f);
  8092. vector float vsumf2 = vec_splats(0.0f);
  8093. vector float vsumf3 = vec_splats(0.0f);
  8094. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8095. for (int i = 0; i < nb; ++i) {
  8096. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8097. vector float vyd = vec_splats(y[i].d);
  8098. vector float vd = vec_mul(vxd, vyd);
  8099. vector signed int vsumi0 = vec_splats((int32_t)0);
  8100. vector signed int vsumi1 = vec_splats((int32_t)0);
  8101. vector signed int vsumi2 = vec_splats((int32_t)0);
  8102. vector signed int vsumi3 = vec_splats((int32_t)0);
  8103. vector signed int vsumi4 = vec_splats((int32_t)0);
  8104. vector signed int vsumi5 = vec_splats((int32_t)0);
  8105. vector signed int vsumi6 = vec_splats((int32_t)0);
  8106. vector signed int vsumi7 = vec_splats((int32_t)0);
  8107. const uint16_t * restrict q2 = x[i].qs;
  8108. const uint8_t * restrict sc = x[i].scales;
  8109. const int8_t * restrict q8 = y[i].qs;
  8110. for (int j = 0; j < QK_K/64; ++j) {
  8111. __builtin_prefetch(q2, 0, 1);
  8112. __builtin_prefetch(q8, 0, 1);
  8113. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xs_grid + (q2[0] & 511)), *(const int64_t *)(iq2xs_grid + (q2[1] & 511))};
  8114. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xs_grid + (q2[2] & 511)), *(const int64_t *)(iq2xs_grid + (q2[3] & 511))};
  8115. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xs_grid + (q2[4] & 511)), *(const int64_t *)(iq2xs_grid + (q2[5] & 511))};
  8116. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xs_grid + (q2[6] & 511)), *(const int64_t *)(iq2xs_grid + (q2[7] & 511))};
  8117. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((q2[0] >> 9))), *(const int64_t *)(signs64 + ((q2[1] >> 9)))};
  8118. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((q2[2] >> 9))), *(const int64_t *)(signs64 + ((q2[3] >> 9)))};
  8119. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((q2[4] >> 9))), *(const int64_t *)(signs64 + ((q2[5] >> 9)))};
  8120. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((q2[6] >> 9))), *(const int64_t *)(signs64 + ((q2[7] >> 9)))};
  8121. q2 += 8;
  8122. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  8123. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  8124. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  8125. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  8126. vector signed char q8y0 = vec_xl( 0, q8);
  8127. vector signed char q8y1 = vec_xl(16, q8);
  8128. vector signed char q8y2 = vec_xl(32, q8);
  8129. vector signed char q8y3 = vec_xl(48, q8);
  8130. q8 += 64;
  8131. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  8132. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  8133. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  8134. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  8135. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  8136. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  8137. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  8138. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  8139. sc += 2;
  8140. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  8141. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  8142. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  8143. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  8144. vsumi0 = vec_add(vec_mule(qv0, vscales0), vsumi0);
  8145. vsumi1 = vec_add(vec_mule(qv1, vscales1), vsumi1);
  8146. vsumi2 = vec_add(vec_mule(qv2, vscales2), vsumi2);
  8147. vsumi3 = vec_add(vec_mule(qv3, vscales3), vsumi3);
  8148. vsumi4 = vec_add(vec_mulo(qv0, vscales0), vsumi4);
  8149. vsumi5 = vec_add(vec_mulo(qv1, vscales1), vsumi5);
  8150. vsumi6 = vec_add(vec_mulo(qv2, vscales2), vsumi6);
  8151. vsumi7 = vec_add(vec_mulo(qv3, vscales3), vsumi7);
  8152. }
  8153. vsumi0 = vec_add(vsumi0, vsumi4);
  8154. vsumi1 = vec_add(vsumi1, vsumi5);
  8155. vsumi2 = vec_add(vsumi2, vsumi6);
  8156. vsumi3 = vec_add(vsumi3, vsumi7);
  8157. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8158. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8159. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8160. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8161. }
  8162. vsumf0 = vec_add(vsumf0, vsumf2);
  8163. vsumf1 = vec_add(vsumf1, vsumf3);
  8164. vsumf0 = vec_add(vsumf0, vsumf1);
  8165. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8166. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8167. *s = 0.125f * vec_extract(vsumf0, 0);
  8168. #else
  8169. float sumf = 0.f;
  8170. for (int i = 0; i < nb; ++i) {
  8171. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8172. const uint16_t * restrict q2 = x[i].qs;
  8173. const uint8_t * restrict sc = x[i].scales;
  8174. const int8_t * restrict q8 = y[i].qs;
  8175. int32_t bsum = 0;
  8176. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8177. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  8178. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  8179. int32_t sumi = 0;
  8180. for (int l = 0; l < 2; ++l) {
  8181. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  8182. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  8183. for (int j = 0; j < 8; ++j) {
  8184. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  8185. }
  8186. q8 += 8;
  8187. }
  8188. bsum += sumi * ls1;
  8189. sumi = 0;
  8190. for (int l = 2; l < 4; ++l) {
  8191. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  8192. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  8193. for (int j = 0; j < 8; ++j) {
  8194. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  8195. }
  8196. q8 += 8;
  8197. }
  8198. bsum += sumi * ls2;
  8199. q2 += 4;
  8200. }
  8201. sumf += d * bsum;
  8202. }
  8203. *s = 0.125f * sumf;
  8204. #endif
  8205. }
  8206. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8207. assert(n % QK_K == 0);
  8208. assert(nrc == 1);
  8209. UNUSED(nrc);
  8210. UNUSED(bx);
  8211. UNUSED(by);
  8212. UNUSED(bs);
  8213. const block_iq2_s * restrict x = vx;
  8214. const block_q8_K * restrict y = vy;
  8215. const int nb = n / QK_K;
  8216. #if defined(__ARM_NEON)
  8217. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8218. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8219. };
  8220. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8221. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  8222. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  8223. const uint8x16_t m1 = vdupq_n_u8(1);
  8224. const int32x4_t vzero = vdupq_n_s32(0);
  8225. uint8x16x2_t vs;
  8226. ggml_int8x16x4_t q2s;
  8227. ggml_int8x16x4_t q8b;
  8228. float sumf = 0;
  8229. for (int i = 0; i < nb; ++i) {
  8230. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8231. const uint8_t * restrict qs = x[i].qs;
  8232. const uint8_t * restrict qh = x[i].qh;
  8233. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8234. const int8_t * restrict q8 = y[i].qs;
  8235. int sumi1 = 0, sumi2 = 0;
  8236. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8237. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8238. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  8239. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  8240. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  8241. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  8242. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  8243. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  8244. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  8245. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  8246. qs += 8;
  8247. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  8248. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8249. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8250. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  8251. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  8252. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  8253. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  8254. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  8255. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8256. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8257. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  8258. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  8259. signs += 4;
  8260. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  8261. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  8262. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  8263. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  8264. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  8265. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  8266. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  8267. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  8268. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  8269. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  8270. }
  8271. sumf += d*(sumi1 + sumi2);
  8272. }
  8273. *s = 0.125f * sumf;
  8274. #elif defined(__AVX2__)
  8275. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8276. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8277. };
  8278. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8279. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8280. };
  8281. const __m128i m4 = _mm_set1_epi8(0xf);
  8282. const __m128i m1 = _mm_set1_epi8(1);
  8283. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  8284. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  8285. uint64_t aux64;
  8286. __m256 accumf = _mm256_setzero_ps();
  8287. for (int i = 0; i < nb; ++i) {
  8288. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8289. const uint8_t * restrict qs = x[i].qs;
  8290. const uint8_t * restrict qh = x[i].qh;
  8291. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8292. const int8_t * restrict q8 = y[i].qs;
  8293. memcpy(&aux64, x[i].scales, 8);
  8294. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  8295. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  8296. __m256i sumi1 = _mm256_setzero_si256();
  8297. __m256i sumi2 = _mm256_setzero_si256();
  8298. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8299. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8300. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8301. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  8302. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  8303. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  8304. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  8305. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  8306. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  8307. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  8308. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  8309. qs += 8;
  8310. __m256i aux256 = _mm256_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  8311. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8312. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  8313. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  8314. aux256 = _mm256_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  8315. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8316. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  8317. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  8318. signs += 4;
  8319. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  8320. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  8321. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  8322. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  8323. sumi1 = _mm256_add_epi32(sumi1, p1);
  8324. sumi2 = _mm256_add_epi32(sumi2, p2);
  8325. }
  8326. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8327. }
  8328. *s = 0.125f * hsum_float_8(accumf);
  8329. #elif defined(__POWER9_VECTOR__)
  8330. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8331. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8332. };
  8333. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8334. vector float vsumf0 = vec_splats(0.0f);
  8335. vector float vsumf1 = vec_splats(0.0f);
  8336. vector float vsumf2 = vec_splats(0.0f);
  8337. vector float vsumf3 = vec_splats(0.0f);
  8338. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  8339. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  8340. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  8341. for (int i = 0; i < nb; ++i) {
  8342. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8343. vector float vyd = vec_splats(y[i].d);
  8344. vector float vd = vec_mul(vxd, vyd);
  8345. vector signed int vsumi0 = vec_splats((int32_t)0);
  8346. vector signed int vsumi1 = vec_splats((int32_t)0);
  8347. vector signed int vsumi2 = vec_splats((int32_t)0);
  8348. vector signed int vsumi3 = vec_splats((int32_t)0);
  8349. vector signed int vsumi4 = vec_splats((int32_t)0);
  8350. vector signed int vsumi5 = vec_splats((int32_t)0);
  8351. vector signed int vsumi6 = vec_splats((int32_t)0);
  8352. vector signed int vsumi7 = vec_splats((int32_t)0);
  8353. const uint8_t * restrict q2 = x[i].qs;
  8354. const uint8_t * restrict qh = x[i].qh;
  8355. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8356. const uint8_t * restrict sc = x[i].scales;
  8357. const int8_t * restrict q8 = y[i].qs;
  8358. for (int j = 0; j < QK_K/32; j += 2) {
  8359. __builtin_prefetch(q2, 0, 1);
  8360. __builtin_prefetch(q8, 0, 1);
  8361. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2s_grid + (q2[0] | ((qh[0] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[1] | ((qh[0] << 6) & 0x300)))};
  8362. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2s_grid + (q2[2] | ((qh[0] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[3] | ((qh[0] << 2) & 0x300)))};
  8363. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2s_grid + (q2[4] | ((qh[1] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[5] | ((qh[1] << 6) & 0x300)))};
  8364. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2s_grid + (q2[6] | ((qh[1] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[7] | ((qh[1] << 2) & 0x300)))};
  8365. q2 += 8;
  8366. qh += 2;
  8367. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  8368. vector signed char vsigns23 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  8369. signs += 4;
  8370. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  8371. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  8372. vector signed char vsigns2 = vec_perm(vsigns23, vsigns23, mask0);
  8373. vector signed char vsigns3 = vec_perm(vsigns23, vsigns23, mask1);
  8374. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  8375. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  8376. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  8377. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  8378. vector signed char q2x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux64x2_0), vsigns0);
  8379. vector signed char q2x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux64x2_1), vsigns1);
  8380. vector signed char q2x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux64x2_2), vsigns2);
  8381. vector signed char q2x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux64x2_3), vsigns3);
  8382. vector signed char q8y0 = vec_xl( 0, q8);
  8383. vector signed char q8y1 = vec_xl(16, q8);
  8384. vector signed char q8y2 = vec_xl(32, q8);
  8385. vector signed char q8y3 = vec_xl(48, q8);
  8386. q8 += 64;
  8387. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  8388. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  8389. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  8390. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  8391. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  8392. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  8393. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  8394. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  8395. sc += 2;
  8396. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  8397. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  8398. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  8399. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  8400. vsumi0 = vec_add(vec_mule(qv0, vscales0), vsumi0);
  8401. vsumi1 = vec_add(vec_mule(qv1, vscales1), vsumi1);
  8402. vsumi2 = vec_add(vec_mule(qv2, vscales2), vsumi2);
  8403. vsumi3 = vec_add(vec_mule(qv3, vscales3), vsumi3);
  8404. vsumi4 = vec_add(vec_mulo(qv0, vscales0), vsumi4);
  8405. vsumi5 = vec_add(vec_mulo(qv1, vscales1), vsumi5);
  8406. vsumi6 = vec_add(vec_mulo(qv2, vscales2), vsumi6);
  8407. vsumi7 = vec_add(vec_mulo(qv3, vscales3), vsumi7);
  8408. }
  8409. vsumi0 = vec_add(vsumi0, vsumi4);
  8410. vsumi1 = vec_add(vsumi1, vsumi5);
  8411. vsumi2 = vec_add(vsumi2, vsumi6);
  8412. vsumi3 = vec_add(vsumi3, vsumi7);
  8413. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8414. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8415. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8416. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8417. }
  8418. vsumf0 = vec_add(vsumf0, vsumf2);
  8419. vsumf1 = vec_add(vsumf1, vsumf3);
  8420. vsumf0 = vec_add(vsumf0, vsumf1);
  8421. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8422. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8423. *s = 0.125f * vec_extract(vsumf0, 0);
  8424. #else
  8425. float sumf = 0;
  8426. for (int i = 0; i < nb; i++) {
  8427. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8428. const int8_t * q8 = y[i].qs;
  8429. const uint8_t * qs = x[i].qs;
  8430. const uint8_t * qh = x[i].qh;
  8431. const uint8_t * signs = qs + QK_K/8;
  8432. int bsum = 0;
  8433. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8434. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  8435. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  8436. int sumi1 = 0, sumi2 = 0;
  8437. for (int l = 0; l < 2; ++l) {
  8438. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  8439. for (int j = 0; j < 8; ++j) {
  8440. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  8441. }
  8442. q8 += 8;
  8443. }
  8444. for (int l = 2; l < 4; ++l) {
  8445. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  8446. for (int j = 0; j < 8; ++j) {
  8447. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  8448. }
  8449. q8 += 8;
  8450. }
  8451. bsum += ls1 * sumi1 + ls2 * sumi2;
  8452. qs += 4;
  8453. signs += 4;
  8454. }
  8455. sumf += d * bsum;
  8456. }
  8457. *s = 0.125f * sumf;
  8458. #endif
  8459. }
  8460. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8461. assert(n % QK_K == 0);
  8462. assert(nrc == 1);
  8463. UNUSED(nrc);
  8464. UNUSED(bx);
  8465. UNUSED(by);
  8466. UNUSED(bs);
  8467. const block_iq3_xxs * restrict x = vx;
  8468. const block_q8_K * restrict y = vy;
  8469. const int nb = n / QK_K;
  8470. #if defined(__ARM_NEON)
  8471. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8472. uint32_t aux32[2];
  8473. ggml_int8x16x4_t q3s;
  8474. ggml_int8x16x4_t q8b;
  8475. float sumf = 0;
  8476. for (int i = 0; i < nb; ++i) {
  8477. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8478. const uint8_t * restrict q3 = x[i].qs;
  8479. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8480. const int8_t * restrict q8 = y[i].qs;
  8481. float sumf1 = 0, sumf2 = 0;
  8482. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8483. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8484. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  8485. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  8486. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  8487. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  8488. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  8489. q3 += 16;
  8490. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  8491. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  8492. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  8493. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  8494. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  8495. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  8496. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  8497. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  8498. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  8499. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  8500. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  8501. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  8502. }
  8503. sumf += d*(sumf1 + sumf2);
  8504. }
  8505. *s = 0.5f * sumf;
  8506. #elif defined(__AVX2__)
  8507. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8508. uint32_t aux32[2];
  8509. __m256 accumf = _mm256_setzero_ps();
  8510. for (int i = 0; i < nb; ++i) {
  8511. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8512. const uint8_t * restrict q3 = x[i].qs;
  8513. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8514. const int8_t * restrict q8 = y[i].qs;
  8515. __m256i sumi1 = _mm256_setzero_si256();
  8516. __m256i sumi2 = _mm256_setzero_si256();
  8517. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8518. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8519. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8520. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8521. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8522. q3 += 8;
  8523. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8524. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8525. q3 += 8;
  8526. memcpy(aux32, gas, 8); gas += 8;
  8527. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  8528. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8529. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8530. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8531. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  8532. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  8533. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8534. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8535. const uint16_t ls1 = aux32[0] >> 28;
  8536. const uint16_t ls2 = aux32[1] >> 28;
  8537. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8538. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8539. sumi1 = _mm256_add_epi32(sumi1, p1);
  8540. sumi2 = _mm256_add_epi32(sumi2, p2);
  8541. }
  8542. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8543. }
  8544. *s = 0.25f * hsum_float_8(accumf);
  8545. #elif defined(__POWER9_VECTOR__)
  8546. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8547. vector float vsumf0 = vec_splats(0.0f);
  8548. vector float vsumf1 = vec_splats(0.0f);
  8549. vector float vsumf2 = vec_splats(0.0f);
  8550. vector float vsumf3 = vec_splats(0.0f);
  8551. for (int i = 0; i < nb; ++i) {
  8552. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8553. vector float vyd = vec_splats(y[i].d);
  8554. vector float vd = vec_mul(vxd, vyd);
  8555. vector signed int vsumi0 = vec_splats((int32_t)0);
  8556. vector signed int vsumi1 = vec_splats((int32_t)0);
  8557. vector signed int vsumi2 = vec_splats((int32_t)0);
  8558. vector signed int vsumi3 = vec_splats((int32_t)0);
  8559. vector signed int vsumi4 = vec_splats((int32_t)0);
  8560. vector signed int vsumi5 = vec_splats((int32_t)0);
  8561. vector signed int vsumi6 = vec_splats((int32_t)0);
  8562. vector signed int vsumi7 = vec_splats((int32_t)0);
  8563. const uint8_t * restrict q3 = x[i].qs;
  8564. const uint32_t * restrict signs = (const uint32_t *)(x[i].qs + QK_K/4);
  8565. const int8_t * restrict q8 = y[i].qs;
  8566. #pragma GCC unroll 1
  8567. for (int j = 0; j < QK_K/32; j += 2) {
  8568. __builtin_prefetch(q3, 0, 1);
  8569. __builtin_prefetch(q8, 0, 1);
  8570. vector unsigned int aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
  8571. vector unsigned int aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
  8572. vector unsigned int aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
  8573. vector unsigned int aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
  8574. q3 += 16;
  8575. vector unsigned long long aux64x2_0 = {(uint64_t)(signs64[(signs[0] >> 0) & 127]), (uint64_t)(signs64[(signs[0] >> 7) & 127])};
  8576. vector unsigned long long aux64x2_1 = {(uint64_t)(signs64[(signs[0] >> 14) & 127]), (uint64_t)(signs64[(signs[0] >> 21) & 127])};
  8577. vector unsigned long long aux64x2_2 = {(uint64_t)(signs64[(signs[1] >> 0) & 127]), (uint64_t)(signs64[(signs[1] >> 7) & 127])};
  8578. vector unsigned long long aux64x2_3 = {(uint64_t)(signs64[(signs[1] >> 14) & 127]), (uint64_t)(signs64[(signs[1] >> 21) & 127])};
  8579. vector signed char q3x0 = vec_mul((vector signed char)aux64x2_0, (vector signed char)aux32x4_0);
  8580. vector signed char q3x1 = vec_mul((vector signed char)aux64x2_1, (vector signed char)aux32x4_1);
  8581. vector signed char q3x2 = vec_mul((vector signed char)aux64x2_2, (vector signed char)aux32x4_2);
  8582. vector signed char q3x3 = vec_mul((vector signed char)aux64x2_3, (vector signed char)aux32x4_3);
  8583. vector signed char q8y0 = vec_xl( 0, q8);
  8584. vector signed char q8y1 = vec_xl(16, q8);
  8585. vector signed char q8y2 = vec_xl(32, q8);
  8586. vector signed char q8y3 = vec_xl(48, q8);
  8587. q8 += 64;
  8588. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  8589. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  8590. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  8591. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  8592. const uint16_t ls0 = (uint16_t)(signs[0] >> 28);
  8593. const uint16_t ls1 = (uint16_t)(signs[1] >> 28);
  8594. signs += 2;
  8595. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8596. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  8597. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  8598. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  8599. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  8600. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  8601. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  8602. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  8603. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  8604. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  8605. }
  8606. vsumi0 = vec_add(vsumi0, vsumi4);
  8607. vsumi1 = vec_add(vsumi1, vsumi5);
  8608. vsumi2 = vec_add(vsumi2, vsumi6);
  8609. vsumi3 = vec_add(vsumi3, vsumi7);
  8610. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8611. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8612. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8613. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8614. }
  8615. vsumf0 = vec_add(vsumf0, vsumf2);
  8616. vsumf1 = vec_add(vsumf1, vsumf3);
  8617. vsumf0 = vec_add(vsumf0, vsumf1);
  8618. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8619. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8620. *s = 0.25f * vec_extract(vsumf0, 0);
  8621. #else
  8622. uint32_t aux32;
  8623. float sumf = 0.f;
  8624. for (int i = 0; i < nb; ++i) {
  8625. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8626. const uint8_t * restrict q3 = x[i].qs;
  8627. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8628. const int8_t * restrict q8 = y[i].qs;
  8629. int32_t bsum = 0;
  8630. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8631. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  8632. const uint32_t ls = 2*(aux32 >> 28) + 1;
  8633. int32_t sumi = 0;
  8634. for (int l = 0; l < 4; ++l) {
  8635. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  8636. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  8637. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  8638. for (int j = 0; j < 4; ++j) {
  8639. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  8640. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  8641. }
  8642. q8 += 8;
  8643. }
  8644. q3 += 8;
  8645. bsum += sumi * ls;
  8646. }
  8647. sumf += d * bsum;
  8648. }
  8649. *s = 0.25f * sumf;
  8650. #endif
  8651. }
  8652. void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8653. assert(n % QK_K == 0);
  8654. assert(nrc == 1);
  8655. UNUSED(nrc);
  8656. UNUSED(bx);
  8657. UNUSED(by);
  8658. UNUSED(bs);
  8659. const block_iq3_s * restrict x = vx;
  8660. const block_q8_K * restrict y = vy;
  8661. const int nb = n / QK_K;
  8662. #if defined(__ARM_NEON)
  8663. typedef union {
  8664. uint16x8_t vec_index;
  8665. uint16_t index[8];
  8666. } vec_index_t;
  8667. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8668. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8669. };
  8670. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8671. static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
  8672. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  8673. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  8674. const int16x8_t hshift = vld1q_s16(k_shift);
  8675. const uint16x8_t m256 = vdupq_n_u16(256);
  8676. const uint8x16_t m1 = vdupq_n_u8(1);
  8677. uint8x16x2_t vs;
  8678. ggml_int8x16x4_t q3s;
  8679. ggml_int8x16x4_t q8b;
  8680. vec_index_t idx;
  8681. #if QK_K == 256
  8682. uint32_t scales32[2];
  8683. const uint8_t * scales8 = (const uint8_t *)scales32;
  8684. #endif
  8685. float sumf = 0;
  8686. for (int i = 0; i < nb; ++i) {
  8687. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8688. const uint8_t * restrict qs = x[i].qs;
  8689. const uint8_t * restrict qh = x[i].qh;
  8690. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8691. const int8_t * restrict q8 = y[i].qs;
  8692. #if QK_K == 256
  8693. memcpy(scales32, x[i].scales, 4);
  8694. scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
  8695. scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
  8696. #endif
  8697. int sumi1 = 0, sumi2 = 0;
  8698. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8699. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8700. const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
  8701. idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
  8702. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  8703. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  8704. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  8705. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  8706. idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
  8707. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  8708. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  8709. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  8710. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  8711. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  8712. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8713. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8714. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  8715. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  8716. q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
  8717. q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
  8718. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  8719. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8720. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8721. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  8722. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  8723. signs += 4;
  8724. q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
  8725. q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
  8726. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  8727. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  8728. #if QK_K == 256
  8729. sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
  8730. sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
  8731. #else
  8732. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  8733. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32/2] >> 4));
  8734. #endif
  8735. }
  8736. sumf += d*(sumi1 + sumi2);
  8737. }
  8738. *s = sumf;
  8739. #elif defined(__AVX2__)
  8740. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8741. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8742. };
  8743. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8744. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8745. };
  8746. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  8747. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  8748. const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
  8749. const __m256i idx_mask = _mm256_set1_epi32(256);
  8750. typedef union {
  8751. __m256i vec[2];
  8752. uint32_t index[16];
  8753. } index_t;
  8754. index_t idx;
  8755. __m256 accumf = _mm256_setzero_ps();
  8756. for (int i = 0; i < nb; ++i) {
  8757. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8758. const uint8_t * restrict qs = x[i].qs;
  8759. const uint8_t * restrict qh = x[i].qh;
  8760. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8761. const int8_t * restrict q8 = y[i].qs;
  8762. __m256i sumi1 = _mm256_setzero_si256();
  8763. __m256i sumi2 = _mm256_setzero_si256();
  8764. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8765. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8766. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8767. const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
  8768. idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
  8769. idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
  8770. idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
  8771. idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
  8772. idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
  8773. idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
  8774. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  8775. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  8776. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  8777. const __m256i q2_1 = _mm256_set_epi32(
  8778. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  8779. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  8780. );
  8781. const __m256i q2_2 = _mm256_set_epi32(
  8782. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  8783. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  8784. );
  8785. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  8786. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8787. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  8788. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  8789. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  8790. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8791. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  8792. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  8793. signs += 4;
  8794. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8795. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8796. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  8797. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  8798. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8799. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8800. sumi1 = _mm256_add_epi32(sumi1, p1);
  8801. sumi2 = _mm256_add_epi32(sumi2, p2);
  8802. }
  8803. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8804. }
  8805. *s = hsum_float_8(accumf);
  8806. #elif defined(__POWER9_VECTOR__)
  8807. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8808. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8809. };
  8810. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8811. vector float vsumf0 = vec_splats(0.0f);
  8812. vector float vsumf1 = vec_splats(0.0f);
  8813. vector float vsumf2 = vec_splats(0.0f);
  8814. vector float vsumf3 = vec_splats(0.0f);
  8815. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  8816. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  8817. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  8818. for (int i = 0; i < nb; ++i) {
  8819. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8820. vector float vyd = vec_splats(y[i].d);
  8821. vector float vd = vec_mul(vxd, vyd);
  8822. const uint8_t * restrict q3 = x[i].qs;
  8823. const uint8_t * restrict qh = x[i].qh;
  8824. const uint16_t * restrict signs = (const uint16_t *)(x[i].signs);
  8825. const uint8_t * restrict sc = x[i].scales;
  8826. const int8_t * restrict q8 = y[i].qs;
  8827. vector signed int vsumi0 = vec_splats((int32_t)0);
  8828. vector signed int vsumi1 = vec_splats((int32_t)0);
  8829. vector signed int vsumi2 = vec_splats((int32_t)0);
  8830. vector signed int vsumi3 = vec_splats((int32_t)0);
  8831. vector signed int vsumi4 = vec_splats((int32_t)0);
  8832. vector signed int vsumi5 = vec_splats((int32_t)0);
  8833. vector signed int vsumi6 = vec_splats((int32_t)0);
  8834. vector signed int vsumi7 = vec_splats((int32_t)0);
  8835. for (int j = 0; j < QK_K/32; j += 2) {
  8836. __builtin_prefetch(q3, 0, 1);
  8837. __builtin_prefetch(q8, 0, 1);
  8838. vector unsigned int aux32x4_0 = {iq3s_grid[q3[ 0] | ((qh[0] << 8) & 256)], iq3s_grid[q3[ 1] | ((qh[0] << 7) & 256)],
  8839. iq3s_grid[q3[ 2] | ((qh[0] << 6) & 256)], iq3s_grid[q3[ 3] | ((qh[0] << 5) & 256)]};
  8840. vector unsigned int aux32x4_1 = {iq3s_grid[q3[ 4] | ((qh[0] << 4) & 256)], iq3s_grid[q3[ 5] | ((qh[0] << 3) & 256)],
  8841. iq3s_grid[q3[ 6] | ((qh[0] << 2) & 256)], iq3s_grid[q3[ 7] | ((qh[0] << 1) & 256)]};
  8842. vector unsigned int aux32x4_2 = {iq3s_grid[q3[ 8] | ((qh[1] << 8) & 256)], iq3s_grid[q3[ 9] | ((qh[1] << 7) & 256)],
  8843. iq3s_grid[q3[10] | ((qh[1] << 6) & 256)], iq3s_grid[q3[11] | ((qh[1] << 5) & 256)]};
  8844. vector unsigned int aux32x4_3 = {iq3s_grid[q3[12] | ((qh[1] << 4) & 256)], iq3s_grid[q3[13] | ((qh[1] << 3) & 256)],
  8845. iq3s_grid[q3[14] | ((qh[1] << 2) & 256)], iq3s_grid[q3[15] | ((qh[1] << 1) & 256)]};
  8846. q3 += 16;
  8847. qh += 2;
  8848. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  8849. vector signed char vsigns02 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  8850. signs += 4;
  8851. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  8852. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  8853. vector signed char vsigns2 = vec_perm(vsigns02, vsigns02, mask0);
  8854. vector signed char vsigns3 = vec_perm(vsigns02, vsigns02, mask1);
  8855. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  8856. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  8857. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  8858. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  8859. vector signed char q3x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux32x4_0), vsigns0);
  8860. vector signed char q3x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux32x4_1), vsigns1);
  8861. vector signed char q3x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux32x4_2), vsigns2);
  8862. vector signed char q3x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux32x4_3), vsigns3);
  8863. vector signed char q8y0 = vec_xl( 0, q8);
  8864. vector signed char q8y1 = vec_xl(16, q8);
  8865. vector signed char q8y2 = vec_xl(32, q8);
  8866. vector signed char q8y3 = vec_xl(48, q8);
  8867. q8 += 64;
  8868. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  8869. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  8870. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  8871. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  8872. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  8873. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  8874. sc ++;
  8875. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8876. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  8877. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  8878. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  8879. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  8880. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  8881. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  8882. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  8883. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  8884. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  8885. }
  8886. vsumi0 = vec_add(vsumi0, vsumi4);
  8887. vsumi1 = vec_add(vsumi1, vsumi5);
  8888. vsumi2 = vec_add(vsumi2, vsumi6);
  8889. vsumi3 = vec_add(vsumi3, vsumi7);
  8890. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8891. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8892. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8893. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8894. }
  8895. vsumf0 = vec_add(vsumf0, vsumf2);
  8896. vsumf1 = vec_add(vsumf1, vsumf3);
  8897. vsumf0 = vec_add(vsumf0, vsumf1);
  8898. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8899. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8900. *s = vec_extract(vsumf0, 0);
  8901. #else
  8902. float sumf = 0.f;
  8903. for (int i = 0; i < nb; ++i) {
  8904. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8905. const uint8_t * restrict qs = x[i].qs;
  8906. const uint8_t * restrict qh = x[i].qh;
  8907. const uint8_t * restrict signs = x[i].signs;
  8908. const int8_t * restrict q8 = y[i].qs;
  8909. int32_t bsum = 0;
  8910. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8911. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  8912. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  8913. int32_t sumi = 0;
  8914. for (int l = 0; l < 4; ++l) {
  8915. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  8916. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  8917. for (int j = 0; j < 4; ++j) {
  8918. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  8919. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  8920. }
  8921. q8 += 8;
  8922. }
  8923. qs += 8;
  8924. signs += 4;
  8925. bsum += sumi * ls1;
  8926. sumi = 0;
  8927. for (int l = 0; l < 4; ++l) {
  8928. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  8929. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  8930. for (int j = 0; j < 4; ++j) {
  8931. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  8932. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  8933. }
  8934. q8 += 8;
  8935. }
  8936. qs += 8;
  8937. signs += 4;
  8938. bsum += sumi * ls2;
  8939. }
  8940. sumf += d * bsum;
  8941. }
  8942. *s = sumf;
  8943. #endif
  8944. }
  8945. #ifdef __AVX2__
  8946. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  8947. const __m256i ax = _mm256_sign_epi8(x, x);
  8948. const __m256i sy = _mm256_sign_epi8(y, x);
  8949. return _mm256_maddubs_epi16(ax, sy);
  8950. }
  8951. #endif
  8952. void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8953. assert(n % QK_K == 0);
  8954. assert(nrc == 1);
  8955. UNUSED(nrc);
  8956. UNUSED(bx);
  8957. UNUSED(by);
  8958. UNUSED(bs);
  8959. const block_iq1_s * restrict x = vx;
  8960. const block_q8_K * restrict y = vy;
  8961. const int nb = n / QK_K;
  8962. #if defined __ARM_NEON
  8963. ggml_int8x16x4_t q1b;
  8964. ggml_int8x16x4_t q8b;
  8965. float sumf = 0;
  8966. for (int i = 0; i < nb; ++i) {
  8967. const int8_t * q8 = y[i].qs;
  8968. const uint8_t * qs = x[i].qs;
  8969. const uint16_t * qh = x[i].qh;
  8970. int sumi1 = 0, sumi2 = 0, sumi3 = 0;
  8971. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8972. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))),
  8973. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700)))));
  8974. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))),
  8975. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700)))));
  8976. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))),
  8977. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700)))));
  8978. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))),
  8979. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700)))));
  8980. qs += 8;
  8981. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8982. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]);
  8983. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]);
  8984. const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  8985. const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  8986. sumi1 += vaddvq_s32(p1) * ls1;
  8987. sumi2 += vaddvq_s32(p2) * ls2;
  8988. sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1)
  8989. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1);
  8990. }
  8991. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
  8992. }
  8993. *s = sumf;
  8994. #elif defined __AVX2__
  8995. __m256 accum = _mm256_setzero_ps();
  8996. float accum1 = 0;
  8997. for (int i = 0; i < nb; ++i) {
  8998. const int8_t * q8 = y[i].qs;
  8999. const uint8_t * qs = x[i].qs;
  9000. const uint16_t * qh = x[i].qh;
  9001. __m256i sumi = _mm256_setzero_si256();
  9002. int sumi1 = 0;
  9003. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9004. const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)],
  9005. iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  9006. const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)],
  9007. iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  9008. qs += 8;
  9009. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9010. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9011. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  9012. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  9013. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  9014. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  9015. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1));
  9016. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2));
  9017. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2));
  9018. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  9019. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  9020. }
  9021. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  9022. accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum);
  9023. accum1 += d * sumi1;
  9024. }
  9025. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  9026. #elif defined(__POWER9_VECTOR__)
  9027. const vector unsigned char v0 = vec_splats((unsigned char)0x0);
  9028. const vector unsigned short vsign = vec_splats((unsigned short)0x8000);
  9029. vector float vsumf0 = vec_splats(0.0f);
  9030. vector float vsumf1 = vec_splats(0.0f);
  9031. vector float vsumf2 = vec_splats(0.0f);
  9032. vector float vsumf3 = vec_splats(0.0f);
  9033. for (int i = 0; i < nb; ++i) {
  9034. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  9035. vector float vyd = vec_splats(y[i].d);
  9036. vector float vd = vec_mul(vxd, vyd);
  9037. vector signed int vsumi0 = vec_splats((int32_t)0);
  9038. vector signed int vsumi1 = vec_splats((int32_t)0);
  9039. vector signed int vsumi2 = vec_splats((int32_t)0);
  9040. vector signed int vsumi3 = vec_splats((int32_t)0);
  9041. vector signed int vsumi4 = vec_splats((int32_t)0);
  9042. vector signed int vsumi5 = vec_splats((int32_t)0);
  9043. vector signed int vsumi6 = vec_splats((int32_t)0);
  9044. vector signed int vsumi7 = vec_splats((int32_t)0);
  9045. vector signed int vsumi8 = vec_splats((int32_t)0);
  9046. const uint8_t * restrict q1 = x[i].qs;
  9047. const uint16_t * restrict qh = x[i].qh;
  9048. const int8_t * restrict q8 = y[i].qs;
  9049. const int16_t * restrict qs = y[i].bsums;
  9050. for (int j = 0; j < QK_K/32; j += 2) {
  9051. __builtin_prefetch(q1, 0, 1);
  9052. __builtin_prefetch(qh, 0, 1);
  9053. __builtin_prefetch(q8, 0, 1);
  9054. vector signed long long aux64x2_0 = {*(const int64_t *)(iq1s_grid + (q1[0] | ((qh[0] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[1] | ((qh[0] << 5) & 0x700)))};
  9055. vector signed long long aux64x2_1 = {*(const int64_t *)(iq1s_grid + (q1[2] | ((qh[0] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[3] | ((qh[0] >> 1) & 0x700)))};
  9056. vector signed long long aux64x2_2 = {*(const int64_t *)(iq1s_grid + (q1[4] | ((qh[1] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[5] | ((qh[1] << 5) & 0x700)))};
  9057. vector signed long long aux64x2_3 = {*(const int64_t *)(iq1s_grid + (q1[6] | ((qh[1] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[7] | ((qh[1] >> 1) & 0x700)))};
  9058. q1 += 8;
  9059. vector signed char q1x0 = (vector signed char)aux64x2_0;
  9060. vector signed char q1x1 = (vector signed char)aux64x2_1;
  9061. vector signed char q1x2 = (vector signed char)aux64x2_2;
  9062. vector signed char q1x3 = (vector signed char)aux64x2_3;
  9063. vector signed char q8y0 = vec_xl( 0, q8);
  9064. vector signed char q8y1 = vec_xl(16, q8);
  9065. vector signed char q8y2 = vec_xl(32, q8);
  9066. vector signed char q8y3 = vec_xl(48, q8);
  9067. q8 += 64;
  9068. vector signed short qv0 = vec_add(vec_mule(q1x0, q8y0), vec_mulo(q1x0, q8y0));
  9069. vector signed short qv1 = vec_add(vec_mule(q1x1, q8y1), vec_mulo(q1x1, q8y1));
  9070. vector signed short qv2 = vec_add(vec_mule(q1x2, q8y2), vec_mulo(q1x2, q8y2));
  9071. vector signed short qv3 = vec_add(vec_mule(q1x3, q8y3), vec_mulo(q1x3, q8y3));
  9072. const uint16_t ls0 = (uint16_t)((qh[0] >> 12) & 7);
  9073. const uint16_t ls1 = (uint16_t)((qh[1] >> 12) & 7);
  9074. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  9075. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  9076. vector signed short vscales = vec_sld(vscales23, vscales01, 8);
  9077. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  9078. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  9079. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  9080. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  9081. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  9082. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  9083. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  9084. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  9085. vector signed short q8ysums = vec_xl_len(qs, 8);
  9086. qs += 4;
  9087. q8ysums = vec_mergeh(q8ysums, (vector signed short)v0);
  9088. vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8);
  9089. qh += 2;
  9090. vector __bool short vsel = vec_cmpge(qxh, (vector signed short)v0);
  9091. vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel);
  9092. vsumi8 = vec_add(vec_mule(q8ysum, vscales), vsumi8);
  9093. }
  9094. vsumi0 = vec_add(vsumi0, vsumi4);
  9095. vsumi1 = vec_add(vsumi1, vsumi5);
  9096. vsumi2 = vec_add(vsumi2, vsumi6);
  9097. vsumi3 = vec_add(vsumi3, vsumi7);
  9098. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9099. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9100. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9101. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9102. vsumf0 = vec_madd(vec_ctf(vsumi8, 0), vec_mul(vd, vec_splats(IQ1S_DELTA)), vsumf0);
  9103. }
  9104. vsumf0 = vec_add(vsumf0, vsumf2);
  9105. vsumf1 = vec_add(vsumf1, vsumf3);
  9106. vsumf0 = vec_add(vsumf0, vsumf1);
  9107. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9108. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9109. *s = vec_extract(vsumf0, 0);
  9110. #else
  9111. float sumf = 0;
  9112. for (int i = 0; i < nb; i++) {
  9113. const int8_t * q8 = y[i].qs;
  9114. const uint8_t * qs = x[i].qs;
  9115. const uint16_t * qh = x[i].qh;
  9116. int sumi = 0, sumi1 = 0;
  9117. for (int ib = 0; ib < QK_K/32; ++ib) {
  9118. const int ls = 2*((qh[ib] >> 12) & 7) + 1;
  9119. const int delta = qh[ib] & 0x8000 ? -1 : 1;
  9120. int lsum = 0;
  9121. for (int l = 0; l < 4; ++l) {
  9122. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  9123. for (int j = 0; j < 8; ++j) {
  9124. lsum += q8[j] * grid[j];
  9125. }
  9126. q8 += 8;
  9127. }
  9128. sumi += ls * lsum;
  9129. sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
  9130. qs += 4;
  9131. }
  9132. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
  9133. }
  9134. *s = sumf;
  9135. #endif
  9136. }
  9137. void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9138. assert(n % QK_K == 0);
  9139. assert(nrc == 1);
  9140. UNUSED(nrc);
  9141. UNUSED(bx);
  9142. UNUSED(by);
  9143. UNUSED(bs);
  9144. const block_iq1_m * restrict x = vx;
  9145. const block_q8_K * restrict y = vy;
  9146. const int nb = n / QK_K;
  9147. #if QK_K != 64
  9148. iq1m_scale_t scale;
  9149. #endif
  9150. #if defined __ARM_NEON
  9151. #if QK_K == 64
  9152. const int32x4_t mask = vdupq_n_s32(0xf);
  9153. #else
  9154. const int32x4_t mask = vdupq_n_s32(0x7);
  9155. #endif
  9156. const int32x4_t mone = vdupq_n_s32(1);
  9157. const int32x4_t mzero = vdupq_n_s32(0);
  9158. ggml_int8x16x4_t deltas;
  9159. deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
  9160. deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
  9161. deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
  9162. deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
  9163. ggml_int8x16x4_t q1b;
  9164. ggml_int8x16x4_t q8b;
  9165. uint32_t aux32;
  9166. const uint8_t * aux8 = (const uint8_t *)&aux32;
  9167. float sumf = 0;
  9168. for (int i = 0; i < nb; ++i) {
  9169. const int8_t * q8 = y[i].qs;
  9170. const uint8_t * qs = x[i].qs;
  9171. const uint8_t * qh = x[i].qh;
  9172. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9173. #if QK_K != 64
  9174. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9175. #endif
  9176. int32x4_t sumi1 = mzero;
  9177. int32x4_t sumi2 = mzero;
  9178. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9179. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
  9180. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
  9181. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
  9182. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
  9183. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
  9184. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
  9185. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
  9186. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
  9187. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9188. const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
  9189. const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
  9190. const int32x4_t p12 = vpaddq_s32(p1, p2);
  9191. const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
  9192. aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
  9193. const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
  9194. const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
  9195. const int32x4_t p34 = vpaddq_s32(p3, p4);
  9196. #if QK_K == 64
  9197. int32x4_t scales_4 = ggml_vld1q_u32(sc[0] >> 0, sc[0] >> 4, sc[0] >> 8, sc[0] >> 12);
  9198. #else
  9199. int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
  9200. #endif
  9201. scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
  9202. sumi1 = vmlaq_s32(sumi1, scales_4, p12);
  9203. sumi2 = vmlaq_s32(sumi2, scales_4, p34);
  9204. qs += 8; qh += 4;
  9205. }
  9206. #if QK_K == 64
  9207. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  9208. #else
  9209. sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  9210. #endif
  9211. }
  9212. *s = sumf;
  9213. #elif defined __AVX2__
  9214. #if QK_K == 64
  9215. const __m256i mask = _mm256_set1_epi16(0xf);
  9216. #else
  9217. const __m256i mask = _mm256_set1_epi16(0x7);
  9218. #endif
  9219. const __m256i mone = _mm256_set1_epi16(1);
  9220. __m256 accum1 = _mm256_setzero_ps();
  9221. __m256 accum2 = _mm256_setzero_ps();
  9222. for (int i = 0; i < nb; ++i) {
  9223. const int8_t * q8 = y[i].qs;
  9224. const uint8_t * qs = x[i].qs;
  9225. const uint8_t * qh = x[i].qh;
  9226. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9227. #if QK_K != 64
  9228. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9229. #endif
  9230. __m256i sumi1 = _mm256_setzero_si256();
  9231. __m256i sumi2 = _mm256_setzero_si256();
  9232. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9233. const __m256i q1b_1 = _mm256_set_epi64x(
  9234. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
  9235. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
  9236. );
  9237. const __m256i q1b_2 = _mm256_set_epi64x(
  9238. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
  9239. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
  9240. );
  9241. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9242. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9243. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  9244. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  9245. const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9246. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  9247. qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9248. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9249. const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9250. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  9251. qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9252. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9253. const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
  9254. const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
  9255. #if QK_K == 64
  9256. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[0] >> 4), _mm_set1_epi16(sc[0] >> 0));
  9257. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[0] >> 12), _mm_set1_epi16(sc[0] >> 8));
  9258. #else
  9259. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
  9260. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
  9261. #endif
  9262. scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
  9263. scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
  9264. const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
  9265. const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
  9266. const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
  9267. const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
  9268. sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
  9269. sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
  9270. qs += 8; qh += 4;
  9271. }
  9272. #if QK_K == 64
  9273. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
  9274. #else
  9275. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  9276. #endif
  9277. accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
  9278. accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
  9279. }
  9280. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  9281. #else
  9282. int sum1[2], sum2[2], delta[4];
  9283. float sumf = 0;
  9284. for (int i = 0; i < nb; i++) {
  9285. const int8_t * q8 = y[i].qs;
  9286. const uint8_t * qs = x[i].qs;
  9287. const uint8_t * qh = x[i].qh;
  9288. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9289. #if QK_K != 64
  9290. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9291. #endif
  9292. int sumi1 = 0, sumi2 = 0;
  9293. for (int ib = 0; ib < QK_K/32; ++ib) {
  9294. delta[0] = qh[0] & 0x08 ? -1 : 1;
  9295. delta[1] = qh[0] & 0x80 ? -1 : 1;
  9296. delta[2] = qh[1] & 0x08 ? -1 : 1;
  9297. delta[3] = qh[1] & 0x80 ? -1 : 1;
  9298. sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
  9299. for (int l = 0; l < 4; ++l) {
  9300. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
  9301. int lsum1 = 0, lsum2 = 0;
  9302. for (int j = 0; j < 8; ++j) {
  9303. lsum1 += q8[j] * grid[j];
  9304. lsum2 += q8[j];
  9305. }
  9306. q8 += 8;
  9307. sum1[l/2] += lsum1;
  9308. sum2[l/2] += lsum2*delta[l];
  9309. }
  9310. #if QK_K == 64
  9311. const int ls1 = 2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1;
  9312. const int ls2 = 2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1;
  9313. #else
  9314. const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
  9315. const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
  9316. #endif
  9317. sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
  9318. sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
  9319. qs += 4;
  9320. qh += 2;
  9321. }
  9322. #if QK_K == 64
  9323. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  9324. #else
  9325. sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  9326. #endif
  9327. }
  9328. *s = sumf;
  9329. #endif
  9330. }
  9331. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9332. assert(nrc == 1);
  9333. UNUSED(nrc);
  9334. UNUSED(bx);
  9335. UNUSED(by);
  9336. UNUSED(bs);
  9337. assert(n % QK4_NL == 0);
  9338. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  9339. const block_iq4_nl * restrict x = vx;
  9340. const block_q8_0 * restrict y = vy;
  9341. const int nb = n / QK4_NL;
  9342. #if defined __ARM_NEON
  9343. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  9344. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  9345. uint8x16x2_t q4bits;
  9346. int8x16x4_t q4b;
  9347. int8x16x4_t q8b;
  9348. int32x4_t prod_1, prod_2;
  9349. float sumf = 0;
  9350. for (int ib = 0; ib < nb; ib += 2) {
  9351. q4bits.val[0] = vld1q_u8(x[ib+0].qs);
  9352. q4bits.val[1] = vld1q_u8(x[ib+1].qs);
  9353. q8b.val[0] = vld1q_s8(y[ib+0].qs);
  9354. q8b.val[1] = vld1q_s8(y[ib+0].qs + 16);
  9355. q8b.val[2] = vld1q_s8(y[ib+1].qs);
  9356. q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
  9357. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  9358. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  9359. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  9360. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  9361. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  9362. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  9363. sumf +=
  9364. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) +
  9365. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2);
  9366. }
  9367. *s = sumf;
  9368. #elif defined __AVX2__
  9369. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  9370. const __m128i m4b = _mm_set1_epi8(0x0f);
  9371. const __m256i mone = _mm256_set1_epi16(1);
  9372. __m256 accum1 = _mm256_setzero_ps();
  9373. __m256 accum2 = _mm256_setzero_ps();
  9374. for (int ib = 0; ib < nb; ib += 2) {
  9375. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
  9376. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
  9377. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
  9378. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
  9379. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  9380. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  9381. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  9382. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  9383. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9384. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9385. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  9386. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  9387. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  9388. _mm256_cvtepi32_ps(p_1), accum1);
  9389. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  9390. _mm256_cvtepi32_ps(p_2), accum2);
  9391. y += 2;
  9392. x += 2;
  9393. }
  9394. *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
  9395. #elif defined(__POWER9_VECTOR__)
  9396. const vector signed char lowMask = vec_splats((signed char)0xF);
  9397. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  9398. vector float vsumf0 = vec_splats(0.0f);
  9399. vector float vsumf1 = vec_splats(0.0f);
  9400. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  9401. #pragma GCC unroll 4
  9402. for (int ib = 0; ib < nb; ++ib) {
  9403. __builtin_prefetch(x[ib].qs, 0, 1);
  9404. __builtin_prefetch(y[ib].qs, 0, 1);
  9405. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  9406. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  9407. vector float vd = vec_mul(vxd, vyd);
  9408. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  9409. vector signed char q4x0 = vec_and(qxs, lowMask);
  9410. vector signed char q4x1 = vec_sr(qxs, v4);
  9411. q4x0 = vec_perm(values, values, (vector unsigned char)q4x0);
  9412. q4x1 = vec_perm(values, values, (vector unsigned char)q4x1);
  9413. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  9414. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  9415. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  9416. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  9417. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  9418. vector signed int vsumi1 = vec_add(vec_unpackh(qv1), vec_unpackl(qv1));
  9419. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9420. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9421. }
  9422. vsumf0 = vec_add(vsumf0, vsumf1);
  9423. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9424. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9425. *s = vec_extract(vsumf0, 0);
  9426. #else
  9427. float sumf = 0;
  9428. for (int ib = 0; ib < nb; ++ib) {
  9429. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  9430. int sumi1 = 0, sumi2 = 0;
  9431. for (int j = 0; j < QK4_NL/2; ++j) {
  9432. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  9433. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  9434. }
  9435. sumf += d * (sumi1 + sumi2);
  9436. }
  9437. *s = sumf;
  9438. #endif
  9439. }
  9440. void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9441. assert(nrc == 1);
  9442. UNUSED(nrc);
  9443. UNUSED(bx);
  9444. UNUSED(by);
  9445. UNUSED(bs);
  9446. assert(n % QK_K == 0);
  9447. #if QK_K == 64
  9448. ggml_vec_dot_iq4_nl_q8_0(n, s, bs, vx, bx, vy, by, nrc);
  9449. #else
  9450. const block_iq4_xs * restrict x = vx;
  9451. const block_q8_K * restrict y = vy;
  9452. const int nb = n / QK_K;
  9453. #if defined __ARM_NEON
  9454. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  9455. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  9456. ggml_uint8x16x2_t q4bits;
  9457. ggml_int8x16x4_t q4b;
  9458. ggml_int8x16x4_t q8b;
  9459. int32x4_t prod_1, prod_2;
  9460. float sumf = 0;
  9461. for (int ibl = 0; ibl < nb; ++ibl) {
  9462. const int8_t * q8 = y[ibl].qs;
  9463. const uint8_t * q4 = x[ibl].qs;
  9464. uint16_t h = x[ibl].scales_h;
  9465. int sumi1 = 0, sumi2 = 0;
  9466. for (int ib = 0; ib < QK_K/64; ++ib) {
  9467. q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  9468. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9469. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  9470. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  9471. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  9472. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  9473. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  9474. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  9475. int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
  9476. int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32;
  9477. h >>= 4;
  9478. sumi1 += vaddvq_s32(prod_1) * ls1;
  9479. sumi2 += vaddvq_s32(prod_2) * ls2;
  9480. }
  9481. sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
  9482. }
  9483. *s = sumf;
  9484. #elif defined __AVX2__
  9485. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  9486. const __m128i m4b = _mm_set1_epi8(0x0f);
  9487. __m256 accum = _mm256_setzero_ps();
  9488. for (int ibl = 0; ibl < nb; ++ibl) {
  9489. const uint8_t * qs = x[ibl].qs;
  9490. const int8_t * q8 = y[ibl].qs;
  9491. uint16_t sh = x[ibl].scales_h;
  9492. __m256i sumi1 = _mm256_setzero_si256();
  9493. __m256i sumi2 = _mm256_setzero_si256();
  9494. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9495. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  9496. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  9497. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9498. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9499. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  9500. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  9501. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  9502. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  9503. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9504. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9505. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  9506. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  9507. sh >>= 4;
  9508. const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
  9509. const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
  9510. sumi1 = _mm256_add_epi32(p_1, sumi1);
  9511. sumi2 = _mm256_add_epi32(p_2, sumi2);
  9512. }
  9513. accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  9514. _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
  9515. }
  9516. *s = hsum_float_8(accum);
  9517. #elif defined(__POWER9_VECTOR__)
  9518. const vector signed char lowMask = vec_splats((signed char)0xF);
  9519. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  9520. vector float vsumf0 = vec_splats(0.0f);
  9521. vector float vsumf1 = vec_splats(0.0f);
  9522. vector float vsumf2 = vec_splats(0.0f);
  9523. vector float vsumf3 = vec_splats(0.0f);
  9524. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  9525. for (int ibl = 0; ibl < nb; ++ibl) {
  9526. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ibl].d));
  9527. vector float vyd = vec_splats(y[ibl].d);
  9528. vector float vd = vec_mul(vxd, vyd);
  9529. vector signed int vsumi0 = vec_splats((int32_t)0);
  9530. vector signed int vsumi1 = vec_splats((int32_t)0);
  9531. vector signed int vsumi2 = vec_splats((int32_t)0);
  9532. vector signed int vsumi3 = vec_splats((int32_t)0);
  9533. vector signed int vsumi4 = vec_splats((int32_t)0);
  9534. vector signed int vsumi5 = vec_splats((int32_t)0);
  9535. vector signed int vsumi6 = vec_splats((int32_t)0);
  9536. vector signed int vsumi7 = vec_splats((int32_t)0);
  9537. uint16_t h = x[ibl].scales_h;
  9538. const uint8_t * restrict q4 = x[ibl].qs;
  9539. const uint8_t * restrict sc = x[ibl].scales_l;
  9540. const int8_t * restrict q8 = y[ibl].qs;
  9541. for (int ib = 0; ib < QK_K/64; ib ++ ) {
  9542. __builtin_prefetch(q4, 0, 1);
  9543. __builtin_prefetch(q8, 0, 1);
  9544. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  9545. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  9546. q4 += 32;
  9547. vector signed char q4x00 = (vector signed char)vec_and(qxs0, lowMask);
  9548. vector signed char q4x01 = (vector signed char)vec_sr(qxs0, v4);
  9549. vector signed char q4x10 = (vector signed char)vec_and(qxs1, lowMask);
  9550. vector signed char q4x11 = (vector signed char)vec_sr(qxs1, v4);
  9551. q4x00 = vec_perm(values, values, (vector unsigned char)q4x00);
  9552. q4x01 = vec_perm(values, values, (vector unsigned char)q4x01);
  9553. q4x10 = vec_perm(values, values, (vector unsigned char)q4x10);
  9554. q4x11 = vec_perm(values, values, (vector unsigned char)q4x11);
  9555. vector signed char q8y0 = vec_xl( 0, q8);
  9556. vector signed char q8y1 = vec_xl(16, q8);
  9557. vector signed char q8y2 = vec_xl(32, q8);
  9558. vector signed char q8y3 = vec_xl(48, q8);
  9559. q8 += 64;
  9560. vector signed short qv0 = vec_add(vec_mule(q4x00, q8y0), vec_mulo(q4x00, q8y0));
  9561. vector signed short qv1 = vec_add(vec_mule(q4x01, q8y1), vec_mulo(q4x01, q8y1));
  9562. vector signed short qv2 = vec_add(vec_mule(q4x10, q8y2), vec_mulo(q4x10, q8y2));
  9563. vector signed short qv3 = vec_add(vec_mule(q4x11, q8y3), vec_mulo(q4x11, q8y3));
  9564. const uint16_t ls0 = (uint16_t)(((sc[0] & 0xf) | ((h << 4) & 0x30)) - 32);
  9565. const uint16_t ls1 = (uint16_t)(((sc[0] >> 4) | ((h << 2) & 0x30)) - 32);
  9566. h >>= 4;
  9567. sc ++;
  9568. vector signed short vscales01 = vec_splats((int16_t)ls0);
  9569. vector signed short vscales23 = vec_splats((int16_t)ls1);
  9570. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  9571. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  9572. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  9573. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  9574. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  9575. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  9576. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  9577. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  9578. }
  9579. vsumi0 = vec_add(vsumi0, vsumi4);
  9580. vsumi1 = vec_add(vsumi1, vsumi5);
  9581. vsumi2 = vec_add(vsumi2, vsumi6);
  9582. vsumi3 = vec_add(vsumi3, vsumi7);
  9583. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9584. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9585. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9586. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9587. }
  9588. vsumf0 = vec_add(vsumf0, vsumf2);
  9589. vsumf1 = vec_add(vsumf1, vsumf3);
  9590. vsumf0 = vec_add(vsumf0, vsumf1);
  9591. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9592. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9593. *s = vec_extract(vsumf0, 0);
  9594. #else
  9595. float sumf = 0;
  9596. for (int ibl = 0; ibl < nb; ++ibl) {
  9597. const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
  9598. uint16_t h = x[ibl].scales_h;
  9599. const uint8_t * qs = x[ibl].qs;
  9600. const int8_t * q8 = y[ibl].qs;
  9601. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9602. const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
  9603. const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
  9604. h >>= 4;
  9605. const float d1 = d4d8*(ls1 - 32);
  9606. const float d2 = d4d8*(ls2 - 32);
  9607. int sumi1 = 0, sumi2 = 0;
  9608. for (int j = 0; j < 16; ++j) {
  9609. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  9610. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  9611. }
  9612. sumf += d1 * (sumi1 + sumi2);
  9613. qs += 16;
  9614. q8 += 32;
  9615. sumi1 = sumi2 = 0;
  9616. for (int j = 0; j < 16; ++j) {
  9617. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  9618. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  9619. }
  9620. sumf += d2 * (sumi1 + sumi2);
  9621. qs += 16;
  9622. q8 += 32;
  9623. }
  9624. }
  9625. *s = sumf;
  9626. #endif
  9627. #endif
  9628. }
  9629. // ================================ IQ2 quantization =============================================
  9630. typedef struct {
  9631. uint64_t * grid;
  9632. int * map;
  9633. uint16_t * neighbours;
  9634. } iq2_entry_t;
  9635. static iq2_entry_t iq2_data[4] = {
  9636. {NULL, NULL, NULL},
  9637. {NULL, NULL, NULL},
  9638. {NULL, NULL, NULL},
  9639. {NULL, NULL, NULL},
  9640. };
  9641. static inline int iq2_data_index(enum ggml_type type) {
  9642. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  9643. return type == GGML_TYPE_IQ2_XXS ? 0 :
  9644. type == GGML_TYPE_IQ2_XS ? 1 :
  9645. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3;
  9646. }
  9647. static inline int iq2_grid_size(enum ggml_type type) {
  9648. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  9649. return type == GGML_TYPE_IQ2_XXS ? 256 :
  9650. type == GGML_TYPE_IQ2_XS ? 512 :
  9651. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024;
  9652. }
  9653. static int iq2_compare_func(const void * left, const void * right) {
  9654. const int * l = (const int *)left;
  9655. const int * r = (const int *)right;
  9656. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  9657. }
  9658. void iq2xs_init_impl(enum ggml_type type) {
  9659. const int gindex = iq2_data_index(type);
  9660. const int grid_size = iq2_grid_size(type);
  9661. if (iq2_data[gindex].grid) {
  9662. return;
  9663. }
  9664. static const uint16_t kgrid_2bit_256[256] = {
  9665. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  9666. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  9667. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  9668. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  9669. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  9670. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  9671. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  9672. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  9673. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  9674. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  9675. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  9676. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  9677. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  9678. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  9679. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  9680. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  9681. };
  9682. static const uint16_t kgrid_2bit_512[512] = {
  9683. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  9684. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  9685. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  9686. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  9687. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  9688. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  9689. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  9690. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  9691. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  9692. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  9693. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  9694. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  9695. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  9696. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  9697. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  9698. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  9699. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  9700. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  9701. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  9702. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  9703. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  9704. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  9705. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  9706. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  9707. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  9708. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  9709. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  9710. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  9711. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  9712. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  9713. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  9714. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  9715. };
  9716. static const uint16_t kgrid_1bit_2048[NGRID_IQ1S] = {
  9717. 0, 2, 5, 8, 10, 17, 21, 32, 34, 40, 42, 69, 81, 84, 86, 101,
  9718. 128, 130, 136, 138, 149, 160, 162, 168, 170, 260, 261, 273, 276, 278, 281, 282,
  9719. 293, 321, 326, 329, 338, 341, 346, 353, 356, 358, 360, 389, 401, 404, 406, 421,
  9720. 512, 514, 520, 522, 533, 544, 546, 552, 554, 581, 593, 601, 612, 617, 640, 642,
  9721. 648, 650, 657, 661, 665, 672, 674, 680, 682, 1041, 1044, 1046, 1061, 1089, 1097, 1109,
  9722. 1114, 1124, 1125, 1169, 1177, 1189, 1281, 1284, 1285, 1286, 1301, 1304, 1306, 1321, 1344, 1349,
  9723. 1354, 1360, 1361, 1364, 1365, 1366, 1369, 1376, 1378, 1381, 1384, 1386, 1409, 1425, 1429, 1432,
  9724. 1434, 1441, 1444, 1445, 1446, 1449, 1556, 1561, 1601, 1604, 1616, 1618, 1621, 1624, 1632, 1633,
  9725. 1638, 1641, 1669, 1681, 1684, 1689, 2048, 2050, 2056, 2058, 2069, 2080, 2082, 2088, 2090, 2117,
  9726. 2129, 2134, 2149, 2176, 2178, 2184, 2186, 2197, 2208, 2210, 2216, 2218, 2309, 2321, 2324, 2329,
  9727. 2340, 2341, 2369, 2384, 2385, 2389, 2401, 2404, 2409, 2449, 2452, 2454, 2457, 2469, 2560, 2562,
  9728. 2568, 2570, 2581, 2592, 2594, 2600, 2602, 2629, 2641, 2649, 2657, 2661, 2688, 2690, 2693, 2696,
  9729. 2698, 2709, 2720, 2722, 2728, 2730, 4112, 4113, 4116, 4121, 4132, 4133, 4161, 4164, 4176, 4181,
  9730. 4184, 4193, 4196, 4197, 4201, 4241, 4244, 4246, 4257, 4261, 4353, 4356, 4358, 4361, 4368, 4370,
  9731. 4373, 4376, 4385, 4388, 4393, 4421, 4426, 4432, 4433, 4434, 4436, 4437, 4438, 4441, 4448, 4453,
  9732. 4484, 4498, 4501, 4513, 4516, 4625, 4628, 4630, 4645, 4672, 4678, 4681, 4690, 4693, 4696, 4698,
  9733. 4708, 4710, 4741, 4753, 4756, 4758, 4773, 5121, 5126, 5129, 5140, 5141, 5144, 5145, 5153, 5158,
  9734. 5185, 5189, 5190, 5192, 5194, 5201, 5204, 5205, 5206, 5209, 5218, 5221, 5224, 5252, 5257, 5264,
  9735. 5268, 5269, 5272, 5273, 5274, 5281, 5284, 5285, 5289, 5378, 5381, 5386, 5393, 5396, 5397, 5398,
  9736. 5401, 5408, 5410, 5413, 5416, 5418, 5441, 5444, 5445, 5446, 5457, 5458, 5460, 5461, 5462, 5465,
  9737. 5466, 5473, 5476, 5477, 5478, 5481, 5504, 5506, 5508, 5509, 5512, 5514, 5520, 5521, 5524, 5525,
  9738. 5526, 5529, 5530, 5536, 5538, 5541, 5633, 5636, 5637, 5638, 5653, 5654, 5656, 5658, 5665, 5670,
  9739. 5696, 5698, 5700, 5701, 5704, 5706, 5713, 5717, 5718, 5720, 5721, 5729, 5732, 5733, 5736, 5737,
  9740. 5738, 5766, 5770, 5778, 5781, 5796, 5801, 6161, 6166, 6181, 6209, 6212, 6214, 6217, 6224, 6229,
  9741. 6232, 6234, 6240, 6241, 6244, 6246, 6249, 6277, 6289, 6292, 6309, 6416, 6418, 6421, 6426, 6433,
  9742. 6437, 6466, 6468, 6469, 6472, 6481, 6484, 6485, 6486, 6489, 6490, 6496, 6501, 6506, 6537, 6545,
  9743. 6546, 6549, 6552, 6561, 6566, 6569, 6665, 6678, 6692, 6694, 6724, 6726, 6729, 6736, 6738, 6741,
  9744. 6744, 6753, 6758, 6761, 6789, 6801, 6806, 6810, 8192, 8194, 8200, 8202, 8213, 8224, 8226, 8229,
  9745. 8232, 8234, 8261, 8273, 8281, 8289, 8293, 8320, 8322, 8328, 8330, 8341, 8352, 8354, 8357, 8360,
  9746. 8362, 8453, 8465, 8468, 8473, 8485, 8514, 8516, 8521, 8533, 8536, 8538, 8545, 8548, 8549, 8550,
  9747. 8581, 8592, 8598, 8601, 8613, 8705, 8712, 8714, 8721, 8725, 8736, 8738, 8744, 8746, 8773, 8785,
  9748. 8790, 8793, 8805, 8833, 8840, 8842, 8849, 8853, 8864, 8866, 8872, 8874, 9221, 9236, 9238, 9241,
  9749. 9253, 9284, 9285, 9286, 9289, 9298, 9301, 9304, 9306, 9318, 9349, 9361, 9364, 9369, 9377, 9381,
  9750. 9481, 9493, 9505, 9513, 9536, 9541, 9544, 9553, 9556, 9557, 9561, 9570, 9573, 9576, 9609, 9616,
  9751. 9620, 9621, 9624, 9626, 9633, 9636, 9638, 9641, 9733, 9744, 9746, 9753, 9765, 9793, 9801, 9813,
  9752. 9824, 9825, 9833, 9860, 9862, 9872, 9882, 10240, 10242, 10248, 10250, 10261, 10272, 10274, 10280, 10282,
  9753. 10309, 10321, 10324, 10341, 10368, 10370, 10376, 10378, 10400, 10402, 10408, 10410, 10505, 10513, 10516, 10521,
  9754. 10533, 10566, 10569, 10578, 10581, 10593, 10596, 10598, 10601, 10629, 10640, 10646, 10649, 10660, 10661, 10752,
  9755. 10754, 10760, 10762, 10784, 10786, 10792, 10794, 10821, 10833, 10838, 10841, 10853, 10880, 10882, 10888, 10890,
  9756. 10901, 10912, 10914, 10920, 10922, 16389, 16401, 16406, 16421, 16457, 16466, 16469, 16472, 16474, 16481, 16484,
  9757. 16486, 16532, 16537, 16545, 16550, 16640, 16641, 16644, 16646, 16649, 16658, 16661, 16662, 16664, 16666, 16673,
  9758. 16678, 16681, 16709, 16712, 16714, 16721, 16724, 16725, 16726, 16729, 16730, 16741, 16744, 16746, 16769, 16772,
  9759. 16774, 16784, 16786, 16789, 16800, 16801, 16802, 16901, 16913, 16916, 16918, 16933, 16961, 16978, 16981, 16986,
  9760. 16996, 17001, 17033, 17044, 17061, 17409, 17429, 17433, 17449, 17477, 17480, 17482, 17489, 17492, 17493, 17494,
  9761. 17505, 17506, 17509, 17512, 17514, 17537, 17542, 17545, 17552, 17554, 17557, 17568, 17569, 17577, 17665, 17666,
  9762. 17669, 17674, 17681, 17684, 17685, 17686, 17689, 17696, 17701, 17706, 17729, 17732, 17733, 17734, 17737, 17744,
  9763. 17745, 17748, 17749, 17750, 17752, 17753, 17761, 17764, 17765, 17766, 17769, 17794, 17796, 17797, 17800, 17809,
  9764. 17812, 17813, 17814, 17817, 17818, 17829, 17832, 17834, 17921, 17925, 17929, 17940, 17941, 17944, 17946, 17953,
  9765. 17956, 17961, 17984, 17986, 17989, 17992, 18000, 18001, 18002, 18005, 18006, 18009, 18018, 18021, 18024, 18049,
  9766. 18053, 18058, 18068, 18069, 18081, 18084, 18086, 18437, 18449, 18453, 18458, 18469, 18498, 18505, 18512, 18517,
  9767. 18520, 18529, 18532, 18534, 18537, 18565, 18577, 18580, 18582, 18585, 18597, 18689, 18693, 18694, 18698, 18704,
  9768. 18708, 18709, 18712, 18721, 18724, 18726, 18752, 18757, 18762, 18769, 18770, 18772, 18773, 18774, 18777, 18784,
  9769. 18786, 18789, 18790, 18794, 18822, 18825, 18834, 18837, 18838, 18840, 18849, 18852, 18854, 18857, 18966, 19012,
  9770. 19014, 19017, 19029, 19032, 19034, 19044, 19049, 19092, 19109, 20481, 20484, 20485, 20486, 20489, 20498, 20501,
  9771. 20506, 20513, 20516, 20521, 20544, 20549, 20552, 20561, 20564, 20565, 20566, 20569, 20581, 20584, 20614, 20617,
  9772. 20629, 20632, 20640, 20641, 20646, 20649, 20741, 20744, 20745, 20746, 20753, 20756, 20757, 20758, 20760, 20761,
  9773. 20768, 20773, 20774, 20776, 20778, 20801, 20804, 20805, 20806, 20809, 20816, 20817, 20818, 20820, 20821, 20822,
  9774. 20824, 20825, 20826, 20833, 20836, 20837, 20838, 20841, 20866, 20869, 20881, 20884, 20885, 20886, 20889, 20896,
  9775. 20901, 20906, 20993, 20998, 21010, 21013, 21018, 21025, 21028, 21058, 21061, 21066, 21073, 21076, 21077, 21078,
  9776. 21081, 21090, 21093, 21125, 21136, 21138, 21141, 21145, 21146, 21156, 21508, 21509, 21521, 21524, 21525, 21526,
  9777. 21528, 21529, 21537, 21541, 21544, 21546, 21569, 21572, 21573, 21574, 21577, 21578, 21584, 21585, 21588, 21589,
  9778. 21590, 21592, 21593, 21594, 21601, 21602, 21604, 21605, 21606, 21609, 21632, 21640, 21642, 21649, 21652, 21653,
  9779. 21654, 21657, 21665, 21668, 21669, 21674, 21761, 21762, 21764, 21765, 21766, 21769, 21776, 21777, 21778, 21780,
  9780. 21781, 21782, 21785, 21786, 21793, 21796, 21797, 21798, 21801, 21824, 21825, 21826, 21828, 21829, 21830, 21832,
  9781. 21833, 21840, 21841, 21842, 21844, 21845, 21846, 21848, 21849, 21850, 21856, 21857, 21860, 21861, 21862, 21864,
  9782. 21865, 21866, 21889, 21892, 21893, 21897, 21898, 21904, 21905, 21908, 21909, 21910, 21912, 21913, 21921, 21924,
  9783. 21925, 21926, 21929, 22016, 22017, 22018, 22020, 22022, 22024, 22025, 22033, 22036, 22037, 22040, 22041, 22048,
  9784. 22049, 22050, 22052, 22053, 22054, 22056, 22057, 22081, 22085, 22086, 22088, 22089, 22090, 22096, 22097, 22098,
  9785. 22100, 22101, 22102, 22104, 22105, 22106, 22113, 22116, 22117, 22121, 22146, 22149, 22150, 22152, 22153, 22154,
  9786. 22161, 22165, 22170, 22178, 22181, 22182, 22184, 22185, 22532, 22533, 22534, 22537, 22544, 22549, 22552, 22561,
  9787. 22570, 22597, 22600, 22602, 22609, 22612, 22613, 22614, 22616, 22617, 22624, 22626, 22628, 22629, 22658, 22665,
  9788. 22672, 22674, 22677, 22680, 22689, 22697, 22785, 22786, 22789, 22794, 22801, 22804, 22805, 22806, 22809, 22821,
  9789. 22849, 22852, 22853, 22854, 22857, 22864, 22865, 22866, 22868, 22869, 22870, 22872, 22873, 22874, 22881, 22884,
  9790. 22885, 22886, 22889, 22913, 22917, 22921, 22929, 22932, 22933, 22934, 22936, 22937, 22949, 23044, 23048, 23061,
  9791. 23066, 23072, 23077, 23078, 23081, 23109, 23112, 23113, 23121, 23125, 23126, 23128, 23129, 23138, 23141, 23144,
  9792. 23146, 23169, 23178, 23186, 23189, 23190, 23192, 23194, 23201, 24581, 24596, 24598, 24601, 24613, 24644, 24656,
  9793. 24661, 24662, 24664, 24666, 24673, 24676, 24678, 24681, 24705, 24726, 24741, 24833, 24836, 24838, 24841, 24850,
  9794. 24853, 24865, 24866, 24870, 24873, 24901, 24905, 24913, 24917, 24918, 24921, 24933, 24934, 24938, 24964, 24970,
  9795. 24978, 24981, 24993, 24998, 25001, 25105, 25110, 25113, 25152, 25153, 25158, 25173, 25174, 25176, 25184, 25221,
  9796. 25233, 25238, 25253, 25617, 25618, 25621, 25622, 25626, 25633, 25638, 25641, 25664, 25666, 25669, 25672, 25674,
  9797. 25681, 25684, 25685, 25686, 25689, 25690, 25696, 25698, 25701, 25732, 25733, 25737, 25744, 25746, 25748, 25749,
  9798. 25750, 25752, 25754, 25761, 25764, 25769, 25861, 25864, 25866, 25873, 25877, 25878, 25881, 25924, 25925, 25926,
  9799. 25929, 25936, 25937, 25940, 25941, 25942, 25945, 25953, 25956, 25957, 25958, 25961, 25990, 25993, 25994, 26001,
  9800. 26005, 26006, 26009, 26010, 26018, 26021, 26022, 26024, 26114, 26121, 26133, 26144, 26150, 26152, 26153, 26176,
  9801. 26181, 26184, 26186, 26193, 26196, 26197, 26198, 26200, 26202, 26208, 26213, 26216, 26240, 26242, 26245, 26250,
  9802. 26260, 26262, 26264, 26265, 26272, 26276, 26278, 26282, 26646, 26649, 26661, 26689, 26706, 26709, 26714, 26721,
  9803. 26729, 26757, 26769, 26776, 26790, 26881, 26884, 26896, 26901, 26913, 26916, 26918, 26921, 26944, 26945, 26949,
  9804. 26950, 26952, 26961, 26964, 26965, 26966, 26969, 26976, 26981, 26986, 27010, 27012, 27018, 27029, 27041, 27044,
  9805. 27045, 27049, 27153, 27158, 27160, 27201, 27204, 27209, 27216, 27221, 27224, 27226, 27236, 27237, 27241, 27270,
  9806. 27284, 27288, 27290, 27302, 32768, 32770, 32776, 32778, 32800, 32802, 32808, 32810, 32837, 32848, 32849, 32852,
  9807. 32854, 32857, 32869, 32896, 32898, 32904, 32906, 32917, 32928, 32930, 32936, 32938, 33029, 33041, 33044, 33046,
  9808. 33049, 33061, 33089, 33092, 33097, 33104, 33106, 33109, 33110, 33112, 33113, 33124, 33126, 33129, 33157, 33161,
  9809. 33172, 33174, 33177, 33189, 33280, 33282, 33288, 33290, 33301, 33312, 33314, 33320, 33322, 33361, 33364, 33369,
  9810. 33381, 33408, 33410, 33416, 33418, 33429, 33440, 33442, 33448, 33450, 33812, 33817, 33857, 33860, 33873, 33877,
  9811. 33882, 33889, 33892, 33897, 33940, 33945, 34049, 34057, 34066, 34069, 34074, 34086, 34089, 34112, 34113, 34117,
  9812. 34120, 34129, 34132, 34133, 34134, 34137, 34138, 34149, 34150, 34152, 34154, 34177, 34180, 34182, 34185, 34192,
  9813. 34194, 34197, 34200, 34214, 34321, 34326, 34329, 34341, 34369, 34372, 34377, 34378, 34384, 34389, 34393, 34394,
  9814. 34401, 34406, 34410, 34437, 34449, 34458, 34468, 34816, 34818, 34824, 34826, 34837, 34848, 34850, 34856, 34858,
  9815. 34881, 34885, 34897, 34900, 34905, 34917, 34921, 34944, 34946, 34952, 34954, 34965, 34976, 34978, 34984, 34986,
  9816. 35077, 35078, 35089, 35092, 35094, 35109, 35137, 35140, 35142, 35145, 35152, 35154, 35157, 35162, 35169, 35172,
  9817. 35205, 35222, 35225, 35237, 35328, 35330, 35336, 35338, 35349, 35360, 35362, 35368, 35370, 35397, 35409, 35412,
  9818. 35414, 35456, 35458, 35464, 35466, 35477, 35488, 35490, 35496, 35498, 36869, 36881, 36886, 36888, 36889, 36901,
  9819. 36929, 36934, 36937, 36949, 36952, 36954, 36969, 36970, 36997, 37009, 37012, 37014, 37017, 37029, 37121, 37124,
  9820. 37126, 37129, 37136, 37141, 37144, 37146, 37153, 37156, 37158, 37161, 37184, 37189, 37200, 37201, 37204, 37205,
  9821. 37206, 37209, 37218, 37221, 37252, 37254, 37266, 37269, 37272, 37281, 37284, 37286, 37289, 37381, 37393, 37396,
  9822. 37401, 37413, 37444, 37446, 37449, 37456, 37458, 37461, 37464, 37478, 37481, 37509, 37524, 37526, 37545, 37889,
  9823. 37892, 37894, 37904, 37909, 37912, 37926, 37952, 37962, 37969, 37972, 37973, 37974, 37976, 37977, 37984, 37985,
  9824. 37986, 37989, 38020, 38022, 38034, 38036, 38037, 38040, 38049, 38057, 38144, 38149, 38152, 38154, 38160, 38161,
  9825. 38164, 38165, 38166, 38169, 38177, 38181, 38185, 38186, 38209, 38212, 38213, 38214, 38217, 38224, 38225, 38226,
  9826. 38228, 38229, 38230, 38232, 38233, 38234, 38241, 38244, 38245, 38246, 38249, 38273, 38277, 38280, 38289, 38290,
  9827. 38292, 38293, 38294, 38297, 38298, 38304, 38306, 38309, 38312, 38314, 38401, 38404, 38416, 38421, 38425, 38432,
  9828. 38438, 38441, 38469, 38472, 38473, 38481, 38482, 38485, 38486, 38489, 38501, 38504, 38530, 38532, 38537, 38538,
  9829. 38546, 38548, 38549, 38564, 38566, 38569, 38917, 38934, 38937, 38949, 38977, 38982, 38992, 38994, 38997, 38998,
  9830. 39002, 39012, 39013, 39045, 39057, 39062, 39065, 39077, 39172, 39174, 39177, 39184, 39186, 39189, 39192, 39194,
  9831. 39200, 39201, 39204, 39206, 39232, 39234, 39237, 39240, 39242, 39249, 39252, 39253, 39254, 39257, 39266, 39269,
  9832. 39270, 39274, 39297, 39300, 39312, 39314, 39317, 39322, 39329, 39334, 39429, 39445, 39461, 39492, 39494, 39497,
  9833. 39504, 39509, 39512, 39521, 39557, 39569, 39572, 39573, 39574, 40960, 40962, 40968, 40970, 40981, 40992, 40994,
  9834. 41000, 41002, 41029, 41041, 41044, 41046, 41049, 41088, 41090, 41096, 41098, 41109, 41120, 41122, 41128, 41130,
  9835. 41221, 41225, 41233, 41236, 41238, 41241, 41242, 41286, 41289, 41297, 41301, 41304, 41306, 41313, 41316, 41349,
  9836. 41360, 41362, 41366, 41369, 41474, 41480, 41482, 41488, 41497, 41506, 41512, 41514, 41541, 41553, 41558, 41561,
  9837. 41573, 41600, 41602, 41608, 41610, 41621, 41632, 41634, 41640, 41642, 42009, 42021, 42049, 42052, 42064, 42068,
  9838. 42069, 42072, 42074, 42081, 42085, 42086, 42088, 42089, 42117, 42246, 42249, 42256, 42258, 42261, 42264, 42278,
  9839. 42281, 42306, 42309, 42321, 42324, 42325, 42326, 42329, 42341, 42346, 42369, 42372, 42373, 42374, 42377, 42386,
  9840. 42389, 42392, 42501, 42513, 42518, 42522, 42529, 42533, 42564, 42566, 42570, 42578, 42581, 42582, 42584, 42592,
  9841. 42594, 42630, 42640, 42645, 42646, 42649, 42657, 42660, 42662, 43008, 43010, 43016, 43018, 43040, 43042, 43048,
  9842. 43050, 43089, 43092, 43094, 43097, 43136, 43138, 43144, 43146, 43157, 43168, 43170, 43176, 43178, 43269, 43284,
  9843. 43289, 43297, 43301, 43329, 43344, 43349, 43354, 43361, 43366, 43369, 43408, 43414, 43520, 43522, 43528, 43530,
  9844. 43552, 43554, 43560, 43562, 43601, 43604, 43606, 43648, 43650, 43656, 43658, 43669, 43680, 43682, 43688, 43690,
  9845. };
  9846. static const uint16_t kgrid_2bit_1024[1024] = {
  9847. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  9848. 73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160,
  9849. 165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328,
  9850. 337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514,
  9851. 517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660,
  9852. 674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093,
  9853. 1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176,
  9854. 1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348,
  9855. 1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537,
  9856. 1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050,
  9857. 2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133,
  9858. 2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373,
  9859. 2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100,
  9860. 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182,
  9861. 4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357,
  9862. 4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434,
  9863. 4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641,
  9864. 4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145,
  9865. 5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253,
  9866. 5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442,
  9867. 5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700,
  9868. 5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225,
  9869. 6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562,
  9870. 6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257,
  9871. 8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512,
  9872. 8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840,
  9873. 8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297,
  9874. 9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600,
  9875. 9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
  9876. 10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
  9877. 16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
  9878. 16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
  9879. 16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
  9880. 16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
  9881. 17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
  9882. 17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
  9883. 17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
  9884. 17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
  9885. 18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
  9886. 18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
  9887. 18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
  9888. 20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
  9889. 20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
  9890. 20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
  9891. 21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
  9892. 21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
  9893. 22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
  9894. 22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
  9895. 24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
  9896. 24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
  9897. 25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
  9898. 26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
  9899. 32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
  9900. 33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
  9901. 33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
  9902. 33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
  9903. 34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
  9904. 35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
  9905. 36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
  9906. 37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
  9907. 38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
  9908. 39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
  9909. 41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
  9910. 42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
  9911. };
  9912. const int kmap_size = 43692;
  9913. //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  9914. const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
  9915. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  9916. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
  9917. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024;
  9918. uint64_t * kgrid_q2xs;
  9919. int * kmap_q2xs;
  9920. uint16_t * kneighbors_q2xs;
  9921. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  9922. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  9923. for (int k = 0; k < grid_size; ++k) {
  9924. int8_t * pos = (int8_t *)(the_grid + k);
  9925. for (int i = 0; i < 8; ++i) {
  9926. int l = (kgrid[k] >> 2*i) & 0x3;
  9927. pos[i] = 2*l + 1;
  9928. }
  9929. }
  9930. kgrid_q2xs = the_grid;
  9931. iq2_data[gindex].grid = the_grid;
  9932. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  9933. iq2_data[gindex].map = kmap_q2xs;
  9934. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  9935. uint64_t aux64;
  9936. uint8_t * aux8 = (uint8_t *)&aux64;
  9937. for (int i = 0; i < grid_size; ++i) {
  9938. aux64 = kgrid_q2xs[i];
  9939. uint16_t index = 0;
  9940. for (int k=0; k<8; ++k) {
  9941. uint16_t q = (aux8[k] - 1)/2;
  9942. index |= (q << 2*k);
  9943. }
  9944. kmap_q2xs[index] = i;
  9945. }
  9946. int8_t pos[8];
  9947. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  9948. int num_neighbors = 0, num_not_in_map = 0;
  9949. for (int i = 0; i < kmap_size; ++i) {
  9950. if (kmap_q2xs[i] >= 0) continue;
  9951. ++num_not_in_map;
  9952. for (int k = 0; k < 8; ++k) {
  9953. int l = (i >> 2*k) & 0x3;
  9954. pos[k] = 2*l + 1;
  9955. }
  9956. for (int j = 0; j < grid_size; ++j) {
  9957. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  9958. int d2 = 0;
  9959. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  9960. dist2[2*j+0] = d2;
  9961. dist2[2*j+1] = j;
  9962. }
  9963. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  9964. int n = 0; int d2 = dist2[0];
  9965. int nhave = 1;
  9966. for (int j = 0; j < grid_size; ++j) {
  9967. if (dist2[2*j] > d2) {
  9968. if (nhave == nwant) break;
  9969. d2 = dist2[2*j];
  9970. ++nhave;
  9971. }
  9972. ++n;
  9973. }
  9974. num_neighbors += n;
  9975. }
  9976. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  9977. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  9978. iq2_data[gindex].neighbours = kneighbors_q2xs;
  9979. int counter = 0;
  9980. for (int i = 0; i < kmap_size; ++i) {
  9981. if (kmap_q2xs[i] >= 0) continue;
  9982. for (int k = 0; k < 8; ++k) {
  9983. int l = (i >> 2*k) & 0x3;
  9984. pos[k] = 2*l + 1;
  9985. }
  9986. for (int j = 0; j < grid_size; ++j) {
  9987. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  9988. int d2 = 0;
  9989. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  9990. dist2[2*j+0] = d2;
  9991. dist2[2*j+1] = j;
  9992. }
  9993. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  9994. kmap_q2xs[i] = -(counter + 1);
  9995. int d2 = dist2[0];
  9996. uint16_t * start = &kneighbors_q2xs[counter++];
  9997. int n = 0, nhave = 1;
  9998. for (int j = 0; j < grid_size; ++j) {
  9999. if (dist2[2*j] > d2) {
  10000. if (nhave == nwant) break;
  10001. d2 = dist2[2*j];
  10002. ++nhave;
  10003. }
  10004. kneighbors_q2xs[counter++] = dist2[2*j+1];
  10005. ++n;
  10006. }
  10007. *start = n;
  10008. }
  10009. free(dist2);
  10010. }
  10011. void iq2xs_free_impl(enum ggml_type type) {
  10012. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  10013. const int gindex = iq2_data_index(type);
  10014. if (iq2_data[gindex].grid) {
  10015. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  10016. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  10017. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  10018. }
  10019. }
  10020. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  10021. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  10022. int num_neighbors = neighbours[0];
  10023. GGML_ASSERT(num_neighbors > 0);
  10024. float best_d2 = FLT_MAX;
  10025. int grid_index = -1;
  10026. for (int j = 1; j <= num_neighbors; ++j) {
  10027. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10028. float d2 = 0;
  10029. for (int i = 0; i < 8; ++i) {
  10030. float q = pg[i];
  10031. float diff = scale*q - xval[i];
  10032. d2 += weight[i]*diff*diff;
  10033. }
  10034. if (d2 < best_d2) {
  10035. best_d2 = d2; grid_index = neighbours[j];
  10036. }
  10037. }
  10038. GGML_ASSERT(grid_index >= 0);
  10039. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10040. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  10041. return grid_index;
  10042. }
  10043. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  10044. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  10045. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  10046. const int * kmap_q2xs = iq2_data[gindex].map;
  10047. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  10048. GGML_ASSERT(quant_weights && "missing quantization weights");
  10049. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  10050. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  10051. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  10052. GGML_ASSERT(n%QK_K == 0);
  10053. const int kMaxQ = 3;
  10054. const int64_t nbl = n/QK_K;
  10055. block_iq2_xxs * y = vy;
  10056. float scales[QK_K/32];
  10057. float weight[32];
  10058. float xval[32];
  10059. int8_t L[32];
  10060. int8_t Laux[32];
  10061. float waux[32];
  10062. uint8_t block_signs[4];
  10063. uint32_t q2[2*(QK_K/32)];
  10064. for (int ibl = 0; ibl < nbl; ++ibl) {
  10065. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10066. memset(q2, 0, QK_K/4);
  10067. float max_scale = 0;
  10068. const float * xbl = x + QK_K*ibl;
  10069. float sumx2 = 0;
  10070. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10071. float sigma2 = sumx2/QK_K;
  10072. for (int ib = 0; ib < QK_K/32; ++ib) {
  10073. const float * xb = xbl + 32*ib;
  10074. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  10075. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10076. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  10077. for (int k = 0; k < 4; ++k) {
  10078. int nflip = 0;
  10079. uint8_t s = 0;
  10080. for (int i = 0; i < 8; ++i) {
  10081. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10082. else {
  10083. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10084. }
  10085. }
  10086. if (nflip%2) {
  10087. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10088. for (int i = 1; i < 8; ++i) {
  10089. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10090. if (ax < min) {
  10091. min = ax; imin = i;
  10092. }
  10093. }
  10094. xval[8*k+imin] = -xval[8*k+imin];
  10095. s ^= (1 << imin);
  10096. }
  10097. block_signs[k] = s & 127;
  10098. }
  10099. float max = xval[0];
  10100. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  10101. if (max < GROUP_MAX_EPS) {
  10102. scales[ib] = 0;
  10103. memset(L, 0, 32);
  10104. continue;
  10105. }
  10106. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  10107. float eff_max = scale*kMaxQ;
  10108. float best = 0;
  10109. for (int is = -6; is <= 6; ++is) {
  10110. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  10111. float this_scale = 1/id;
  10112. for (int k = 0; k < 4; ++k) {
  10113. for (int i = 0; i < 8; ++i) {
  10114. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10115. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10116. }
  10117. uint16_t u = 0;
  10118. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  10119. int grid_index = kmap_q2xs[u];
  10120. if (grid_index < 0) {
  10121. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10122. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  10123. }
  10124. }
  10125. float sumqx = 0, sumq2 = 0;
  10126. for (int i = 0; i < 32; ++i) {
  10127. float w = weight[i];
  10128. float q = 2*Laux[i] + 1;
  10129. sumqx += w*xval[i]*q;
  10130. sumq2 += w*q*q;
  10131. }
  10132. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10133. scale = sumqx/sumq2; best = scale*sumqx;
  10134. memcpy(L, Laux, 32);
  10135. }
  10136. }
  10137. if (scale > 0) {
  10138. float id = 1/scale;
  10139. for (int k = 0; k < 4; ++k) {
  10140. uint16_t u = 0;
  10141. for (int i = 0; i < 8; ++i) {
  10142. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10143. l = MAX(0, MIN(kMaxQ-1, l));
  10144. u |= (l << 2*i);
  10145. }
  10146. int grid_index = kmap_q2xs[u];
  10147. if (grid_index < 0) {
  10148. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10149. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  10150. }
  10151. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  10152. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  10153. }
  10154. float sumqx = 0, sumq2 = 0;
  10155. for (int i = 0; i < 32; ++i) {
  10156. float w = weight[i];
  10157. float q = 2*L[i] + 1;
  10158. sumqx += w*xval[i]*q;
  10159. sumq2 += w*q*q;
  10160. }
  10161. if (sumq2 > 0) scale = sumqx/sumq2;
  10162. }
  10163. if (scale < 0) {
  10164. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  10165. // and correspondingly flip quant signs.
  10166. scale = -scale;
  10167. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10168. }
  10169. for (int k = 0; k < 4; ++k) {
  10170. uint16_t u = 0;
  10171. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  10172. int grid_index = kmap_q2xs[u];
  10173. if (grid_index < 0) {
  10174. printf("Oops: found point %u not on grid:", u);
  10175. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  10176. printf("\n");
  10177. GGML_ASSERT(false);
  10178. }
  10179. q2[2*ib+0] |= (grid_index << 8*k);
  10180. q2[2*ib+1] |= (block_signs[k] << 7*k);
  10181. }
  10182. GGML_ASSERT(scale >= 0);
  10183. scales[ib] = scale;
  10184. max_scale = MAX(max_scale, scale);
  10185. }
  10186. if (!max_scale) {
  10187. memset(y[ibl].qs, 0, QK_K/4);
  10188. continue;
  10189. }
  10190. float d = max_scale/31;
  10191. y[ibl].d = GGML_FP32_TO_FP16(d);
  10192. float id = 1/d;
  10193. for (int ib = 0; ib < QK_K/32; ++ib) {
  10194. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10195. l = MAX(0, MIN(15, l));
  10196. q2[2*ib+1] |= ((uint32_t)l << 28);
  10197. }
  10198. memcpy(y[ibl].qs, q2, QK_K/4);
  10199. }
  10200. }
  10201. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  10202. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  10203. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  10204. const int * kmap_q2xs = iq2_data[gindex].map;
  10205. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  10206. GGML_ASSERT(quant_weights && "missing quantization weights");
  10207. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  10208. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  10209. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  10210. GGML_ASSERT(n%QK_K == 0);
  10211. const int kMaxQ = 3;
  10212. const int64_t nbl = n/QK_K;
  10213. block_iq2_xs * y = vy;
  10214. float scales[QK_K/16];
  10215. float weight[16];
  10216. float xval[16];
  10217. int8_t L[16];
  10218. int8_t Laux[16];
  10219. float waux[16];
  10220. bool is_on_grid[2];
  10221. bool is_on_grid_aux[2];
  10222. uint8_t block_signs[2];
  10223. uint16_t q2[2*(QK_K/16)];
  10224. for (int ibl = 0; ibl < nbl; ++ibl) {
  10225. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10226. memset(q2, 0, QK_K/4);
  10227. memset(y[ibl].scales, 0, QK_K/32);
  10228. float max_scale = 0;
  10229. const float * xbl = x + QK_K*ibl;
  10230. float sumx2 = 0;
  10231. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10232. float sigma2 = sumx2/QK_K;
  10233. for (int ib = 0; ib < QK_K/16; ++ib) {
  10234. const float * xb = xbl + 16*ib;
  10235. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  10236. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10237. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  10238. for (int k = 0; k < 2; ++k) {
  10239. int nflip = 0;
  10240. uint8_t s = 0;
  10241. for (int i = 0; i < 8; ++i) {
  10242. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10243. else {
  10244. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10245. }
  10246. }
  10247. if (nflip%2) {
  10248. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10249. for (int i = 1; i < 8; ++i) {
  10250. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10251. if (ax < min) {
  10252. min = ax; imin = i;
  10253. }
  10254. }
  10255. xval[8*k+imin] = -xval[8*k+imin];
  10256. s ^= (1 << imin);
  10257. }
  10258. block_signs[k] = s & 127;
  10259. }
  10260. float max = xval[0];
  10261. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  10262. if (max < GROUP_MAX_EPS) {
  10263. scales[ib] = 0;
  10264. memset(L, 0, 16);
  10265. continue;
  10266. }
  10267. float best = 0;
  10268. float scale = max/(2*kMaxQ-1);
  10269. is_on_grid[0] = is_on_grid[1] = true;
  10270. for (int is = -9; is <= 9; ++is) {
  10271. float id = (2*kMaxQ-1+is*0.1f)/max;
  10272. float this_scale = 1/id;
  10273. for (int k = 0; k < 2; ++k) {
  10274. for (int i = 0; i < 8; ++i) {
  10275. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10276. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10277. }
  10278. uint16_t u = 0;
  10279. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  10280. int grid_index = kmap_q2xs[u];
  10281. is_on_grid_aux[k] = true;
  10282. if (grid_index < 0) {
  10283. is_on_grid_aux[k] = false;
  10284. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10285. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  10286. }
  10287. }
  10288. float sumqx = 0, sumq2 = 0;
  10289. for (int i = 0; i < 16; ++i) {
  10290. float w = weight[i];
  10291. float q = 2*Laux[i] + 1;
  10292. sumqx += w*xval[i]*q;
  10293. sumq2 += w*q*q;
  10294. }
  10295. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10296. scale = sumqx/sumq2; best = scale*sumqx;
  10297. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  10298. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  10299. }
  10300. }
  10301. int n_not_ongrid = 0;
  10302. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  10303. if (n_not_ongrid > 0 && scale > 0) {
  10304. float id = 1/scale;
  10305. for (int k = 0; k < 2; ++k) {
  10306. if (is_on_grid[k]) continue;
  10307. uint16_t u = 0;
  10308. for (int i = 0; i < 8; ++i) {
  10309. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10310. l = MAX(0, MIN(kMaxQ-1, l));
  10311. u |= (l << 2*i);
  10312. L[8*k + i] = l;
  10313. }
  10314. int grid_index = kmap_q2xs[u];
  10315. if (grid_index < 0) {
  10316. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10317. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  10318. }
  10319. }
  10320. float sumqx = 0, sumq2 = 0;
  10321. for (int i = 0; i < 16; ++i) {
  10322. float w = weight[i];
  10323. float q = 2*L[i] + 1;
  10324. sumqx += w*xval[i]*q;
  10325. sumq2 += w*q*q;
  10326. }
  10327. if (sumq2 > 0) scale = sumqx/sumq2;
  10328. }
  10329. if (scale < 0) {
  10330. scale = -scale;
  10331. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10332. }
  10333. for (int k = 0; k < 2; ++k) {
  10334. uint16_t u = 0;
  10335. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  10336. int grid_index = kmap_q2xs[u];
  10337. if (grid_index < 0) {
  10338. printf("Oops: found point %u not on grid:", u);
  10339. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  10340. printf("\n");
  10341. GGML_ASSERT(false);
  10342. }
  10343. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  10344. }
  10345. GGML_ASSERT(scale >= 0);
  10346. scales[ib] = scale;
  10347. max_scale = MAX(max_scale, scale);
  10348. }
  10349. if (!max_scale) {
  10350. memset(y[ibl].qs, 0, QK_K/4);
  10351. continue;
  10352. }
  10353. float d = max_scale/31;
  10354. y[ibl].d = GGML_FP32_TO_FP16(d);
  10355. float id = 1/d;
  10356. for (int ib = 0; ib < QK_K/16; ++ib) {
  10357. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10358. l = MAX(0, MIN(15, l));
  10359. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  10360. else y[ibl].scales[ib/2] |= (l << 4);
  10361. }
  10362. memcpy(y[ibl].qs, q2, QK_K/4);
  10363. }
  10364. }
  10365. size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10366. GGML_ASSERT(n_per_row%QK_K == 0);
  10367. int64_t nblock = n_per_row/QK_K;
  10368. char * qrow = (char *)dst;
  10369. for (int64_t row = 0; row < nrow; ++row) {
  10370. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  10371. src += n_per_row;
  10372. qrow += nblock*sizeof(block_iq2_xxs);
  10373. }
  10374. return nrow * nblock * sizeof(block_iq2_xxs);
  10375. }
  10376. size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10377. GGML_ASSERT(n_per_row%QK_K == 0);
  10378. int64_t nblock = n_per_row/QK_K;
  10379. char * qrow = (char *)dst;
  10380. for (int64_t row = 0; row < nrow; ++row) {
  10381. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  10382. src += n_per_row;
  10383. qrow += nblock*sizeof(block_iq2_xs);
  10384. }
  10385. return nrow * nblock * sizeof(block_iq2_xs);
  10386. }
  10387. //
  10388. // ============================================= 3-bit using D4 lattice
  10389. //
  10390. typedef struct {
  10391. uint32_t * grid;
  10392. int * map;
  10393. uint16_t * neighbours;
  10394. } iq3_entry_t;
  10395. static iq3_entry_t iq3_data[2] = {
  10396. {NULL, NULL, NULL},
  10397. {NULL, NULL, NULL},
  10398. };
  10399. static inline int iq3_data_index(int grid_size) {
  10400. (void)grid_size;
  10401. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  10402. return grid_size == 256 ? 0 : 1;
  10403. }
  10404. static int iq3_compare_func(const void * left, const void * right) {
  10405. const int * l = (const int *)left;
  10406. const int * r = (const int *)right;
  10407. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  10408. }
  10409. void iq3xs_init_impl(int grid_size) {
  10410. const int gindex = iq3_data_index(grid_size);
  10411. if (iq3_data[gindex].grid) {
  10412. return;
  10413. }
  10414. static const uint16_t kgrid_256[256] = {
  10415. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  10416. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  10417. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  10418. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  10419. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  10420. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  10421. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  10422. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  10423. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  10424. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  10425. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  10426. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  10427. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  10428. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  10429. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  10430. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  10431. };
  10432. static const uint16_t kgrid_512[512] = {
  10433. 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
  10434. 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
  10435. 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
  10436. 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
  10437. 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
  10438. 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
  10439. 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
  10440. 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
  10441. 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
  10442. 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
  10443. 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
  10444. 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
  10445. 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
  10446. 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
  10447. 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
  10448. 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
  10449. 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
  10450. 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
  10451. 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
  10452. 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
  10453. 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
  10454. 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
  10455. 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
  10456. 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
  10457. 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
  10458. 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
  10459. 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
  10460. 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
  10461. 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
  10462. 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
  10463. 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
  10464. 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
  10465. };
  10466. const int kmap_size = 4096;
  10467. const int nwant = grid_size == 256 ? 2 : 3;
  10468. const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
  10469. uint32_t * kgrid_q3xs;
  10470. int * kmap_q3xs;
  10471. uint16_t * kneighbors_q3xs;
  10472. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  10473. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  10474. for (int k = 0; k < grid_size; ++k) {
  10475. int8_t * pos = (int8_t *)(the_grid + k);
  10476. for (int i = 0; i < 4; ++i) {
  10477. int l = (kgrid[k] >> 3*i) & 0x7;
  10478. pos[i] = 2*l + 1;
  10479. }
  10480. }
  10481. kgrid_q3xs = the_grid;
  10482. iq3_data[gindex].grid = the_grid;
  10483. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  10484. iq3_data[gindex].map = kmap_q3xs;
  10485. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  10486. uint32_t aux32;
  10487. uint8_t * aux8 = (uint8_t *)&aux32;
  10488. for (int i = 0; i < grid_size; ++i) {
  10489. aux32 = kgrid_q3xs[i];
  10490. uint16_t index = 0;
  10491. for (int k=0; k<4; ++k) {
  10492. uint16_t q = (aux8[k] - 1)/2;
  10493. index |= (q << 3*k);
  10494. }
  10495. kmap_q3xs[index] = i;
  10496. }
  10497. int8_t pos[4];
  10498. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  10499. int num_neighbors = 0, num_not_in_map = 0;
  10500. for (int i = 0; i < kmap_size; ++i) {
  10501. if (kmap_q3xs[i] >= 0) continue;
  10502. ++num_not_in_map;
  10503. for (int k = 0; k < 4; ++k) {
  10504. int l = (i >> 3*k) & 0x7;
  10505. pos[k] = 2*l + 1;
  10506. }
  10507. for (int j = 0; j < grid_size; ++j) {
  10508. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  10509. int d2 = 0;
  10510. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10511. dist2[2*j+0] = d2;
  10512. dist2[2*j+1] = j;
  10513. }
  10514. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  10515. int n = 0; int d2 = dist2[0];
  10516. int nhave = 1;
  10517. for (int j = 0; j < grid_size; ++j) {
  10518. if (dist2[2*j] > d2) {
  10519. if (nhave == nwant) break;
  10520. d2 = dist2[2*j];
  10521. ++nhave;
  10522. }
  10523. ++n;
  10524. }
  10525. num_neighbors += n;
  10526. }
  10527. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  10528. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  10529. iq3_data[gindex].neighbours = kneighbors_q3xs;
  10530. int counter = 0;
  10531. for (int i = 0; i < kmap_size; ++i) {
  10532. if (kmap_q3xs[i] >= 0) continue;
  10533. for (int k = 0; k < 4; ++k) {
  10534. int l = (i >> 3*k) & 0x7;
  10535. pos[k] = 2*l + 1;
  10536. }
  10537. for (int j = 0; j < grid_size; ++j) {
  10538. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  10539. int d2 = 0;
  10540. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10541. dist2[2*j+0] = d2;
  10542. dist2[2*j+1] = j;
  10543. }
  10544. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  10545. kmap_q3xs[i] = -(counter + 1);
  10546. int d2 = dist2[0];
  10547. uint16_t * start = &kneighbors_q3xs[counter++];
  10548. int n = 0, nhave = 1;
  10549. for (int j = 0; j < grid_size; ++j) {
  10550. if (dist2[2*j] > d2) {
  10551. if (nhave == nwant) break;
  10552. d2 = dist2[2*j];
  10553. ++nhave;
  10554. }
  10555. kneighbors_q3xs[counter++] = dist2[2*j+1];
  10556. ++n;
  10557. }
  10558. *start = n;
  10559. }
  10560. free(dist2);
  10561. }
  10562. void iq3xs_free_impl(int grid_size) {
  10563. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  10564. const int gindex = iq3_data_index(grid_size);
  10565. if (iq3_data[gindex].grid) {
  10566. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  10567. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  10568. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  10569. }
  10570. }
  10571. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  10572. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  10573. int num_neighbors = neighbours[0];
  10574. GGML_ASSERT(num_neighbors > 0);
  10575. float best_d2 = FLT_MAX;
  10576. int grid_index = -1;
  10577. for (int j = 1; j <= num_neighbors; ++j) {
  10578. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10579. float d2 = 0;
  10580. for (int i = 0; i < 4; ++i) {
  10581. float q = pg[i];
  10582. float diff = scale*q - xval[i];
  10583. d2 += weight[i]*diff*diff;
  10584. }
  10585. if (d2 < best_d2) {
  10586. best_d2 = d2; grid_index = neighbours[j];
  10587. }
  10588. }
  10589. GGML_ASSERT(grid_index >= 0);
  10590. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10591. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  10592. return grid_index;
  10593. }
  10594. static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int64_t n,
  10595. const float * restrict quant_weights) {
  10596. const int gindex = iq3_data_index(grid_size);
  10597. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  10598. const int * kmap_q3xs = iq3_data[gindex].map;
  10599. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  10600. //GGML_ASSERT(quant_weights && "missing quantization weights");
  10601. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  10602. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  10603. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  10604. GGML_ASSERT(n%QK_K == 0);
  10605. const int kMaxQ = 8;
  10606. const int64_t nbl = n/QK_K;
  10607. ggml_fp16_t * dh;
  10608. uint8_t * qs;
  10609. int block_size;
  10610. if (grid_size == 256) {
  10611. block_iq3_xxs * y = vy;
  10612. dh = &y->d;
  10613. qs = y->qs;
  10614. block_size = sizeof(block_iq3_xxs);
  10615. } else {
  10616. block_iq3_s * y = vy;
  10617. dh = &y->d;
  10618. qs = y->qs;
  10619. block_size = sizeof(block_iq3_s);
  10620. }
  10621. int quant_size = block_size - sizeof(ggml_fp16_t);
  10622. float scales[QK_K/32];
  10623. float weight[32];
  10624. float xval[32];
  10625. int8_t L[32];
  10626. int8_t Laux[32];
  10627. float waux[32];
  10628. bool is_on_grid[8];
  10629. bool is_on_grid_aux[8];
  10630. uint8_t block_signs[8];
  10631. uint8_t q3[3*(QK_K/8)+QK_K/32];
  10632. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  10633. uint8_t * qh = q3 + 3*(QK_K/8);
  10634. for (int ibl = 0; ibl < nbl; ++ibl) {
  10635. dh[0] = GGML_FP32_TO_FP16(0.f);
  10636. memset(q3, 0, 3*QK_K/8+QK_K/32);
  10637. float max_scale = 0;
  10638. const float * xbl = x + QK_K*ibl;
  10639. float sumx2 = 0;
  10640. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10641. float sigma2 = 2*sumx2/QK_K;
  10642. for (int ib = 0; ib < QK_K/32; ++ib) {
  10643. const float * xb = xbl + 32*ib;
  10644. if (quant_weights) {
  10645. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  10646. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10647. } else {
  10648. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  10649. }
  10650. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  10651. for (int k = 0; k < 4; ++k) {
  10652. int nflip = 0;
  10653. uint8_t s = 0;
  10654. for (int i = 0; i < 8; ++i) {
  10655. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10656. else {
  10657. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10658. }
  10659. }
  10660. if (nflip%2) {
  10661. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10662. for (int i = 1; i < 8; ++i) {
  10663. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10664. if (ax < min) {
  10665. min = ax; imin = i;
  10666. }
  10667. }
  10668. xval[8*k+imin] = -xval[8*k+imin];
  10669. s ^= (1 << imin);
  10670. }
  10671. block_signs[k] = s & 127;
  10672. }
  10673. float max = xval[0];
  10674. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  10675. if (max < GROUP_MAX_EPS_IQ3_XXS) {
  10676. scales[ib] = 0;
  10677. memset(L, 0, 32);
  10678. continue;
  10679. }
  10680. float best = 0;
  10681. float scale = max/(2*kMaxQ-1);
  10682. for (int is = -15; is <= 15; ++is) {
  10683. float id = (2*kMaxQ-1+is*0.2f)/max;
  10684. float this_scale = 1/id;
  10685. for (int k = 0; k < 8; ++k) {
  10686. for (int i = 0; i < 4; ++i) {
  10687. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10688. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10689. }
  10690. uint16_t u = 0;
  10691. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  10692. int grid_index = kmap_q3xs[u];
  10693. is_on_grid_aux[k] = true;
  10694. if (grid_index < 0) {
  10695. is_on_grid_aux[k] = false;
  10696. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10697. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  10698. }
  10699. }
  10700. float sumqx = 0, sumq2 = 0;
  10701. for (int i = 0; i < 32; ++i) {
  10702. float w = weight[i];
  10703. float q = 2*Laux[i] + 1;
  10704. sumqx += w*xval[i]*q;
  10705. sumq2 += w*q*q;
  10706. }
  10707. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10708. scale = sumqx/sumq2; best = scale*sumqx;
  10709. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  10710. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  10711. }
  10712. }
  10713. int n_not_ongrid = 0;
  10714. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  10715. if (n_not_ongrid > 0 && scale > 0) {
  10716. float id = 1/scale;
  10717. for (int k = 0; k < 8; ++k) {
  10718. if (is_on_grid[k]) continue;
  10719. uint16_t u = 0;
  10720. for (int i = 0; i < 4; ++i) {
  10721. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10722. l = MAX(0, MIN(kMaxQ-1, l));
  10723. u |= (l << 3*i);
  10724. }
  10725. int grid_index = kmap_q3xs[u];
  10726. if (grid_index < 0) {
  10727. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10728. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  10729. }
  10730. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  10731. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  10732. }
  10733. float sumqx = 0, sumq2 = 0;
  10734. for (int i = 0; i < 32; ++i) {
  10735. float w = weight[i];
  10736. float q = 2*L[i] + 1;
  10737. sumqx += w*xval[i]*q;
  10738. sumq2 += w*q*q;
  10739. }
  10740. if (sumq2 > 0) scale = sumqx/sumq2;
  10741. }
  10742. if (scale < 0) {
  10743. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  10744. // and correspondingly flip quant signs.
  10745. scale = -scale;
  10746. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10747. }
  10748. for (int k = 0; k < 8; ++k) {
  10749. uint16_t u = 0;
  10750. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  10751. int grid_index = kmap_q3xs[u];
  10752. if (grid_index < 0) {
  10753. printf("Oops: found point %u not on grid:", u);
  10754. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  10755. printf("\n");
  10756. GGML_ASSERT(false);
  10757. }
  10758. if (grid_size == 256) {
  10759. q3[8*ib+k] = grid_index;
  10760. } else {
  10761. q3[8*ib+k] = grid_index & 255;
  10762. qh[ib] |= ((grid_index >> 8) << k);
  10763. }
  10764. }
  10765. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  10766. GGML_ASSERT(scale >= 0);
  10767. scales[ib] = scale;
  10768. max_scale = MAX(max_scale, scale);
  10769. }
  10770. if (!max_scale) {
  10771. memset(qs, 0, quant_size);
  10772. dh += block_size/sizeof(ggml_fp16_t);
  10773. qs += block_size;
  10774. continue;
  10775. }
  10776. float d = max_scale/31;
  10777. dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
  10778. float id = 1/d;
  10779. for (int ib = 0; ib < QK_K/32; ++ib) {
  10780. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10781. l = MAX(0, MIN(15, l));
  10782. scales_and_signs[ib] |= ((uint32_t)l << 28);
  10783. }
  10784. memcpy(qs, q3, quant_size);
  10785. dh += block_size/sizeof(ggml_fp16_t);
  10786. qs += block_size;
  10787. }
  10788. }
  10789. size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10790. GGML_ASSERT(n_per_row%QK_K == 0);
  10791. int64_t nblock = n_per_row/QK_K;
  10792. char * qrow = (char *)dst;
  10793. for (int64_t row = 0; row < nrow; ++row) {
  10794. quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
  10795. src += n_per_row;
  10796. qrow += nblock*sizeof(block_iq3_xxs);
  10797. }
  10798. return nrow * nblock * sizeof(block_iq3_xxs);
  10799. }
  10800. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int64_t k) {
  10801. assert(k % QK_K == 0);
  10802. block_iq3_xxs * restrict y = vy;
  10803. quantize_row_iq3_xxs_reference(x, y, k);
  10804. }
  10805. void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int64_t k) {
  10806. assert(k % QK_K == 0);
  10807. quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
  10808. }
  10809. static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
  10810. const float * restrict quant_weights,
  10811. float * scales,
  10812. float * weight,
  10813. float * xval,
  10814. int8_t * L,
  10815. int8_t * Laux,
  10816. float * waux,
  10817. bool * is_on_grid,
  10818. bool * is_on_grid_aux,
  10819. uint8_t * block_signs) {
  10820. const int gindex = iq3_data_index(512);
  10821. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  10822. const int * kmap_q3xs = iq3_data[gindex].map;
  10823. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  10824. //GGML_ASSERT(quant_weights && "missing quantization weights");
  10825. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  10826. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  10827. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  10828. GGML_ASSERT(n%QK_K == 0);
  10829. const int kMaxQ = 8;
  10830. const int64_t nbl = n/QK_K;
  10831. block_iq3_s * y = vy;
  10832. const int bs4 = block_size/4;
  10833. const int bs8 = block_size/8;
  10834. for (int ibl = 0; ibl < nbl; ++ibl) {
  10835. memset(&y[ibl], 0, sizeof(block_iq3_s));
  10836. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10837. uint8_t * qs = y[ibl].qs;
  10838. uint8_t * qh = y[ibl].qh;
  10839. uint8_t * signs = y[ibl].signs;
  10840. float max_scale = 0;
  10841. const float * xbl = x + QK_K*ibl;
  10842. float sumx2 = 0;
  10843. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10844. float sigma2 = 2*sumx2/QK_K;
  10845. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  10846. const float * xb = xbl + block_size*ib;
  10847. if (quant_weights) {
  10848. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  10849. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10850. } else {
  10851. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  10852. }
  10853. for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
  10854. for (int k = 0; k < bs8; ++k) {
  10855. uint8_t s = 0;
  10856. for (int i = 0; i < 8; ++i) {
  10857. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10858. else {
  10859. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  10860. }
  10861. }
  10862. block_signs[k] = s;
  10863. }
  10864. float max = xval[0];
  10865. for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
  10866. if (!max) {
  10867. scales[ib] = 0;
  10868. continue;
  10869. }
  10870. float best = 0;
  10871. float scale = max/(2*kMaxQ-1);
  10872. for (int k = 0; k < bs4; ++k) is_on_grid[k] = false;
  10873. for (int is = -9; is <= 9; ++is) {
  10874. float id = (2*kMaxQ-1+is*0.2f)/max;
  10875. float this_scale = 1/id;
  10876. for (int k = 0; k < bs4; ++k) {
  10877. for (int i = 0; i < 4; ++i) {
  10878. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10879. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10880. }
  10881. uint16_t u = 0;
  10882. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  10883. int grid_index = kmap_q3xs[u];
  10884. is_on_grid_aux[k] = true;
  10885. if (grid_index < 0) {
  10886. is_on_grid_aux[k] = false;
  10887. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10888. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  10889. }
  10890. }
  10891. float sumqx = 0, sumq2 = 0;
  10892. for (int i = 0; i < block_size; ++i) {
  10893. float w = weight[i];
  10894. float q = 2*Laux[i] + 1;
  10895. sumqx += w*xval[i]*q;
  10896. sumq2 += w*q*q;
  10897. }
  10898. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10899. scale = sumqx/sumq2; best = scale*sumqx;
  10900. for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
  10901. for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
  10902. }
  10903. }
  10904. int n_not_ongrid = 0;
  10905. for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  10906. if (n_not_ongrid > 0 && scale > 0) {
  10907. float id = 1/scale;
  10908. for (int k = 0; k < bs4; ++k) {
  10909. //if (is_on_grid[k]) continue;
  10910. uint16_t u = 0;
  10911. for (int i = 0; i < 4; ++i) {
  10912. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10913. l = MAX(0, MIN(kMaxQ-1, l));
  10914. u |= (l << 3*i);
  10915. }
  10916. int grid_index = kmap_q3xs[u];
  10917. if (grid_index < 0) {
  10918. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10919. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  10920. }
  10921. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  10922. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  10923. }
  10924. float sumqx = 0, sumq2 = 0;
  10925. for (int i = 0; i < block_size; ++i) {
  10926. float w = weight[i];
  10927. float q = 2*L[i] + 1;
  10928. sumqx += w*xval[i]*q;
  10929. sumq2 += w*q*q;
  10930. }
  10931. if (sumq2 > 0) scale = sumqx/sumq2;
  10932. }
  10933. if (scale < 0) {
  10934. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  10935. // and correspondingly flip quant signs.
  10936. scale = -scale;
  10937. for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
  10938. }
  10939. for (int k = 0; k < bs4; ++k) {
  10940. uint16_t u = 0;
  10941. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  10942. int grid_index = kmap_q3xs[u];
  10943. if (grid_index < 0) {
  10944. printf("Oops: found point %u not on grid:", u);
  10945. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  10946. printf("\n");
  10947. GGML_ASSERT(false);
  10948. }
  10949. qs[k] = grid_index & 255;
  10950. qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
  10951. }
  10952. qs += bs4;
  10953. for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
  10954. signs += bs8;
  10955. GGML_ASSERT(scale >= 0);
  10956. scales[ib] = scale;
  10957. max_scale = MAX(max_scale, scale);
  10958. }
  10959. if (!max_scale) {
  10960. continue;
  10961. }
  10962. float d = max_scale/31;
  10963. y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f);
  10964. float id = 1/d;
  10965. for (int ib = 0; ib < QK_K/block_size; ib += 2) {
  10966. int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
  10967. l1 = MAX(0, MIN(15, l1));
  10968. int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
  10969. l2 = MAX(0, MIN(15, l2));
  10970. y[ibl].scales[ib/2] = l1 | (l2 << 4);
  10971. }
  10972. }
  10973. }
  10974. #define IQ3S_BLOCK_SIZE 32
  10975. size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10976. GGML_ASSERT(n_per_row%QK_K == 0);
  10977. int64_t nblock = n_per_row/QK_K;
  10978. float scales[QK_K/IQ3S_BLOCK_SIZE];
  10979. float weight[IQ3S_BLOCK_SIZE];
  10980. float xval[IQ3S_BLOCK_SIZE];
  10981. int8_t L[IQ3S_BLOCK_SIZE];
  10982. int8_t Laux[IQ3S_BLOCK_SIZE];
  10983. float waux[IQ3S_BLOCK_SIZE];
  10984. bool is_on_grid[IQ3S_BLOCK_SIZE/4];
  10985. bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
  10986. uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
  10987. char * qrow = (char *)dst;
  10988. for (int64_t row = 0; row < nrow; ++row) {
  10989. quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
  10990. scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
  10991. src += n_per_row;
  10992. qrow += nblock*sizeof(block_iq3_s);
  10993. }
  10994. return nrow * nblock * sizeof(block_iq3_s);
  10995. }
  10996. void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int64_t k) {
  10997. assert(k % QK_K == 0);
  10998. block_iq3_s * restrict y = vy;
  10999. quantize_row_iq3_s_reference(x, y, k);
  11000. }
  11001. void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int64_t k) {
  11002. assert(k % QK_K == 0);
  11003. quantize_iq3_s(x, y, 1, k, NULL);
  11004. }
  11005. // =================================== 1.5 bpw ===================================================
  11006. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  11007. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  11008. int num_neighbors = neighbours[0];
  11009. GGML_ASSERT(num_neighbors > 0);
  11010. float best_score = 0;
  11011. int grid_index = -1;
  11012. for (int j = 1; j <= num_neighbors; ++j) {
  11013. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11014. float sumqx = 0, sumq2 = 0;
  11015. for (int i = 0; i < 8; ++i) {
  11016. float q = (pg[i] - 3)/2;
  11017. float w = weight[i];
  11018. sumqx += w*q*xval[i];
  11019. sumq2 += w*q*q;
  11020. }
  11021. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11022. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  11023. grid_index = neighbours[j];
  11024. }
  11025. }
  11026. if (grid_index < 0) {
  11027. for (int i = 0; i < ngrid; ++i) {
  11028. const int8_t * grid_i = (const int8_t *)(grid + i);
  11029. float sumqx = 0, sumq2 = 0;
  11030. for (int j = 0; j < 8; ++j) {
  11031. float w = weight[j];
  11032. float q = (grid_i[j] - 3)/2;
  11033. sumqx += w*q*xval[j];
  11034. sumq2 += w*q*q;
  11035. }
  11036. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11037. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  11038. grid_index = i;
  11039. }
  11040. }
  11041. }
  11042. if (grid_index < 0) {
  11043. printf("Oops, did not find grid point\n");
  11044. printf("Have %d neighbours\n", num_neighbors);
  11045. for (int j = 1; j <= num_neighbors; ++j) {
  11046. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11047. float sumqx = 0, sumq2 = 0;
  11048. for (int i = 0; i < 8; ++i) {
  11049. float q = (pg[i] - 3)/2;
  11050. float w = weight[i];
  11051. sumqx += w*q*xval[i];
  11052. sumq2 += w*q*q;
  11053. }
  11054. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  11055. }
  11056. }
  11057. GGML_ASSERT(grid_index >= 0);
  11058. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  11059. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  11060. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  11061. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11062. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  11063. return grid_index;
  11064. }
  11065. static int iq1_find_best_neighbour2(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  11066. const float * restrict xval, const float * restrict weight, float scale, const float * restrict xg, int8_t * restrict L, int ngrid) {
  11067. int num_neighbors = neighbours[0];
  11068. GGML_ASSERT(num_neighbors > 0);
  11069. float best_score = FLT_MAX;
  11070. int grid_index = -1;
  11071. for (int j = 1; j <= num_neighbors; ++j) {
  11072. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11073. float d2 = 0;
  11074. for (int i = 0; i < 8; ++i) {
  11075. float q = xg[(pg[i] - 1)/2];
  11076. float w = weight[i];
  11077. float diff = scale*q - xval[i];
  11078. d2 += w*diff*diff;
  11079. }
  11080. if (d2 < best_score) {
  11081. best_score = d2;
  11082. grid_index = neighbours[j];
  11083. }
  11084. }
  11085. if (grid_index < 0) {
  11086. for (int i = 0; i < ngrid; ++i) {
  11087. const int8_t * grid_i = (const int8_t *)(grid + i);
  11088. float d2 = 0;
  11089. for (int j = 0; j < 8; ++j) {
  11090. float w = weight[j];
  11091. float q = xg[(grid_i[j] - 1)/2];
  11092. float diff = scale*q - xval[i];
  11093. d2 += w*diff*diff;
  11094. }
  11095. if (d2 < best_score) {
  11096. best_score = d2;
  11097. grid_index = i;
  11098. }
  11099. }
  11100. }
  11101. if (grid_index < 0) {
  11102. printf("Oops, did not find grid point\n");
  11103. printf("Have %d neighbours\n", num_neighbors);
  11104. for (int j = 1; j <= num_neighbors; ++j) {
  11105. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11106. float sumqx = 0, sumq2 = 0;
  11107. for (int i = 0; i < 8; ++i) {
  11108. float q = xg[(pg[i] - 1)/2];
  11109. float w = weight[i];
  11110. sumqx += w*q*xval[i];
  11111. sumq2 += w*q*q;
  11112. }
  11113. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  11114. }
  11115. }
  11116. GGML_ASSERT(grid_index >= 0);
  11117. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11118. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  11119. return grid_index;
  11120. }
  11121. static int iq1_sort_helper(const void * left, const void * right) {
  11122. const float * l = left;
  11123. const float * r = right;
  11124. return *l < *r ? -1 : *l > *r ? 1 : 0;
  11125. }
  11126. #define IQ1S_BLOCK_SIZE 32
  11127. #define IQ1M_BLOCK_SIZE 16
  11128. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  11129. float * scales,
  11130. float * weight,
  11131. float * sumx,
  11132. float * sumw,
  11133. float * pairs,
  11134. int8_t * L,
  11135. uint16_t * index,
  11136. int8_t * shifts) {
  11137. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  11138. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11139. const int * kmap_q2xs = iq2_data[gindex].map;
  11140. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11141. GGML_ASSERT(quant_weights && "missing quantization weights");
  11142. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11143. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11144. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11145. GGML_ASSERT(n%QK_K == 0);
  11146. block_iq1_s * y = vy;
  11147. const int64_t nbl = n/QK_K;
  11148. const int block_size = IQ1S_BLOCK_SIZE;
  11149. const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA};
  11150. const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
  11151. int * idx = (int *)(pairs + 1);
  11152. for (int ibl = 0; ibl < nbl; ++ibl) {
  11153. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11154. memset(y[ibl].qs, 0, QK_K/8);
  11155. memset(y[ibl].qh, 0, QK_K/16);
  11156. float max_scale = 0;
  11157. const float * xbl = x + QK_K*ibl;
  11158. float sumx2 = 0;
  11159. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11160. float sigma2 = 2*sumx2/QK_K;
  11161. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11162. const float * xb = xbl + block_size*ib;
  11163. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11164. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11165. float max = fabsf(xb[0]);
  11166. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  11167. if (max < GROUP_MAX_EPS_IQ1_S) {
  11168. scales[ib] = 0;
  11169. memset(L, 1, block_size);
  11170. continue;
  11171. }
  11172. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  11173. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  11174. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  11175. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  11176. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  11177. // for each possible and score for each split.
  11178. for (int j = 0; j < block_size; ++j) {
  11179. pairs[2*j] = xb[j];
  11180. idx[2*j] = j;
  11181. }
  11182. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  11183. {
  11184. sumx[0] = sumw[0] = 0;
  11185. for (int j = 0; j < block_size; ++j) {
  11186. int i = idx[2*j];
  11187. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  11188. sumw[j+1] = sumw[j] + weight[i];
  11189. }
  11190. }
  11191. float best_score = 0, scale = max;
  11192. int besti1 = -1, besti2 = -1, best_shift = 0;
  11193. for (int i1 = 0; i1 <= block_size; ++i1) {
  11194. for (int i2 = i1; i2 <= block_size; ++i2) {
  11195. float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2];
  11196. float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2];
  11197. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11198. scale = sumqx/sumq2; best_score = scale*sumqx;
  11199. besti1 = i1; besti2 = i2; best_shift = 1;
  11200. }
  11201. sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2];
  11202. sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2];
  11203. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11204. scale = sumqx/sumq2; best_score = scale*sumqx;
  11205. besti1 = i1; besti2 = i2; best_shift = -1;
  11206. }
  11207. }
  11208. }
  11209. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
  11210. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  11211. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  11212. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  11213. if (scale < 0) {
  11214. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  11215. scale = -scale; best_shift = -best_shift;
  11216. }
  11217. bool all_on_grid = true;
  11218. const float * xx = best_shift == 1 ? x_p : x_m;
  11219. for (int k = 0; k < block_size/8; ++k) {
  11220. uint16_t u = 0;
  11221. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  11222. int grid_index = kmap_q2xs[u];
  11223. if (grid_index < 0) {
  11224. all_on_grid = false;
  11225. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11226. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  11227. GGML_ASSERT(grid_index >= 0);
  11228. }
  11229. index[k] = grid_index;
  11230. }
  11231. if (!all_on_grid) {
  11232. float sumqx = 0, sumq2 = 0;
  11233. for (int k = 0; k < block_size/8; ++k) {
  11234. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  11235. for (int j = 0; j < 8; ++j) {
  11236. float w = weight[8*k + j];
  11237. float q = xx[(pg[j] - 1)/2];
  11238. sumqx += w*q*xb[8*k+j];
  11239. sumq2 += w*q*q;
  11240. }
  11241. }
  11242. if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
  11243. }
  11244. uint16_t h = 0;
  11245. for (int k = 0; k < block_size/8; ++k) {
  11246. y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255;
  11247. h |= (index[k] >> 8) << 3*k;
  11248. }
  11249. y[ibl].qh[ib] = h;
  11250. GGML_ASSERT(scale >= 0);
  11251. scales[ib] = scale;
  11252. shifts[ib] = best_shift;
  11253. max_scale = MAX(max_scale, scale);
  11254. }
  11255. if (!max_scale) {
  11256. continue;
  11257. }
  11258. float d = max_scale/15;
  11259. y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
  11260. float id = 1/d;
  11261. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11262. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11263. l = MAX(0, MIN(7, l));
  11264. if (shifts[ib] == -1) l |= 8;
  11265. y[ibl].qh[ib] |= (l << 12);
  11266. }
  11267. }
  11268. }
  11269. size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11270. GGML_ASSERT(n_per_row%QK_K == 0);
  11271. float scales[QK_K/IQ1S_BLOCK_SIZE];
  11272. float weight[IQ1S_BLOCK_SIZE];
  11273. int8_t L[IQ1S_BLOCK_SIZE];
  11274. float sumx[IQ1S_BLOCK_SIZE+1];
  11275. float sumw[IQ1S_BLOCK_SIZE+1];
  11276. float pairs[2*IQ1S_BLOCK_SIZE];
  11277. uint16_t index[IQ1S_BLOCK_SIZE/8];
  11278. int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
  11279. int64_t nblock = n_per_row/QK_K;
  11280. char * qrow = (char *)dst;
  11281. for (int64_t row = 0; row < nrow; ++row) {
  11282. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
  11283. src += n_per_row;
  11284. qrow += nblock*sizeof(block_iq1_s);
  11285. }
  11286. return nrow * nblock * sizeof(block_iq1_s);
  11287. }
  11288. static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  11289. float * scales,
  11290. float * weight,
  11291. float * pairs,
  11292. int8_t * L,
  11293. uint16_t * index,
  11294. int8_t * shifts) {
  11295. const int gindex = iq2_data_index(GGML_TYPE_IQ1_M);
  11296. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11297. const int * kmap_q2xs = iq2_data[gindex].map;
  11298. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11299. //GGML_ASSERT(quant_weights && "missing quantization weights");
  11300. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11301. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11302. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11303. GGML_ASSERT(n%QK_K == 0);
  11304. block_iq1_m * y = vy;
  11305. const int64_t nbl = n/QK_K;
  11306. const int block_size = IQ1M_BLOCK_SIZE;
  11307. const float x_p[3] = {-1 + IQ1M_DELTA, IQ1M_DELTA, 1 + IQ1M_DELTA};
  11308. const float x_m[3] = {-1 - IQ1M_DELTA, -IQ1M_DELTA, 1 - IQ1M_DELTA};
  11309. const uint8_t masks[4] = {0x00, 0x80, 0x08, 0x88};
  11310. int * idx = (int *)(pairs + 1);
  11311. float sumqx[4], sumq2[4];
  11312. iq1m_scale_t s;
  11313. const float * xx;
  11314. for (int ibl = 0; ibl < nbl; ++ibl) {
  11315. #if QK_K == 64
  11316. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11317. #endif
  11318. memset(y[ibl].qs, 0, QK_K/8);
  11319. memset(y[ibl].qh, 0, QK_K/16);
  11320. memset(y[ibl].scales, 0, QK_K/32);
  11321. float max_scale = 0;
  11322. const float * xbl = x + QK_K*ibl;
  11323. float sumx2 = 0;
  11324. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11325. float sigma2 = 2*sumx2/QK_K;
  11326. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11327. const float * xb = xbl + block_size*ib;
  11328. if (quant_weights) {
  11329. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11330. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11331. } else {
  11332. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11333. }
  11334. float max = fabsf(xb[0]);
  11335. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  11336. if (max < GROUP_MAX_EPS_IQ1_M) {
  11337. scales[ib] = 0;
  11338. memset(L, 1, block_size);
  11339. continue;
  11340. }
  11341. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  11342. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  11343. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  11344. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  11345. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  11346. // for each possible and score for each split.
  11347. for (int j = 0; j < block_size; ++j) {
  11348. pairs[2*j] = xb[j];
  11349. idx[2*j] = j;
  11350. }
  11351. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  11352. float best_score = 0, scale = max;
  11353. int besti1 = -1, besti2 = -1, best_k = -1;
  11354. // 0: +, +
  11355. // 1: +, -
  11356. // 2: -, +
  11357. // 3: -, -
  11358. for (int i1 = 0; i1 <= block_size; ++i1) {
  11359. for (int i2 = i1; i2 <= block_size; ++i2) {
  11360. memset(sumqx, 0, 4*sizeof(float));
  11361. memset(sumq2, 0, 4*sizeof(float));
  11362. for (int j = 0; j < i1; ++j) {
  11363. int i = idx[2*j];
  11364. if (i < block_size/2) {
  11365. sumqx[0] += weight[i]*x_p[0]*xb[i];
  11366. sumqx[1] += weight[i]*x_p[0]*xb[i];
  11367. sumqx[2] += weight[i]*x_m[0]*xb[i];
  11368. sumqx[3] += weight[i]*x_m[0]*xb[i];
  11369. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  11370. sumq2[1] += weight[i]*x_p[0]*x_p[0];
  11371. sumq2[2] += weight[i]*x_m[0]*x_m[0];
  11372. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  11373. } else {
  11374. sumqx[0] += weight[i]*x_p[0]*xb[i];
  11375. sumqx[2] += weight[i]*x_p[0]*xb[i];
  11376. sumqx[1] += weight[i]*x_m[0]*xb[i];
  11377. sumqx[3] += weight[i]*x_m[0]*xb[i];
  11378. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  11379. sumq2[2] += weight[i]*x_p[0]*x_p[0];
  11380. sumq2[1] += weight[i]*x_m[0]*x_m[0];
  11381. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  11382. }
  11383. }
  11384. for (int j = i1; j < i2; ++j) {
  11385. int i = idx[2*j];
  11386. if (i < block_size/2) {
  11387. sumqx[0] += weight[i]*x_p[1]*xb[i];
  11388. sumqx[1] += weight[i]*x_p[1]*xb[i];
  11389. sumqx[2] += weight[i]*x_m[1]*xb[i];
  11390. sumqx[3] += weight[i]*x_m[1]*xb[i];
  11391. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  11392. sumq2[1] += weight[i]*x_p[1]*x_p[1];
  11393. sumq2[2] += weight[i]*x_m[1]*x_m[1];
  11394. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  11395. } else {
  11396. sumqx[0] += weight[i]*x_p[1]*xb[i];
  11397. sumqx[2] += weight[i]*x_p[1]*xb[i];
  11398. sumqx[1] += weight[i]*x_m[1]*xb[i];
  11399. sumqx[3] += weight[i]*x_m[1]*xb[i];
  11400. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  11401. sumq2[2] += weight[i]*x_p[1]*x_p[1];
  11402. sumq2[1] += weight[i]*x_m[1]*x_m[1];
  11403. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  11404. }
  11405. }
  11406. for (int j = i2; j < block_size; ++j) {
  11407. int i = idx[2*j];
  11408. if (i < block_size/2) {
  11409. sumqx[0] += weight[i]*x_p[2]*xb[i];
  11410. sumqx[1] += weight[i]*x_p[2]*xb[i];
  11411. sumqx[2] += weight[i]*x_m[2]*xb[i];
  11412. sumqx[3] += weight[i]*x_m[2]*xb[i];
  11413. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  11414. sumq2[1] += weight[i]*x_p[2]*x_p[2];
  11415. sumq2[2] += weight[i]*x_m[2]*x_m[2];
  11416. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  11417. } else {
  11418. sumqx[0] += weight[i]*x_p[2]*xb[i];
  11419. sumqx[2] += weight[i]*x_p[2]*xb[i];
  11420. sumqx[1] += weight[i]*x_m[2]*xb[i];
  11421. sumqx[3] += weight[i]*x_m[2]*xb[i];
  11422. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  11423. sumq2[2] += weight[i]*x_p[2]*x_p[2];
  11424. sumq2[1] += weight[i]*x_m[2]*x_m[2];
  11425. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  11426. }
  11427. }
  11428. for (int k = 0; k < 4; ++k) {
  11429. if (sumq2[k] > 0 && sumqx[k]*sumqx[k] > best_score*sumq2[k]) {
  11430. scale = sumqx[k]/sumq2[k]; best_score = scale*sumqx[k];
  11431. besti1 = i1; besti2 = i2; best_k = k;
  11432. }
  11433. }
  11434. }
  11435. }
  11436. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0);
  11437. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  11438. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  11439. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  11440. if (scale < 0) {
  11441. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  11442. scale = -scale;
  11443. best_k = best_k == 0 ? 3 : best_k == 1 ? 2 : best_k == 2 ? 1 : 0;
  11444. }
  11445. bool all_on_grid = true;
  11446. for (int k = 0; k < block_size/8; ++k) {
  11447. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  11448. else xx = best_k%2 == 0 ? x_p : x_m;
  11449. uint16_t u = 0;
  11450. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  11451. int grid_index = kmap_q2xs[u];
  11452. if (grid_index < 0) {
  11453. all_on_grid = false;
  11454. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11455. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  11456. GGML_ASSERT(grid_index >= 0);
  11457. }
  11458. index[k] = grid_index;
  11459. }
  11460. if (!all_on_grid) {
  11461. float sumqx_f = 0, sumq2_f = 0;
  11462. for (int k = 0; k < block_size/8; ++k) {
  11463. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  11464. else xx = best_k%2 == 0 ? x_p : x_m;
  11465. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  11466. for (int j = 0; j < 8; ++j) {
  11467. float w = weight[8*k + j];
  11468. float q = xx[(pg[j] - 1)/2];
  11469. sumqx_f += w*q*xb[8*k+j];
  11470. sumq2_f += w*q*q;
  11471. }
  11472. }
  11473. if (sumqx_f > 0 && sumq2_f > 0) scale = sumqx_f/sumq2_f;
  11474. }
  11475. y[ibl].qs[2*ib + 0] = index[0] & 255;
  11476. y[ibl].qs[2*ib + 1] = index[1] & 255;
  11477. y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4);
  11478. GGML_ASSERT(scale >= 0);
  11479. scales[ib] = scale;
  11480. shifts[ib] = best_k;
  11481. max_scale = MAX(max_scale, scale);
  11482. }
  11483. if (!max_scale) {
  11484. continue;
  11485. }
  11486. uint16_t * sc = (uint16_t *)y[ibl].scales;
  11487. #if QK_K == 64
  11488. float d = max_scale/31;
  11489. #else
  11490. float d = max_scale/15;
  11491. #endif
  11492. float id = 1/d;
  11493. float sumqx_f = 0, sumq2_f = 0;
  11494. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11495. int l = nearest_int(0.5f*(id*scales[ib+0]-1));
  11496. #if QK_K == 64
  11497. l = MAX(0, MIN(15, l));
  11498. sc[ib/4] |= (l << 4*(ib%4));
  11499. #else
  11500. l = MAX(0, MIN(7, l));
  11501. sc[ib/4] |= (l << 3*(ib%4));
  11502. #endif
  11503. y[ibl].qh[ib] |= masks[shifts[ib]];
  11504. const float * xb = xbl + block_size*ib;
  11505. if (quant_weights) {
  11506. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11507. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11508. } else {
  11509. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11510. }
  11511. for (int k = 0; k < block_size/8; ++k) {
  11512. if (k == 0) xx = shifts[ib] < 2 ? x_p : x_m;
  11513. else xx = shifts[ib]%2 == 0 ? x_p : x_m;
  11514. const int8_t * pg = (const int8_t *)(kgrid_q2xs + y[ibl].qs[2*ib+k] + ((y[ibl].qh[ib] << (8 - 4*k)) & 0x700));
  11515. for (int j = 0; j < 8; ++j) {
  11516. float w = weight[8*k + j];
  11517. float q = xx[(pg[j] - 1)/2]*(2*l+1);
  11518. sumqx_f += w*q*xb[8*k+j];
  11519. sumq2_f += w*q*q;
  11520. }
  11521. }
  11522. }
  11523. if (sumq2_f > 0) d = sumqx_f/sumq2_f;
  11524. s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed.
  11525. #if QK_K == 64
  11526. y[ibl].d = s.f16;
  11527. #else
  11528. sc[0] |= ((s.u16 & 0x000f) << 12);
  11529. sc[1] |= ((s.u16 & 0x00f0) << 8);
  11530. sc[2] |= ((s.u16 & 0x0f00) << 4);
  11531. sc[3] |= ((s.u16 & 0xf000) << 0);
  11532. #endif
  11533. }
  11534. }
  11535. size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11536. GGML_ASSERT(n_per_row%QK_K == 0);
  11537. float scales[QK_K/IQ1M_BLOCK_SIZE];
  11538. float weight[IQ1M_BLOCK_SIZE];
  11539. int8_t L[IQ1M_BLOCK_SIZE];
  11540. float pairs[2*IQ1M_BLOCK_SIZE];
  11541. uint16_t index[IQ1M_BLOCK_SIZE/8];
  11542. int8_t shifts[QK_K/IQ1M_BLOCK_SIZE];
  11543. int64_t nblock = n_per_row/QK_K;
  11544. char * qrow = (char *)dst;
  11545. for (int64_t row = 0; row < nrow; ++row) {
  11546. quantize_row_iq1_m_impl(src, qrow, n_per_row, quant_weights, scales, weight, pairs, L, index, shifts);
  11547. src += n_per_row;
  11548. qrow += nblock*sizeof(block_iq1_m);
  11549. }
  11550. return nrow * nblock * sizeof(block_iq1_m);
  11551. }
  11552. // ============================ 4-bit non-linear quants
  11553. static inline int best_index_int8(int n, const int8_t * val, float x) {
  11554. if (x <= val[0]) return 0;
  11555. if (x >= val[n-1]) return n-1;
  11556. int ml = 0, mu = n-1;
  11557. while (mu-ml > 1) {
  11558. int mav = (ml+mu)/2;
  11559. if (x < val[mav]) mu = mav; else ml = mav;
  11560. }
  11561. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  11562. }
  11563. static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x,
  11564. ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
  11565. float * scales, float * weight, uint8_t * L,
  11566. const int8_t * values,
  11567. const float * quant_weights,
  11568. const int ntry) {
  11569. float sigma2 = 0;
  11570. for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
  11571. sigma2 *= 2.f/super_block_size;
  11572. memset(q4, 0, super_block_size/2);
  11573. dh[0] = GGML_FP32_TO_FP16(0.f);
  11574. float max_scale = 0, amax_scale = 0;
  11575. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  11576. const float * xb = x + ib*block_size;
  11577. uint8_t * Lb = L + ib*block_size;
  11578. if (quant_weights) {
  11579. const float * qw = quant_weights + ib*block_size;
  11580. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  11581. } else {
  11582. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  11583. }
  11584. float amax = 0, max = 0;
  11585. for (int j = 0; j < block_size; ++j) {
  11586. float ax = fabsf(xb[j]);
  11587. if (ax > amax) {
  11588. amax = ax; max = xb[j];
  11589. }
  11590. }
  11591. if (amax < GROUP_MAX_EPS) {
  11592. scales[ib] = 0;
  11593. continue;
  11594. }
  11595. float d = ntry > 0 ? -max/values[0] : max/values[0];
  11596. float id = 1/d;
  11597. float sumqx = 0, sumq2 = 0;
  11598. for (int j = 0; j < block_size; ++j) {
  11599. float al = id*xb[j];
  11600. int l = best_index_int8(16, values, al);
  11601. Lb[j] = l;
  11602. float q = values[l];
  11603. float w = weight[j];
  11604. sumqx += w*q*xb[j];
  11605. sumq2 += w*q*q;
  11606. }
  11607. d = sumqx/sumq2;
  11608. float best = d*sumqx;
  11609. for (int itry = -ntry; itry <= ntry; ++itry) {
  11610. id = (itry + values[0])/max;
  11611. sumqx = sumq2 = 0;
  11612. for (int j = 0; j < block_size; ++j) {
  11613. float al = id*xb[j];
  11614. int l = best_index_int8(16, values, al);
  11615. float q = values[l];
  11616. float w = weight[j];
  11617. sumqx += w*q*xb[j];
  11618. sumq2 += w*q*q;
  11619. }
  11620. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11621. d = sumqx/sumq2; best = d * sumqx;
  11622. }
  11623. }
  11624. scales[ib] = d;
  11625. float abs_d = fabsf(d);
  11626. if (abs_d > amax_scale) {
  11627. amax_scale = abs_d; max_scale = d;
  11628. }
  11629. }
  11630. if (super_block_size/block_size > 1) {
  11631. int nb = super_block_size/block_size;
  11632. memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t));
  11633. float d = -max_scale/32;
  11634. dh[0] = GGML_FP32_TO_FP16(d);
  11635. float id = d ? 1/d : 0.f;
  11636. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  11637. int l = nearest_int(id*scales[ib]);
  11638. l = MAX(-32, MIN(31, l));
  11639. float dl = d * l;
  11640. float idl = dl ? 1/dl : 0.f;
  11641. uint8_t * Lb = L + ib*block_size;
  11642. const float * xb = x + ib*block_size;
  11643. for (int j = 0; j < block_size; ++j) {
  11644. Lb[j] = best_index_int8(16, values, idl*xb[j]);
  11645. }
  11646. l += 32;
  11647. uint8_t l_l = l & 0xf;
  11648. uint8_t l_h = l >> 4;
  11649. if (ib%2 == 0) scales_l[ib/2] = l_l;
  11650. else scales_l[ib/2] |= (l_l << 4);
  11651. scales_h[ib/8] |= (l_h << 2*(ib%8));
  11652. }
  11653. } else {
  11654. dh[0] = GGML_FP32_TO_FP16(scales[0]);
  11655. if (ntry > 0) {
  11656. float id = scales[0] ? 1/scales[0] : 0;
  11657. for (int j = 0; j < super_block_size; ++j) {
  11658. L[j] = best_index_int8(16, values, id*x[j]);
  11659. }
  11660. }
  11661. }
  11662. for (int i = 0; i < super_block_size/32; ++i) {
  11663. for (int j = 0; j < 16; ++j) {
  11664. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  11665. }
  11666. }
  11667. }
  11668. size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11669. GGML_ASSERT(n_per_row%QK4_NL == 0);
  11670. int64_t nblock = n_per_row/QK4_NL;
  11671. char * qrow = (char *)dst;
  11672. uint8_t L[QK4_NL];
  11673. float weight[QK4_NL];
  11674. uint16_t unused_h;
  11675. uint8_t * unused_l = NULL;
  11676. float scale;
  11677. for (int64_t row = 0; row < nrow; ++row) {
  11678. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  11679. for (int ibl = 0; ibl < nblock; ++ibl) {
  11680. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  11681. quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  11682. &scale, weight, L, kvalues_iq4nl, qw, 7);
  11683. }
  11684. src += n_per_row;
  11685. qrow += nblock*sizeof(block_iq4_nl);
  11686. }
  11687. return nrow * nblock * sizeof(block_iq4_nl);
  11688. }
  11689. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int64_t k) {
  11690. GGML_ASSERT(k%QK4_NL == 0);
  11691. int64_t nblock = k/QK4_NL;
  11692. uint8_t L[QK4_NL];
  11693. float weight[QK4_NL];
  11694. uint16_t unused_h;
  11695. uint8_t * unused_l = NULL;
  11696. float scale;
  11697. block_iq4_nl * iq4 = (block_iq4_nl *)vy;
  11698. for (int ibl = 0; ibl < nblock; ++ibl) {
  11699. quantize_row_iq4_nl_impl(QK4_NL, 32, x + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  11700. &scale, weight, L, kvalues_iq4nl, NULL, -1);
  11701. }
  11702. }
  11703. void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int64_t k) {
  11704. assert(k % QK4_NL == 0);
  11705. quantize_row_iq4_nl(x, y, k);
  11706. }
  11707. size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11708. #if QK_K == 64
  11709. return quantize_iq4_nl(src, dst, nrow, n_per_row, quant_weights);
  11710. #else
  11711. GGML_ASSERT(n_per_row%QK_K == 0);
  11712. int64_t nblock = n_per_row/QK_K;
  11713. char * qrow = (char *)dst;
  11714. uint8_t L[QK_K];
  11715. float weight[32];
  11716. float scales[QK_K/32];
  11717. for (int64_t row = 0; row < nrow; ++row) {
  11718. block_iq4_xs * iq4 = (block_iq4_xs *)qrow;
  11719. for (int ibl = 0; ibl < nblock; ++ibl) {
  11720. const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
  11721. quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
  11722. scales, weight, L, kvalues_iq4nl, qw, 7);
  11723. }
  11724. src += n_per_row;
  11725. qrow += nblock*sizeof(block_iq4_xs);
  11726. }
  11727. return nrow * nblock * sizeof(block_iq4_xs);
  11728. #endif
  11729. }
  11730. void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int64_t k) {
  11731. assert(k % QK_K == 0);
  11732. block_iq4_xs * restrict y = vy;
  11733. quantize_row_iq4_xs_reference(x, y, k);
  11734. }
  11735. void quantize_row_iq4_xs_reference(const float * restrict x, block_iq4_xs * restrict y, int64_t k) {
  11736. assert(k % QK_K == 0);
  11737. quantize_iq4_xs(x, y, 1, k, NULL);
  11738. }
  11739. // =============================== 2.5625 bpw
  11740. static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  11741. const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);
  11742. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11743. const int * kmap_q2xs = iq2_data[gindex].map;
  11744. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11745. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11746. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11747. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11748. GGML_ASSERT(n%QK_K == 0);
  11749. const int kMaxQ = 3;
  11750. const int64_t nbl = n/QK_K;
  11751. block_iq2_s * y = vy;
  11752. float scales[QK_K/16];
  11753. float weight[16];
  11754. float xval[16];
  11755. int8_t L[16];
  11756. int8_t Laux[16];
  11757. float waux[16];
  11758. bool is_on_grid[2];
  11759. bool is_on_grid_aux[2];
  11760. uint8_t block_signs[2];
  11761. for (int ibl = 0; ibl < nbl; ++ibl) {
  11762. memset(&y[ibl], 0, sizeof(block_iq2_s));
  11763. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11764. float max_scale = 0;
  11765. const float * xbl = x + QK_K*ibl;
  11766. float sumx2 = 0;
  11767. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11768. float sigma2 = 2*sumx2/QK_K;
  11769. for (int ib = 0; ib < QK_K/16; ++ib) {
  11770. const float * xb = xbl + 16*ib;
  11771. if (quant_weights) {
  11772. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  11773. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11774. } else {
  11775. for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
  11776. }
  11777. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  11778. for (int k = 0; k < 2; ++k) {
  11779. uint8_t s = 0;
  11780. for (int i = 0; i < 8; ++i) {
  11781. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11782. else {
  11783. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  11784. }
  11785. }
  11786. block_signs[k] = s;
  11787. }
  11788. float max = xval[0];
  11789. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  11790. if (max < GROUP_MAX_EPS_IQ2_S) {
  11791. scales[ib] = 0;
  11792. continue;
  11793. }
  11794. float best = 0;
  11795. float scale = max/(2*kMaxQ-1);
  11796. is_on_grid[0] = is_on_grid[1] = true;
  11797. for (int is = -9; is <= 9; ++is) {
  11798. float id = (2*kMaxQ-1+is*0.1f)/max;
  11799. float this_scale = 1/id;
  11800. for (int k = 0; k < 2; ++k) {
  11801. for (int i = 0; i < 8; ++i) {
  11802. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11803. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11804. }
  11805. uint16_t u = 0;
  11806. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  11807. int grid_index = kmap_q2xs[u];
  11808. is_on_grid_aux[k] = true;
  11809. if (grid_index < 0) {
  11810. is_on_grid_aux[k] = false;
  11811. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11812. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  11813. }
  11814. }
  11815. float sumqx = 0, sumq2 = 0;
  11816. for (int i = 0; i < 16; ++i) {
  11817. float w = weight[i];
  11818. float q = 2*Laux[i] + 1;
  11819. sumqx += w*xval[i]*q;
  11820. sumq2 += w*q*q;
  11821. }
  11822. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11823. scale = sumqx/sumq2; best = scale*sumqx;
  11824. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  11825. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11826. }
  11827. }
  11828. int n_not_ongrid = 0;
  11829. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11830. if (n_not_ongrid > 0 && scale > 0) {
  11831. float id = 1/scale;
  11832. for (int k = 0; k < 2; ++k) {
  11833. if (is_on_grid[k]) continue;
  11834. uint16_t u = 0;
  11835. for (int i = 0; i < 8; ++i) {
  11836. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11837. l = MAX(0, MIN(kMaxQ-1, l));
  11838. u |= (l << 2*i);
  11839. L[8*k + i] = l;
  11840. }
  11841. int grid_index = kmap_q2xs[u];
  11842. if (grid_index < 0) {
  11843. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11844. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  11845. }
  11846. }
  11847. float sumqx = 0, sumq2 = 0;
  11848. for (int i = 0; i < 16; ++i) {
  11849. float w = weight[i];
  11850. float q = 2*L[i] + 1;
  11851. sumqx += w*xval[i]*q;
  11852. sumq2 += w*q*q;
  11853. }
  11854. if (sumq2 > 0) scale = sumqx/sumq2;
  11855. }
  11856. if (scale < 0) {
  11857. scale = -scale;
  11858. for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
  11859. }
  11860. for (int k = 0; k < 2; ++k) {
  11861. uint16_t u = 0;
  11862. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  11863. int grid_index = kmap_q2xs[u];
  11864. if (grid_index < 0) {
  11865. printf("Oops: found point %u not on grid:", u);
  11866. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  11867. printf("\n");
  11868. GGML_ASSERT(false);
  11869. }
  11870. const int i8 = 2*ib + k;
  11871. y[ibl].qs[i8] = grid_index & 255;
  11872. y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
  11873. y[ibl].qs[QK_K/8 + i8] = block_signs[k];
  11874. }
  11875. GGML_ASSERT(scale >= 0);
  11876. scales[ib] = scale;
  11877. max_scale = MAX(max_scale, scale);
  11878. }
  11879. if (!max_scale) {
  11880. continue;
  11881. }
  11882. float d = max_scale/31;
  11883. y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
  11884. float id = 1/d;
  11885. for (int ib = 0; ib < QK_K/16; ++ib) {
  11886. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11887. l = MAX(0, MIN(15, l));
  11888. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  11889. else y[ibl].scales[ib/2] |= (l << 4);
  11890. }
  11891. }
  11892. }
  11893. size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11894. GGML_ASSERT(n_per_row%QK_K == 0);
  11895. int64_t nblock = n_per_row/QK_K;
  11896. char * qrow = (char *)dst;
  11897. for (int64_t row = 0; row < nrow; ++row) {
  11898. quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
  11899. src += n_per_row;
  11900. qrow += nblock*sizeof(block_iq2_s);
  11901. }
  11902. return nrow * nblock * sizeof(block_iq2_s);
  11903. }
  11904. void quantize_row_iq2_s_reference(const float * restrict x, block_iq2_s * restrict y, int64_t k) {
  11905. assert(k % QK_K == 0);
  11906. quantize_iq2_s(x, y, 1, k, NULL);
  11907. }
  11908. void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k) {
  11909. assert(k % QK_K == 0);
  11910. block_iq2_s * restrict y = vy;
  11911. quantize_row_iq2_s_reference(x, y, k);
  11912. }
  11913. static bool validate_float(float f, size_t i) {
  11914. if (isinf(f)) {
  11915. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  11916. return false;
  11917. }
  11918. if (isnan(f)) {
  11919. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  11920. return false;
  11921. }
  11922. return true;
  11923. }
  11924. static bool isinf_fp16(ggml_fp16_t f) {
  11925. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
  11926. }
  11927. static bool isnan_fp16(ggml_fp16_t f) {
  11928. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
  11929. }
  11930. static bool validate_fp16(ggml_fp16_t f, size_t i) {
  11931. if (isinf_fp16(f)) {
  11932. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  11933. return false;
  11934. }
  11935. if (isnan_fp16(f)) {
  11936. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  11937. return false;
  11938. }
  11939. return true;
  11940. }
  11941. #define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
  11942. const type * q = (const type *) (data); \
  11943. for (size_t i = 0; i < (nb); ++i) { \
  11944. if (!validate_fp16(q[i].d, i)) { \
  11945. return false; \
  11946. } \
  11947. }
  11948. #define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
  11949. const type * q = (const type *) (data); \
  11950. for (size_t i = 0; i < (nb); ++i) { \
  11951. if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
  11952. return false; \
  11953. } \
  11954. }
  11955. bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
  11956. if (type < 0 || type >= GGML_TYPE_COUNT) {
  11957. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  11958. return false;
  11959. }
  11960. if (nbytes % ggml_type_size(type) != 0) {
  11961. fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type);
  11962. return false;
  11963. }
  11964. const size_t nb = nbytes/ggml_type_size(type);
  11965. switch (type) {
  11966. case GGML_TYPE_BF16:
  11967. {
  11968. int nans = 0;
  11969. int infs = 0;
  11970. const unsigned short * f = (const unsigned short *) data;
  11971. for (size_t i = 0; i < nb; ++i) {
  11972. nans += (f[i] & 0x7fff) > 0x7f80;
  11973. infs += (f[i] & 0x7fff) == 0x7f80;
  11974. }
  11975. if (nans) {
  11976. fprintf(stderr, "%s: found %d NaNs in row of %zu BF16 values\n", __func__, nans, nb);
  11977. return false;
  11978. }
  11979. if (infs) {
  11980. fprintf(stderr, "%s: found %d infinities in row of %zu BF16 values\n", __func__, infs, nb);
  11981. return false;
  11982. }
  11983. } break;
  11984. case GGML_TYPE_F16:
  11985. {
  11986. const ggml_fp16_t * f = (const ggml_fp16_t *) data;
  11987. size_t i = 0;
  11988. #if defined(__AVX2__)
  11989. for (; i + 15 < nb; i += 16) {
  11990. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  11991. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
  11992. __m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
  11993. int mask = _mm256_movemask_epi8(cmp);
  11994. if (mask) {
  11995. for (size_t j = 0; j < 16; ++j) {
  11996. if (!validate_fp16(f[i + j], i + j)) {
  11997. return false;
  11998. }
  11999. }
  12000. GGML_UNREACHABLE();
  12001. }
  12002. }
  12003. #elif defined(__ARM_NEON)
  12004. for (; i + 7 < nb; i += 8) {
  12005. uint16x8_t v = vld1q_u16(f + i);
  12006. uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
  12007. uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
  12008. uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
  12009. if (mask) {
  12010. for (size_t j = 0; j < 8; ++j) {
  12011. if (!validate_fp16(f[i + j], i + j)) {
  12012. return false;
  12013. }
  12014. }
  12015. GGML_UNREACHABLE();
  12016. }
  12017. }
  12018. #endif
  12019. for (; i < nb; ++i) {
  12020. if (!validate_fp16(f[i], i)) {
  12021. return false;
  12022. }
  12023. }
  12024. } break;
  12025. case GGML_TYPE_F32:
  12026. {
  12027. const float * f = (const float *) data;
  12028. size_t i = 0;
  12029. #if defined(__AVX2__)
  12030. for (; i + 7 < nb; i += 8) {
  12031. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  12032. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
  12033. __m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
  12034. int mask = _mm256_movemask_epi8(cmp);
  12035. if (mask) {
  12036. for (size_t j = 0; j < 8; ++j) {
  12037. if (!validate_float(f[i + j], i + j)) {
  12038. return false;
  12039. }
  12040. }
  12041. GGML_UNREACHABLE();
  12042. }
  12043. }
  12044. #elif defined(__ARM_NEON)
  12045. for (; i + 3 < nb; i += 4) {
  12046. uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
  12047. uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
  12048. uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
  12049. uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
  12050. if (mask) {
  12051. for (size_t j = 0; j < 4; ++j) {
  12052. if (!validate_float(f[i + j], i + j)) {
  12053. return false;
  12054. }
  12055. }
  12056. GGML_UNREACHABLE();
  12057. }
  12058. }
  12059. #endif
  12060. for (; i < nb; ++i) {
  12061. if (!validate_float(f[i], i)) {
  12062. return false;
  12063. }
  12064. }
  12065. } break;
  12066. case GGML_TYPE_F64:
  12067. {
  12068. const double * f = (const double *) data;
  12069. for (size_t i = 0; i < nb; ++i) {
  12070. if (!validate_float(f[i], i)) {
  12071. return false;
  12072. }
  12073. }
  12074. } break;
  12075. case GGML_TYPE_Q4_0:
  12076. {
  12077. VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
  12078. } break;
  12079. case GGML_TYPE_Q4_1:
  12080. {
  12081. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
  12082. } break;
  12083. case GGML_TYPE_Q5_0:
  12084. {
  12085. VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
  12086. } break;
  12087. case GGML_TYPE_Q5_1:
  12088. {
  12089. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
  12090. } break;
  12091. case GGML_TYPE_Q8_0:
  12092. {
  12093. VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
  12094. } break;
  12095. case GGML_TYPE_Q2_K:
  12096. {
  12097. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
  12098. } break;
  12099. case GGML_TYPE_Q3_K:
  12100. {
  12101. VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
  12102. } break;
  12103. case GGML_TYPE_Q4_K:
  12104. {
  12105. #ifdef GGML_QKK_64
  12106. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d[0], d[1]);
  12107. #else
  12108. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
  12109. #endif
  12110. } break;
  12111. case GGML_TYPE_Q5_K:
  12112. {
  12113. #ifdef GGML_QKK_64
  12114. VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_K, data, nb);
  12115. #else
  12116. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
  12117. #endif
  12118. } break;
  12119. case GGML_TYPE_Q6_K:
  12120. {
  12121. VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
  12122. } break;
  12123. case GGML_TYPE_Q8_K:
  12124. {
  12125. const block_q8_K * q = (const block_q8_K *) data;
  12126. for (size_t i = 0; i < nb; ++i) {
  12127. if (!validate_float(q[i].d, i)) {
  12128. return false;
  12129. }
  12130. }
  12131. } break;
  12132. case GGML_TYPE_IQ1_S:
  12133. {
  12134. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
  12135. } break;
  12136. case GGML_TYPE_IQ1_M:
  12137. {
  12138. const block_iq1_m * q = (const block_iq1_m *) data;
  12139. for (size_t i = 0; i < nb; ++i) {
  12140. #if QK_K == 64
  12141. if (!validate_fp16(q[i].d, i)) {
  12142. return false;
  12143. }
  12144. #else
  12145. iq1m_scale_t scale;
  12146. const uint16_t * sc = (const uint16_t *)q[i].scales;
  12147. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  12148. if (!validate_fp16(scale.f16, i)) {
  12149. return false;
  12150. }
  12151. #endif
  12152. }
  12153. } break;
  12154. case GGML_TYPE_IQ2_XXS:
  12155. {
  12156. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
  12157. } break;
  12158. case GGML_TYPE_IQ2_XS:
  12159. {
  12160. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
  12161. } break;
  12162. case GGML_TYPE_IQ2_S:
  12163. {
  12164. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
  12165. } break;
  12166. case GGML_TYPE_IQ3_XXS:
  12167. {
  12168. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
  12169. } break;
  12170. case GGML_TYPE_IQ3_S:
  12171. {
  12172. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
  12173. } break;
  12174. case GGML_TYPE_IQ4_XS:
  12175. #if QK_K != 64
  12176. {
  12177. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
  12178. } break;
  12179. #endif
  12180. // with QK_K == 64, iq4_xs is iq4_nl
  12181. case GGML_TYPE_IQ4_NL:
  12182. {
  12183. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
  12184. } break;
  12185. case GGML_TYPE_I8:
  12186. case GGML_TYPE_I16:
  12187. case GGML_TYPE_I32:
  12188. case GGML_TYPE_I64:
  12189. // nothing to validate
  12190. break;
  12191. default:
  12192. {
  12193. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  12194. return false;
  12195. }
  12196. }
  12197. return true;
  12198. }