ggml.c 752 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897228982289922900229012290222903229042290522906229072290822909229102291122912229132291422915229162291722918229192292022921229222292322924229252292622927229282292922930229312293222933229342293522936229372293822939229402294122942229432294422945229462294722948229492295022951229522295322954229552295622957229582295922960229612296222963229642296522966229672296822969229702297122972229732297422975229762297722978229792298022981229822298322984229852298622987229882298922990229912299222993229942299522996229972299822999230002300123002230032300423005230062300723008230092301023011230122301323014230152301623017230182301923020230212302223023230242302523026230272302823029230302303123032230332303423035230362303723038230392304023041230422304323044230452304623047230482304923050230512305223053230542305523056230572305823059230602306123062230632306423065230662306723068230692307023071230722307323074230752307623077230782307923080230812308223083230842308523086230872308823089230902309123092230932309423095230962309723098230992310023101231022310323104231052310623107231082310923110231112311223113231142311523116231172311823119231202312123122231232312423125231262312723128231292313023131231322313323134231352313623137231382313923140231412314223143231442314523146231472314823149231502315123152231532315423155231562315723158231592316023161231622316323164231652316623167231682316923170231712317223173231742317523176231772317823179231802318123182231832318423185231862318723188231892319023191231922319323194231952319623197231982319923200232012320223203232042320523206232072320823209232102321123212232132321423215232162321723218232192322023221232222322323224232252322623227232282322923230232312323223233232342323523236232372323823239232402324123242232432324423245232462324723248232492325023251232522325323254232552325623257232582325923260232612326223263232642326523266232672326823269232702327123272232732327423275232762327723278
  1. /**
  2. * llama.cpp - git 059031b8c40e1f4ba60586842c5b1ed3ddf61842
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  27. #define _USE_MATH_DEFINES // For M_PI on MSVC
  28. #include "ggml-impl.h"
  29. #include "ggml-quants.h"
  30. #include "ggml.h"
  31. #if defined(_MSC_VER) || defined(__MINGW32__)
  32. #include <malloc.h> // using malloc.h with MSC/MINGW
  33. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  34. #include <alloca.h>
  35. #endif
  36. #include <assert.h>
  37. #include <errno.h>
  38. #include <time.h>
  39. #include <math.h>
  40. #include <stdlib.h>
  41. #include <string.h>
  42. #include <stdint.h>
  43. #include <inttypes.h>
  44. #include <stdio.h>
  45. #include <float.h>
  46. #include <limits.h>
  47. #include <stdarg.h>
  48. #include <signal.h>
  49. #if defined(__gnu_linux__)
  50. #include <syscall.h>
  51. #endif
  52. #ifdef GGML_USE_METAL
  53. #include <unistd.h>
  54. #endif
  55. #ifdef __ARM_FEATURE_MATMUL_INT8
  56. #undef GGML_USE_LLAMAFILE
  57. #endif
  58. #ifdef GGML_USE_LLAMAFILE
  59. #include "sgemm.h"
  60. #endif
  61. #if defined(_MSC_VER)
  62. // disable "possible loss of data" to avoid hundreds of casts
  63. // we should just be careful :)
  64. #pragma warning(disable: 4244 4267)
  65. // disable POSIX deprecation warnings
  66. // these functions are never going away, anyway
  67. #pragma warning(disable: 4996)
  68. #endif
  69. #if defined(_WIN32)
  70. #define WIN32_LEAN_AND_MEAN
  71. #ifndef NOMINMAX
  72. #define NOMINMAX
  73. #endif
  74. #include <windows.h>
  75. typedef volatile LONG atomic_int;
  76. typedef atomic_int atomic_bool;
  77. static void atomic_store(atomic_int * ptr, LONG val) {
  78. InterlockedExchange(ptr, val);
  79. }
  80. static LONG atomic_load(atomic_int * ptr) {
  81. return InterlockedCompareExchange(ptr, 0, 0);
  82. }
  83. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  84. return InterlockedExchangeAdd(ptr, inc);
  85. }
  86. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  87. return atomic_fetch_add(ptr, -(dec));
  88. }
  89. typedef HANDLE pthread_t;
  90. typedef DWORD thread_ret_t;
  91. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  92. (void) unused;
  93. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  94. if (handle == NULL)
  95. {
  96. return EAGAIN;
  97. }
  98. *out = handle;
  99. return 0;
  100. }
  101. static int pthread_join(pthread_t thread, void * unused) {
  102. (void) unused;
  103. int ret = (int) WaitForSingleObject(thread, INFINITE);
  104. CloseHandle(thread);
  105. return ret;
  106. }
  107. static int sched_yield (void) {
  108. Sleep (0);
  109. return 0;
  110. }
  111. #else
  112. #include <pthread.h>
  113. #include <stdatomic.h>
  114. typedef void * thread_ret_t;
  115. #include <sys/types.h>
  116. #include <sys/stat.h>
  117. #include <unistd.h>
  118. #endif
  119. typedef pthread_t ggml_thread_t;
  120. #ifdef GGML_USE_CPU_HBM
  121. #include <hbwmalloc.h>
  122. #endif
  123. #if defined(__APPLE__)
  124. #include <TargetConditionals.h>
  125. #endif
  126. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  127. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  128. #include <sys/wait.h>
  129. void ggml_print_backtrace(void) {
  130. /*
  131. #include <execinfo.h>
  132. #include <dlfcn.h>
  133. void * trace[100];
  134. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  135. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  136. */
  137. // backtrack_symbols does not show line numbers, use gdb instead
  138. char attach[32];
  139. snprintf(attach, sizeof(attach), "attach %d", getpid());
  140. int pid = fork();
  141. if (pid == 0) {
  142. execlp("gdb", "gdb", "--batch",
  143. "-ex", "set style enabled on",
  144. "-ex", attach,
  145. "-ex", "bt -frame-info source-and-location",
  146. "-ex", "detach",
  147. "-ex", "quit",
  148. (char *) NULL);
  149. } else {
  150. waitpid(pid, NULL, 0);
  151. }
  152. }
  153. #else
  154. void ggml_print_backtrace(void) {
  155. // platform not supported
  156. }
  157. #endif
  158. /*#define GGML_PERF*/
  159. #define GGML_DEBUG 0
  160. #define GGML_GELU_FP16
  161. #define GGML_GELU_QUICK_FP16
  162. #define GGML_SOFT_MAX_UNROLL 4
  163. #define GGML_VEC_DOT_UNROLL 2
  164. #define GGML_VEC_MAD_UNROLL 32
  165. //
  166. // logging
  167. //
  168. #if (GGML_DEBUG >= 1)
  169. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  170. #else
  171. #define GGML_PRINT_DEBUG(...)
  172. #endif
  173. #if (GGML_DEBUG >= 5)
  174. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  175. #else
  176. #define GGML_PRINT_DEBUG_5(...)
  177. #endif
  178. #if (GGML_DEBUG >= 10)
  179. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  180. #else
  181. #define GGML_PRINT_DEBUG_10(...)
  182. #endif
  183. #define GGML_PRINT(...) printf(__VA_ARGS__)
  184. //
  185. // end of logging block
  186. //
  187. #ifdef GGML_USE_ACCELERATE
  188. // uncomment to use vDSP for soft max computation
  189. // note: not sure if it is actually faster
  190. //#define GGML_SOFT_MAX_ACCELERATE
  191. #endif
  192. #if defined(_MSC_VER) || defined(__MINGW32__)
  193. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  194. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  195. #else
  196. inline static void * ggml_aligned_malloc(size_t size) {
  197. if (size == 0) {
  198. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  199. return NULL;
  200. }
  201. void * aligned_memory = NULL;
  202. #ifdef GGML_USE_CPU_HBM
  203. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  204. #elif GGML_USE_METAL
  205. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  206. #else
  207. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  208. #endif
  209. if (result != 0) {
  210. // Handle allocation failure
  211. const char *error_desc = "unknown allocation error";
  212. switch (result) {
  213. case EINVAL:
  214. error_desc = "invalid alignment value";
  215. break;
  216. case ENOMEM:
  217. error_desc = "insufficient memory";
  218. break;
  219. }
  220. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  221. GGML_ASSERT(false);
  222. return NULL;
  223. }
  224. return aligned_memory;
  225. }
  226. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  227. #ifdef GGML_USE_CPU_HBM
  228. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  229. #else
  230. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  231. #endif
  232. #endif
  233. inline static void * ggml_malloc(size_t size) {
  234. if (size == 0) {
  235. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  236. return NULL;
  237. }
  238. void * result = malloc(size);
  239. if (result == NULL) {
  240. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  241. GGML_ASSERT(false);
  242. }
  243. return result;
  244. }
  245. // calloc
  246. inline static void * ggml_calloc(size_t num, size_t size) {
  247. if (num == 0 || size == 0) {
  248. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  249. return NULL;
  250. }
  251. void * result = calloc(num, size);
  252. if (result == NULL) {
  253. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  254. GGML_ASSERT(false);
  255. }
  256. return result;
  257. }
  258. #define GGML_MALLOC(size) ggml_malloc(size)
  259. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  260. #define GGML_FREE(ptr) free(ptr)
  261. #define UNUSED GGML_UNUSED
  262. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  263. #if defined(GGML_USE_ACCELERATE)
  264. #include <Accelerate/Accelerate.h>
  265. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  266. #include "ggml-opencl.h"
  267. #endif
  268. #elif defined(GGML_USE_OPENBLAS)
  269. #if defined(GGML_BLAS_USE_MKL)
  270. #include <mkl.h>
  271. #else
  272. #include <cblas.h>
  273. #endif
  274. #elif defined(GGML_USE_CLBLAST)
  275. #include "ggml-opencl.h"
  276. #endif
  277. // floating point type used to accumulate sums
  278. typedef double ggml_float;
  279. #undef MIN
  280. #undef MAX
  281. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  282. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  283. //
  284. // global data
  285. //
  286. // precomputed gelu table for f16 (128 KB)
  287. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  288. // precomputed quick gelu table for f16 (128 KB)
  289. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  290. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  291. float ggml_table_f32_f16[1 << 16];
  292. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  293. switch (status) {
  294. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  295. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  296. case GGML_STATUS_SUCCESS: return "GGML status: success";
  297. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  298. }
  299. return "GGML status: unknown";
  300. }
  301. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  302. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  303. return GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  307. return GGML_FP32_TO_FP16(x);
  308. }
  309. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  310. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  311. return GGML_BF16_TO_FP32(x); // it just left shifts
  312. }
  313. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  314. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  315. return GGML_FP32_TO_BF16(x);
  316. }
  317. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  318. for (int64_t i = 0; i < n; i++) {
  319. y[i] = GGML_FP16_TO_FP32(x[i]);
  320. }
  321. }
  322. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  323. int64_t i = 0;
  324. #if defined(__F16C__)
  325. for (; i + 7 < n; i += 8) {
  326. __m256 x_vec = _mm256_loadu_ps(x + i);
  327. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  328. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  329. }
  330. for(; i + 3 < n; i += 4) {
  331. __m128 x_vec = _mm_loadu_ps(x + i);
  332. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  333. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  334. }
  335. #endif
  336. for (; i < n; i++) {
  337. y[i] = GGML_FP32_TO_FP16(x[i]);
  338. }
  339. }
  340. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  341. int64_t i = 0;
  342. #if defined(__AVX512F__)
  343. for (; i + 16 <= n; i += 16) {
  344. _mm512_storeu_ps(y + i,
  345. _mm512_castsi512_ps(
  346. _mm512_slli_epi32(
  347. _mm512_cvtepu16_epi32(
  348. _mm256_loadu_si256(
  349. (const __m256i *)(x + i))),
  350. 16)));
  351. }
  352. #elif defined(__AVX2__)
  353. for (; i + 8 <= n; i += 8) {
  354. _mm256_storeu_ps(y + i,
  355. _mm256_castsi256_ps(
  356. _mm256_slli_epi32(
  357. _mm256_cvtepu16_epi32(
  358. _mm_loadu_si128(
  359. (const __m128i *)(x + i))),
  360. 16)));
  361. }
  362. #endif
  363. for (; i < n; i++) {
  364. y[i] = GGML_BF16_TO_FP32(x[i]);
  365. }
  366. }
  367. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  368. int i = 0;
  369. #if defined(__AVX512BF16__)
  370. for (; i + 32 <= n; i += 32) {
  371. _mm512_storeu_ps(
  372. (__m512 *)(y + i),
  373. (__m512)_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  374. _mm512_loadu_ps(x + i)));
  375. }
  376. #endif
  377. for (; i < n; i++) {
  378. y[i] = GGML_FP32_TO_BF16(x[i]);
  379. }
  380. }
  381. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  382. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  383. }
  384. //
  385. // timing
  386. //
  387. #if defined(_MSC_VER) || defined(__MINGW32__)
  388. static int64_t timer_freq, timer_start;
  389. void ggml_time_init(void) {
  390. LARGE_INTEGER t;
  391. QueryPerformanceFrequency(&t);
  392. timer_freq = t.QuadPart;
  393. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  394. // and the uptime is high enough.
  395. // We subtract the program start time to reduce the likelihood of that happening.
  396. QueryPerformanceCounter(&t);
  397. timer_start = t.QuadPart;
  398. }
  399. int64_t ggml_time_ms(void) {
  400. LARGE_INTEGER t;
  401. QueryPerformanceCounter(&t);
  402. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  403. }
  404. int64_t ggml_time_us(void) {
  405. LARGE_INTEGER t;
  406. QueryPerformanceCounter(&t);
  407. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  408. }
  409. #else
  410. void ggml_time_init(void) {}
  411. int64_t ggml_time_ms(void) {
  412. struct timespec ts;
  413. clock_gettime(CLOCK_MONOTONIC, &ts);
  414. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  415. }
  416. int64_t ggml_time_us(void) {
  417. struct timespec ts;
  418. clock_gettime(CLOCK_MONOTONIC, &ts);
  419. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  420. }
  421. #endif
  422. int64_t ggml_cycles(void) {
  423. return clock();
  424. }
  425. int64_t ggml_cycles_per_ms(void) {
  426. return CLOCKS_PER_SEC/1000;
  427. }
  428. #ifdef GGML_PERF
  429. #define ggml_perf_time_ms() ggml_time_ms()
  430. #define ggml_perf_time_us() ggml_time_us()
  431. #define ggml_perf_cycles() ggml_cycles()
  432. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  433. #else
  434. #define ggml_perf_time_ms() 0
  435. #define ggml_perf_time_us() 0
  436. #define ggml_perf_cycles() 0
  437. #define ggml_perf_cycles_per_ms() 0
  438. #endif
  439. //
  440. // cross-platform UTF-8 file paths
  441. //
  442. #ifdef _WIN32
  443. static wchar_t * ggml_mbstowcs(const char * mbs) {
  444. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  445. if (!wlen) {
  446. errno = EINVAL;
  447. return NULL;
  448. }
  449. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  450. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  451. if (!wlen) {
  452. GGML_FREE(wbuf);
  453. errno = EINVAL;
  454. return NULL;
  455. }
  456. return wbuf;
  457. }
  458. #endif
  459. FILE * ggml_fopen(const char * fname, const char * mode) {
  460. #ifdef _WIN32
  461. FILE * file = NULL;
  462. // convert fname (UTF-8)
  463. wchar_t * wfname = ggml_mbstowcs(fname);
  464. if (wfname) {
  465. // convert mode (ANSI)
  466. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  467. wchar_t * wmode_p = wmode;
  468. do {
  469. *wmode_p++ = (wchar_t)*mode;
  470. } while (*mode++);
  471. // open file
  472. file = _wfopen(wfname, wmode);
  473. GGML_FREE(wfname);
  474. GGML_FREE(wmode);
  475. }
  476. return file;
  477. #else
  478. return fopen(fname, mode);
  479. #endif
  480. }
  481. //
  482. // cache line
  483. //
  484. #if defined(__cpp_lib_hardware_interference_size)
  485. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  486. #else
  487. #if defined(__POWER9_VECTOR__)
  488. #define CACHE_LINE_SIZE 128
  489. #else
  490. #define CACHE_LINE_SIZE 64
  491. #endif
  492. #endif
  493. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  494. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  495. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  496. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  497. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  498. [GGML_TYPE_I8] = {
  499. .type_name = "i8",
  500. .blck_size = 1,
  501. .type_size = sizeof(int8_t),
  502. .is_quantized = false,
  503. },
  504. [GGML_TYPE_I16] = {
  505. .type_name = "i16",
  506. .blck_size = 1,
  507. .type_size = sizeof(int16_t),
  508. .is_quantized = false,
  509. },
  510. [GGML_TYPE_I32] = {
  511. .type_name = "i32",
  512. .blck_size = 1,
  513. .type_size = sizeof(int32_t),
  514. .is_quantized = false,
  515. },
  516. [GGML_TYPE_I64] = {
  517. .type_name = "i64",
  518. .blck_size = 1,
  519. .type_size = sizeof(int64_t),
  520. .is_quantized = false,
  521. },
  522. [GGML_TYPE_F64] = {
  523. .type_name = "f64",
  524. .blck_size = 1,
  525. .type_size = sizeof(double),
  526. .is_quantized = false,
  527. .nrows = 1,
  528. },
  529. [GGML_TYPE_F32] = {
  530. .type_name = "f32",
  531. .blck_size = 1,
  532. .type_size = sizeof(float),
  533. .is_quantized = false,
  534. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  535. .vec_dot_type = GGML_TYPE_F32,
  536. .nrows = 1,
  537. },
  538. [GGML_TYPE_F16] = {
  539. .type_name = "f16",
  540. .blck_size = 1,
  541. .type_size = sizeof(ggml_fp16_t),
  542. .is_quantized = false,
  543. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  544. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  545. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  546. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  547. .vec_dot_type = GGML_TYPE_F16,
  548. .nrows = 1,
  549. },
  550. [GGML_TYPE_Q4_0] = {
  551. .type_name = "q4_0",
  552. .blck_size = QK4_0,
  553. .type_size = sizeof(block_q4_0),
  554. .is_quantized = true,
  555. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  556. .from_float = quantize_row_q4_0,
  557. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  558. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  559. .vec_dot_type = GGML_TYPE_Q8_0,
  560. #if defined (__ARM_FEATURE_MATMUL_INT8)
  561. .nrows = 2,
  562. #else
  563. .nrows = 1,
  564. #endif
  565. },
  566. [GGML_TYPE_Q4_1] = {
  567. .type_name = "q4_1",
  568. .blck_size = QK4_1,
  569. .type_size = sizeof(block_q4_1),
  570. .is_quantized = true,
  571. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  572. .from_float = quantize_row_q4_1,
  573. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  574. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  575. .vec_dot_type = GGML_TYPE_Q8_1,
  576. #if defined (__ARM_FEATURE_MATMUL_INT8)
  577. .nrows = 2,
  578. #else
  579. .nrows = 1,
  580. #endif
  581. },
  582. [4] = { // GGML_TYPE_Q4_2
  583. .type_name = "DEPRECATED",
  584. .blck_size = 0,
  585. .type_size = 0,
  586. .is_quantized = false,
  587. .to_float = NULL,
  588. .from_float = NULL,
  589. .from_float_reference = NULL,
  590. .vec_dot = NULL,
  591. .vec_dot_type = GGML_TYPE_COUNT,
  592. .nrows = 1,
  593. },
  594. [5] = { // GGML_TYPE_Q4_3
  595. .type_name = "DEPRECATED",
  596. .blck_size = 0,
  597. .type_size = 0,
  598. .is_quantized = false,
  599. .to_float = NULL,
  600. .from_float = NULL,
  601. .from_float_reference = NULL,
  602. .vec_dot = NULL,
  603. .vec_dot_type = GGML_TYPE_COUNT,
  604. .nrows = 1,
  605. },
  606. [GGML_TYPE_Q5_0] = {
  607. .type_name = "q5_0",
  608. .blck_size = QK5_0,
  609. .type_size = sizeof(block_q5_0),
  610. .is_quantized = true,
  611. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  612. .from_float = quantize_row_q5_0,
  613. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  614. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  615. .vec_dot_type = GGML_TYPE_Q8_0,
  616. .nrows = 1,
  617. },
  618. [GGML_TYPE_Q5_1] = {
  619. .type_name = "q5_1",
  620. .blck_size = QK5_1,
  621. .type_size = sizeof(block_q5_1),
  622. .is_quantized = true,
  623. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  624. .from_float = quantize_row_q5_1,
  625. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  626. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  627. .vec_dot_type = GGML_TYPE_Q8_1,
  628. .nrows = 1,
  629. },
  630. [GGML_TYPE_Q8_0] = {
  631. .type_name = "q8_0",
  632. .blck_size = QK8_0,
  633. .type_size = sizeof(block_q8_0),
  634. .is_quantized = true,
  635. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  636. .from_float = quantize_row_q8_0,
  637. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  638. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  639. .vec_dot_type = GGML_TYPE_Q8_0,
  640. #if defined (__ARM_FEATURE_MATMUL_INT8)
  641. .nrows = 2,
  642. #else
  643. .nrows = 1,
  644. #endif
  645. },
  646. [GGML_TYPE_Q8_1] = {
  647. .type_name = "q8_1",
  648. .blck_size = QK8_1,
  649. .type_size = sizeof(block_q8_1),
  650. .is_quantized = true,
  651. .from_float = quantize_row_q8_1,
  652. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  653. .vec_dot_type = GGML_TYPE_Q8_1,
  654. .nrows = 1,
  655. },
  656. [GGML_TYPE_Q2_K] = {
  657. .type_name = "q2_K",
  658. .blck_size = QK_K,
  659. .type_size = sizeof(block_q2_K),
  660. .is_quantized = true,
  661. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  662. .from_float = quantize_row_q2_K,
  663. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  664. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  665. .vec_dot_type = GGML_TYPE_Q8_K,
  666. .nrows = 1,
  667. },
  668. [GGML_TYPE_Q3_K] = {
  669. .type_name = "q3_K",
  670. .blck_size = QK_K,
  671. .type_size = sizeof(block_q3_K),
  672. .is_quantized = true,
  673. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  674. .from_float = quantize_row_q3_K,
  675. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  676. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  677. .vec_dot_type = GGML_TYPE_Q8_K,
  678. .nrows = 1,
  679. },
  680. [GGML_TYPE_Q4_K] = {
  681. .type_name = "q4_K",
  682. .blck_size = QK_K,
  683. .type_size = sizeof(block_q4_K),
  684. .is_quantized = true,
  685. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  686. .from_float = quantize_row_q4_K,
  687. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  688. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  689. .vec_dot_type = GGML_TYPE_Q8_K,
  690. .nrows = 1,
  691. },
  692. [GGML_TYPE_Q5_K] = {
  693. .type_name = "q5_K",
  694. .blck_size = QK_K,
  695. .type_size = sizeof(block_q5_K),
  696. .is_quantized = true,
  697. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  698. .from_float = quantize_row_q5_K,
  699. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  700. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  701. .vec_dot_type = GGML_TYPE_Q8_K,
  702. .nrows = 1,
  703. },
  704. [GGML_TYPE_Q6_K] = {
  705. .type_name = "q6_K",
  706. .blck_size = QK_K,
  707. .type_size = sizeof(block_q6_K),
  708. .is_quantized = true,
  709. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  710. .from_float = quantize_row_q6_K,
  711. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  712. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  713. .vec_dot_type = GGML_TYPE_Q8_K,
  714. .nrows = 1,
  715. },
  716. [GGML_TYPE_IQ2_XXS] = {
  717. .type_name = "iq2_xxs",
  718. .blck_size = QK_K,
  719. .type_size = sizeof(block_iq2_xxs),
  720. .is_quantized = true,
  721. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  722. .from_float = NULL,
  723. .from_float_reference = NULL,
  724. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  725. .vec_dot_type = GGML_TYPE_Q8_K,
  726. .nrows = 1,
  727. },
  728. [GGML_TYPE_IQ2_XS] = {
  729. .type_name = "iq2_xs",
  730. .blck_size = QK_K,
  731. .type_size = sizeof(block_iq2_xs),
  732. .is_quantized = true,
  733. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  734. .from_float = NULL,
  735. .from_float_reference = NULL,
  736. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  737. .vec_dot_type = GGML_TYPE_Q8_K,
  738. .nrows = 1,
  739. },
  740. [GGML_TYPE_IQ3_XXS] = {
  741. .type_name = "iq3_xxs",
  742. .blck_size = QK_K,
  743. .type_size = sizeof(block_iq3_xxs),
  744. .is_quantized = true,
  745. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  746. .from_float = quantize_row_iq3_xxs,
  747. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  748. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  749. .vec_dot_type = GGML_TYPE_Q8_K,
  750. .nrows = 1,
  751. },
  752. [GGML_TYPE_IQ3_S] = {
  753. .type_name = "iq3_s",
  754. .blck_size = QK_K,
  755. .type_size = sizeof(block_iq3_s),
  756. .is_quantized = true,
  757. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  758. .from_float = quantize_row_iq3_s,
  759. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  760. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  761. .vec_dot_type = GGML_TYPE_Q8_K,
  762. .nrows = 1,
  763. },
  764. [GGML_TYPE_IQ2_S] = {
  765. .type_name = "iq2_s",
  766. .blck_size = QK_K,
  767. .type_size = sizeof(block_iq2_s),
  768. .is_quantized = true,
  769. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  770. .from_float = quantize_row_iq2_s,
  771. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  772. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  773. .vec_dot_type = GGML_TYPE_Q8_K,
  774. .nrows = 1,
  775. },
  776. [GGML_TYPE_IQ1_S] = {
  777. .type_name = "iq1_s",
  778. .blck_size = QK_K,
  779. .type_size = sizeof(block_iq1_s),
  780. .is_quantized = true,
  781. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  782. .from_float = NULL,
  783. .from_float_reference = NULL,
  784. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  785. .vec_dot_type = GGML_TYPE_Q8_K,
  786. .nrows = 1,
  787. },
  788. [GGML_TYPE_IQ1_M] = {
  789. .type_name = "iq1_m",
  790. .blck_size = QK_K,
  791. .type_size = sizeof(block_iq1_m),
  792. .is_quantized = true,
  793. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  794. .from_float = NULL,
  795. .from_float_reference = NULL,
  796. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  797. .vec_dot_type = GGML_TYPE_Q8_K,
  798. .nrows = 1,
  799. },
  800. [GGML_TYPE_IQ4_NL] = {
  801. .type_name = "iq4_nl",
  802. .blck_size = QK4_NL,
  803. .type_size = sizeof(block_iq4_nl),
  804. .is_quantized = true,
  805. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  806. .from_float = quantize_row_iq4_nl,
  807. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  808. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  809. .vec_dot_type = GGML_TYPE_Q8_0,
  810. .nrows = 1,
  811. },
  812. [GGML_TYPE_IQ4_XS] = {
  813. .type_name = "iq4_xs",
  814. #if QK_K == 64
  815. .blck_size = QK4_NL,
  816. #else
  817. .blck_size = QK_K,
  818. #endif
  819. .type_size = sizeof(block_iq4_xs),
  820. .is_quantized = true,
  821. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  822. .from_float = quantize_row_iq4_xs,
  823. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  824. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  825. #if QK_K == 64
  826. .vec_dot_type = GGML_TYPE_Q8_0,
  827. #else
  828. .vec_dot_type = GGML_TYPE_Q8_K,
  829. #endif
  830. .nrows = 1,
  831. },
  832. [GGML_TYPE_Q8_K] = {
  833. .type_name = "q8_K",
  834. .blck_size = QK_K,
  835. .type_size = sizeof(block_q8_K),
  836. .is_quantized = true,
  837. .from_float = quantize_row_q8_K,
  838. },
  839. [GGML_TYPE_BF16] = {
  840. .type_name = "bf16",
  841. .blck_size = 1,
  842. .type_size = sizeof(ggml_bf16_t),
  843. .is_quantized = false,
  844. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  845. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  846. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  847. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  848. .vec_dot_type = GGML_TYPE_BF16,
  849. .nrows = 1,
  850. }
  851. };
  852. // For internal test use
  853. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  854. GGML_ASSERT(type < GGML_TYPE_COUNT);
  855. return type_traits[type];
  856. }
  857. //
  858. // simd mappings
  859. //
  860. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  861. // we then implement the fundamental computation operations below using only these macros
  862. // adding support for new architectures requires to define the corresponding SIMD macros
  863. //
  864. // GGML_F32_STEP / GGML_F16_STEP
  865. // number of elements to process in a single step
  866. //
  867. // GGML_F32_EPR / GGML_F16_EPR
  868. // number of elements to fit in a single register
  869. //
  870. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  871. #define GGML_SIMD
  872. // F32 NEON
  873. #define GGML_F32_STEP 16
  874. #define GGML_F32_EPR 4
  875. #define GGML_F32x4 float32x4_t
  876. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  877. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  878. #define GGML_F32x4_LOAD vld1q_f32
  879. #define GGML_F32x4_STORE vst1q_f32
  880. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  881. #define GGML_F32x4_ADD vaddq_f32
  882. #define GGML_F32x4_MUL vmulq_f32
  883. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  884. #define GGML_F32x4_REDUCE(res, x) \
  885. { \
  886. int offset = GGML_F32_ARR >> 1; \
  887. for (int i = 0; i < offset; ++i) { \
  888. x[i] = vaddq_f32(x[i], x[offset+i]); \
  889. } \
  890. offset >>= 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = vaddq_f32(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = vaddq_f32(x[i], x[offset+i]); \
  897. } \
  898. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  899. }
  900. #define GGML_F32_VEC GGML_F32x4
  901. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  902. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  903. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  904. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  905. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  906. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  907. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  908. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  909. // F16 NEON
  910. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  911. #define GGML_F16_STEP 32
  912. #define GGML_F16_EPR 8
  913. #define GGML_F16x8 float16x8_t
  914. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  915. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  916. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  917. #define GGML_F16x8_STORE vst1q_f16
  918. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  919. #define GGML_F16x8_ADD vaddq_f16
  920. #define GGML_F16x8_MUL vmulq_f16
  921. #define GGML_F16x8_REDUCE(res, x) \
  922. do { \
  923. int offset = GGML_F16_ARR >> 1; \
  924. for (int i = 0; i < offset; ++i) { \
  925. x[i] = vaddq_f16(x[i], x[offset+i]); \
  926. } \
  927. offset >>= 1; \
  928. for (int i = 0; i < offset; ++i) { \
  929. x[i] = vaddq_f16(x[i], x[offset+i]); \
  930. } \
  931. offset >>= 1; \
  932. for (int i = 0; i < offset; ++i) { \
  933. x[i] = vaddq_f16(x[i], x[offset+i]); \
  934. } \
  935. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  936. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  937. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  938. } while (0)
  939. #define GGML_F16_VEC GGML_F16x8
  940. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  941. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  942. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  943. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  944. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  945. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  946. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  947. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  948. #else
  949. // if FP16 vector arithmetic is not supported, we use FP32 instead
  950. // and take advantage of the vcvt_ functions to convert to/from FP16
  951. #define GGML_F16_STEP 16
  952. #define GGML_F16_EPR 4
  953. #define GGML_F32Cx4 float32x4_t
  954. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  955. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  956. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  957. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  958. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  959. #define GGML_F32Cx4_ADD vaddq_f32
  960. #define GGML_F32Cx4_MUL vmulq_f32
  961. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  962. #define GGML_F16_VEC GGML_F32Cx4
  963. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  964. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  965. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  966. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  967. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  968. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  969. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  970. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  971. #endif
  972. #elif defined(__AVX512F__)
  973. #define GGML_SIMD
  974. // F32 AVX512
  975. #define GGML_F32_STEP 64
  976. #define GGML_F32_EPR 16
  977. #define GGML_F32x16 __m512
  978. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  979. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  980. #define GGML_F32x16_LOAD _mm512_loadu_ps
  981. #define GGML_F32x16_STORE _mm512_storeu_ps
  982. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  983. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  984. #define GGML_F32x16_ADD _mm512_add_ps
  985. #define GGML_F32x16_MUL _mm512_mul_ps
  986. #define GGML_F32x16_REDUCE(res, x) \
  987. do { \
  988. int offset = GGML_F32_ARR >> 1; \
  989. for (int i = 0; i < offset; ++i) { \
  990. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  991. } \
  992. offset >>= 1; \
  993. for (int i = 0; i < offset; ++i) { \
  994. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  995. } \
  996. offset >>= 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. res = _mm512_reduce_add_ps(x[0]); \
  1001. } while (0)
  1002. // TODO: is this optimal ?
  1003. #define GGML_F32_VEC GGML_F32x16
  1004. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  1005. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  1006. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  1007. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  1008. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  1009. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  1010. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  1011. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  1012. // F16 AVX512
  1013. // F16 AVX
  1014. #define GGML_F16_STEP 64
  1015. #define GGML_F16_EPR 16
  1016. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  1017. #define GGML_F32Cx16 __m512
  1018. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1019. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1020. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1021. // so F16C guard isn't required
  1022. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1023. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1024. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1025. #define GGML_F32Cx16_ADD _mm512_add_ps
  1026. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1027. #define GGML_F32Cx16_REDUCE(res, x) \
  1028. do { \
  1029. int offset = GGML_F32_ARR >> 1; \
  1030. for (int i = 0; i < offset; ++i) { \
  1031. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1032. } \
  1033. offset >>= 1; \
  1034. for (int i = 0; i < offset; ++i) { \
  1035. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1036. } \
  1037. offset >>= 1; \
  1038. for (int i = 0; i < offset; ++i) { \
  1039. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1040. } \
  1041. res = _mm512_reduce_add_ps(x[0]); \
  1042. } while (0)
  1043. #define GGML_F16_VEC GGML_F32Cx16
  1044. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1045. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1046. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1047. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1048. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1049. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1050. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1051. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1052. #elif defined(__AVX__)
  1053. #define GGML_SIMD
  1054. // F32 AVX
  1055. #define GGML_F32_STEP 32
  1056. #define GGML_F32_EPR 8
  1057. #define GGML_F32x8 __m256
  1058. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1059. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1060. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1061. #define GGML_F32x8_STORE _mm256_storeu_ps
  1062. #if defined(__FMA__)
  1063. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1064. #else
  1065. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1066. #endif
  1067. #define GGML_F32x8_ADD _mm256_add_ps
  1068. #define GGML_F32x8_MUL _mm256_mul_ps
  1069. #define GGML_F32x8_REDUCE(res, x) \
  1070. do { \
  1071. int offset = GGML_F32_ARR >> 1; \
  1072. for (int i = 0; i < offset; ++i) { \
  1073. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1074. } \
  1075. offset >>= 1; \
  1076. for (int i = 0; i < offset; ++i) { \
  1077. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1078. } \
  1079. offset >>= 1; \
  1080. for (int i = 0; i < offset; ++i) { \
  1081. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1082. } \
  1083. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1084. _mm256_extractf128_ps(x[0], 1)); \
  1085. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1086. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1087. } while (0)
  1088. // TODO: is this optimal ?
  1089. #define GGML_F32_VEC GGML_F32x8
  1090. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1091. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1092. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1093. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1094. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1095. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1096. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1097. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1098. // F16 AVX
  1099. #define GGML_F16_STEP 32
  1100. #define GGML_F16_EPR 8
  1101. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1102. #define GGML_F32Cx8 __m256
  1103. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1104. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1105. #if defined(__F16C__)
  1106. // the _mm256_cvt intrinsics require F16C
  1107. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1108. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1109. #else
  1110. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1111. float tmp[8];
  1112. for (int i = 0; i < 8; i++) {
  1113. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1114. }
  1115. return _mm256_loadu_ps(tmp);
  1116. }
  1117. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1118. float arr[8];
  1119. _mm256_storeu_ps(arr, y);
  1120. for (int i = 0; i < 8; i++)
  1121. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1122. }
  1123. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1124. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1125. #endif
  1126. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1127. #define GGML_F32Cx8_ADD _mm256_add_ps
  1128. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1129. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1130. #define GGML_F16_VEC GGML_F32Cx8
  1131. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1132. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1133. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1134. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1135. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1136. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1137. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1138. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1139. #elif defined(__POWER9_VECTOR__)
  1140. #define GGML_SIMD
  1141. // F32 POWER9
  1142. #define GGML_F32_STEP 32
  1143. #define GGML_F32_EPR 4
  1144. #define GGML_F32x4 vector float
  1145. #define GGML_F32x4_ZERO 0.0f
  1146. #define GGML_F32x4_SET1 vec_splats
  1147. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1148. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1149. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1150. #define GGML_F32x4_ADD vec_add
  1151. #define GGML_F32x4_MUL vec_mul
  1152. #define GGML_F32x4_REDUCE(res, x) \
  1153. { \
  1154. int offset = GGML_F32_ARR >> 1; \
  1155. for (int i = 0; i < offset; ++i) { \
  1156. x[i] = vec_add(x[i], x[offset+i]); \
  1157. } \
  1158. offset >>= 1; \
  1159. for (int i = 0; i < offset; ++i) { \
  1160. x[i] = vec_add(x[i], x[offset+i]); \
  1161. } \
  1162. offset >>= 1; \
  1163. for (int i = 0; i < offset; ++i) { \
  1164. x[i] = vec_add(x[i], x[offset+i]); \
  1165. } \
  1166. res = vec_extract(x[0], 0) + \
  1167. vec_extract(x[0], 1) + \
  1168. vec_extract(x[0], 2) + \
  1169. vec_extract(x[0], 3); \
  1170. }
  1171. #define GGML_F32_VEC GGML_F32x4
  1172. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1173. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1174. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1175. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1176. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1177. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1178. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1179. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1180. // F16 POWER9
  1181. #define GGML_F16_STEP GGML_F32_STEP
  1182. #define GGML_F16_EPR GGML_F32_EPR
  1183. #define GGML_F16_VEC GGML_F32x4
  1184. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1185. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1186. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1187. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1188. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1189. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1190. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1191. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1192. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1193. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1194. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1195. #define GGML_F16_VEC_STORE(p, r, i) \
  1196. if (i & 0x1) \
  1197. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1198. r[i - GGML_ENDIAN_BYTE(0)]), \
  1199. 0, p - GGML_F16_EPR)
  1200. #elif defined(__wasm_simd128__)
  1201. #define GGML_SIMD
  1202. // F32 WASM
  1203. #define GGML_F32_STEP 16
  1204. #define GGML_F32_EPR 4
  1205. #define GGML_F32x4 v128_t
  1206. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1207. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1208. #define GGML_F32x4_LOAD wasm_v128_load
  1209. #define GGML_F32x4_STORE wasm_v128_store
  1210. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1211. #define GGML_F32x4_ADD wasm_f32x4_add
  1212. #define GGML_F32x4_MUL wasm_f32x4_mul
  1213. #define GGML_F32x4_REDUCE(res, x) \
  1214. { \
  1215. int offset = GGML_F32_ARR >> 1; \
  1216. for (int i = 0; i < offset; ++i) { \
  1217. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1218. } \
  1219. offset >>= 1; \
  1220. for (int i = 0; i < offset; ++i) { \
  1221. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1222. } \
  1223. offset >>= 1; \
  1224. for (int i = 0; i < offset; ++i) { \
  1225. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1226. } \
  1227. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1228. wasm_f32x4_extract_lane(x[0], 1) + \
  1229. wasm_f32x4_extract_lane(x[0], 2) + \
  1230. wasm_f32x4_extract_lane(x[0], 3); \
  1231. }
  1232. #define GGML_F32_VEC GGML_F32x4
  1233. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1234. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1235. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1236. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1237. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1238. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1239. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1240. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1241. // F16 WASM
  1242. #define GGML_F16_STEP 16
  1243. #define GGML_F16_EPR 4
  1244. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1245. float tmp[4];
  1246. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1247. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1248. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1249. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1250. return wasm_v128_load(tmp);
  1251. }
  1252. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1253. float tmp[4];
  1254. wasm_v128_store(tmp, x);
  1255. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1256. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1257. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1258. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1259. }
  1260. #define GGML_F16x4 v128_t
  1261. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1262. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1263. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1264. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1265. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1266. #define GGML_F16x4_ADD wasm_f32x4_add
  1267. #define GGML_F16x4_MUL wasm_f32x4_mul
  1268. #define GGML_F16x4_REDUCE(res, x) \
  1269. { \
  1270. int offset = GGML_F16_ARR >> 1; \
  1271. for (int i = 0; i < offset; ++i) { \
  1272. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1273. } \
  1274. offset >>= 1; \
  1275. for (int i = 0; i < offset; ++i) { \
  1276. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1277. } \
  1278. offset >>= 1; \
  1279. for (int i = 0; i < offset; ++i) { \
  1280. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1281. } \
  1282. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1283. wasm_f32x4_extract_lane(x[0], 1) + \
  1284. wasm_f32x4_extract_lane(x[0], 2) + \
  1285. wasm_f32x4_extract_lane(x[0], 3); \
  1286. }
  1287. #define GGML_F16_VEC GGML_F16x4
  1288. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1289. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1290. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1291. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1292. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1293. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1294. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1295. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1296. #elif defined(__SSE3__)
  1297. #define GGML_SIMD
  1298. // F32 SSE
  1299. #define GGML_F32_STEP 32
  1300. #define GGML_F32_EPR 4
  1301. #define GGML_F32x4 __m128
  1302. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1303. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1304. #define GGML_F32x4_LOAD _mm_loadu_ps
  1305. #define GGML_F32x4_STORE _mm_storeu_ps
  1306. #if defined(__FMA__)
  1307. // TODO: Does this work?
  1308. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1309. #else
  1310. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1311. #endif
  1312. #define GGML_F32x4_ADD _mm_add_ps
  1313. #define GGML_F32x4_MUL _mm_mul_ps
  1314. #define GGML_F32x4_REDUCE(res, x) \
  1315. { \
  1316. int offset = GGML_F32_ARR >> 1; \
  1317. for (int i = 0; i < offset; ++i) { \
  1318. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1319. } \
  1320. offset >>= 1; \
  1321. for (int i = 0; i < offset; ++i) { \
  1322. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1323. } \
  1324. offset >>= 1; \
  1325. for (int i = 0; i < offset; ++i) { \
  1326. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1327. } \
  1328. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1329. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1330. }
  1331. // TODO: is this optimal ?
  1332. #define GGML_F32_VEC GGML_F32x4
  1333. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1334. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1335. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1336. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1337. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1338. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1339. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1340. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1341. // F16 SSE
  1342. #define GGML_F16_STEP 32
  1343. #define GGML_F16_EPR 4
  1344. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1345. float tmp[4];
  1346. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1347. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1348. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1349. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1350. return _mm_loadu_ps(tmp);
  1351. }
  1352. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1353. float arr[4];
  1354. _mm_storeu_ps(arr, y);
  1355. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1356. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1357. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1358. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1359. }
  1360. #define GGML_F32Cx4 __m128
  1361. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1362. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1363. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1364. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1365. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1366. #define GGML_F32Cx4_ADD _mm_add_ps
  1367. #define GGML_F32Cx4_MUL _mm_mul_ps
  1368. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1369. #define GGML_F16_VEC GGML_F32Cx4
  1370. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1371. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1372. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1373. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1374. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1375. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1376. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1377. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1378. #endif
  1379. // GGML_F32_ARR / GGML_F16_ARR
  1380. // number of registers to use per step
  1381. #ifdef GGML_SIMD
  1382. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1383. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1384. #endif
  1385. //
  1386. // ggml context
  1387. //
  1388. struct ggml_context {
  1389. size_t mem_size;
  1390. void* mem_buffer;
  1391. bool mem_buffer_owned;
  1392. bool no_alloc;
  1393. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1394. int n_objects;
  1395. struct ggml_object* objects_begin;
  1396. struct ggml_object* objects_end;
  1397. struct ggml_scratch scratch;
  1398. struct ggml_scratch scratch_save;
  1399. };
  1400. struct ggml_context_container {
  1401. bool used;
  1402. struct ggml_context context;
  1403. };
  1404. struct ggml_compute_state_shared {
  1405. const struct ggml_cgraph* cgraph;
  1406. const struct ggml_cplan* cplan;
  1407. int64_t perf_node_start_cycles;
  1408. int64_t perf_node_start_time_us;
  1409. const int n_threads;
  1410. // synchronization primitives
  1411. atomic_int n_active; // num active threads
  1412. atomic_int node_n; // active graph node
  1413. atomic_int node_task; // active graph node task phase
  1414. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1415. void* abort_callback_data;
  1416. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1417. };
  1418. struct ggml_compute_state {
  1419. ggml_thread_t thrd;
  1420. int ith;
  1421. struct ggml_compute_state_shared* shared;
  1422. enum ggml_status ec;
  1423. };
  1424. //
  1425. // fundamental operations
  1426. //
  1427. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1428. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1429. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1430. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1431. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1432. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1433. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1434. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1435. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1436. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1437. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1438. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1439. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1440. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1441. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1442. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1443. assert(nrc == 1);
  1444. UNUSED(nrc);
  1445. UNUSED(bx);
  1446. UNUSED(by);
  1447. UNUSED(bs);
  1448. #if defined(GGML_SIMD)
  1449. float sumf = 0.0f;
  1450. const int np = (n & ~(GGML_F32_STEP - 1));
  1451. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1452. GGML_F32_VEC ax[GGML_F32_ARR];
  1453. GGML_F32_VEC ay[GGML_F32_ARR];
  1454. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1455. for (int j = 0; j < GGML_F32_ARR; j++) {
  1456. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1457. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1458. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1459. }
  1460. }
  1461. // reduce sum0..sum3 to sum0
  1462. GGML_F32_VEC_REDUCE(sumf, sum);
  1463. // leftovers
  1464. for (int i = np; i < n; ++i) {
  1465. sumf += x[i]*y[i];
  1466. }
  1467. #else
  1468. // scalar
  1469. ggml_float sumf = 0.0;
  1470. for (int i = 0; i < n; ++i) {
  1471. sumf += (ggml_float)(x[i]*y[i]);
  1472. }
  1473. #endif
  1474. *s = sumf;
  1475. }
  1476. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1477. assert(nrc == 1);
  1478. UNUSED(nrc);
  1479. UNUSED(bx);
  1480. UNUSED(by);
  1481. UNUSED(bs);
  1482. int i = 0;
  1483. ggml_float sumf = 0;
  1484. #if defined(__AVX512BF16__)
  1485. __m512 c1 = _mm512_setzero_ps();
  1486. __m512 c2 = _mm512_setzero_ps();
  1487. for (; i + 64 <= n; i += 64) {
  1488. c1 = _mm512_dpbf16_ps(c1, (__m512bh)_mm512_loadu_ps((const float *)(x + i)),
  1489. (__m512bh)_mm512_loadu_ps((const float *)(y + i)));
  1490. c2 = _mm512_dpbf16_ps(c2, (__m512bh)_mm512_loadu_ps((const float *)(x + i + 32)),
  1491. (__m512bh)_mm512_loadu_ps((const float *)(y + i + 32)));
  1492. }
  1493. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1494. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1495. #elif defined(__AVX512F__)
  1496. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1497. __m512 c1 = _mm512_setzero_ps();
  1498. __m512 c2 = _mm512_setzero_ps();
  1499. for (; i + 32 <= n; i += 32) {
  1500. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1501. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1502. }
  1503. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1504. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1505. #undef LOAD
  1506. #elif defined(__AVX2__)
  1507. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1508. __m256 c1 = _mm256_setzero_ps();
  1509. __m256 c2 = _mm256_setzero_ps();
  1510. __m256 c3 = _mm256_setzero_ps();
  1511. __m256 c4 = _mm256_setzero_ps();
  1512. for (; i + 32 <= n; i += 32) {
  1513. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1514. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1515. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1516. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1517. }
  1518. __m128 g;
  1519. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1520. _mm256_add_ps(c2, c4));
  1521. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1522. _mm256_castps256_ps128(c1));
  1523. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1524. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1525. sumf += (ggml_float)_mm_cvtss_f32(g);
  1526. #undef LOAD
  1527. #endif
  1528. for (; i < n; ++i) {
  1529. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1530. GGML_BF16_TO_FP32(y[i]));
  1531. }
  1532. *s = sumf;
  1533. }
  1534. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1535. assert(nrc == 1);
  1536. UNUSED(nrc);
  1537. UNUSED(bx);
  1538. UNUSED(by);
  1539. UNUSED(bs);
  1540. ggml_float sumf = 0.0;
  1541. #if defined(GGML_SIMD)
  1542. const int np = (n & ~(GGML_F16_STEP - 1));
  1543. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1544. GGML_F16_VEC ax[GGML_F16_ARR];
  1545. GGML_F16_VEC ay[GGML_F16_ARR];
  1546. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1547. for (int j = 0; j < GGML_F16_ARR; j++) {
  1548. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1549. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1550. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1551. }
  1552. }
  1553. // reduce sum0..sum3 to sum0
  1554. GGML_F16_VEC_REDUCE(sumf, sum);
  1555. // leftovers
  1556. for (int i = np; i < n; ++i) {
  1557. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1558. }
  1559. #else
  1560. for (int i = 0; i < n; ++i) {
  1561. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1562. }
  1563. #endif
  1564. *s = sumf;
  1565. }
  1566. // compute GGML_VEC_DOT_UNROLL dot products at once
  1567. // xs - x row stride in bytes
  1568. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1569. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1570. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1571. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1572. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1573. }
  1574. #if defined(GGML_SIMD)
  1575. const int np = (n & ~(GGML_F16_STEP - 1));
  1576. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1577. GGML_F16_VEC ax[GGML_F16_ARR];
  1578. GGML_F16_VEC ay[GGML_F16_ARR];
  1579. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1580. for (int j = 0; j < GGML_F16_ARR; j++) {
  1581. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1582. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1583. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1584. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1585. }
  1586. }
  1587. }
  1588. // reduce sum0..sum3 to sum0
  1589. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1590. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1591. }
  1592. // leftovers
  1593. for (int i = np; i < n; ++i) {
  1594. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1595. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1596. }
  1597. }
  1598. #else
  1599. for (int i = 0; i < n; ++i) {
  1600. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1601. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1602. }
  1603. }
  1604. #endif
  1605. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1606. s[i] = sumf[i];
  1607. }
  1608. }
  1609. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1610. #if defined(GGML_SIMD)
  1611. const int np = (n & ~(GGML_F32_STEP - 1));
  1612. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1613. GGML_F32_VEC ax[GGML_F32_ARR];
  1614. GGML_F32_VEC ay[GGML_F32_ARR];
  1615. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1616. for (int j = 0; j < GGML_F32_ARR; j++) {
  1617. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1618. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1619. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1620. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1621. }
  1622. }
  1623. // leftovers
  1624. for (int i = np; i < n; ++i) {
  1625. y[i] += x[i]*v;
  1626. }
  1627. #else
  1628. // scalar
  1629. for (int i = 0; i < n; ++i) {
  1630. y[i] += x[i]*v;
  1631. }
  1632. #endif
  1633. }
  1634. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1635. #if defined(GGML_SIMD)
  1636. const int np = (n & ~(GGML_F16_STEP - 1));
  1637. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1638. GGML_F16_VEC ax[GGML_F16_ARR];
  1639. GGML_F16_VEC ay[GGML_F16_ARR];
  1640. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1641. for (int j = 0; j < GGML_F16_ARR; j++) {
  1642. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1643. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1644. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1645. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1646. }
  1647. }
  1648. // leftovers
  1649. for (int i = np; i < n; ++i) {
  1650. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1651. }
  1652. #else
  1653. // scalar
  1654. for (int i = 0; i < n; ++i) {
  1655. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1656. }
  1657. #endif
  1658. }
  1659. // xs and vs are byte strides of x and v
  1660. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1661. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1662. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1663. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1664. x[i] = (const float *) ((const char *) xv + i*xs);
  1665. v[i] = (const float *) ((const char *) vv + i*vs);
  1666. }
  1667. #if defined(GGML_SIMD)
  1668. const int np = (n & ~(GGML_F32_STEP - 1));
  1669. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1670. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1671. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1672. }
  1673. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1674. GGML_F32_VEC ay[GGML_F32_ARR];
  1675. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1676. for (int j = 0; j < GGML_F32_ARR; j++) {
  1677. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1678. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1679. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1680. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1681. }
  1682. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1683. }
  1684. }
  1685. // leftovers
  1686. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1687. for (int i = np; i < n; ++i) {
  1688. y[i] += x[k][i]*v[k][0];
  1689. }
  1690. }
  1691. #else
  1692. // scalar
  1693. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1694. for (int i = 0; i < n; ++i) {
  1695. y[i] += x[k][i]*v[k][0];
  1696. }
  1697. }
  1698. #endif
  1699. }
  1700. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1701. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1702. #if defined(GGML_USE_ACCELERATE)
  1703. vDSP_vsmul(y, 1, &v, y, 1, n);
  1704. #elif defined(GGML_SIMD)
  1705. const int np = (n & ~(GGML_F32_STEP - 1));
  1706. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1707. GGML_F32_VEC ay[GGML_F32_ARR];
  1708. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1709. for (int j = 0; j < GGML_F32_ARR; j++) {
  1710. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1711. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1712. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1713. }
  1714. }
  1715. // leftovers
  1716. for (int i = np; i < n; ++i) {
  1717. y[i] *= v;
  1718. }
  1719. #else
  1720. // scalar
  1721. for (int i = 0; i < n; ++i) {
  1722. y[i] *= v;
  1723. }
  1724. #endif
  1725. }
  1726. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1727. #if defined(GGML_SIMD)
  1728. const int np = (n & ~(GGML_F16_STEP - 1));
  1729. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1730. GGML_F16_VEC ay[GGML_F16_ARR];
  1731. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1732. for (int j = 0; j < GGML_F16_ARR; j++) {
  1733. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1734. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1735. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1736. }
  1737. }
  1738. // leftovers
  1739. for (int i = np; i < n; ++i) {
  1740. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1741. }
  1742. #else
  1743. // scalar
  1744. for (int i = 0; i < n; ++i) {
  1745. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1746. }
  1747. #endif
  1748. }
  1749. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1750. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1751. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1752. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1753. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1754. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1755. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1756. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1757. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1758. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1759. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1760. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1761. // TODO: optimize performance
  1762. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1763. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1764. static const float GELU_COEF_A = 0.044715f;
  1765. static const float GELU_QUICK_COEF = -1.702f;
  1766. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1767. inline static float ggml_gelu_f32(float x) {
  1768. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1769. }
  1770. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1771. const uint16_t * i16 = (const uint16_t *) x;
  1772. for (int i = 0; i < n; ++i) {
  1773. y[i] = ggml_table_gelu_f16[i16[i]];
  1774. }
  1775. }
  1776. #ifdef GGML_GELU_FP16
  1777. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1778. uint16_t t;
  1779. for (int i = 0; i < n; ++i) {
  1780. if (x[i] <= -10.0f) {
  1781. y[i] = 0.0f;
  1782. } else if (x[i] >= 10.0f) {
  1783. y[i] = x[i];
  1784. } else {
  1785. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1786. memcpy(&t, &fp16, sizeof(uint16_t));
  1787. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1788. }
  1789. }
  1790. }
  1791. #else
  1792. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1793. for (int i = 0; i < n; ++i) {
  1794. y[i] = ggml_gelu_f32(x[i]);
  1795. }
  1796. }
  1797. #endif
  1798. inline static float ggml_gelu_quick_f32(float x) {
  1799. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1800. }
  1801. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1802. // const uint16_t * i16 = (const uint16_t *) x;
  1803. // for (int i = 0; i < n; ++i) {
  1804. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1805. // }
  1806. //}
  1807. #ifdef GGML_GELU_QUICK_FP16
  1808. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1809. uint16_t t;
  1810. for (int i = 0; i < n; ++i) {
  1811. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1812. memcpy(&t, &fp16, sizeof(uint16_t));
  1813. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1814. }
  1815. }
  1816. #else
  1817. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1818. for (int i = 0; i < n; ++i) {
  1819. y[i] = ggml_gelu_quick_f32(x[i]);
  1820. }
  1821. }
  1822. #endif
  1823. // Sigmoid Linear Unit (SiLU) function
  1824. inline static float ggml_silu_f32(float x) {
  1825. return x/(1.0f + expf(-x));
  1826. }
  1827. #if defined(__ARM_NEON) && defined(__aarch64__)
  1828. // adapted from arm limited optimized routine
  1829. // the maximum error is 1.45358 plus 0.5 ulps
  1830. // numbers above 88.38 will flush to infinity
  1831. // numbers beneath -103.97 will flush to zero
  1832. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1833. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1834. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1835. const float32x4_t n = vsubq_f32(z, r);
  1836. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1837. vdupq_n_f32(0x1.7f7d1cp-20f));
  1838. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1839. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1840. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1841. const float32x4_t u = vmulq_f32(b, b);
  1842. const float32x4_t j = vfmaq_f32(
  1843. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1844. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1845. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1846. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1847. return vfmaq_f32(k, j, k);
  1848. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1849. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1850. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1851. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1852. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1853. }
  1854. // computes silu x/(1+exp(-x)) in single precision vector
  1855. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1856. const float32x4_t one = vdupq_n_f32(1.0f);
  1857. const float32x4_t zero = vdupq_n_f32(0.0f);
  1858. const float32x4_t neg_x = vsubq_f32(zero, x);
  1859. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1860. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1861. return vdivq_f32(x, one_plus_exp_neg_x);
  1862. }
  1863. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1864. // adapted from arm limited optimized routine
  1865. // the maximum error is 1.45358 plus 0.5 ulps
  1866. // numbers above 88.38 will flush to infinity
  1867. // numbers beneath -103.97 will flush to zero
  1868. inline static __m512 ggml_v_expf(__m512 x) {
  1869. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  1870. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  1871. const __m512 n = _mm512_sub_ps(z, r);
  1872. const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  1873. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  1874. const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
  1875. const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
  1876. const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
  1877. const __m512 u = _mm512_mul_ps(b, b);
  1878. const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  1879. _mm512_set1_ps(0x1.573e2ep-5f)), u,
  1880. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  1881. _mm512_set1_ps(0x1.fffdb6p-2f))),
  1882. u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
  1883. if (_mm512_kortestz(c, c))
  1884. return _mm512_fmadd_ps(j, k, k);
  1885. const __m512i g = _mm512_and_si512(
  1886. _mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
  1887. _mm512_set1_epi32(0x82000000u));
  1888. const __m512 s1 =
  1889. _mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
  1890. const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
  1891. const __mmask16 d =
  1892. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  1893. return _mm512_mask_blend_ps(
  1894. d, _mm512_mask_blend_ps(
  1895. c, _mm512_fmadd_ps(k, j, k),
  1896. _mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
  1897. _mm512_mul_ps(s1, s1));
  1898. }
  1899. // computes silu x/(1+exp(-x)) in single precision vector
  1900. inline static __m512 ggml_v_silu(__m512 x) {
  1901. const __m512 one = _mm512_set1_ps(1);
  1902. const __m512 zero = _mm512_setzero_ps();
  1903. const __m512 neg_x = _mm512_sub_ps(zero, x);
  1904. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  1905. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  1906. return _mm512_div_ps(x, one_plus_exp_neg_x);
  1907. }
  1908. #elif defined(__AVX2__) && defined(__FMA__)
  1909. // adapted from arm limited optimized routine
  1910. // the maximum error is 1.45358 plus 0.5 ulps
  1911. // numbers above 88.38 will flush to infinity
  1912. // numbers beneath -103.97 will flush to zero
  1913. inline static __m256 ggml_v_expf(__m256 x) {
  1914. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  1915. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  1916. const __m256 n = _mm256_sub_ps(z, r);
  1917. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  1918. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  1919. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  1920. const __m256 k = _mm256_castsi256_ps(
  1921. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  1922. const __m256i c = _mm256_castps_si256(
  1923. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  1924. _mm256_set1_ps(126), _CMP_GT_OQ));
  1925. const __m256 u = _mm256_mul_ps(b, b);
  1926. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  1927. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  1928. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  1929. _mm256_set1_ps(0x1.fffdb6p-2f))),
  1930. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  1931. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  1932. return _mm256_fmadd_ps(j, k, k);
  1933. const __m256i g = _mm256_and_si256(
  1934. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  1935. _mm256_set1_epi32(0x82000000u));
  1936. const __m256 s1 =
  1937. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  1938. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  1939. const __m256i d = _mm256_castps_si256(
  1940. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  1941. _mm256_set1_ps(192), _CMP_GT_OQ));
  1942. return _mm256_or_ps(
  1943. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  1944. _mm256_andnot_ps(
  1945. _mm256_castsi256_ps(d),
  1946. _mm256_or_ps(
  1947. _mm256_and_ps(_mm256_castsi256_ps(c),
  1948. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  1949. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  1950. }
  1951. // computes silu x/(1+exp(-x)) in single precision vector
  1952. inline static __m256 ggml_v_silu(__m256 x) {
  1953. const __m256 one = _mm256_set1_ps(1);
  1954. const __m256 zero = _mm256_setzero_ps();
  1955. const __m256 neg_x = _mm256_sub_ps(zero, x);
  1956. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  1957. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  1958. return _mm256_div_ps(x, one_plus_exp_neg_x);
  1959. }
  1960. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  1961. #if defined(__FMA__)
  1962. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  1963. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  1964. #else
  1965. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  1966. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  1967. #endif
  1968. // adapted from arm limited optimized routine
  1969. // the maximum error is 1.45358 plus 0.5 ulps
  1970. // numbers above 88.38 will flush to infinity
  1971. // numbers beneath -103.97 will flush to zero
  1972. inline static __m128 ggml_v_expf(__m128 x) {
  1973. const __m128 r = _mm_set1_ps(0x1.8p23f);
  1974. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  1975. const __m128 n = _mm_sub_ps(z, r);
  1976. const __m128 b =
  1977. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  1978. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  1979. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  1980. const __m128i c =
  1981. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  1982. const __m128 u = _mm_mul_ps(b, b);
  1983. const __m128 j =
  1984. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  1985. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  1986. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  1987. if (!_mm_movemask_epi8(c))
  1988. return MADD128(j, k, k);
  1989. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  1990. _mm_set1_epi32(0x82000000u));
  1991. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  1992. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  1993. const __m128i d =
  1994. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  1995. return _mm_or_ps(
  1996. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  1997. _mm_andnot_ps(_mm_castsi128_ps(d),
  1998. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  1999. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2000. }
  2001. // computes silu x/(1+exp(-x)) in single precision vector
  2002. inline static __m128 ggml_v_silu(__m128 x) {
  2003. const __m128 one = _mm_set1_ps(1);
  2004. const __m128 zero = _mm_setzero_ps();
  2005. const __m128 neg_x = _mm_sub_ps(zero, x);
  2006. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2007. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2008. return _mm_div_ps(x, one_plus_exp_neg_x);
  2009. }
  2010. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2011. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2012. int i = 0;
  2013. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2014. for (; i + 15 < n; i += 16) {
  2015. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2016. }
  2017. #elif defined(__AVX2__) && defined(__FMA__)
  2018. for (; i + 7 < n; i += 8) {
  2019. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2020. }
  2021. #elif defined(__SSE2__)
  2022. for (; i + 3 < n; i += 4) {
  2023. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2024. }
  2025. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2026. for (; i + 3 < n; i += 4) {
  2027. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2028. }
  2029. #endif
  2030. for (; i < n; ++i) {
  2031. y[i] = ggml_silu_f32(x[i]);
  2032. }
  2033. }
  2034. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2035. int i = 0;
  2036. ggml_float sum = 0;
  2037. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2038. for (; i + 15 < n; i += 16) {
  2039. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2040. _mm512_set1_ps(max)));
  2041. _mm512_storeu_ps(y + i, val);
  2042. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2043. }
  2044. #elif defined(__AVX2__) && defined(__FMA__)
  2045. for (; i + 7 < n; i += 8) {
  2046. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2047. _mm256_set1_ps(max)));
  2048. _mm256_storeu_ps(y + i, val);
  2049. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2050. _mm256_castps256_ps128(val));
  2051. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2052. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2053. sum += (ggml_float)_mm_cvtss_f32(val2);
  2054. }
  2055. #elif defined(__SSE2__)
  2056. for (; i + 3 < n; i += 4) {
  2057. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2058. _mm_set1_ps(max)));
  2059. _mm_storeu_ps(y + i, val);
  2060. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2061. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2062. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2063. #else
  2064. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2065. val = _mm_add_ps(val, tmp);
  2066. tmp = _mm_movehl_ps(tmp, val);
  2067. val = _mm_add_ss(val, tmp);
  2068. #endif
  2069. sum += (ggml_float)_mm_cvtss_f32(val);
  2070. }
  2071. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2072. for (; i + 3 < n; i += 4) {
  2073. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2074. vdupq_n_f32(max)));
  2075. vst1q_f32(y + i, val);
  2076. sum += (ggml_float)vaddvq_f32(val);
  2077. }
  2078. #endif
  2079. for (; i < n; ++i) {
  2080. float val = expf(x[i] - max);
  2081. sum += (ggml_float)val;
  2082. y[i] = val;
  2083. }
  2084. return sum;
  2085. }
  2086. inline static float ggml_silu_backward_f32(float x, float dy) {
  2087. const float s = 1.0f/(1.0f + expf(-x));
  2088. return dy*s*(1.0f + x*(1.0f - s));
  2089. }
  2090. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2091. for (int i = 0; i < n; ++i) {
  2092. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2093. }
  2094. }
  2095. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2096. #ifndef GGML_USE_ACCELERATE
  2097. ggml_float sum = 0.0;
  2098. for (int i = 0; i < n; ++i) {
  2099. sum += (ggml_float)x[i];
  2100. }
  2101. *s = sum;
  2102. #else
  2103. vDSP_sve(x, 1, s, n);
  2104. #endif
  2105. }
  2106. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2107. ggml_float sum = 0.0;
  2108. for (int i = 0; i < n; ++i) {
  2109. sum += (ggml_float)x[i];
  2110. }
  2111. *s = sum;
  2112. }
  2113. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2114. float sum = 0.0f;
  2115. for (int i = 0; i < n; ++i) {
  2116. sum += GGML_FP16_TO_FP32(x[i]);
  2117. }
  2118. *s = sum;
  2119. }
  2120. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2121. float sum = 0.0f;
  2122. for (int i = 0; i < n; ++i) {
  2123. sum += GGML_BF16_TO_FP32(x[i]);
  2124. }
  2125. *s = sum;
  2126. }
  2127. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2128. #ifndef GGML_USE_ACCELERATE
  2129. float max = -INFINITY;
  2130. for (int i = 0; i < n; ++i) {
  2131. max = MAX(max, x[i]);
  2132. }
  2133. *s = max;
  2134. #else
  2135. vDSP_maxv(x, 1, s, n);
  2136. #endif
  2137. }
  2138. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2139. ggml_vec_norm_f32(n, s, x);
  2140. *s = 1.f/(*s);
  2141. }
  2142. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2143. float max = -INFINITY;
  2144. int idx = 0;
  2145. for (int i = 0; i < n; ++i) {
  2146. max = MAX(max, x[i]);
  2147. if (max == x[i]) { idx = i; }
  2148. }
  2149. *s = idx;
  2150. }
  2151. //
  2152. // data types
  2153. //
  2154. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2155. "NONE",
  2156. "DUP",
  2157. "ADD",
  2158. "ADD1",
  2159. "ACC",
  2160. "SUB",
  2161. "MUL",
  2162. "DIV",
  2163. "SQR",
  2164. "SQRT",
  2165. "LOG",
  2166. "SUM",
  2167. "SUM_ROWS",
  2168. "MEAN",
  2169. "ARGMAX",
  2170. "REPEAT",
  2171. "REPEAT_BACK",
  2172. "CONCAT",
  2173. "SILU_BACK",
  2174. "NORM",
  2175. "RMS_NORM",
  2176. "RMS_NORM_BACK",
  2177. "GROUP_NORM",
  2178. "MUL_MAT",
  2179. "MUL_MAT_ID",
  2180. "OUT_PROD",
  2181. "SCALE",
  2182. "SET",
  2183. "CPY",
  2184. "CONT",
  2185. "RESHAPE",
  2186. "VIEW",
  2187. "PERMUTE",
  2188. "TRANSPOSE",
  2189. "GET_ROWS",
  2190. "GET_ROWS_BACK",
  2191. "DIAG",
  2192. "DIAG_MASK_INF",
  2193. "DIAG_MASK_ZERO",
  2194. "SOFT_MAX",
  2195. "SOFT_MAX_BACK",
  2196. "ROPE",
  2197. "ROPE_BACK",
  2198. "CLAMP",
  2199. "CONV_TRANSPOSE_1D",
  2200. "IM2COL",
  2201. "CONV_TRANSPOSE_2D",
  2202. "POOL_1D",
  2203. "POOL_2D",
  2204. "UPSCALE",
  2205. "PAD",
  2206. "ARANGE",
  2207. "TIMESTEP_EMBEDDING",
  2208. "ARGSORT",
  2209. "LEAKY_RELU",
  2210. "FLASH_ATTN",
  2211. "FLASH_ATTN_EXT",
  2212. "FLASH_FF",
  2213. "FLASH_ATTN_BACK",
  2214. "SSM_CONV",
  2215. "SSM_SCAN",
  2216. "WIN_PART",
  2217. "WIN_UNPART",
  2218. "GET_REL_POS",
  2219. "ADD_REL_POS",
  2220. "UNARY",
  2221. "MAP_UNARY",
  2222. "MAP_BINARY",
  2223. "MAP_CUSTOM1_F32",
  2224. "MAP_CUSTOM2_F32",
  2225. "MAP_CUSTOM3_F32",
  2226. "MAP_CUSTOM1",
  2227. "MAP_CUSTOM2",
  2228. "MAP_CUSTOM3",
  2229. "CROSS_ENTROPY_LOSS",
  2230. "CROSS_ENTROPY_LOSS_BACK",
  2231. };
  2232. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2233. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2234. "none",
  2235. "x",
  2236. "x+y",
  2237. "x+y",
  2238. "view(x,nb,offset)+=y->x",
  2239. "x-y",
  2240. "x*y",
  2241. "x/y",
  2242. "x^2",
  2243. "√x",
  2244. "log(x)",
  2245. "Σx",
  2246. "Σx_k",
  2247. "Σx/n",
  2248. "argmax(x)",
  2249. "repeat(x)",
  2250. "repeat_back(x)",
  2251. "concat(x, y)",
  2252. "silu_back(x)",
  2253. "norm(x)",
  2254. "rms_norm(x)",
  2255. "rms_norm_back(x)",
  2256. "group_norm(x)",
  2257. "X*Y",
  2258. "X[i]*Y",
  2259. "X*Y",
  2260. "x*v",
  2261. "y-\\>view(x)",
  2262. "x-\\>y",
  2263. "cont(x)",
  2264. "reshape(x)",
  2265. "view(x)",
  2266. "permute(x)",
  2267. "transpose(x)",
  2268. "get_rows(x)",
  2269. "get_rows_back(x)",
  2270. "diag(x)",
  2271. "diag_mask_inf(x)",
  2272. "diag_mask_zero(x)",
  2273. "soft_max(x)",
  2274. "soft_max_back(x)",
  2275. "rope(x)",
  2276. "rope_back(x)",
  2277. "clamp(x)",
  2278. "conv_transpose_1d(x)",
  2279. "im2col(x)",
  2280. "conv_transpose_2d(x)",
  2281. "pool_1d(x)",
  2282. "pool_2d(x)",
  2283. "upscale(x)",
  2284. "pad(x)",
  2285. "arange(start, stop, step)",
  2286. "timestep_embedding(timesteps, dim, max_period)",
  2287. "argsort(x)",
  2288. "leaky_relu(x)",
  2289. "flash_attn(x)",
  2290. "flash_attn_ext(x)",
  2291. "flash_ff(x)",
  2292. "flash_attn_back(x)",
  2293. "ssm_conv(x)",
  2294. "ssm_scan(x)",
  2295. "win_part(x)",
  2296. "win_unpart(x)",
  2297. "get_rel_pos(x)",
  2298. "add_rel_pos(x)",
  2299. "unary(x)",
  2300. "f(x)",
  2301. "f(x,y)",
  2302. "custom_f32(x)",
  2303. "custom_f32(x,y)",
  2304. "custom_f32(x,y,z)",
  2305. "custom(x)",
  2306. "custom(x,y)",
  2307. "custom(x,y,z)",
  2308. "cross_entropy_loss(x,y)",
  2309. "cross_entropy_loss_back(x,y)",
  2310. };
  2311. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2312. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2313. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2314. "ABS",
  2315. "SGN",
  2316. "NEG",
  2317. "STEP",
  2318. "TANH",
  2319. "ELU",
  2320. "RELU",
  2321. "SIGMOID",
  2322. "GELU",
  2323. "GELU_QUICK",
  2324. "SILU",
  2325. "HARDSWISH",
  2326. "HARDSIGMOID",
  2327. };
  2328. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2329. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2330. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2331. // WARN:
  2332. // Mis-configuration can lead to problem that's hard to reason about:
  2333. // * At best it crash or talks nosense.
  2334. // * At worst it talks slightly difference but hard to perceive.
  2335. //
  2336. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2337. // Take care about compile options (e.g., GGML_USE_xxx).
  2338. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2339. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2340. static void ggml_setup_op_has_task_pass(void) {
  2341. { // INIT
  2342. bool * p = GGML_OP_HAS_INIT;
  2343. p[GGML_OP_ACC ] = true;
  2344. p[GGML_OP_MUL_MAT ] = true;
  2345. p[GGML_OP_MUL_MAT_ID ] = true;
  2346. p[GGML_OP_OUT_PROD ] = true;
  2347. p[GGML_OP_SET ] = true;
  2348. p[GGML_OP_GET_ROWS_BACK ] = true;
  2349. p[GGML_OP_DIAG_MASK_INF ] = true;
  2350. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2351. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2352. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2353. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2354. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2355. p[GGML_OP_ADD_REL_POS ] = true;
  2356. }
  2357. { // FINALIZE
  2358. bool * p = GGML_OP_HAS_FINALIZE;
  2359. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2360. }
  2361. }
  2362. //
  2363. // NUMA support
  2364. //
  2365. #define GGML_NUMA_MAX_NODES 8
  2366. #define GGML_NUMA_MAX_CPUS 512
  2367. struct ggml_numa_node {
  2368. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2369. uint32_t n_cpus;
  2370. };
  2371. struct ggml_numa_nodes {
  2372. enum ggml_numa_strategy numa_strategy;
  2373. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2374. uint32_t n_nodes;
  2375. uint32_t total_cpus; // hardware threads on system
  2376. uint32_t current_node; // node on which main process is execting
  2377. #if defined(__gnu_linux__)
  2378. cpu_set_t cpuset; // cpuset from numactl
  2379. #else
  2380. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2381. #endif
  2382. };
  2383. //
  2384. // ggml state
  2385. //
  2386. struct ggml_state {
  2387. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2388. struct ggml_numa_nodes numa;
  2389. };
  2390. // global state
  2391. static struct ggml_state g_state;
  2392. static atomic_int g_state_barrier = 0;
  2393. // barrier via spin lock
  2394. inline static void ggml_critical_section_start(void) {
  2395. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2396. while (processing > 0) {
  2397. // wait for other threads to finish
  2398. atomic_fetch_sub(&g_state_barrier, 1);
  2399. sched_yield(); // TODO: reconsider this
  2400. processing = atomic_fetch_add(&g_state_barrier, 1);
  2401. }
  2402. }
  2403. // TODO: make this somehow automatically executed
  2404. // some sort of "sentry" mechanism
  2405. inline static void ggml_critical_section_end(void) {
  2406. atomic_fetch_sub(&g_state_barrier, 1);
  2407. }
  2408. #if defined(__gnu_linux__)
  2409. static cpu_set_t ggml_get_numa_affinity(void) {
  2410. cpu_set_t cpuset;
  2411. pthread_t thread;
  2412. thread = pthread_self();
  2413. CPU_ZERO(&cpuset);
  2414. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2415. return cpuset;
  2416. }
  2417. #else
  2418. static uint32_t ggml_get_numa_affinity(void) {
  2419. return 0; // no NUMA support
  2420. }
  2421. #endif
  2422. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2423. if (g_state.numa.n_nodes > 0) {
  2424. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2425. return;
  2426. }
  2427. #if defined(__gnu_linux__)
  2428. struct stat st;
  2429. char path[256];
  2430. int rv;
  2431. // set numa scheme
  2432. g_state.numa.numa_strategy = numa_flag;
  2433. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2434. g_state.numa.cpuset = ggml_get_numa_affinity();
  2435. // enumerate nodes
  2436. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2437. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2438. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2439. if (stat(path, &st) != 0) { break; }
  2440. ++g_state.numa.n_nodes;
  2441. }
  2442. // enumerate CPUs
  2443. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2444. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2445. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2446. if (stat(path, &st) != 0) { break; }
  2447. ++g_state.numa.total_cpus;
  2448. }
  2449. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2450. // figure out which node we're on
  2451. uint current_cpu;
  2452. int getcpu_ret = 0;
  2453. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2454. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2455. #else
  2456. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2457. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2458. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2459. # endif
  2460. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2461. #endif
  2462. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2463. g_state.numa.n_nodes = 0;
  2464. return;
  2465. }
  2466. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2467. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2468. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2469. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2470. node->n_cpus = 0;
  2471. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2472. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2473. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2474. if (stat(path, &st) == 0) {
  2475. node->cpus[node->n_cpus++] = c;
  2476. GGML_PRINT_DEBUG(" %u", c);
  2477. }
  2478. }
  2479. GGML_PRINT_DEBUG("\n");
  2480. }
  2481. if (ggml_is_numa()) {
  2482. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2483. if (fptr != NULL) {
  2484. char buf[42];
  2485. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2486. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2487. }
  2488. fclose(fptr);
  2489. }
  2490. }
  2491. #else
  2492. GGML_UNUSED(numa_flag);
  2493. // TODO
  2494. #endif
  2495. }
  2496. bool ggml_is_numa(void) {
  2497. return g_state.numa.n_nodes > 1;
  2498. }
  2499. ////////////////////////////////////////////////////////////////////////////////
  2500. void ggml_print_object(const struct ggml_object * obj) {
  2501. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2502. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2503. }
  2504. void ggml_print_objects(const struct ggml_context * ctx) {
  2505. struct ggml_object * obj = ctx->objects_begin;
  2506. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2507. while (obj != NULL) {
  2508. ggml_print_object(obj);
  2509. obj = obj->next;
  2510. }
  2511. GGML_PRINT("%s: --- end ---\n", __func__);
  2512. }
  2513. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2514. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2515. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2516. }
  2517. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2518. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2519. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2520. }
  2521. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2522. size_t nbytes;
  2523. size_t blck_size = ggml_blck_size(tensor->type);
  2524. if (blck_size == 1) {
  2525. nbytes = ggml_type_size(tensor->type);
  2526. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2527. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2528. }
  2529. }
  2530. else {
  2531. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2532. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2533. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2534. }
  2535. }
  2536. return nbytes;
  2537. }
  2538. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2539. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2540. }
  2541. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2542. return type_traits[type].blck_size;
  2543. }
  2544. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2545. return type_traits[type].type_size;
  2546. }
  2547. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2548. assert(ne % ggml_blck_size(type) == 0);
  2549. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2550. }
  2551. double ggml_type_sizef(enum ggml_type type) {
  2552. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2553. }
  2554. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2555. return type_traits[type].type_name;
  2556. }
  2557. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2558. return type_traits[type].is_quantized;
  2559. }
  2560. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2561. return GGML_OP_NAME[op];
  2562. }
  2563. const char * ggml_op_symbol(enum ggml_op op) {
  2564. return GGML_OP_SYMBOL[op];
  2565. }
  2566. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2567. return GGML_UNARY_OP_NAME[op];
  2568. }
  2569. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2570. if (t->op == GGML_OP_UNARY) {
  2571. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2572. return ggml_unary_op_name(uop);
  2573. }
  2574. else {
  2575. return ggml_op_name(t->op);
  2576. }
  2577. }
  2578. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2579. return ggml_type_size(tensor->type);
  2580. }
  2581. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2582. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2583. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2584. }
  2585. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2586. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2587. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2588. }
  2589. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2590. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2591. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2592. }
  2593. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2594. return tensor->ne[3] == 1;
  2595. }
  2596. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2597. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2598. if (tensor->ne[i] > 1) {
  2599. return i + 1;
  2600. }
  2601. }
  2602. return 1;
  2603. }
  2604. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2605. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2606. return (t0->ne[0] == t1->ne[0]) &&
  2607. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2608. (t1->ne[3]%t0->ne[3] == 0);
  2609. }
  2610. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2611. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2612. return (t0->ne[1] == t1->ne[1]) &&
  2613. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2614. (t1->ne[3]%t0->ne[3] == 0);
  2615. }
  2616. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2617. enum ggml_type wtype = GGML_TYPE_COUNT;
  2618. switch (ftype) {
  2619. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2620. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2621. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2622. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2623. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2624. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2625. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2626. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2627. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2628. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2629. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2630. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2631. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2632. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2633. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2634. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2635. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2636. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2637. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2638. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2639. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2640. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2641. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2642. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2643. }
  2644. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2645. return wtype;
  2646. }
  2647. size_t ggml_tensor_overhead(void) {
  2648. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2649. }
  2650. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2651. return tensor->nb[0] > tensor->nb[1];
  2652. }
  2653. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2654. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2655. return
  2656. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2657. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2658. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2659. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2660. }
  2661. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2662. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2663. return
  2664. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2665. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2666. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2667. }
  2668. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2669. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2670. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2671. }
  2672. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2673. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2674. return
  2675. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2676. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2677. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2678. }
  2679. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2680. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2681. if (tensor->ne[i] == 0) {
  2682. // empty if any dimension has no elements
  2683. return true;
  2684. }
  2685. }
  2686. return false;
  2687. }
  2688. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2689. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2690. return
  2691. (t0->ne[0] == t1->ne[0] ) &&
  2692. (t0->ne[1] == t1->ne[1] ) &&
  2693. (t0->ne[2] == t1->ne[2] ) &&
  2694. (t0->ne[3] == t1->ne[3] );
  2695. }
  2696. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2697. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2698. return
  2699. (t0->nb[0] == t1->nb[0] ) &&
  2700. (t0->nb[1] == t1->nb[1] ) &&
  2701. (t0->nb[2] == t1->nb[2] ) &&
  2702. (t0->nb[3] == t1->nb[3] );
  2703. }
  2704. // check if t1 can be represented as a repeatition of t0
  2705. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2706. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2707. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2708. (t1->ne[0]%t0->ne[0] == 0) &&
  2709. (t1->ne[1]%t0->ne[1] == 0) &&
  2710. (t1->ne[2]%t0->ne[2] == 0) &&
  2711. (t1->ne[3]%t0->ne[3] == 0);
  2712. }
  2713. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2714. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2715. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2716. }
  2717. static inline int ggml_up32(int n) {
  2718. return (n + 31) & ~31;
  2719. }
  2720. //static inline int ggml_up64(int n) {
  2721. // return (n + 63) & ~63;
  2722. //}
  2723. static inline int ggml_up(int n, int m) {
  2724. // assert m is a power of 2
  2725. GGML_ASSERT((m & (m - 1)) == 0);
  2726. return (n + m - 1) & ~(m - 1);
  2727. }
  2728. // assert that pointer is aligned to GGML_MEM_ALIGN
  2729. #define ggml_assert_aligned(ptr) \
  2730. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2731. ////////////////////////////////////////////////////////////////////////////////
  2732. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2733. // make this function thread safe
  2734. ggml_critical_section_start();
  2735. static bool is_first_call = true;
  2736. if (is_first_call) {
  2737. // initialize time system (required on Windows)
  2738. ggml_time_init();
  2739. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2740. {
  2741. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2742. for (int i = 0; i < (1 << 16); ++i) {
  2743. union {
  2744. uint16_t u16;
  2745. ggml_fp16_t fp16;
  2746. } u = {i};
  2747. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2748. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2749. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2750. }
  2751. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2752. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2753. }
  2754. // initialize g_state
  2755. {
  2756. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2757. g_state = (struct ggml_state) {
  2758. /*.contexts =*/ { { 0 } },
  2759. /*.numa =*/ {
  2760. .n_nodes = 0,
  2761. .total_cpus = 0,
  2762. },
  2763. };
  2764. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2765. g_state.contexts[i].used = false;
  2766. }
  2767. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2768. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2769. }
  2770. #if defined(GGML_USE_CLBLAST)
  2771. ggml_cl_init();
  2772. #endif
  2773. ggml_setup_op_has_task_pass();
  2774. is_first_call = false;
  2775. }
  2776. // find non-used context in g_state
  2777. struct ggml_context * ctx = NULL;
  2778. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2779. if (!g_state.contexts[i].used) {
  2780. g_state.contexts[i].used = true;
  2781. ctx = &g_state.contexts[i].context;
  2782. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2783. break;
  2784. }
  2785. }
  2786. if (ctx == NULL) {
  2787. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2788. ggml_critical_section_end();
  2789. return NULL;
  2790. }
  2791. // allow to call ggml_init with 0 size
  2792. if (params.mem_size == 0) {
  2793. params.mem_size = GGML_MEM_ALIGN;
  2794. }
  2795. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2796. *ctx = (struct ggml_context) {
  2797. /*.mem_size =*/ mem_size,
  2798. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2799. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2800. /*.no_alloc =*/ params.no_alloc,
  2801. /*.no_alloc_save =*/ params.no_alloc,
  2802. /*.n_objects =*/ 0,
  2803. /*.objects_begin =*/ NULL,
  2804. /*.objects_end =*/ NULL,
  2805. /*.scratch =*/ { 0, 0, NULL, },
  2806. /*.scratch_save =*/ { 0, 0, NULL, },
  2807. };
  2808. GGML_ASSERT(ctx->mem_buffer != NULL);
  2809. ggml_assert_aligned(ctx->mem_buffer);
  2810. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2811. ggml_critical_section_end();
  2812. return ctx;
  2813. }
  2814. void ggml_free(struct ggml_context * ctx) {
  2815. if (ctx == NULL) {
  2816. return;
  2817. }
  2818. // make this function thread safe
  2819. ggml_critical_section_start();
  2820. bool found = false;
  2821. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2822. if (&g_state.contexts[i].context == ctx) {
  2823. g_state.contexts[i].used = false;
  2824. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2825. __func__, i, ggml_used_mem(ctx));
  2826. if (ctx->mem_buffer_owned) {
  2827. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2828. }
  2829. found = true;
  2830. break;
  2831. }
  2832. }
  2833. if (!found) {
  2834. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2835. }
  2836. ggml_critical_section_end();
  2837. }
  2838. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2839. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2840. }
  2841. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2842. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2843. ctx->scratch = scratch;
  2844. return result;
  2845. }
  2846. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2847. return ctx->no_alloc;
  2848. }
  2849. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2850. ctx->no_alloc = no_alloc;
  2851. }
  2852. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2853. return ctx->mem_buffer;
  2854. }
  2855. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2856. return ctx->mem_size;
  2857. }
  2858. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2859. size_t max_size = 0;
  2860. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2861. size_t bytes = ggml_nbytes(tensor);
  2862. max_size = MAX(max_size, bytes);
  2863. }
  2864. return max_size;
  2865. }
  2866. // IMPORTANT:
  2867. // when creating "opt" tensors, always save and load the scratch buffer
  2868. // this is an error prone process, but it is necessary to support inplace
  2869. // operators when using scratch buffers
  2870. // TODO: implement a better way
  2871. static void ggml_scratch_save(struct ggml_context * ctx) {
  2872. // this is needed to allow opt tensors to store their data
  2873. // TODO: again, need to find a better way
  2874. ctx->no_alloc_save = ctx->no_alloc;
  2875. ctx->no_alloc = false;
  2876. ctx->scratch_save = ctx->scratch;
  2877. ctx->scratch.data = NULL;
  2878. }
  2879. static void ggml_scratch_load(struct ggml_context * ctx) {
  2880. ctx->no_alloc = ctx->no_alloc_save;
  2881. ctx->scratch = ctx->scratch_save;
  2882. }
  2883. ////////////////////////////////////////////////////////////////////////////////
  2884. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2885. // always insert objects at the end of the context's memory pool
  2886. struct ggml_object * obj_cur = ctx->objects_end;
  2887. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2888. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2889. const size_t cur_end = cur_offs + cur_size;
  2890. // align to GGML_MEM_ALIGN
  2891. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2892. char * const mem_buffer = ctx->mem_buffer;
  2893. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2894. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2895. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2896. __func__, cur_end + size_needed, ctx->mem_size);
  2897. assert(false);
  2898. return NULL;
  2899. }
  2900. *obj_new = (struct ggml_object) {
  2901. .offs = cur_end + GGML_OBJECT_SIZE,
  2902. .size = size_needed,
  2903. .next = NULL,
  2904. .type = type,
  2905. };
  2906. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2907. if (obj_cur != NULL) {
  2908. obj_cur->next = obj_new;
  2909. } else {
  2910. // this is the first object in this context
  2911. ctx->objects_begin = obj_new;
  2912. }
  2913. ctx->objects_end = obj_new;
  2914. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2915. return obj_new;
  2916. }
  2917. static struct ggml_tensor * ggml_new_tensor_impl(
  2918. struct ggml_context * ctx,
  2919. enum ggml_type type,
  2920. int n_dims,
  2921. const int64_t * ne,
  2922. struct ggml_tensor * view_src,
  2923. size_t view_offs) {
  2924. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2925. // find the base tensor and absolute offset
  2926. if (view_src != NULL && view_src->view_src != NULL) {
  2927. view_offs += view_src->view_offs;
  2928. view_src = view_src->view_src;
  2929. }
  2930. size_t data_size = ggml_row_size(type, ne[0]);
  2931. for (int i = 1; i < n_dims; i++) {
  2932. data_size *= ne[i];
  2933. }
  2934. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2935. void * data = view_src != NULL ? view_src->data : NULL;
  2936. if (data != NULL) {
  2937. data = (char *) data + view_offs;
  2938. }
  2939. size_t obj_alloc_size = 0;
  2940. if (view_src == NULL && !ctx->no_alloc) {
  2941. if (ctx->scratch.data != NULL) {
  2942. // allocate tensor data in the scratch buffer
  2943. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2944. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2945. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2946. assert(false);
  2947. return NULL;
  2948. }
  2949. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2950. ctx->scratch.offs += data_size;
  2951. } else {
  2952. // allocate tensor data in the context's memory pool
  2953. obj_alloc_size = data_size;
  2954. }
  2955. }
  2956. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2957. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2958. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2959. #ifdef __clang__
  2960. // temporary until ggml_tensor::backend is removed
  2961. #pragma clang diagnostic push
  2962. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  2963. #endif
  2964. *result = (struct ggml_tensor) {
  2965. /*.type =*/ type,
  2966. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2967. /*.buffer =*/ NULL,
  2968. /*.ne =*/ { 1, 1, 1, 1 },
  2969. /*.nb =*/ { 0, 0, 0, 0 },
  2970. /*.op =*/ GGML_OP_NONE,
  2971. /*.op_params =*/ { 0 },
  2972. /*.flags =*/ 0,
  2973. /*.grad =*/ NULL,
  2974. /*.src =*/ { NULL },
  2975. /*.perf_runs =*/ 0,
  2976. /*.perf_cycles =*/ 0,
  2977. /*.perf_time_us =*/ 0,
  2978. /*.view_src =*/ view_src,
  2979. /*.view_offs =*/ view_offs,
  2980. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2981. /*.name =*/ { 0 },
  2982. /*.extra =*/ NULL,
  2983. /*.padding =*/ { 0 },
  2984. };
  2985. #ifdef __clang__
  2986. #pragma clang diagnostic pop
  2987. #endif
  2988. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2989. //ggml_assert_aligned(result->data);
  2990. for (int i = 0; i < n_dims; i++) {
  2991. result->ne[i] = ne[i];
  2992. }
  2993. result->nb[0] = ggml_type_size(type);
  2994. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2995. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2996. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2997. }
  2998. ctx->n_objects++;
  2999. return result;
  3000. }
  3001. struct ggml_tensor * ggml_new_tensor(
  3002. struct ggml_context * ctx,
  3003. enum ggml_type type,
  3004. int n_dims,
  3005. const int64_t * ne) {
  3006. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3007. }
  3008. struct ggml_tensor * ggml_new_tensor_1d(
  3009. struct ggml_context * ctx,
  3010. enum ggml_type type,
  3011. int64_t ne0) {
  3012. return ggml_new_tensor(ctx, type, 1, &ne0);
  3013. }
  3014. struct ggml_tensor * ggml_new_tensor_2d(
  3015. struct ggml_context * ctx,
  3016. enum ggml_type type,
  3017. int64_t ne0,
  3018. int64_t ne1) {
  3019. const int64_t ne[2] = { ne0, ne1 };
  3020. return ggml_new_tensor(ctx, type, 2, ne);
  3021. }
  3022. struct ggml_tensor * ggml_new_tensor_3d(
  3023. struct ggml_context * ctx,
  3024. enum ggml_type type,
  3025. int64_t ne0,
  3026. int64_t ne1,
  3027. int64_t ne2) {
  3028. const int64_t ne[3] = { ne0, ne1, ne2 };
  3029. return ggml_new_tensor(ctx, type, 3, ne);
  3030. }
  3031. struct ggml_tensor * ggml_new_tensor_4d(
  3032. struct ggml_context * ctx,
  3033. enum ggml_type type,
  3034. int64_t ne0,
  3035. int64_t ne1,
  3036. int64_t ne2,
  3037. int64_t ne3) {
  3038. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3039. return ggml_new_tensor(ctx, type, 4, ne);
  3040. }
  3041. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3042. ggml_scratch_save(ctx);
  3043. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3044. ggml_scratch_load(ctx);
  3045. ggml_set_i32(result, value);
  3046. return result;
  3047. }
  3048. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3049. ggml_scratch_save(ctx);
  3050. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3051. ggml_scratch_load(ctx);
  3052. ggml_set_f32(result, value);
  3053. return result;
  3054. }
  3055. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3056. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3057. }
  3058. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3059. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3060. assert(params_size <= GGML_MAX_OP_PARAMS);
  3061. memcpy(tensor->op_params, params, params_size);
  3062. }
  3063. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3064. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3065. return ((const int32_t *)(tensor->op_params))[i];
  3066. }
  3067. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3068. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3069. return ((const float *)(tensor->op_params))[i];
  3070. }
  3071. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3072. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3073. ((int32_t *)(tensor->op_params))[i] = value;
  3074. }
  3075. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3076. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3077. ((float *)(tensor->op_params))[i] = value;
  3078. }
  3079. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3080. memset(tensor->data, 0, ggml_nbytes(tensor));
  3081. return tensor;
  3082. }
  3083. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3084. const int n = ggml_nrows(tensor);
  3085. const int nc = tensor->ne[0];
  3086. const size_t n1 = tensor->nb[1];
  3087. char * const data = tensor->data;
  3088. switch (tensor->type) {
  3089. case GGML_TYPE_I8:
  3090. {
  3091. assert(tensor->nb[0] == sizeof(int8_t));
  3092. for (int i = 0; i < n; i++) {
  3093. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3094. }
  3095. } break;
  3096. case GGML_TYPE_I16:
  3097. {
  3098. assert(tensor->nb[0] == sizeof(int16_t));
  3099. for (int i = 0; i < n; i++) {
  3100. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3101. }
  3102. } break;
  3103. case GGML_TYPE_I32:
  3104. {
  3105. assert(tensor->nb[0] == sizeof(int32_t));
  3106. for (int i = 0; i < n; i++) {
  3107. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3108. }
  3109. } break;
  3110. case GGML_TYPE_F16:
  3111. {
  3112. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3113. for (int i = 0; i < n; i++) {
  3114. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3115. }
  3116. } break;
  3117. case GGML_TYPE_BF16:
  3118. {
  3119. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3120. for (int i = 0; i < n; i++) {
  3121. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3122. }
  3123. } break;
  3124. case GGML_TYPE_F32:
  3125. {
  3126. assert(tensor->nb[0] == sizeof(float));
  3127. for (int i = 0; i < n; i++) {
  3128. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3129. }
  3130. } break;
  3131. default:
  3132. {
  3133. GGML_ASSERT(false);
  3134. } break;
  3135. }
  3136. return tensor;
  3137. }
  3138. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3139. const int n = ggml_nrows(tensor);
  3140. const int nc = tensor->ne[0];
  3141. const size_t n1 = tensor->nb[1];
  3142. char * const data = tensor->data;
  3143. switch (tensor->type) {
  3144. case GGML_TYPE_I8:
  3145. {
  3146. assert(tensor->nb[0] == sizeof(int8_t));
  3147. for (int i = 0; i < n; i++) {
  3148. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3149. }
  3150. } break;
  3151. case GGML_TYPE_I16:
  3152. {
  3153. assert(tensor->nb[0] == sizeof(int16_t));
  3154. for (int i = 0; i < n; i++) {
  3155. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3156. }
  3157. } break;
  3158. case GGML_TYPE_I32:
  3159. {
  3160. assert(tensor->nb[0] == sizeof(int32_t));
  3161. for (int i = 0; i < n; i++) {
  3162. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3163. }
  3164. } break;
  3165. case GGML_TYPE_F16:
  3166. {
  3167. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3168. for (int i = 0; i < n; i++) {
  3169. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3170. }
  3171. } break;
  3172. case GGML_TYPE_BF16:
  3173. {
  3174. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3175. for (int i = 0; i < n; i++) {
  3176. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3177. }
  3178. } break;
  3179. case GGML_TYPE_F32:
  3180. {
  3181. assert(tensor->nb[0] == sizeof(float));
  3182. for (int i = 0; i < n; i++) {
  3183. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3184. }
  3185. } break;
  3186. default:
  3187. {
  3188. GGML_ASSERT(false);
  3189. } break;
  3190. }
  3191. return tensor;
  3192. }
  3193. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3194. const int64_t ne2 = tensor->ne[2];
  3195. const int64_t ne1 = tensor->ne[1];
  3196. const int64_t ne0 = tensor->ne[0];
  3197. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3198. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3199. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3200. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3201. if (i0) {
  3202. * i0 = i0_;
  3203. }
  3204. if (i1) {
  3205. * i1 = i1_;
  3206. }
  3207. if (i2) {
  3208. * i2 = i2_;
  3209. }
  3210. if (i3) {
  3211. * i3 = i3_;
  3212. }
  3213. }
  3214. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3215. if (!ggml_is_contiguous(tensor)) {
  3216. int64_t id[4] = { 0, 0, 0, 0 };
  3217. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3218. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3219. }
  3220. switch (tensor->type) {
  3221. case GGML_TYPE_I8:
  3222. {
  3223. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3224. return ((int8_t *)(tensor->data))[i];
  3225. }
  3226. case GGML_TYPE_I16:
  3227. {
  3228. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3229. return ((int16_t *)(tensor->data))[i];
  3230. }
  3231. case GGML_TYPE_I32:
  3232. {
  3233. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3234. return ((int32_t *)(tensor->data))[i];
  3235. }
  3236. case GGML_TYPE_F16:
  3237. {
  3238. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3239. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3240. }
  3241. case GGML_TYPE_BF16:
  3242. {
  3243. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3244. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3245. }
  3246. case GGML_TYPE_F32:
  3247. {
  3248. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3249. return ((float *)(tensor->data))[i];
  3250. }
  3251. default:
  3252. {
  3253. GGML_ASSERT(false);
  3254. }
  3255. }
  3256. return 0.0f;
  3257. }
  3258. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3259. if (!ggml_is_contiguous(tensor)) {
  3260. int64_t id[4] = { 0, 0, 0, 0 };
  3261. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3262. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3263. return;
  3264. }
  3265. switch (tensor->type) {
  3266. case GGML_TYPE_I8:
  3267. {
  3268. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3269. ((int8_t *)(tensor->data))[i] = value;
  3270. } break;
  3271. case GGML_TYPE_I16:
  3272. {
  3273. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3274. ((int16_t *)(tensor->data))[i] = value;
  3275. } break;
  3276. case GGML_TYPE_I32:
  3277. {
  3278. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3279. ((int32_t *)(tensor->data))[i] = value;
  3280. } break;
  3281. case GGML_TYPE_F16:
  3282. {
  3283. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3284. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3285. } break;
  3286. case GGML_TYPE_BF16:
  3287. {
  3288. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3289. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3290. } break;
  3291. case GGML_TYPE_F32:
  3292. {
  3293. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3294. ((float *)(tensor->data))[i] = value;
  3295. } break;
  3296. default:
  3297. {
  3298. GGML_ASSERT(false);
  3299. } break;
  3300. }
  3301. }
  3302. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3303. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3304. switch (tensor->type) {
  3305. case GGML_TYPE_I8:
  3306. return ((int8_t *) data)[0];
  3307. case GGML_TYPE_I16:
  3308. return ((int16_t *) data)[0];
  3309. case GGML_TYPE_I32:
  3310. return ((int32_t *) data)[0];
  3311. case GGML_TYPE_F16:
  3312. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3313. case GGML_TYPE_BF16:
  3314. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3315. case GGML_TYPE_F32:
  3316. return ((float *) data)[0];
  3317. default:
  3318. GGML_ASSERT(false);
  3319. }
  3320. return 0.0f;
  3321. }
  3322. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3323. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3324. switch (tensor->type) {
  3325. case GGML_TYPE_I8:
  3326. {
  3327. ((int8_t *)(data))[0] = value;
  3328. } break;
  3329. case GGML_TYPE_I16:
  3330. {
  3331. ((int16_t *)(data))[0] = value;
  3332. } break;
  3333. case GGML_TYPE_I32:
  3334. {
  3335. ((int32_t *)(data))[0] = value;
  3336. } break;
  3337. case GGML_TYPE_F16:
  3338. {
  3339. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3340. } break;
  3341. case GGML_TYPE_BF16:
  3342. {
  3343. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3344. } break;
  3345. case GGML_TYPE_F32:
  3346. {
  3347. ((float *)(data))[0] = value;
  3348. } break;
  3349. default:
  3350. {
  3351. GGML_ASSERT(false);
  3352. } break;
  3353. }
  3354. }
  3355. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3356. if (!ggml_is_contiguous(tensor)) {
  3357. int64_t id[4] = { 0, 0, 0, 0 };
  3358. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3359. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3360. }
  3361. switch (tensor->type) {
  3362. case GGML_TYPE_I8:
  3363. {
  3364. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3365. return ((int8_t *)(tensor->data))[i];
  3366. }
  3367. case GGML_TYPE_I16:
  3368. {
  3369. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3370. return ((int16_t *)(tensor->data))[i];
  3371. }
  3372. case GGML_TYPE_I32:
  3373. {
  3374. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3375. return ((int32_t *)(tensor->data))[i];
  3376. }
  3377. case GGML_TYPE_F16:
  3378. {
  3379. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3380. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3381. }
  3382. case GGML_TYPE_BF16:
  3383. {
  3384. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3385. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3386. }
  3387. case GGML_TYPE_F32:
  3388. {
  3389. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3390. return ((float *)(tensor->data))[i];
  3391. }
  3392. default:
  3393. {
  3394. GGML_ASSERT(false);
  3395. }
  3396. }
  3397. return 0.0f;
  3398. }
  3399. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3400. if (!ggml_is_contiguous(tensor)) {
  3401. int64_t id[4] = { 0, 0, 0, 0 };
  3402. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3403. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3404. return;
  3405. }
  3406. switch (tensor->type) {
  3407. case GGML_TYPE_I8:
  3408. {
  3409. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3410. ((int8_t *)(tensor->data))[i] = value;
  3411. } break;
  3412. case GGML_TYPE_I16:
  3413. {
  3414. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3415. ((int16_t *)(tensor->data))[i] = value;
  3416. } break;
  3417. case GGML_TYPE_I32:
  3418. {
  3419. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3420. ((int32_t *)(tensor->data))[i] = value;
  3421. } break;
  3422. case GGML_TYPE_F16:
  3423. {
  3424. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3425. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3426. } break;
  3427. case GGML_TYPE_BF16:
  3428. {
  3429. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3430. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3431. } break;
  3432. case GGML_TYPE_F32:
  3433. {
  3434. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3435. ((float *)(tensor->data))[i] = value;
  3436. } break;
  3437. default:
  3438. {
  3439. GGML_ASSERT(false);
  3440. } break;
  3441. }
  3442. }
  3443. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3444. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3445. switch (tensor->type) {
  3446. case GGML_TYPE_I8:
  3447. return ((int8_t *) data)[0];
  3448. case GGML_TYPE_I16:
  3449. return ((int16_t *) data)[0];
  3450. case GGML_TYPE_I32:
  3451. return ((int32_t *) data)[0];
  3452. case GGML_TYPE_F16:
  3453. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3454. case GGML_TYPE_BF16:
  3455. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3456. case GGML_TYPE_F32:
  3457. return ((float *) data)[0];
  3458. default:
  3459. GGML_ASSERT(false);
  3460. }
  3461. return 0.0f;
  3462. }
  3463. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3464. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3465. switch (tensor->type) {
  3466. case GGML_TYPE_I8:
  3467. {
  3468. ((int8_t *)(data))[0] = value;
  3469. } break;
  3470. case GGML_TYPE_I16:
  3471. {
  3472. ((int16_t *)(data))[0] = value;
  3473. } break;
  3474. case GGML_TYPE_I32:
  3475. {
  3476. ((int32_t *)(data))[0] = value;
  3477. } break;
  3478. case GGML_TYPE_F16:
  3479. {
  3480. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3481. } break;
  3482. case GGML_TYPE_BF16:
  3483. {
  3484. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3485. } break;
  3486. case GGML_TYPE_F32:
  3487. {
  3488. ((float *)(data))[0] = value;
  3489. } break;
  3490. default:
  3491. {
  3492. GGML_ASSERT(false);
  3493. } break;
  3494. }
  3495. }
  3496. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3497. return tensor->data;
  3498. }
  3499. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3500. assert(tensor->type == GGML_TYPE_F32);
  3501. return (float *)(tensor->data);
  3502. }
  3503. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3504. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3505. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3506. }
  3507. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3508. return tensor->name;
  3509. }
  3510. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3511. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3512. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3513. return tensor;
  3514. }
  3515. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3516. va_list args;
  3517. va_start(args, fmt);
  3518. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3519. va_end(args);
  3520. return tensor;
  3521. }
  3522. struct ggml_tensor * ggml_view_tensor(
  3523. struct ggml_context * ctx,
  3524. struct ggml_tensor * src) {
  3525. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3526. ggml_format_name(result, "%s (view)", src->name);
  3527. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3528. result->nb[i] = src->nb[i];
  3529. }
  3530. return result;
  3531. }
  3532. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3533. struct ggml_object * obj = ctx->objects_begin;
  3534. char * const mem_buffer = ctx->mem_buffer;
  3535. while (obj != NULL) {
  3536. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3537. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3538. }
  3539. obj = obj->next;
  3540. }
  3541. return NULL;
  3542. }
  3543. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3544. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3545. obj = obj->next;
  3546. char * const mem_buffer = ctx->mem_buffer;
  3547. while (obj != NULL) {
  3548. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3549. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3550. }
  3551. obj = obj->next;
  3552. }
  3553. return NULL;
  3554. }
  3555. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3556. struct ggml_object * obj = ctx->objects_begin;
  3557. char * const mem_buffer = ctx->mem_buffer;
  3558. while (obj != NULL) {
  3559. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3560. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3561. if (strcmp(cur->name, name) == 0) {
  3562. return cur;
  3563. }
  3564. }
  3565. obj = obj->next;
  3566. }
  3567. return NULL;
  3568. }
  3569. ////////////////////////////////////////////////////////////////////////////////
  3570. // ggml_dup
  3571. static struct ggml_tensor * ggml_dup_impl(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a,
  3574. bool inplace) {
  3575. bool is_node = false;
  3576. if (!inplace && (a->grad)) {
  3577. is_node = true;
  3578. }
  3579. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3580. result->op = GGML_OP_DUP;
  3581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3582. result->src[0] = a;
  3583. return result;
  3584. }
  3585. struct ggml_tensor * ggml_dup(
  3586. struct ggml_context * ctx,
  3587. struct ggml_tensor * a) {
  3588. return ggml_dup_impl(ctx, a, false);
  3589. }
  3590. struct ggml_tensor * ggml_dup_inplace(
  3591. struct ggml_context * ctx,
  3592. struct ggml_tensor * a) {
  3593. return ggml_dup_impl(ctx, a, true);
  3594. }
  3595. // ggml_add
  3596. static struct ggml_tensor * ggml_add_impl(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * a,
  3599. struct ggml_tensor * b,
  3600. bool inplace) {
  3601. GGML_ASSERT(ggml_can_repeat(b, a));
  3602. bool is_node = false;
  3603. if (!inplace && (a->grad || b->grad)) {
  3604. // TODO: support backward pass for broadcasting
  3605. GGML_ASSERT(ggml_are_same_shape(a, b));
  3606. is_node = true;
  3607. }
  3608. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3609. result->op = GGML_OP_ADD;
  3610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3611. result->src[0] = a;
  3612. result->src[1] = b;
  3613. return result;
  3614. }
  3615. struct ggml_tensor * ggml_add(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a,
  3618. struct ggml_tensor * b) {
  3619. return ggml_add_impl(ctx, a, b, false);
  3620. }
  3621. struct ggml_tensor * ggml_add_inplace(
  3622. struct ggml_context * ctx,
  3623. struct ggml_tensor * a,
  3624. struct ggml_tensor * b) {
  3625. return ggml_add_impl(ctx, a, b, true);
  3626. }
  3627. // ggml_add_cast
  3628. static struct ggml_tensor * ggml_add_cast_impl(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a,
  3631. struct ggml_tensor * b,
  3632. enum ggml_type type) {
  3633. // TODO: support less-strict constraint
  3634. // GGML_ASSERT(ggml_can_repeat(b, a));
  3635. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3636. // currently only supported for quantized input and f16
  3637. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3638. a->type == GGML_TYPE_F16 ||
  3639. a->type == GGML_TYPE_BF16);
  3640. bool is_node = false;
  3641. if (a->grad || b->grad) {
  3642. // TODO: support backward pass for broadcasting
  3643. GGML_ASSERT(ggml_are_same_shape(a, b));
  3644. is_node = true;
  3645. }
  3646. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3647. result->op = GGML_OP_ADD;
  3648. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3649. result->src[0] = a;
  3650. result->src[1] = b;
  3651. return result;
  3652. }
  3653. struct ggml_tensor * ggml_add_cast(
  3654. struct ggml_context * ctx,
  3655. struct ggml_tensor * a,
  3656. struct ggml_tensor * b,
  3657. enum ggml_type type) {
  3658. return ggml_add_cast_impl(ctx, a, b, type);
  3659. }
  3660. // ggml_add1
  3661. static struct ggml_tensor * ggml_add1_impl(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a,
  3664. struct ggml_tensor * b,
  3665. bool inplace) {
  3666. GGML_ASSERT(ggml_is_scalar(b));
  3667. GGML_ASSERT(ggml_is_padded_1d(a));
  3668. bool is_node = false;
  3669. if (a->grad || b->grad) {
  3670. is_node = true;
  3671. }
  3672. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3673. result->op = GGML_OP_ADD1;
  3674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3675. result->src[0] = a;
  3676. result->src[1] = b;
  3677. return result;
  3678. }
  3679. struct ggml_tensor * ggml_add1(
  3680. struct ggml_context * ctx,
  3681. struct ggml_tensor * a,
  3682. struct ggml_tensor * b) {
  3683. return ggml_add1_impl(ctx, a, b, false);
  3684. }
  3685. struct ggml_tensor * ggml_add1_inplace(
  3686. struct ggml_context * ctx,
  3687. struct ggml_tensor * a,
  3688. struct ggml_tensor * b) {
  3689. return ggml_add1_impl(ctx, a, b, true);
  3690. }
  3691. // ggml_acc
  3692. static struct ggml_tensor * ggml_acc_impl(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a,
  3695. struct ggml_tensor * b,
  3696. size_t nb1,
  3697. size_t nb2,
  3698. size_t nb3,
  3699. size_t offset,
  3700. bool inplace) {
  3701. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3702. GGML_ASSERT(ggml_is_contiguous(a));
  3703. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3704. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3705. bool is_node = false;
  3706. if (!inplace && (a->grad || b->grad)) {
  3707. is_node = true;
  3708. }
  3709. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3710. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3711. ggml_set_op_params(result, params, sizeof(params));
  3712. result->op = GGML_OP_ACC;
  3713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3714. result->src[0] = a;
  3715. result->src[1] = b;
  3716. return result;
  3717. }
  3718. struct ggml_tensor * ggml_acc(
  3719. struct ggml_context * ctx,
  3720. struct ggml_tensor * a,
  3721. struct ggml_tensor * b,
  3722. size_t nb1,
  3723. size_t nb2,
  3724. size_t nb3,
  3725. size_t offset) {
  3726. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3727. }
  3728. struct ggml_tensor * ggml_acc_inplace(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a,
  3731. struct ggml_tensor * b,
  3732. size_t nb1,
  3733. size_t nb2,
  3734. size_t nb3,
  3735. size_t offset) {
  3736. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3737. }
  3738. // ggml_sub
  3739. static struct ggml_tensor * ggml_sub_impl(
  3740. struct ggml_context * ctx,
  3741. struct ggml_tensor * a,
  3742. struct ggml_tensor * b,
  3743. bool inplace) {
  3744. GGML_ASSERT(ggml_are_same_shape(a, b));
  3745. bool is_node = false;
  3746. if (!inplace && (a->grad || b->grad)) {
  3747. is_node = true;
  3748. }
  3749. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3750. result->op = GGML_OP_SUB;
  3751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3752. result->src[0] = a;
  3753. result->src[1] = b;
  3754. return result;
  3755. }
  3756. struct ggml_tensor * ggml_sub(
  3757. struct ggml_context * ctx,
  3758. struct ggml_tensor * a,
  3759. struct ggml_tensor * b) {
  3760. return ggml_sub_impl(ctx, a, b, false);
  3761. }
  3762. struct ggml_tensor * ggml_sub_inplace(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a,
  3765. struct ggml_tensor * b) {
  3766. return ggml_sub_impl(ctx, a, b, true);
  3767. }
  3768. // ggml_mul
  3769. static struct ggml_tensor * ggml_mul_impl(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * a,
  3772. struct ggml_tensor * b,
  3773. bool inplace) {
  3774. GGML_ASSERT(ggml_can_repeat(b, a));
  3775. bool is_node = false;
  3776. if (!inplace && (a->grad || b->grad)) {
  3777. // TODO: support backward pass for broadcasting
  3778. GGML_ASSERT(ggml_are_same_shape(a, b));
  3779. is_node = true;
  3780. }
  3781. if (inplace) {
  3782. GGML_ASSERT(!is_node);
  3783. }
  3784. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3785. result->op = GGML_OP_MUL;
  3786. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3787. result->src[0] = a;
  3788. result->src[1] = b;
  3789. return result;
  3790. }
  3791. struct ggml_tensor * ggml_mul(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a,
  3794. struct ggml_tensor * b) {
  3795. return ggml_mul_impl(ctx, a, b, false);
  3796. }
  3797. struct ggml_tensor * ggml_mul_inplace(
  3798. struct ggml_context * ctx,
  3799. struct ggml_tensor * a,
  3800. struct ggml_tensor * b) {
  3801. return ggml_mul_impl(ctx, a, b, true);
  3802. }
  3803. // ggml_div
  3804. static struct ggml_tensor * ggml_div_impl(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a,
  3807. struct ggml_tensor * b,
  3808. bool inplace) {
  3809. GGML_ASSERT(ggml_can_repeat(b, a));
  3810. bool is_node = false;
  3811. if (!inplace && (a->grad || b->grad)) {
  3812. is_node = true;
  3813. }
  3814. if (inplace) {
  3815. GGML_ASSERT(!is_node);
  3816. }
  3817. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3818. result->op = GGML_OP_DIV;
  3819. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3820. result->src[0] = a;
  3821. result->src[1] = b;
  3822. return result;
  3823. }
  3824. struct ggml_tensor * ggml_div(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * a,
  3827. struct ggml_tensor * b) {
  3828. return ggml_div_impl(ctx, a, b, false);
  3829. }
  3830. struct ggml_tensor * ggml_div_inplace(
  3831. struct ggml_context * ctx,
  3832. struct ggml_tensor * a,
  3833. struct ggml_tensor * b) {
  3834. return ggml_div_impl(ctx, a, b, true);
  3835. }
  3836. // ggml_sqr
  3837. static struct ggml_tensor * ggml_sqr_impl(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a,
  3840. bool inplace) {
  3841. bool is_node = false;
  3842. if (!inplace && (a->grad)) {
  3843. is_node = true;
  3844. }
  3845. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3846. result->op = GGML_OP_SQR;
  3847. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3848. result->src[0] = a;
  3849. return result;
  3850. }
  3851. struct ggml_tensor * ggml_sqr(
  3852. struct ggml_context * ctx,
  3853. struct ggml_tensor * a) {
  3854. return ggml_sqr_impl(ctx, a, false);
  3855. }
  3856. struct ggml_tensor * ggml_sqr_inplace(
  3857. struct ggml_context * ctx,
  3858. struct ggml_tensor * a) {
  3859. return ggml_sqr_impl(ctx, a, true);
  3860. }
  3861. // ggml_sqrt
  3862. static struct ggml_tensor * ggml_sqrt_impl(
  3863. struct ggml_context * ctx,
  3864. struct ggml_tensor * a,
  3865. bool inplace) {
  3866. bool is_node = false;
  3867. if (!inplace && (a->grad)) {
  3868. is_node = true;
  3869. }
  3870. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3871. result->op = GGML_OP_SQRT;
  3872. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3873. result->src[0] = a;
  3874. return result;
  3875. }
  3876. struct ggml_tensor * ggml_sqrt(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a) {
  3879. return ggml_sqrt_impl(ctx, a, false);
  3880. }
  3881. struct ggml_tensor * ggml_sqrt_inplace(
  3882. struct ggml_context * ctx,
  3883. struct ggml_tensor * a) {
  3884. return ggml_sqrt_impl(ctx, a, true);
  3885. }
  3886. // ggml_log
  3887. static struct ggml_tensor * ggml_log_impl(
  3888. struct ggml_context * ctx,
  3889. struct ggml_tensor * a,
  3890. bool inplace) {
  3891. bool is_node = false;
  3892. if (!inplace && (a->grad)) {
  3893. is_node = true;
  3894. }
  3895. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3896. result->op = GGML_OP_LOG;
  3897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3898. result->src[0] = a;
  3899. return result;
  3900. }
  3901. struct ggml_tensor * ggml_log(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a) {
  3904. return ggml_log_impl(ctx, a, false);
  3905. }
  3906. struct ggml_tensor * ggml_log_inplace(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a) {
  3909. return ggml_log_impl(ctx, a, true);
  3910. }
  3911. // ggml_sum
  3912. struct ggml_tensor * ggml_sum(
  3913. struct ggml_context * ctx,
  3914. struct ggml_tensor * a) {
  3915. bool is_node = false;
  3916. if (a->grad) {
  3917. is_node = true;
  3918. }
  3919. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3920. result->op = GGML_OP_SUM;
  3921. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3922. result->src[0] = a;
  3923. return result;
  3924. }
  3925. // ggml_sum_rows
  3926. struct ggml_tensor * ggml_sum_rows(
  3927. struct ggml_context * ctx,
  3928. struct ggml_tensor * a) {
  3929. bool is_node = false;
  3930. if (a->grad) {
  3931. is_node = true;
  3932. }
  3933. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3934. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3935. ne[i] = a->ne[i];
  3936. }
  3937. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3938. result->op = GGML_OP_SUM_ROWS;
  3939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3940. result->src[0] = a;
  3941. return result;
  3942. }
  3943. // ggml_mean
  3944. struct ggml_tensor * ggml_mean(
  3945. struct ggml_context * ctx,
  3946. struct ggml_tensor * a) {
  3947. bool is_node = false;
  3948. if (a->grad) {
  3949. GGML_ASSERT(false); // TODO: implement
  3950. is_node = true;
  3951. }
  3952. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3953. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3954. result->op = GGML_OP_MEAN;
  3955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3956. result->src[0] = a;
  3957. return result;
  3958. }
  3959. // ggml_argmax
  3960. struct ggml_tensor * ggml_argmax(
  3961. struct ggml_context * ctx,
  3962. struct ggml_tensor * a) {
  3963. GGML_ASSERT(ggml_is_matrix(a));
  3964. bool is_node = false;
  3965. if (a->grad) {
  3966. GGML_ASSERT(false);
  3967. is_node = true;
  3968. }
  3969. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3970. result->op = GGML_OP_ARGMAX;
  3971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3972. result->src[0] = a;
  3973. return result;
  3974. }
  3975. // ggml_repeat
  3976. struct ggml_tensor * ggml_repeat(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a,
  3979. struct ggml_tensor * b) {
  3980. GGML_ASSERT(ggml_can_repeat(a, b));
  3981. bool is_node = false;
  3982. if (a->grad) {
  3983. is_node = true;
  3984. }
  3985. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3986. result->op = GGML_OP_REPEAT;
  3987. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3988. result->src[0] = a;
  3989. return result;
  3990. }
  3991. // ggml_repeat_back
  3992. struct ggml_tensor * ggml_repeat_back(
  3993. struct ggml_context * ctx,
  3994. struct ggml_tensor * a,
  3995. struct ggml_tensor * b) {
  3996. GGML_ASSERT(ggml_can_repeat(b, a));
  3997. bool is_node = false;
  3998. if (a->grad) {
  3999. is_node = true;
  4000. }
  4001. if (ggml_are_same_shape(a, b) && !is_node) {
  4002. return a;
  4003. }
  4004. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4005. result->op = GGML_OP_REPEAT_BACK;
  4006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4007. result->src[0] = a;
  4008. return result;
  4009. }
  4010. // ggml_concat
  4011. struct ggml_tensor * ggml_concat(
  4012. struct ggml_context* ctx,
  4013. struct ggml_tensor* a,
  4014. struct ggml_tensor* b) {
  4015. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4016. bool is_node = false;
  4017. if (a->grad || b->grad) {
  4018. is_node = true;
  4019. }
  4020. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4021. result->op = GGML_OP_CONCAT;
  4022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4023. result->src[0] = a;
  4024. result->src[1] = b;
  4025. return result;
  4026. }
  4027. // ggml_abs
  4028. struct ggml_tensor * ggml_abs(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a) {
  4031. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4032. }
  4033. struct ggml_tensor * ggml_abs_inplace(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a) {
  4036. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4037. }
  4038. // ggml_sgn
  4039. struct ggml_tensor * ggml_sgn(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a) {
  4042. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4043. }
  4044. struct ggml_tensor * ggml_sgn_inplace(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a) {
  4047. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4048. }
  4049. // ggml_neg
  4050. struct ggml_tensor * ggml_neg(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a) {
  4053. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4054. }
  4055. struct ggml_tensor * ggml_neg_inplace(
  4056. struct ggml_context * ctx,
  4057. struct ggml_tensor * a) {
  4058. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4059. }
  4060. // ggml_step
  4061. struct ggml_tensor * ggml_step(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a) {
  4064. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4065. }
  4066. struct ggml_tensor * ggml_step_inplace(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a) {
  4069. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4070. }
  4071. // ggml_tanh
  4072. struct ggml_tensor * ggml_tanh(
  4073. struct ggml_context * ctx,
  4074. struct ggml_tensor * a) {
  4075. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4076. }
  4077. struct ggml_tensor * ggml_tanh_inplace(
  4078. struct ggml_context * ctx,
  4079. struct ggml_tensor * a) {
  4080. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4081. }
  4082. // ggml_elu
  4083. struct ggml_tensor * ggml_elu(
  4084. struct ggml_context * ctx,
  4085. struct ggml_tensor * a) {
  4086. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4087. }
  4088. struct ggml_tensor * ggml_elu_inplace(
  4089. struct ggml_context * ctx,
  4090. struct ggml_tensor * a) {
  4091. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4092. }
  4093. // ggml_relu
  4094. struct ggml_tensor * ggml_relu(
  4095. struct ggml_context * ctx,
  4096. struct ggml_tensor * a) {
  4097. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4098. }
  4099. struct ggml_tensor * ggml_relu_inplace(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a) {
  4102. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4103. }
  4104. // ggml_leaky_relu
  4105. struct ggml_tensor * ggml_leaky_relu(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4108. bool is_node = false;
  4109. if (!inplace && (a->grad)) {
  4110. is_node = true;
  4111. }
  4112. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4113. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4114. result->op = GGML_OP_LEAKY_RELU;
  4115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4116. result->src[0] = a;
  4117. return result;
  4118. }
  4119. // ggml_sigmoid
  4120. struct ggml_tensor * ggml_sigmoid(
  4121. struct ggml_context * ctx,
  4122. struct ggml_tensor * a) {
  4123. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4124. }
  4125. struct ggml_tensor * ggml_sigmoid_inplace(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a) {
  4128. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4129. }
  4130. // ggml_gelu
  4131. struct ggml_tensor * ggml_gelu(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a) {
  4134. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4135. }
  4136. struct ggml_tensor * ggml_gelu_inplace(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a) {
  4139. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4140. }
  4141. // ggml_gelu_quick
  4142. struct ggml_tensor * ggml_gelu_quick(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a) {
  4145. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4146. }
  4147. struct ggml_tensor * ggml_gelu_quick_inplace(
  4148. struct ggml_context * ctx,
  4149. struct ggml_tensor * a) {
  4150. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4151. }
  4152. // ggml_silu
  4153. struct ggml_tensor * ggml_silu(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a) {
  4156. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4157. }
  4158. struct ggml_tensor * ggml_silu_inplace(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a) {
  4161. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4162. }
  4163. // ggml_silu_back
  4164. struct ggml_tensor * ggml_silu_back(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a,
  4167. struct ggml_tensor * b) {
  4168. bool is_node = false;
  4169. if (a->grad || b->grad) {
  4170. // TODO: implement backward
  4171. is_node = true;
  4172. }
  4173. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4174. result->op = GGML_OP_SILU_BACK;
  4175. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4176. result->src[0] = a;
  4177. result->src[1] = b;
  4178. return result;
  4179. }
  4180. // ggml hardswish
  4181. struct ggml_tensor * ggml_hardswish(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a) {
  4184. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4185. }
  4186. // ggml hardsigmoid
  4187. struct ggml_tensor * ggml_hardsigmoid(
  4188. struct ggml_context * ctx,
  4189. struct ggml_tensor * a) {
  4190. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4191. }
  4192. // ggml_norm
  4193. static struct ggml_tensor * ggml_norm_impl(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a,
  4196. float eps,
  4197. bool inplace) {
  4198. bool is_node = false;
  4199. if (!inplace && (a->grad)) {
  4200. GGML_ASSERT(false); // TODO: implement backward
  4201. is_node = true;
  4202. }
  4203. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4204. ggml_set_op_params(result, &eps, sizeof(eps));
  4205. result->op = GGML_OP_NORM;
  4206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4207. result->src[0] = a;
  4208. return result;
  4209. }
  4210. struct ggml_tensor * ggml_norm(
  4211. struct ggml_context * ctx,
  4212. struct ggml_tensor * a,
  4213. float eps) {
  4214. return ggml_norm_impl(ctx, a, eps, false);
  4215. }
  4216. struct ggml_tensor * ggml_norm_inplace(
  4217. struct ggml_context * ctx,
  4218. struct ggml_tensor * a,
  4219. float eps) {
  4220. return ggml_norm_impl(ctx, a, eps, true);
  4221. }
  4222. // ggml_rms_norm
  4223. static struct ggml_tensor * ggml_rms_norm_impl(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. float eps,
  4227. bool inplace) {
  4228. bool is_node = false;
  4229. if (!inplace && (a->grad)) {
  4230. is_node = true;
  4231. }
  4232. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4233. ggml_set_op_params(result, &eps, sizeof(eps));
  4234. result->op = GGML_OP_RMS_NORM;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src[0] = a;
  4237. return result;
  4238. }
  4239. struct ggml_tensor * ggml_rms_norm(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a,
  4242. float eps) {
  4243. return ggml_rms_norm_impl(ctx, a, eps, false);
  4244. }
  4245. struct ggml_tensor * ggml_rms_norm_inplace(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a,
  4248. float eps) {
  4249. return ggml_rms_norm_impl(ctx, a, eps, true);
  4250. }
  4251. // ggml_rms_norm_back
  4252. struct ggml_tensor * ggml_rms_norm_back(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. struct ggml_tensor * b,
  4256. float eps) {
  4257. bool is_node = false;
  4258. if (a->grad) {
  4259. // TODO: implement backward
  4260. is_node = true;
  4261. }
  4262. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4263. ggml_set_op_params(result, &eps, sizeof(eps));
  4264. result->op = GGML_OP_RMS_NORM_BACK;
  4265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4266. result->src[0] = a;
  4267. result->src[1] = b;
  4268. return result;
  4269. }
  4270. // ggml_group_norm
  4271. static struct ggml_tensor * ggml_group_norm_impl(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a,
  4274. int n_groups,
  4275. bool inplace) {
  4276. bool is_node = false;
  4277. if (!inplace && (a->grad)) {
  4278. GGML_ASSERT(false); // TODO: implement backward
  4279. is_node = true;
  4280. }
  4281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4282. result->op_params[0] = n_groups;
  4283. result->op = GGML_OP_GROUP_NORM;
  4284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4285. result->src[0] = a;
  4286. return result;
  4287. }
  4288. struct ggml_tensor * ggml_group_norm(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a,
  4291. int n_groups) {
  4292. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4293. }
  4294. struct ggml_tensor * ggml_group_norm_inplace(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a,
  4297. int n_groups) {
  4298. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4299. }
  4300. // ggml_mul_mat
  4301. struct ggml_tensor * ggml_mul_mat(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * a,
  4304. struct ggml_tensor * b) {
  4305. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4306. GGML_ASSERT(!ggml_is_transposed(a));
  4307. bool is_node = false;
  4308. if (a->grad || b->grad) {
  4309. is_node = true;
  4310. }
  4311. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4312. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4313. result->op = GGML_OP_MUL_MAT;
  4314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4315. result->src[0] = a;
  4316. result->src[1] = b;
  4317. return result;
  4318. }
  4319. void ggml_mul_mat_set_prec(
  4320. struct ggml_tensor * a,
  4321. enum ggml_prec prec) {
  4322. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4323. const int32_t prec_i32 = (int32_t) prec;
  4324. ggml_set_op_params_i32(a, 0, prec_i32);
  4325. }
  4326. // ggml_mul_mat_id
  4327. /*
  4328. c = ggml_mul_mat_id(ctx, as, b, ids);
  4329. as -> [cols, rows, n_expert]
  4330. ids -> [n_experts_used, n_tokens] (i32)
  4331. b -> [cols, n_expert_used, n_tokens]
  4332. c -> [cols, n_expert_used, n_tokens]
  4333. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4334. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4335. */
  4336. struct ggml_tensor * ggml_mul_mat_id(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * as,
  4339. struct ggml_tensor * b,
  4340. struct ggml_tensor * ids) {
  4341. GGML_ASSERT(!ggml_is_transposed(as));
  4342. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4343. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4344. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4345. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4346. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4347. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4348. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4349. bool is_node = false;
  4350. if (as->grad || b->grad) {
  4351. is_node = true;
  4352. }
  4353. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4354. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4355. result->op = GGML_OP_MUL_MAT_ID;
  4356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4357. result->src[0] = as;
  4358. result->src[1] = b;
  4359. result->src[2] = ids;
  4360. return result;
  4361. }
  4362. // ggml_out_prod
  4363. struct ggml_tensor * ggml_out_prod(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a,
  4366. struct ggml_tensor * b) {
  4367. GGML_ASSERT(ggml_can_out_prod(a, b));
  4368. GGML_ASSERT(!ggml_is_transposed(a));
  4369. bool is_node = false;
  4370. if (a->grad || b->grad) {
  4371. is_node = true;
  4372. }
  4373. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4374. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4375. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4376. result->op = GGML_OP_OUT_PROD;
  4377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4378. result->src[0] = a;
  4379. result->src[1] = b;
  4380. return result;
  4381. }
  4382. // ggml_scale
  4383. static struct ggml_tensor * ggml_scale_impl(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a,
  4386. float s,
  4387. bool inplace) {
  4388. GGML_ASSERT(ggml_is_padded_1d(a));
  4389. bool is_node = false;
  4390. if (a->grad) {
  4391. is_node = true;
  4392. }
  4393. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4394. ggml_set_op_params(result, &s, sizeof(s));
  4395. result->op = GGML_OP_SCALE;
  4396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4397. result->src[0] = a;
  4398. return result;
  4399. }
  4400. struct ggml_tensor * ggml_scale(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a,
  4403. float s) {
  4404. return ggml_scale_impl(ctx, a, s, false);
  4405. }
  4406. struct ggml_tensor * ggml_scale_inplace(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. float s) {
  4410. return ggml_scale_impl(ctx, a, s, true);
  4411. }
  4412. // ggml_set
  4413. static struct ggml_tensor * ggml_set_impl(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a,
  4416. struct ggml_tensor * b,
  4417. size_t nb1,
  4418. size_t nb2,
  4419. size_t nb3,
  4420. size_t offset,
  4421. bool inplace) {
  4422. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4423. bool is_node = false;
  4424. if (a->grad || b->grad) {
  4425. is_node = true;
  4426. }
  4427. // make a view of the destination
  4428. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4429. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4430. ggml_set_op_params(result, params, sizeof(params));
  4431. result->op = GGML_OP_SET;
  4432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4433. result->src[0] = a;
  4434. result->src[1] = b;
  4435. return result;
  4436. }
  4437. struct ggml_tensor * ggml_set(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a,
  4440. struct ggml_tensor * b,
  4441. size_t nb1,
  4442. size_t nb2,
  4443. size_t nb3,
  4444. size_t offset) {
  4445. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4446. }
  4447. struct ggml_tensor * ggml_set_inplace(
  4448. struct ggml_context * ctx,
  4449. struct ggml_tensor * a,
  4450. struct ggml_tensor * b,
  4451. size_t nb1,
  4452. size_t nb2,
  4453. size_t nb3,
  4454. size_t offset) {
  4455. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4456. }
  4457. struct ggml_tensor * ggml_set_1d(
  4458. struct ggml_context * ctx,
  4459. struct ggml_tensor * a,
  4460. struct ggml_tensor * b,
  4461. size_t offset) {
  4462. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4463. }
  4464. struct ggml_tensor * ggml_set_1d_inplace(
  4465. struct ggml_context * ctx,
  4466. struct ggml_tensor * a,
  4467. struct ggml_tensor * b,
  4468. size_t offset) {
  4469. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4470. }
  4471. struct ggml_tensor * ggml_set_2d(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a,
  4474. struct ggml_tensor * b,
  4475. size_t nb1,
  4476. size_t offset) {
  4477. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4478. }
  4479. struct ggml_tensor * ggml_set_2d_inplace(
  4480. struct ggml_context * ctx,
  4481. struct ggml_tensor * a,
  4482. struct ggml_tensor * b,
  4483. size_t nb1,
  4484. size_t offset) {
  4485. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4486. }
  4487. // ggml_cpy
  4488. static struct ggml_tensor * ggml_cpy_impl(
  4489. struct ggml_context * ctx,
  4490. struct ggml_tensor * a,
  4491. struct ggml_tensor * b) {
  4492. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4493. bool is_node = false;
  4494. if (a->grad || b->grad) {
  4495. // inplace is false and either one have a grad
  4496. is_node = true;
  4497. }
  4498. // make a view of the destination
  4499. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4500. if (strlen(b->name) > 0) {
  4501. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4502. } else {
  4503. ggml_format_name(result, "%s (copy)", a->name);
  4504. }
  4505. result->op = GGML_OP_CPY;
  4506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4507. result->src[0] = a;
  4508. result->src[1] = b;
  4509. return result;
  4510. }
  4511. struct ggml_tensor * ggml_cpy(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. struct ggml_tensor * b) {
  4515. return ggml_cpy_impl(ctx, a, b);
  4516. }
  4517. struct ggml_tensor * ggml_cast(
  4518. struct ggml_context * ctx,
  4519. struct ggml_tensor * a,
  4520. enum ggml_type type) {
  4521. bool is_node = false;
  4522. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4523. ggml_format_name(result, "%s (copy)", a->name);
  4524. result->op = GGML_OP_CPY;
  4525. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4526. result->src[0] = a;
  4527. result->src[1] = result;
  4528. return result;
  4529. }
  4530. // ggml_cont
  4531. static struct ggml_tensor * ggml_cont_impl(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a) {
  4534. bool is_node = false;
  4535. if (a->grad) {
  4536. is_node = true;
  4537. }
  4538. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4539. ggml_format_name(result, "%s (cont)", a->name);
  4540. result->op = GGML_OP_CONT;
  4541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4542. result->src[0] = a;
  4543. return result;
  4544. }
  4545. struct ggml_tensor * ggml_cont(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a) {
  4548. return ggml_cont_impl(ctx, a);
  4549. }
  4550. // make contiguous, with new shape
  4551. GGML_API struct ggml_tensor * ggml_cont_1d(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a,
  4554. int64_t ne0) {
  4555. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4556. }
  4557. GGML_API struct ggml_tensor * ggml_cont_2d(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a,
  4560. int64_t ne0,
  4561. int64_t ne1) {
  4562. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4563. }
  4564. GGML_API struct ggml_tensor * ggml_cont_3d(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a,
  4567. int64_t ne0,
  4568. int64_t ne1,
  4569. int64_t ne2) {
  4570. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4571. }
  4572. struct ggml_tensor * ggml_cont_4d(
  4573. struct ggml_context * ctx,
  4574. struct ggml_tensor * a,
  4575. int64_t ne0,
  4576. int64_t ne1,
  4577. int64_t ne2,
  4578. int64_t ne3) {
  4579. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4580. bool is_node = false;
  4581. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4582. ggml_format_name(result, "%s (cont)", a->name);
  4583. result->op = GGML_OP_CONT;
  4584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4585. result->src[0] = a;
  4586. return result;
  4587. }
  4588. // ggml_reshape
  4589. struct ggml_tensor * ggml_reshape(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a,
  4592. struct ggml_tensor * b) {
  4593. GGML_ASSERT(ggml_is_contiguous(a));
  4594. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4595. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4596. bool is_node = false;
  4597. if (a->grad) {
  4598. is_node = true;
  4599. }
  4600. if (b->grad) {
  4601. // gradient propagation is not supported
  4602. //GGML_ASSERT(false);
  4603. }
  4604. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4605. ggml_format_name(result, "%s (reshaped)", a->name);
  4606. result->op = GGML_OP_RESHAPE;
  4607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4608. result->src[0] = a;
  4609. return result;
  4610. }
  4611. struct ggml_tensor * ggml_reshape_1d(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a,
  4614. int64_t ne0) {
  4615. GGML_ASSERT(ggml_is_contiguous(a));
  4616. GGML_ASSERT(ggml_nelements(a) == ne0);
  4617. bool is_node = false;
  4618. if (a->grad) {
  4619. is_node = true;
  4620. }
  4621. const int64_t ne[1] = { ne0 };
  4622. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4623. ggml_format_name(result, "%s (reshaped)", a->name);
  4624. result->op = GGML_OP_RESHAPE;
  4625. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4626. result->src[0] = a;
  4627. return result;
  4628. }
  4629. struct ggml_tensor * ggml_reshape_2d(
  4630. struct ggml_context * ctx,
  4631. struct ggml_tensor * a,
  4632. int64_t ne0,
  4633. int64_t ne1) {
  4634. GGML_ASSERT(ggml_is_contiguous(a));
  4635. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4636. bool is_node = false;
  4637. if (a->grad) {
  4638. is_node = true;
  4639. }
  4640. const int64_t ne[2] = { ne0, ne1 };
  4641. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4642. ggml_format_name(result, "%s (reshaped)", a->name);
  4643. result->op = GGML_OP_RESHAPE;
  4644. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4645. result->src[0] = a;
  4646. return result;
  4647. }
  4648. struct ggml_tensor * ggml_reshape_3d(
  4649. struct ggml_context * ctx,
  4650. struct ggml_tensor * a,
  4651. int64_t ne0,
  4652. int64_t ne1,
  4653. int64_t ne2) {
  4654. GGML_ASSERT(ggml_is_contiguous(a));
  4655. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4656. bool is_node = false;
  4657. if (a->grad) {
  4658. is_node = true;
  4659. }
  4660. const int64_t ne[3] = { ne0, ne1, ne2 };
  4661. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4662. ggml_format_name(result, "%s (reshaped)", a->name);
  4663. result->op = GGML_OP_RESHAPE;
  4664. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4665. result->src[0] = a;
  4666. return result;
  4667. }
  4668. struct ggml_tensor * ggml_reshape_4d(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a,
  4671. int64_t ne0,
  4672. int64_t ne1,
  4673. int64_t ne2,
  4674. int64_t ne3) {
  4675. GGML_ASSERT(ggml_is_contiguous(a));
  4676. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4677. bool is_node = false;
  4678. if (a->grad) {
  4679. is_node = true;
  4680. }
  4681. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4682. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4683. ggml_format_name(result, "%s (reshaped)", a->name);
  4684. result->op = GGML_OP_RESHAPE;
  4685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4686. result->src[0] = a;
  4687. return result;
  4688. }
  4689. static struct ggml_tensor * ggml_view_impl(
  4690. struct ggml_context * ctx,
  4691. struct ggml_tensor * a,
  4692. int n_dims,
  4693. const int64_t * ne,
  4694. size_t offset) {
  4695. bool is_node = false;
  4696. if (a->grad) {
  4697. is_node = true;
  4698. }
  4699. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4700. ggml_format_name(result, "%s (view)", a->name);
  4701. ggml_set_op_params(result, &offset, sizeof(offset));
  4702. result->op = GGML_OP_VIEW;
  4703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4704. result->src[0] = a;
  4705. return result;
  4706. }
  4707. // ggml_view_1d
  4708. struct ggml_tensor * ggml_view_1d(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. int64_t ne0,
  4712. size_t offset) {
  4713. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4714. return result;
  4715. }
  4716. // ggml_view_2d
  4717. struct ggml_tensor * ggml_view_2d(
  4718. struct ggml_context * ctx,
  4719. struct ggml_tensor * a,
  4720. int64_t ne0,
  4721. int64_t ne1,
  4722. size_t nb1,
  4723. size_t offset) {
  4724. const int64_t ne[2] = { ne0, ne1 };
  4725. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4726. result->nb[1] = nb1;
  4727. result->nb[2] = result->nb[1]*ne1;
  4728. result->nb[3] = result->nb[2];
  4729. return result;
  4730. }
  4731. // ggml_view_3d
  4732. struct ggml_tensor * ggml_view_3d(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a,
  4735. int64_t ne0,
  4736. int64_t ne1,
  4737. int64_t ne2,
  4738. size_t nb1,
  4739. size_t nb2,
  4740. size_t offset) {
  4741. const int64_t ne[3] = { ne0, ne1, ne2 };
  4742. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4743. result->nb[1] = nb1;
  4744. result->nb[2] = nb2;
  4745. result->nb[3] = result->nb[2]*ne2;
  4746. return result;
  4747. }
  4748. // ggml_view_4d
  4749. struct ggml_tensor * ggml_view_4d(
  4750. struct ggml_context * ctx,
  4751. struct ggml_tensor * a,
  4752. int64_t ne0,
  4753. int64_t ne1,
  4754. int64_t ne2,
  4755. int64_t ne3,
  4756. size_t nb1,
  4757. size_t nb2,
  4758. size_t nb3,
  4759. size_t offset) {
  4760. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4761. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4762. result->nb[1] = nb1;
  4763. result->nb[2] = nb2;
  4764. result->nb[3] = nb3;
  4765. return result;
  4766. }
  4767. // ggml_permute
  4768. struct ggml_tensor * ggml_permute(
  4769. struct ggml_context * ctx,
  4770. struct ggml_tensor * a,
  4771. int axis0,
  4772. int axis1,
  4773. int axis2,
  4774. int axis3) {
  4775. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4776. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4777. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4778. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4779. GGML_ASSERT(axis0 != axis1);
  4780. GGML_ASSERT(axis0 != axis2);
  4781. GGML_ASSERT(axis0 != axis3);
  4782. GGML_ASSERT(axis1 != axis2);
  4783. GGML_ASSERT(axis1 != axis3);
  4784. GGML_ASSERT(axis2 != axis3);
  4785. bool is_node = false;
  4786. if (a->grad) {
  4787. is_node = true;
  4788. }
  4789. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4790. ggml_format_name(result, "%s (permuted)", a->name);
  4791. int ne[GGML_MAX_DIMS];
  4792. int nb[GGML_MAX_DIMS];
  4793. ne[axis0] = a->ne[0];
  4794. ne[axis1] = a->ne[1];
  4795. ne[axis2] = a->ne[2];
  4796. ne[axis3] = a->ne[3];
  4797. nb[axis0] = a->nb[0];
  4798. nb[axis1] = a->nb[1];
  4799. nb[axis2] = a->nb[2];
  4800. nb[axis3] = a->nb[3];
  4801. result->ne[0] = ne[0];
  4802. result->ne[1] = ne[1];
  4803. result->ne[2] = ne[2];
  4804. result->ne[3] = ne[3];
  4805. result->nb[0] = nb[0];
  4806. result->nb[1] = nb[1];
  4807. result->nb[2] = nb[2];
  4808. result->nb[3] = nb[3];
  4809. result->op = GGML_OP_PERMUTE;
  4810. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4811. result->src[0] = a;
  4812. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4813. ggml_set_op_params(result, params, sizeof(params));
  4814. return result;
  4815. }
  4816. // ggml_transpose
  4817. struct ggml_tensor * ggml_transpose(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a) {
  4820. bool is_node = false;
  4821. if (a->grad) {
  4822. is_node = true;
  4823. }
  4824. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4825. ggml_format_name(result, "%s (transposed)", a->name);
  4826. result->ne[0] = a->ne[1];
  4827. result->ne[1] = a->ne[0];
  4828. result->nb[0] = a->nb[1];
  4829. result->nb[1] = a->nb[0];
  4830. result->op = GGML_OP_TRANSPOSE;
  4831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4832. result->src[0] = a;
  4833. return result;
  4834. }
  4835. // ggml_get_rows
  4836. struct ggml_tensor * ggml_get_rows(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. struct ggml_tensor * b) {
  4840. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4841. GGML_ASSERT(b->ne[3] == 1);
  4842. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4843. bool is_node = false;
  4844. if (a->grad || b->grad) {
  4845. is_node = true;
  4846. }
  4847. // TODO: implement non F32 return
  4848. enum ggml_type type = GGML_TYPE_F32;
  4849. if (a->type == GGML_TYPE_I32) {
  4850. type = a->type;
  4851. }
  4852. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4853. result->op = GGML_OP_GET_ROWS;
  4854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4855. result->src[0] = a;
  4856. result->src[1] = b;
  4857. return result;
  4858. }
  4859. // ggml_get_rows_back
  4860. struct ggml_tensor * ggml_get_rows_back(
  4861. struct ggml_context * ctx,
  4862. struct ggml_tensor * a,
  4863. struct ggml_tensor * b,
  4864. struct ggml_tensor * c) {
  4865. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4866. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4867. bool is_node = false;
  4868. if (a->grad || b->grad) {
  4869. is_node = true;
  4870. }
  4871. // TODO: implement non F32 return
  4872. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4873. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4874. result->op = GGML_OP_GET_ROWS_BACK;
  4875. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4876. result->src[0] = a;
  4877. result->src[1] = b;
  4878. return result;
  4879. }
  4880. // ggml_diag
  4881. struct ggml_tensor * ggml_diag(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * a) {
  4884. GGML_ASSERT(a->ne[1] == 1);
  4885. bool is_node = false;
  4886. if (a->grad) {
  4887. is_node = true;
  4888. }
  4889. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4890. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4891. result->op = GGML_OP_DIAG;
  4892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4893. result->src[0] = a;
  4894. return result;
  4895. }
  4896. // ggml_diag_mask_inf
  4897. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4898. struct ggml_context * ctx,
  4899. struct ggml_tensor * a,
  4900. int n_past,
  4901. bool inplace) {
  4902. bool is_node = false;
  4903. if (a->grad) {
  4904. is_node = true;
  4905. }
  4906. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4907. int32_t params[] = { n_past };
  4908. ggml_set_op_params(result, params, sizeof(params));
  4909. result->op = GGML_OP_DIAG_MASK_INF;
  4910. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4911. result->src[0] = a;
  4912. return result;
  4913. }
  4914. struct ggml_tensor * ggml_diag_mask_inf(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. int n_past) {
  4918. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4919. }
  4920. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4921. struct ggml_context * ctx,
  4922. struct ggml_tensor * a,
  4923. int n_past) {
  4924. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4925. }
  4926. // ggml_diag_mask_zero
  4927. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4928. struct ggml_context * ctx,
  4929. struct ggml_tensor * a,
  4930. int n_past,
  4931. bool inplace) {
  4932. bool is_node = false;
  4933. if (a->grad) {
  4934. is_node = true;
  4935. }
  4936. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4937. int32_t params[] = { n_past };
  4938. ggml_set_op_params(result, params, sizeof(params));
  4939. result->op = GGML_OP_DIAG_MASK_ZERO;
  4940. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4941. result->src[0] = a;
  4942. return result;
  4943. }
  4944. struct ggml_tensor * ggml_diag_mask_zero(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. int n_past) {
  4948. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4949. }
  4950. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4951. struct ggml_context * ctx,
  4952. struct ggml_tensor * a,
  4953. int n_past) {
  4954. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4955. }
  4956. // ggml_soft_max
  4957. static struct ggml_tensor * ggml_soft_max_impl(
  4958. struct ggml_context * ctx,
  4959. struct ggml_tensor * a,
  4960. struct ggml_tensor * mask,
  4961. float scale,
  4962. float max_bias,
  4963. bool inplace) {
  4964. GGML_ASSERT(ggml_is_contiguous(a));
  4965. if (mask) {
  4966. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  4967. GGML_ASSERT(ggml_is_contiguous(mask));
  4968. GGML_ASSERT(ggml_is_matrix(mask));
  4969. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  4970. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  4971. }
  4972. if (max_bias > 0.0f) {
  4973. GGML_ASSERT(mask);
  4974. }
  4975. bool is_node = false;
  4976. if (a->grad) {
  4977. is_node = true;
  4978. }
  4979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4980. float params[] = { scale, max_bias };
  4981. ggml_set_op_params(result, params, sizeof(params));
  4982. result->op = GGML_OP_SOFT_MAX;
  4983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4984. result->src[0] = a;
  4985. result->src[1] = mask;
  4986. return result;
  4987. }
  4988. struct ggml_tensor * ggml_soft_max(
  4989. struct ggml_context * ctx,
  4990. struct ggml_tensor * a) {
  4991. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  4992. }
  4993. struct ggml_tensor * ggml_soft_max_inplace(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a) {
  4996. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  4997. }
  4998. struct ggml_tensor * ggml_soft_max_ext(
  4999. struct ggml_context * ctx,
  5000. struct ggml_tensor * a,
  5001. struct ggml_tensor * mask,
  5002. float scale,
  5003. float max_bias) {
  5004. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5005. }
  5006. // ggml_soft_max_back
  5007. static struct ggml_tensor * ggml_soft_max_back_impl(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. struct ggml_tensor * b,
  5011. bool inplace) {
  5012. bool is_node = false;
  5013. if (a->grad || b->grad) {
  5014. is_node = true; // TODO : implement backward pass
  5015. }
  5016. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5017. result->op = GGML_OP_SOFT_MAX_BACK;
  5018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5019. result->src[0] = a;
  5020. result->src[1] = b;
  5021. return result;
  5022. }
  5023. struct ggml_tensor * ggml_soft_max_back(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * a,
  5026. struct ggml_tensor * b) {
  5027. return ggml_soft_max_back_impl(ctx, a, b, false);
  5028. }
  5029. struct ggml_tensor * ggml_soft_max_back_inplace(
  5030. struct ggml_context * ctx,
  5031. struct ggml_tensor * a,
  5032. struct ggml_tensor * b) {
  5033. return ggml_soft_max_back_impl(ctx, a, b, true);
  5034. }
  5035. // ggml_rope
  5036. static struct ggml_tensor * ggml_rope_impl(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * a,
  5039. struct ggml_tensor * b,
  5040. int n_dims,
  5041. int mode,
  5042. int n_ctx,
  5043. int n_orig_ctx,
  5044. float freq_base,
  5045. float freq_scale,
  5046. float ext_factor,
  5047. float attn_factor,
  5048. float beta_fast,
  5049. float beta_slow,
  5050. float xpos_base,
  5051. bool xpos_down,
  5052. bool inplace) {
  5053. GGML_ASSERT(ggml_is_vector(b));
  5054. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5055. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5056. bool is_node = false;
  5057. if (a->grad) {
  5058. is_node = true;
  5059. }
  5060. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5061. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5062. memcpy(params + 5, &freq_base, sizeof(float));
  5063. memcpy(params + 6, &freq_scale, sizeof(float));
  5064. memcpy(params + 7, &ext_factor, sizeof(float));
  5065. memcpy(params + 8, &attn_factor, sizeof(float));
  5066. memcpy(params + 9, &beta_fast, sizeof(float));
  5067. memcpy(params + 10, &beta_slow, sizeof(float));
  5068. memcpy(params + 11, &xpos_base, sizeof(float));
  5069. memcpy(params + 12, &xpos_down, sizeof(bool));
  5070. ggml_set_op_params(result, params, sizeof(params));
  5071. result->op = GGML_OP_ROPE;
  5072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5073. result->src[0] = a;
  5074. result->src[1] = b;
  5075. return result;
  5076. }
  5077. struct ggml_tensor * ggml_rope(
  5078. struct ggml_context * ctx,
  5079. struct ggml_tensor * a,
  5080. struct ggml_tensor * b,
  5081. int n_dims,
  5082. int mode,
  5083. int n_ctx) {
  5084. return ggml_rope_impl(
  5085. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5086. );
  5087. }
  5088. struct ggml_tensor * ggml_rope_inplace(
  5089. struct ggml_context * ctx,
  5090. struct ggml_tensor * a,
  5091. struct ggml_tensor * b,
  5092. int n_dims,
  5093. int mode,
  5094. int n_ctx) {
  5095. return ggml_rope_impl(
  5096. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5097. );
  5098. }
  5099. struct ggml_tensor * ggml_rope_custom(
  5100. struct ggml_context * ctx,
  5101. struct ggml_tensor * a,
  5102. struct ggml_tensor * b,
  5103. int n_dims,
  5104. int mode,
  5105. int n_ctx,
  5106. int n_orig_ctx,
  5107. float freq_base,
  5108. float freq_scale,
  5109. float ext_factor,
  5110. float attn_factor,
  5111. float beta_fast,
  5112. float beta_slow) {
  5113. return ggml_rope_impl(
  5114. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5115. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5116. );
  5117. }
  5118. struct ggml_tensor * ggml_rope_custom_inplace(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a,
  5121. struct ggml_tensor * b,
  5122. int n_dims,
  5123. int mode,
  5124. int n_ctx,
  5125. int n_orig_ctx,
  5126. float freq_base,
  5127. float freq_scale,
  5128. float ext_factor,
  5129. float attn_factor,
  5130. float beta_fast,
  5131. float beta_slow) {
  5132. return ggml_rope_impl(
  5133. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5134. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5135. );
  5136. }
  5137. struct ggml_tensor * ggml_rope_xpos_inplace(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a,
  5140. struct ggml_tensor * b,
  5141. int n_dims,
  5142. float base,
  5143. bool down) {
  5144. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  5145. }
  5146. // ggml_rope_back
  5147. struct ggml_tensor * ggml_rope_back(
  5148. struct ggml_context * ctx,
  5149. struct ggml_tensor * a,
  5150. struct ggml_tensor * b,
  5151. int n_dims,
  5152. int mode,
  5153. int n_ctx,
  5154. int n_orig_ctx,
  5155. float freq_base,
  5156. float freq_scale,
  5157. float ext_factor,
  5158. float attn_factor,
  5159. float beta_fast,
  5160. float beta_slow,
  5161. float xpos_base,
  5162. bool xpos_down) {
  5163. GGML_ASSERT(ggml_is_vector(b));
  5164. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5165. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5166. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5167. bool is_node = false;
  5168. if (a->grad) {
  5169. is_node = false; // TODO: implement backward
  5170. }
  5171. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5172. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5173. memcpy(params + 5, &freq_base, sizeof(float));
  5174. memcpy(params + 6, &freq_scale, sizeof(float));
  5175. memcpy(params + 7, &ext_factor, sizeof(float));
  5176. memcpy(params + 8, &attn_factor, sizeof(float));
  5177. memcpy(params + 9, &beta_fast, sizeof(float));
  5178. memcpy(params + 10, &beta_slow, sizeof(float));
  5179. memcpy(params + 11, &xpos_base, sizeof(float));
  5180. memcpy(params + 12, &xpos_down, sizeof(bool));
  5181. ggml_set_op_params(result, params, sizeof(params));
  5182. result->op = GGML_OP_ROPE_BACK;
  5183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5184. result->src[0] = a;
  5185. result->src[1] = b;
  5186. return result;
  5187. }
  5188. // ggml_clamp
  5189. struct ggml_tensor * ggml_clamp(
  5190. struct ggml_context * ctx,
  5191. struct ggml_tensor * a,
  5192. float min,
  5193. float max) {
  5194. bool is_node = false;
  5195. if (a->grad) {
  5196. GGML_ASSERT(false); // TODO: implement backward
  5197. is_node = true;
  5198. }
  5199. // TODO: when implement backward, fix this:
  5200. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5201. float params[] = { min, max };
  5202. ggml_set_op_params(result, params, sizeof(params));
  5203. result->op = GGML_OP_CLAMP;
  5204. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5205. result->src[0] = a;
  5206. return result;
  5207. }
  5208. // ggml_conv_1d
  5209. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5210. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5211. }
  5212. GGML_API struct ggml_tensor * ggml_conv_1d(
  5213. struct ggml_context * ctx,
  5214. struct ggml_tensor * a,
  5215. struct ggml_tensor * b,
  5216. int s0,
  5217. int p0,
  5218. int d0) {
  5219. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5220. struct ggml_tensor * result =
  5221. ggml_mul_mat(ctx,
  5222. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5223. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5224. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5225. return result;
  5226. }
  5227. // ggml_conv_1d_ph
  5228. struct ggml_tensor* ggml_conv_1d_ph(
  5229. struct ggml_context * ctx,
  5230. struct ggml_tensor * a,
  5231. struct ggml_tensor * b,
  5232. int s,
  5233. int d) {
  5234. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5235. }
  5236. // ggml_conv_transpose_1d
  5237. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5238. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5239. }
  5240. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5241. struct ggml_context * ctx,
  5242. struct ggml_tensor * a,
  5243. struct ggml_tensor * b,
  5244. int s0,
  5245. int p0,
  5246. int d0) {
  5247. GGML_ASSERT(ggml_is_matrix(b));
  5248. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5249. GGML_ASSERT(a->ne[3] == 1);
  5250. GGML_ASSERT(p0 == 0);
  5251. GGML_ASSERT(d0 == 1);
  5252. bool is_node = false;
  5253. if (a->grad || b->grad) {
  5254. GGML_ASSERT(false); // TODO: implement backward
  5255. is_node = true;
  5256. }
  5257. const int64_t ne[4] = {
  5258. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5259. a->ne[1], b->ne[2], 1,
  5260. };
  5261. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5262. int32_t params[] = { s0, p0, d0 };
  5263. ggml_set_op_params(result, params, sizeof(params));
  5264. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5266. result->src[0] = a;
  5267. result->src[1] = b;
  5268. return result;
  5269. }
  5270. // ggml_conv_depthwise
  5271. struct ggml_tensor * ggml_conv_depthwise_2d(
  5272. struct ggml_context * ctx,
  5273. struct ggml_tensor * a,
  5274. struct ggml_tensor * b,
  5275. int s0,
  5276. int s1,
  5277. int p0,
  5278. int p1,
  5279. int d0,
  5280. int d1) {
  5281. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5282. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5283. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5284. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5285. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5286. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5287. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5288. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5289. return result;
  5290. }
  5291. // ggml_conv_2d
  5292. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5293. // a: [OC,IC, KH, KW]
  5294. // b: [N, IC, IH, IW]
  5295. // result: [N, OH, OW, IC*KH*KW]
  5296. struct ggml_tensor * ggml_im2col(
  5297. struct ggml_context * ctx,
  5298. struct ggml_tensor * a,
  5299. struct ggml_tensor * b,
  5300. int s0,
  5301. int s1,
  5302. int p0,
  5303. int p1,
  5304. int d0,
  5305. int d1,
  5306. bool is_2D,
  5307. enum ggml_type dst_type) {
  5308. if(is_2D) {
  5309. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5310. } else {
  5311. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5312. }
  5313. bool is_node = false;
  5314. if (a->grad || b->grad) {
  5315. GGML_ASSERT(false); // TODO: implement backward
  5316. is_node = true;
  5317. }
  5318. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5319. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5320. const int64_t ne[4] = {
  5321. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5322. OW,
  5323. is_2D ? OH : b->ne[2],
  5324. is_2D ? b->ne[3] : 1,
  5325. };
  5326. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5327. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5328. ggml_set_op_params(result, params, sizeof(params));
  5329. result->op = GGML_OP_IM2COL;
  5330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5331. result->src[0] = a;
  5332. result->src[1] = b;
  5333. return result;
  5334. }
  5335. // a: [OC,IC, KH, KW]
  5336. // b: [N, IC, IH, IW]
  5337. // result: [N, OC, OH, OW]
  5338. struct ggml_tensor * ggml_conv_2d(
  5339. struct ggml_context * ctx,
  5340. struct ggml_tensor * a,
  5341. struct ggml_tensor * b,
  5342. int s0,
  5343. int s1,
  5344. int p0,
  5345. int p1,
  5346. int d0,
  5347. int d1) {
  5348. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5349. struct ggml_tensor * result =
  5350. ggml_mul_mat(ctx,
  5351. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5352. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5353. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5354. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5355. return result;
  5356. }
  5357. // ggml_conv_2d_sk_p0
  5358. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5359. struct ggml_context * ctx,
  5360. struct ggml_tensor * a,
  5361. struct ggml_tensor * b) {
  5362. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5363. }
  5364. // ggml_conv_2d_s1_ph
  5365. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5366. struct ggml_context * ctx,
  5367. struct ggml_tensor * a,
  5368. struct ggml_tensor * b) {
  5369. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5370. }
  5371. // ggml_conv_transpose_2d_p0
  5372. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5373. return (ins - 1) * s - 2 * p + ks;
  5374. }
  5375. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5376. struct ggml_context * ctx,
  5377. struct ggml_tensor * a,
  5378. struct ggml_tensor * b,
  5379. int stride) {
  5380. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5381. bool is_node = false;
  5382. if (a->grad || b->grad) {
  5383. GGML_ASSERT(false); // TODO: implement backward
  5384. is_node = true;
  5385. }
  5386. const int64_t ne[4] = {
  5387. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5388. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5389. a->ne[2], b->ne[3],
  5390. };
  5391. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5392. ggml_set_op_params_i32(result, 0, stride);
  5393. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5395. result->src[0] = a;
  5396. result->src[1] = b;
  5397. return result;
  5398. }
  5399. // ggml_pool_*
  5400. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5401. return (ins + 2 * p - ks) / s + 1;
  5402. }
  5403. // ggml_pool_1d
  5404. struct ggml_tensor * ggml_pool_1d(
  5405. struct ggml_context * ctx,
  5406. struct ggml_tensor * a,
  5407. enum ggml_op_pool op,
  5408. int k0,
  5409. int s0,
  5410. int p0) {
  5411. bool is_node = false;
  5412. if (a->grad) {
  5413. GGML_ASSERT(false); // TODO: implement backward
  5414. is_node = true;
  5415. }
  5416. const int64_t ne[4] = {
  5417. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5418. a->ne[1],
  5419. a->ne[2],
  5420. a->ne[3],
  5421. };
  5422. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5423. int32_t params[] = { op, k0, s0, p0 };
  5424. ggml_set_op_params(result, params, sizeof(params));
  5425. result->op = GGML_OP_POOL_1D;
  5426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5427. result->src[0] = a;
  5428. return result;
  5429. }
  5430. // ggml_pool_2d
  5431. struct ggml_tensor * ggml_pool_2d(
  5432. struct ggml_context * ctx,
  5433. struct ggml_tensor * a,
  5434. enum ggml_op_pool op,
  5435. int k0,
  5436. int k1,
  5437. int s0,
  5438. int s1,
  5439. float p0,
  5440. float p1) {
  5441. bool is_node = false;
  5442. if (a->grad) {
  5443. GGML_ASSERT(false); // TODO: implement backward
  5444. is_node = true;
  5445. }
  5446. struct ggml_tensor * result;
  5447. const int64_t ne[3] = {
  5448. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5449. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5450. a->ne[2],
  5451. };
  5452. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5453. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5454. ggml_set_op_params(result, params, sizeof(params));
  5455. result->op = GGML_OP_POOL_2D;
  5456. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5457. result->src[0] = a;
  5458. return result;
  5459. }
  5460. // ggml_upscale
  5461. static struct ggml_tensor * ggml_upscale_impl(
  5462. struct ggml_context * ctx,
  5463. struct ggml_tensor * a,
  5464. int ne0,
  5465. int ne1,
  5466. int ne2,
  5467. int ne3) {
  5468. bool is_node = false;
  5469. if (a->grad) {
  5470. GGML_ASSERT(false); // TODO: implement backward
  5471. is_node = true;
  5472. }
  5473. GGML_ASSERT(a->ne[0] <= ne0);
  5474. GGML_ASSERT(a->ne[1] <= ne1);
  5475. GGML_ASSERT(a->ne[2] <= ne2);
  5476. GGML_ASSERT(a->ne[3] <= ne3);
  5477. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5478. ne0,
  5479. ne1,
  5480. ne2,
  5481. ne3
  5482. );
  5483. result->op = GGML_OP_UPSCALE;
  5484. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5485. result->src[0] = a;
  5486. return result;
  5487. }
  5488. struct ggml_tensor * ggml_upscale(
  5489. struct ggml_context * ctx,
  5490. struct ggml_tensor * a,
  5491. int scale_factor) {
  5492. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5493. }
  5494. struct ggml_tensor * ggml_upscale_ext(
  5495. struct ggml_context * ctx,
  5496. struct ggml_tensor * a,
  5497. int ne0,
  5498. int ne1,
  5499. int ne2,
  5500. int ne3) {
  5501. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5502. }
  5503. // ggml_pad
  5504. struct ggml_tensor * ggml_pad(
  5505. struct ggml_context * ctx,
  5506. struct ggml_tensor * a,
  5507. int p0, int p1, int p2, int p3) {
  5508. bool is_node = false;
  5509. if (a->grad) {
  5510. GGML_ASSERT(false); // TODO: implement backward
  5511. is_node = true;
  5512. }
  5513. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5514. a->ne[0] + p0,
  5515. a->ne[1] + p1,
  5516. a->ne[2] + p2,
  5517. a->ne[3] + p3);
  5518. result->op = GGML_OP_PAD;
  5519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5520. result->src[0] = a;
  5521. return result;
  5522. }
  5523. // ggml_arange
  5524. struct ggml_tensor * ggml_arange(
  5525. struct ggml_context * ctx,
  5526. float start,
  5527. float stop,
  5528. float step) {
  5529. GGML_ASSERT(stop > start);
  5530. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5531. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5532. result->op = GGML_OP_ARANGE;
  5533. ggml_set_op_params_f32(result, 0, start);
  5534. ggml_set_op_params_f32(result, 1, stop);
  5535. ggml_set_op_params_f32(result, 2, step);
  5536. return result;
  5537. }
  5538. // ggml_timestep_embedding
  5539. struct ggml_tensor * ggml_timestep_embedding(
  5540. struct ggml_context * ctx,
  5541. struct ggml_tensor * timesteps,
  5542. int dim,
  5543. int max_period) {
  5544. bool is_node = false;
  5545. if (timesteps->grad) {
  5546. GGML_ASSERT(false); // TODO: implement backward
  5547. is_node = true;
  5548. }
  5549. int actual_dim = dim;
  5550. if (dim % 2 != 0) {
  5551. actual_dim = dim + 1;
  5552. }
  5553. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5554. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5555. ggml_set_op_params_i32(result, 0, dim);
  5556. ggml_set_op_params_i32(result, 1, max_period);
  5557. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5558. result->src[0] = timesteps;
  5559. return result;
  5560. }
  5561. // ggml_argsort
  5562. struct ggml_tensor * ggml_argsort(
  5563. struct ggml_context * ctx,
  5564. struct ggml_tensor * a,
  5565. enum ggml_sort_order order) {
  5566. bool is_node = false;
  5567. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5568. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5569. result->op = GGML_OP_ARGSORT;
  5570. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5571. result->src[0] = a;
  5572. return result;
  5573. }
  5574. // ggml_top_k
  5575. struct ggml_tensor * ggml_top_k(
  5576. struct ggml_context * ctx,
  5577. struct ggml_tensor * a,
  5578. int k) {
  5579. GGML_ASSERT(a->ne[0] >= k);
  5580. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5581. result = ggml_view_4d(ctx, result,
  5582. k, result->ne[1], result->ne[2], result->ne[3],
  5583. result->nb[1], result->nb[2], result->nb[3],
  5584. 0);
  5585. return result;
  5586. }
  5587. // ggml_flash_attn
  5588. struct ggml_tensor * ggml_flash_attn(
  5589. struct ggml_context * ctx,
  5590. struct ggml_tensor * q,
  5591. struct ggml_tensor * k,
  5592. struct ggml_tensor * v,
  5593. bool masked) {
  5594. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5595. // TODO: check if vT can be multiplied by (k*qT)
  5596. bool is_node = false;
  5597. if (q->grad || k->grad || v->grad) {
  5598. is_node = true;
  5599. }
  5600. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5601. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5602. int32_t t = masked ? 1 : 0;
  5603. ggml_set_op_params(result, &t, sizeof(t));
  5604. result->op = GGML_OP_FLASH_ATTN;
  5605. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5606. result->src[0] = q;
  5607. result->src[1] = k;
  5608. result->src[2] = v;
  5609. return result;
  5610. }
  5611. // ggml_flash_attn_ext
  5612. struct ggml_tensor * ggml_flash_attn_ext(
  5613. struct ggml_context * ctx,
  5614. struct ggml_tensor * q,
  5615. struct ggml_tensor * k,
  5616. struct ggml_tensor * v,
  5617. struct ggml_tensor * mask,
  5618. float scale,
  5619. float max_bias) {
  5620. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5621. // TODO: check if vT can be multiplied by (k*qT)
  5622. if (mask) {
  5623. GGML_ASSERT(ggml_is_contiguous(mask));
  5624. GGML_ASSERT(mask->ne[2] == 1);
  5625. GGML_ASSERT(mask->ne[3] == 1);
  5626. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5627. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5628. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5629. }
  5630. if (max_bias > 0.0f) {
  5631. GGML_ASSERT(mask);
  5632. }
  5633. bool is_node = false;
  5634. if (q->grad || k->grad || v->grad) {
  5635. is_node = true;
  5636. }
  5637. // permute(0, 2, 1, 3)
  5638. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5639. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5640. float params[] = { scale, max_bias };
  5641. ggml_set_op_params(result, params, sizeof(params));
  5642. result->op = GGML_OP_FLASH_ATTN_EXT;
  5643. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5644. result->src[0] = q;
  5645. result->src[1] = k;
  5646. result->src[2] = v;
  5647. result->src[3] = mask;
  5648. return result;
  5649. }
  5650. void ggml_flash_attn_ext_set_prec(
  5651. struct ggml_tensor * a,
  5652. enum ggml_prec prec) {
  5653. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5654. const int32_t prec_i32 = (int32_t) prec;
  5655. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5656. }
  5657. // ggml_flash_ff
  5658. struct ggml_tensor * ggml_flash_ff(
  5659. struct ggml_context * ctx,
  5660. struct ggml_tensor * a,
  5661. struct ggml_tensor * b0,
  5662. struct ggml_tensor * b1,
  5663. struct ggml_tensor * c0,
  5664. struct ggml_tensor * c1) {
  5665. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5666. // TODO: more checks
  5667. bool is_node = false;
  5668. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5669. is_node = true;
  5670. }
  5671. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5672. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5673. result->op = GGML_OP_FLASH_FF;
  5674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5675. result->src[0] = a;
  5676. result->src[1] = b0;
  5677. result->src[2] = b1;
  5678. result->src[3] = c0;
  5679. result->src[4] = c1;
  5680. return result;
  5681. }
  5682. // ggml_flash_attn_back
  5683. struct ggml_tensor * ggml_flash_attn_back(
  5684. struct ggml_context * ctx,
  5685. struct ggml_tensor * q,
  5686. struct ggml_tensor * k,
  5687. struct ggml_tensor * v,
  5688. struct ggml_tensor * d,
  5689. bool masked) {
  5690. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5691. // TODO: check if vT can be multiplied by (k*qT)
  5692. // d shape [D,N,ne2,ne3]
  5693. // q shape [D,N,ne2,ne3]
  5694. // k shape [D,M,kvne2,ne3]
  5695. // v shape [M,D,kvne2,ne3]
  5696. const int64_t D = q->ne[0];
  5697. const int64_t N = q->ne[1];
  5698. const int64_t M = k->ne[1];
  5699. const int64_t ne2 = q->ne[2];
  5700. const int64_t ne3 = q->ne[3];
  5701. const int64_t kvne2 = k->ne[2];
  5702. GGML_ASSERT(k->ne[0] == D);
  5703. GGML_ASSERT(v->ne[0] == M);
  5704. GGML_ASSERT(v->ne[1] == D);
  5705. GGML_ASSERT(d->ne[0] == D);
  5706. GGML_ASSERT(d->ne[1] == N);
  5707. GGML_ASSERT(k->ne[2] == kvne2);
  5708. GGML_ASSERT(k->ne[3] == ne3);
  5709. GGML_ASSERT(v->ne[2] == kvne2);
  5710. GGML_ASSERT(v->ne[3] == ne3);
  5711. GGML_ASSERT(d->ne[2] == ne2);
  5712. GGML_ASSERT(d->ne[3] == ne3);
  5713. GGML_ASSERT(ne2 % kvne2 == 0);
  5714. bool is_node = false;
  5715. if (q->grad || k->grad || v->grad) {
  5716. // when using this operation (in backwards pass) these grads are set.
  5717. // we don't want to create (big) grad of our result, so is_node is false.
  5718. is_node = false;
  5719. }
  5720. // store gradients of q, k and v as continuous tensors concatenated in result.
  5721. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5722. const int64_t elem_q = ggml_nelements(q);
  5723. const int64_t elem_k = ggml_nelements(k);
  5724. const int64_t elem_v = ggml_nelements(v);
  5725. enum ggml_type result_type = GGML_TYPE_F32;
  5726. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5727. const size_t tsize = ggml_type_size(result_type);
  5728. const size_t offs_q = 0;
  5729. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5730. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5731. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5732. const size_t nelements = (end + tsize - 1)/tsize;
  5733. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5734. int32_t masked_i = masked ? 1 : 0;
  5735. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5736. result->op = GGML_OP_FLASH_ATTN_BACK;
  5737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5738. result->src[0] = q;
  5739. result->src[1] = k;
  5740. result->src[2] = v;
  5741. result->src[3] = d;
  5742. return result;
  5743. }
  5744. // ggml_ssm_conv
  5745. struct ggml_tensor * ggml_ssm_conv(
  5746. struct ggml_context * ctx,
  5747. struct ggml_tensor * s,
  5748. struct ggml_tensor * x,
  5749. struct ggml_tensor * c,
  5750. struct ggml_tensor * sq) {
  5751. GGML_ASSERT(ggml_is_3d(s));
  5752. GGML_ASSERT(ggml_is_matrix(x));
  5753. GGML_ASSERT(ggml_is_matrix(c));
  5754. GGML_ASSERT(ggml_is_matrix(sq));
  5755. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5756. const int64_t d_conv = c->ne[0];
  5757. const int64_t d_inner = c->ne[1];
  5758. const int64_t n_tokens = x->ne[1];
  5759. const int64_t n_kv = s->ne[2];
  5760. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5761. GGML_ASSERT( s->ne[1] == d_inner);
  5762. GGML_ASSERT( x->ne[0] == d_inner);
  5763. GGML_ASSERT(sq->ne[0] == n_kv);
  5764. GGML_ASSERT(sq->ne[1] == n_tokens);
  5765. bool is_node = false;
  5766. if (s->grad || x->grad || c->grad || sq->grad) {
  5767. GGML_ASSERT(false); // TODO: implement
  5768. is_node = true;
  5769. }
  5770. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5771. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5772. result->op = GGML_OP_SSM_CONV;
  5773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5774. result->src[0] = s;
  5775. result->src[1] = x;
  5776. result->src[2] = c;
  5777. result->src[3] = sq;
  5778. return result;
  5779. }
  5780. // ggml_ssm_scan
  5781. struct ggml_tensor * ggml_ssm_scan(
  5782. struct ggml_context * ctx,
  5783. struct ggml_tensor * s,
  5784. struct ggml_tensor * x,
  5785. struct ggml_tensor * dt,
  5786. struct ggml_tensor * A,
  5787. struct ggml_tensor * B,
  5788. struct ggml_tensor * C,
  5789. struct ggml_tensor * sq) {
  5790. GGML_ASSERT(ggml_is_contiguous(s));
  5791. GGML_ASSERT(ggml_is_contiguous(x));
  5792. GGML_ASSERT(ggml_is_contiguous(dt));
  5793. GGML_ASSERT(ggml_is_contiguous(A));
  5794. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5795. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5796. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5797. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5798. {
  5799. const int64_t d_state = s->ne[0];
  5800. const int64_t d_inner = s->ne[1];
  5801. const int64_t n_tokens = x->ne[1];
  5802. GGML_ASSERT(x->ne[0] == d_inner);
  5803. GGML_ASSERT(A->ne[0] == d_state);
  5804. GGML_ASSERT(A->ne[1] == d_inner);
  5805. GGML_ASSERT(B->ne[0] == d_state);
  5806. GGML_ASSERT(B->ne[1] == n_tokens);
  5807. GGML_ASSERT(C->ne[0] == d_state);
  5808. GGML_ASSERT(C->ne[1] == n_tokens);
  5809. }
  5810. bool is_node = false;
  5811. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5812. GGML_ASSERT(false); // TODO: implement
  5813. is_node = true;
  5814. }
  5815. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5816. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5817. result->op = GGML_OP_SSM_SCAN;
  5818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5819. result->src[0] = s;
  5820. result->src[1] = x;
  5821. result->src[2] = dt;
  5822. result->src[3] = A;
  5823. result->src[4] = B;
  5824. result->src[5] = C;
  5825. result->src[6] = sq;
  5826. return result;
  5827. }
  5828. // ggml_win_part
  5829. struct ggml_tensor * ggml_win_part(
  5830. struct ggml_context * ctx,
  5831. struct ggml_tensor * a,
  5832. int w) {
  5833. GGML_ASSERT(a->ne[3] == 1);
  5834. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5835. bool is_node = false;
  5836. if (a->grad) {
  5837. GGML_ASSERT(false); // TODO: implement backward
  5838. is_node = true;
  5839. }
  5840. // padding
  5841. const int px = (w - a->ne[1]%w)%w;
  5842. const int py = (w - a->ne[2]%w)%w;
  5843. const int npx = (px + a->ne[1])/w;
  5844. const int npy = (py + a->ne[2])/w;
  5845. const int np = npx*npy;
  5846. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5847. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5848. int32_t params[] = { npx, npy, w };
  5849. ggml_set_op_params(result, params, sizeof(params));
  5850. result->op = GGML_OP_WIN_PART;
  5851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5852. result->src[0] = a;
  5853. return result;
  5854. }
  5855. // ggml_win_unpart
  5856. struct ggml_tensor * ggml_win_unpart(
  5857. struct ggml_context * ctx,
  5858. struct ggml_tensor * a,
  5859. int w0,
  5860. int h0,
  5861. int w) {
  5862. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5863. bool is_node = false;
  5864. if (a->grad) {
  5865. GGML_ASSERT(false); // TODO: implement backward
  5866. is_node = true;
  5867. }
  5868. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5869. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5870. int32_t params[] = { w };
  5871. ggml_set_op_params(result, params, sizeof(params));
  5872. result->op = GGML_OP_WIN_UNPART;
  5873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5874. result->src[0] = a;
  5875. return result;
  5876. }
  5877. // ggml_get_rel_pos
  5878. struct ggml_tensor * ggml_get_rel_pos(
  5879. struct ggml_context * ctx,
  5880. struct ggml_tensor * a,
  5881. int qh,
  5882. int kh) {
  5883. GGML_ASSERT(qh == kh);
  5884. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5885. bool is_node = false;
  5886. if (a->grad) {
  5887. GGML_ASSERT(false); // TODO: implement backward
  5888. is_node = true;
  5889. }
  5890. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5891. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5892. result->op = GGML_OP_GET_REL_POS;
  5893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5894. result->src[0] = a;
  5895. return result;
  5896. }
  5897. // ggml_add_rel_pos
  5898. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5899. struct ggml_context * ctx,
  5900. struct ggml_tensor * a,
  5901. struct ggml_tensor * pw,
  5902. struct ggml_tensor * ph,
  5903. bool inplace) {
  5904. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5905. GGML_ASSERT(ggml_is_contiguous(a));
  5906. GGML_ASSERT(ggml_is_contiguous(pw));
  5907. GGML_ASSERT(ggml_is_contiguous(ph));
  5908. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5909. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5910. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5911. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5912. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5913. bool is_node = false;
  5914. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5915. is_node = true;
  5916. }
  5917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5918. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5919. result->op = GGML_OP_ADD_REL_POS;
  5920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5921. result->src[0] = a;
  5922. result->src[1] = pw;
  5923. result->src[2] = ph;
  5924. return result;
  5925. }
  5926. struct ggml_tensor * ggml_add_rel_pos(
  5927. struct ggml_context * ctx,
  5928. struct ggml_tensor * a,
  5929. struct ggml_tensor * pw,
  5930. struct ggml_tensor * ph) {
  5931. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5932. }
  5933. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5934. struct ggml_context * ctx,
  5935. struct ggml_tensor * a,
  5936. struct ggml_tensor * pw,
  5937. struct ggml_tensor * ph) {
  5938. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5939. }
  5940. // gmml_unary
  5941. static struct ggml_tensor * ggml_unary_impl(
  5942. struct ggml_context * ctx,
  5943. struct ggml_tensor * a,
  5944. enum ggml_unary_op op,
  5945. bool inplace) {
  5946. bool is_node = false;
  5947. if (!inplace && (a->grad)) {
  5948. is_node = true;
  5949. }
  5950. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5951. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5952. result->op = GGML_OP_UNARY;
  5953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5954. result->src[0] = a;
  5955. return result;
  5956. }
  5957. struct ggml_tensor * ggml_unary(
  5958. struct ggml_context * ctx,
  5959. struct ggml_tensor * a,
  5960. enum ggml_unary_op op) {
  5961. return ggml_unary_impl(ctx, a, op, false);
  5962. }
  5963. struct ggml_tensor * ggml_unary_inplace(
  5964. struct ggml_context * ctx,
  5965. struct ggml_tensor * a,
  5966. enum ggml_unary_op op) {
  5967. return ggml_unary_impl(ctx, a, op, true);
  5968. }
  5969. // ggml_map_unary
  5970. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5971. struct ggml_context * ctx,
  5972. struct ggml_tensor * a,
  5973. const ggml_unary_op_f32_t fun,
  5974. bool inplace) {
  5975. bool is_node = false;
  5976. if (!inplace && a->grad) {
  5977. is_node = true;
  5978. }
  5979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5980. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5981. result->op = GGML_OP_MAP_UNARY;
  5982. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5983. result->src[0] = a;
  5984. return result;
  5985. }
  5986. struct ggml_tensor * ggml_map_unary_f32(
  5987. struct ggml_context * ctx,
  5988. struct ggml_tensor * a,
  5989. const ggml_unary_op_f32_t fun) {
  5990. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5991. }
  5992. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5993. struct ggml_context * ctx,
  5994. struct ggml_tensor * a,
  5995. const ggml_unary_op_f32_t fun) {
  5996. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5997. }
  5998. // ggml_map_binary
  5999. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6000. struct ggml_context * ctx,
  6001. struct ggml_tensor * a,
  6002. struct ggml_tensor * b,
  6003. const ggml_binary_op_f32_t fun,
  6004. bool inplace) {
  6005. GGML_ASSERT(ggml_are_same_shape(a, b));
  6006. bool is_node = false;
  6007. if (!inplace && (a->grad || b->grad)) {
  6008. is_node = true;
  6009. }
  6010. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6011. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6012. result->op = GGML_OP_MAP_BINARY;
  6013. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6014. result->src[0] = a;
  6015. result->src[1] = b;
  6016. return result;
  6017. }
  6018. struct ggml_tensor * ggml_map_binary_f32(
  6019. struct ggml_context * ctx,
  6020. struct ggml_tensor * a,
  6021. struct ggml_tensor * b,
  6022. const ggml_binary_op_f32_t fun) {
  6023. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6024. }
  6025. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6026. struct ggml_context * ctx,
  6027. struct ggml_tensor * a,
  6028. struct ggml_tensor * b,
  6029. const ggml_binary_op_f32_t fun) {
  6030. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6031. }
  6032. // ggml_map_custom1_f32
  6033. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6034. struct ggml_context * ctx,
  6035. struct ggml_tensor * a,
  6036. const ggml_custom1_op_f32_t fun,
  6037. bool inplace) {
  6038. bool is_node = false;
  6039. if (!inplace && a->grad) {
  6040. is_node = true;
  6041. }
  6042. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6043. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6044. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6046. result->src[0] = a;
  6047. return result;
  6048. }
  6049. struct ggml_tensor * ggml_map_custom1_f32(
  6050. struct ggml_context * ctx,
  6051. struct ggml_tensor * a,
  6052. const ggml_custom1_op_f32_t fun) {
  6053. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6054. }
  6055. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6056. struct ggml_context * ctx,
  6057. struct ggml_tensor * a,
  6058. const ggml_custom1_op_f32_t fun) {
  6059. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6060. }
  6061. // ggml_map_custom2_f32
  6062. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6063. struct ggml_context * ctx,
  6064. struct ggml_tensor * a,
  6065. struct ggml_tensor * b,
  6066. const ggml_custom2_op_f32_t fun,
  6067. bool inplace) {
  6068. bool is_node = false;
  6069. if (!inplace && (a->grad || b->grad)) {
  6070. is_node = true;
  6071. }
  6072. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6073. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6074. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6076. result->src[0] = a;
  6077. result->src[1] = b;
  6078. return result;
  6079. }
  6080. struct ggml_tensor * ggml_map_custom2_f32(
  6081. struct ggml_context * ctx,
  6082. struct ggml_tensor * a,
  6083. struct ggml_tensor * b,
  6084. const ggml_custom2_op_f32_t fun) {
  6085. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6086. }
  6087. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6088. struct ggml_context * ctx,
  6089. struct ggml_tensor * a,
  6090. struct ggml_tensor * b,
  6091. const ggml_custom2_op_f32_t fun) {
  6092. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6093. }
  6094. // ggml_map_custom3_f32
  6095. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6096. struct ggml_context * ctx,
  6097. struct ggml_tensor * a,
  6098. struct ggml_tensor * b,
  6099. struct ggml_tensor * c,
  6100. const ggml_custom3_op_f32_t fun,
  6101. bool inplace) {
  6102. bool is_node = false;
  6103. if (!inplace && (a->grad || b->grad || c->grad)) {
  6104. is_node = true;
  6105. }
  6106. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6107. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6108. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6110. result->src[0] = a;
  6111. result->src[1] = b;
  6112. result->src[2] = c;
  6113. return result;
  6114. }
  6115. struct ggml_tensor * ggml_map_custom3_f32(
  6116. struct ggml_context * ctx,
  6117. struct ggml_tensor * a,
  6118. struct ggml_tensor * b,
  6119. struct ggml_tensor * c,
  6120. const ggml_custom3_op_f32_t fun) {
  6121. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6122. }
  6123. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6124. struct ggml_context * ctx,
  6125. struct ggml_tensor * a,
  6126. struct ggml_tensor * b,
  6127. struct ggml_tensor * c,
  6128. const ggml_custom3_op_f32_t fun) {
  6129. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6130. }
  6131. // ggml_map_custom1
  6132. struct ggml_map_custom1_op_params {
  6133. ggml_custom1_op_t fun;
  6134. int n_tasks;
  6135. void * userdata;
  6136. };
  6137. static struct ggml_tensor * ggml_map_custom1_impl(
  6138. struct ggml_context * ctx,
  6139. struct ggml_tensor * a,
  6140. const ggml_custom1_op_t fun,
  6141. int n_tasks,
  6142. void * userdata,
  6143. bool inplace) {
  6144. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6145. bool is_node = false;
  6146. if (!inplace && a->grad) {
  6147. is_node = true;
  6148. }
  6149. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6150. struct ggml_map_custom1_op_params params = {
  6151. /*.fun =*/ fun,
  6152. /*.n_tasks =*/ n_tasks,
  6153. /*.userdata =*/ userdata
  6154. };
  6155. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6156. result->op = GGML_OP_MAP_CUSTOM1;
  6157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6158. result->src[0] = a;
  6159. return result;
  6160. }
  6161. struct ggml_tensor * ggml_map_custom1(
  6162. struct ggml_context * ctx,
  6163. struct ggml_tensor * a,
  6164. const ggml_custom1_op_t fun,
  6165. int n_tasks,
  6166. void * userdata) {
  6167. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6168. }
  6169. struct ggml_tensor * ggml_map_custom1_inplace(
  6170. struct ggml_context * ctx,
  6171. struct ggml_tensor * a,
  6172. const ggml_custom1_op_t fun,
  6173. int n_tasks,
  6174. void * userdata) {
  6175. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6176. }
  6177. // ggml_map_custom2
  6178. struct ggml_map_custom2_op_params {
  6179. ggml_custom2_op_t fun;
  6180. int n_tasks;
  6181. void * userdata;
  6182. };
  6183. static struct ggml_tensor * ggml_map_custom2_impl(
  6184. struct ggml_context * ctx,
  6185. struct ggml_tensor * a,
  6186. struct ggml_tensor * b,
  6187. const ggml_custom2_op_t fun,
  6188. int n_tasks,
  6189. void * userdata,
  6190. bool inplace) {
  6191. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6192. bool is_node = false;
  6193. if (!inplace && (a->grad || b->grad)) {
  6194. is_node = true;
  6195. }
  6196. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6197. struct ggml_map_custom2_op_params params = {
  6198. /*.fun =*/ fun,
  6199. /*.n_tasks =*/ n_tasks,
  6200. /*.userdata =*/ userdata
  6201. };
  6202. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6203. result->op = GGML_OP_MAP_CUSTOM2;
  6204. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6205. result->src[0] = a;
  6206. result->src[1] = b;
  6207. return result;
  6208. }
  6209. struct ggml_tensor * ggml_map_custom2(
  6210. struct ggml_context * ctx,
  6211. struct ggml_tensor * a,
  6212. struct ggml_tensor * b,
  6213. const ggml_custom2_op_t fun,
  6214. int n_tasks,
  6215. void * userdata) {
  6216. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6217. }
  6218. struct ggml_tensor * ggml_map_custom2_inplace(
  6219. struct ggml_context * ctx,
  6220. struct ggml_tensor * a,
  6221. struct ggml_tensor * b,
  6222. const ggml_custom2_op_t fun,
  6223. int n_tasks,
  6224. void * userdata) {
  6225. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6226. }
  6227. // ggml_map_custom3
  6228. struct ggml_map_custom3_op_params {
  6229. ggml_custom3_op_t fun;
  6230. int n_tasks;
  6231. void * userdata;
  6232. };
  6233. static struct ggml_tensor * ggml_map_custom3_impl(
  6234. struct ggml_context * ctx,
  6235. struct ggml_tensor * a,
  6236. struct ggml_tensor * b,
  6237. struct ggml_tensor * c,
  6238. const ggml_custom3_op_t fun,
  6239. int n_tasks,
  6240. void * userdata,
  6241. bool inplace) {
  6242. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6243. bool is_node = false;
  6244. if (!inplace && (a->grad || b->grad || c->grad)) {
  6245. is_node = true;
  6246. }
  6247. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6248. struct ggml_map_custom3_op_params params = {
  6249. /*.fun =*/ fun,
  6250. /*.n_tasks =*/ n_tasks,
  6251. /*.userdata =*/ userdata
  6252. };
  6253. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6254. result->op = GGML_OP_MAP_CUSTOM3;
  6255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6256. result->src[0] = a;
  6257. result->src[1] = b;
  6258. result->src[2] = c;
  6259. return result;
  6260. }
  6261. struct ggml_tensor * ggml_map_custom3(
  6262. struct ggml_context * ctx,
  6263. struct ggml_tensor * a,
  6264. struct ggml_tensor * b,
  6265. struct ggml_tensor * c,
  6266. const ggml_custom3_op_t fun,
  6267. int n_tasks,
  6268. void * userdata) {
  6269. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6270. }
  6271. struct ggml_tensor * ggml_map_custom3_inplace(
  6272. struct ggml_context * ctx,
  6273. struct ggml_tensor * a,
  6274. struct ggml_tensor * b,
  6275. struct ggml_tensor * c,
  6276. const ggml_custom3_op_t fun,
  6277. int n_tasks,
  6278. void * userdata) {
  6279. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6280. }
  6281. // ggml_cross_entropy_loss
  6282. struct ggml_tensor * ggml_cross_entropy_loss(
  6283. struct ggml_context * ctx,
  6284. struct ggml_tensor * a,
  6285. struct ggml_tensor * b) {
  6286. GGML_ASSERT(ggml_are_same_shape(a, b));
  6287. bool is_node = false;
  6288. if (a->grad || b->grad) {
  6289. is_node = true;
  6290. }
  6291. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6292. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6294. result->src[0] = a;
  6295. result->src[1] = b;
  6296. return result;
  6297. }
  6298. // ggml_cross_entropy_loss_back
  6299. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6300. struct ggml_context * ctx,
  6301. struct ggml_tensor * a,
  6302. struct ggml_tensor * b,
  6303. struct ggml_tensor * c) {
  6304. GGML_ASSERT(ggml_are_same_shape(a, b));
  6305. GGML_ASSERT(ggml_is_scalar(c));
  6306. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6307. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6308. result->grad = NULL;
  6309. result->src[0] = a;
  6310. result->src[1] = b;
  6311. result->src[2] = c;
  6312. return result;
  6313. }
  6314. ////////////////////////////////////////////////////////////////////////////////
  6315. void ggml_set_param(
  6316. struct ggml_context * ctx,
  6317. struct ggml_tensor * tensor) {
  6318. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6319. GGML_ASSERT(tensor->grad == NULL);
  6320. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6321. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6322. }
  6323. // ggml_compute_forward_dup
  6324. static void ggml_compute_forward_dup_same_cont(
  6325. const struct ggml_compute_params * params,
  6326. struct ggml_tensor * dst) {
  6327. const struct ggml_tensor * src0 = dst->src[0];
  6328. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6329. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6330. GGML_ASSERT(src0->type == dst->type);
  6331. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6332. return;
  6333. }
  6334. const size_t nb00 = src0->nb[0];
  6335. const size_t nb0 = dst->nb[0];
  6336. const int ith = params->ith; // thread index
  6337. const int nth = params->nth; // number of threads
  6338. // parallelize by elements
  6339. const int ne = ggml_nelements(dst);
  6340. const int dr = (ne + nth - 1) / nth;
  6341. const int ie0 = dr * ith;
  6342. const int ie1 = MIN(ie0 + dr, ne);
  6343. if (ie0 < ie1) {
  6344. memcpy(
  6345. ((char *) dst->data + ie0*nb0),
  6346. ((char *) src0->data + ie0*nb00),
  6347. (ie1 - ie0) * ggml_type_size(src0->type));
  6348. }
  6349. }
  6350. static void ggml_compute_forward_dup_f16(
  6351. const struct ggml_compute_params * params,
  6352. struct ggml_tensor * dst) {
  6353. const struct ggml_tensor * src0 = dst->src[0];
  6354. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6355. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6356. return;
  6357. }
  6358. GGML_TENSOR_UNARY_OP_LOCALS
  6359. const int ith = params->ith; // thread index
  6360. const int nth = params->nth; // number of threads
  6361. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6362. ggml_compute_forward_dup_same_cont(params, dst);
  6363. return;
  6364. }
  6365. // parallelize by rows
  6366. const int nr = ne01;
  6367. // number of rows per thread
  6368. const int dr = (nr + nth - 1) / nth;
  6369. // row range for this thread
  6370. const int ir0 = dr * ith;
  6371. const int ir1 = MIN(ir0 + dr, nr);
  6372. if (src0->type == dst->type &&
  6373. ne00 == ne0 &&
  6374. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6375. // copy by rows
  6376. const size_t rs = ne00*nb00;
  6377. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6378. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6379. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6380. memcpy(
  6381. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6382. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6383. rs);
  6384. }
  6385. }
  6386. }
  6387. return;
  6388. }
  6389. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6390. if (ggml_is_contiguous(dst)) {
  6391. if (nb00 == sizeof(ggml_fp16_t)) {
  6392. if (dst->type == GGML_TYPE_F16) {
  6393. size_t id = 0;
  6394. const size_t rs = ne00 * nb00;
  6395. char * dst_ptr = (char *) dst->data;
  6396. for (int i03 = 0; i03 < ne03; i03++) {
  6397. for (int i02 = 0; i02 < ne02; i02++) {
  6398. id += rs * ir0;
  6399. for (int i01 = ir0; i01 < ir1; i01++) {
  6400. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6401. memcpy(dst_ptr + id, src0_ptr, rs);
  6402. id += rs;
  6403. }
  6404. id += rs * (ne01 - ir1);
  6405. }
  6406. }
  6407. } else if (dst->type == GGML_TYPE_F32) {
  6408. size_t id = 0;
  6409. float * dst_ptr = (float *) dst->data;
  6410. for (int i03 = 0; i03 < ne03; i03++) {
  6411. for (int i02 = 0; i02 < ne02; i02++) {
  6412. id += ne00 * ir0;
  6413. for (int i01 = ir0; i01 < ir1; i01++) {
  6414. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6415. for (int i00 = 0; i00 < ne00; i00++) {
  6416. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6417. id++;
  6418. }
  6419. }
  6420. id += ne00 * (ne01 - ir1);
  6421. }
  6422. }
  6423. } else if (type_traits[dst->type].from_float) {
  6424. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6425. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6426. size_t id = 0;
  6427. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6428. char * dst_ptr = (char *) dst->data;
  6429. for (int i03 = 0; i03 < ne03; i03++) {
  6430. for (int i02 = 0; i02 < ne02; i02++) {
  6431. id += rs * ir0;
  6432. for (int i01 = ir0; i01 < ir1; i01++) {
  6433. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6434. for (int i00 = 0; i00 < ne00; i00++) {
  6435. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6436. }
  6437. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6438. id += rs;
  6439. }
  6440. id += rs * (ne01 - ir1);
  6441. }
  6442. }
  6443. } else {
  6444. GGML_ASSERT(false); // TODO: implement
  6445. }
  6446. } else {
  6447. //printf("%s: this is not optimal - fix me\n", __func__);
  6448. if (dst->type == GGML_TYPE_F32) {
  6449. size_t id = 0;
  6450. float * dst_ptr = (float *) dst->data;
  6451. for (int i03 = 0; i03 < ne03; i03++) {
  6452. for (int i02 = 0; i02 < ne02; i02++) {
  6453. id += ne00 * ir0;
  6454. for (int i01 = ir0; i01 < ir1; i01++) {
  6455. for (int i00 = 0; i00 < ne00; i00++) {
  6456. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6457. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6458. id++;
  6459. }
  6460. }
  6461. id += ne00 * (ne01 - ir1);
  6462. }
  6463. }
  6464. } else if (dst->type == GGML_TYPE_F16) {
  6465. size_t id = 0;
  6466. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6467. for (int i03 = 0; i03 < ne03; i03++) {
  6468. for (int i02 = 0; i02 < ne02; i02++) {
  6469. id += ne00 * ir0;
  6470. for (int i01 = ir0; i01 < ir1; i01++) {
  6471. for (int i00 = 0; i00 < ne00; i00++) {
  6472. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6473. dst_ptr[id] = *src0_ptr;
  6474. id++;
  6475. }
  6476. }
  6477. id += ne00 * (ne01 - ir1);
  6478. }
  6479. }
  6480. } else {
  6481. GGML_ASSERT(false); // TODO: implement
  6482. }
  6483. }
  6484. return;
  6485. }
  6486. // dst counters
  6487. int64_t i10 = 0;
  6488. int64_t i11 = 0;
  6489. int64_t i12 = 0;
  6490. int64_t i13 = 0;
  6491. if (dst->type == GGML_TYPE_F16) {
  6492. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6493. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6494. i10 += ne00 * ir0;
  6495. while (i10 >= ne0) {
  6496. i10 -= ne0;
  6497. if (++i11 == ne1) {
  6498. i11 = 0;
  6499. if (++i12 == ne2) {
  6500. i12 = 0;
  6501. if (++i13 == ne3) {
  6502. i13 = 0;
  6503. }
  6504. }
  6505. }
  6506. }
  6507. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6508. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6509. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6510. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6511. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6512. if (++i10 == ne00) {
  6513. i10 = 0;
  6514. if (++i11 == ne01) {
  6515. i11 = 0;
  6516. if (++i12 == ne02) {
  6517. i12 = 0;
  6518. if (++i13 == ne03) {
  6519. i13 = 0;
  6520. }
  6521. }
  6522. }
  6523. }
  6524. }
  6525. }
  6526. i10 += ne00 * (ne01 - ir1);
  6527. while (i10 >= ne0) {
  6528. i10 -= ne0;
  6529. if (++i11 == ne1) {
  6530. i11 = 0;
  6531. if (++i12 == ne2) {
  6532. i12 = 0;
  6533. if (++i13 == ne3) {
  6534. i13 = 0;
  6535. }
  6536. }
  6537. }
  6538. }
  6539. }
  6540. }
  6541. } else if (dst->type == GGML_TYPE_F32) {
  6542. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6543. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6544. i10 += ne00 * ir0;
  6545. while (i10 >= ne0) {
  6546. i10 -= ne0;
  6547. if (++i11 == ne1) {
  6548. i11 = 0;
  6549. if (++i12 == ne2) {
  6550. i12 = 0;
  6551. if (++i13 == ne3) {
  6552. i13 = 0;
  6553. }
  6554. }
  6555. }
  6556. }
  6557. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6558. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6559. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6560. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6561. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6562. if (++i10 == ne0) {
  6563. i10 = 0;
  6564. if (++i11 == ne1) {
  6565. i11 = 0;
  6566. if (++i12 == ne2) {
  6567. i12 = 0;
  6568. if (++i13 == ne3) {
  6569. i13 = 0;
  6570. }
  6571. }
  6572. }
  6573. }
  6574. }
  6575. }
  6576. i10 += ne00 * (ne01 - ir1);
  6577. while (i10 >= ne0) {
  6578. i10 -= ne0;
  6579. if (++i11 == ne1) {
  6580. i11 = 0;
  6581. if (++i12 == ne2) {
  6582. i12 = 0;
  6583. if (++i13 == ne3) {
  6584. i13 = 0;
  6585. }
  6586. }
  6587. }
  6588. }
  6589. }
  6590. }
  6591. } else {
  6592. GGML_ASSERT(false); // TODO: implement
  6593. }
  6594. }
  6595. static void ggml_compute_forward_dup_bf16(
  6596. const struct ggml_compute_params * params,
  6597. struct ggml_tensor * dst) {
  6598. const struct ggml_tensor * src0 = dst->src[0];
  6599. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6600. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6601. return;
  6602. }
  6603. GGML_TENSOR_UNARY_OP_LOCALS
  6604. const int ith = params->ith; // thread index
  6605. const int nth = params->nth; // number of threads
  6606. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6607. ggml_compute_forward_dup_same_cont(params, dst);
  6608. return;
  6609. }
  6610. // parallelize by rows
  6611. const int nr = ne01;
  6612. // number of rows per thread
  6613. const int dr = (nr + nth - 1) / nth;
  6614. // row range for this thread
  6615. const int ir0 = dr * ith;
  6616. const int ir1 = MIN(ir0 + dr, nr);
  6617. if (src0->type == dst->type &&
  6618. ne00 == ne0 &&
  6619. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6620. // copy by rows
  6621. const size_t rs = ne00*nb00;
  6622. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6623. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6624. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6625. memcpy(
  6626. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6627. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6628. rs);
  6629. }
  6630. }
  6631. }
  6632. return;
  6633. }
  6634. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6635. if (ggml_is_contiguous(dst)) {
  6636. if (nb00 == sizeof(ggml_bf16_t)) {
  6637. if (dst->type == GGML_TYPE_BF16) {
  6638. size_t id = 0;
  6639. const size_t rs = ne00 * nb00;
  6640. char * dst_ptr = (char *) dst->data;
  6641. for (int i03 = 0; i03 < ne03; i03++) {
  6642. for (int i02 = 0; i02 < ne02; i02++) {
  6643. id += rs * ir0;
  6644. for (int i01 = ir0; i01 < ir1; i01++) {
  6645. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6646. memcpy(dst_ptr + id, src0_ptr, rs);
  6647. id += rs;
  6648. }
  6649. id += rs * (ne01 - ir1);
  6650. }
  6651. }
  6652. } else if (dst->type == GGML_TYPE_F16) {
  6653. size_t id = 0;
  6654. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6655. for (int i03 = 0; i03 < ne03; i03++) {
  6656. for (int i02 = 0; i02 < ne02; i02++) {
  6657. id += ne00 * ir0;
  6658. for (int i01 = ir0; i01 < ir1; i01++) {
  6659. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6660. for (int i00 = 0; i00 < ne00; i00++) {
  6661. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6662. id++;
  6663. }
  6664. }
  6665. id += ne00 * (ne01 - ir1);
  6666. }
  6667. }
  6668. } else if (dst->type == GGML_TYPE_F32) {
  6669. size_t id = 0;
  6670. float * dst_ptr = (float *) dst->data;
  6671. for (int i03 = 0; i03 < ne03; i03++) {
  6672. for (int i02 = 0; i02 < ne02; i02++) {
  6673. id += ne00 * ir0;
  6674. for (int i01 = ir0; i01 < ir1; i01++) {
  6675. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6676. for (int i00 = 0; i00 < ne00; i00++) {
  6677. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6678. id++;
  6679. }
  6680. }
  6681. id += ne00 * (ne01 - ir1);
  6682. }
  6683. }
  6684. } else if (type_traits[dst->type].from_float) {
  6685. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6686. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6687. size_t id = 0;
  6688. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6689. char * dst_ptr = (char *) dst->data;
  6690. for (int i03 = 0; i03 < ne03; i03++) {
  6691. for (int i02 = 0; i02 < ne02; i02++) {
  6692. id += rs * ir0;
  6693. for (int i01 = ir0; i01 < ir1; i01++) {
  6694. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6695. for (int i00 = 0; i00 < ne00; i00++) {
  6696. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6697. }
  6698. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6699. id += rs;
  6700. }
  6701. id += rs * (ne01 - ir1);
  6702. }
  6703. }
  6704. } else {
  6705. GGML_ASSERT(false); // TODO: implement
  6706. }
  6707. } else {
  6708. //printf("%s: this is not optimal - fix me\n", __func__);
  6709. if (dst->type == GGML_TYPE_F32) {
  6710. size_t id = 0;
  6711. float * dst_ptr = (float *) dst->data;
  6712. for (int i03 = 0; i03 < ne03; i03++) {
  6713. for (int i02 = 0; i02 < ne02; i02++) {
  6714. id += ne00 * ir0;
  6715. for (int i01 = ir0; i01 < ir1; i01++) {
  6716. for (int i00 = 0; i00 < ne00; i00++) {
  6717. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6718. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6719. id++;
  6720. }
  6721. }
  6722. id += ne00 * (ne01 - ir1);
  6723. }
  6724. }
  6725. } else if (dst->type == GGML_TYPE_BF16) {
  6726. size_t id = 0;
  6727. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6728. for (int i03 = 0; i03 < ne03; i03++) {
  6729. for (int i02 = 0; i02 < ne02; i02++) {
  6730. id += ne00 * ir0;
  6731. for (int i01 = ir0; i01 < ir1; i01++) {
  6732. for (int i00 = 0; i00 < ne00; i00++) {
  6733. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6734. dst_ptr[id] = *src0_ptr;
  6735. id++;
  6736. }
  6737. }
  6738. id += ne00 * (ne01 - ir1);
  6739. }
  6740. }
  6741. } else if (dst->type == GGML_TYPE_F16) {
  6742. size_t id = 0;
  6743. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6744. for (int i03 = 0; i03 < ne03; i03++) {
  6745. for (int i02 = 0; i02 < ne02; i02++) {
  6746. id += ne00 * ir0;
  6747. for (int i01 = ir0; i01 < ir1; i01++) {
  6748. for (int i00 = 0; i00 < ne00; i00++) {
  6749. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6750. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6751. id++;
  6752. }
  6753. }
  6754. id += ne00 * (ne01 - ir1);
  6755. }
  6756. }
  6757. } else {
  6758. GGML_ASSERT(false); // TODO: implement
  6759. }
  6760. }
  6761. return;
  6762. }
  6763. // dst counters
  6764. int64_t i10 = 0;
  6765. int64_t i11 = 0;
  6766. int64_t i12 = 0;
  6767. int64_t i13 = 0;
  6768. if (dst->type == GGML_TYPE_BF16) {
  6769. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6770. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6771. i10 += ne00 * ir0;
  6772. while (i10 >= ne0) {
  6773. i10 -= ne0;
  6774. if (++i11 == ne1) {
  6775. i11 = 0;
  6776. if (++i12 == ne2) {
  6777. i12 = 0;
  6778. if (++i13 == ne3) {
  6779. i13 = 0;
  6780. }
  6781. }
  6782. }
  6783. }
  6784. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6785. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6786. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6787. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6788. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6789. if (++i10 == ne00) {
  6790. i10 = 0;
  6791. if (++i11 == ne01) {
  6792. i11 = 0;
  6793. if (++i12 == ne02) {
  6794. i12 = 0;
  6795. if (++i13 == ne03) {
  6796. i13 = 0;
  6797. }
  6798. }
  6799. }
  6800. }
  6801. }
  6802. }
  6803. i10 += ne00 * (ne01 - ir1);
  6804. while (i10 >= ne0) {
  6805. i10 -= ne0;
  6806. if (++i11 == ne1) {
  6807. i11 = 0;
  6808. if (++i12 == ne2) {
  6809. i12 = 0;
  6810. if (++i13 == ne3) {
  6811. i13 = 0;
  6812. }
  6813. }
  6814. }
  6815. }
  6816. }
  6817. }
  6818. } else if (dst->type == GGML_TYPE_F16) {
  6819. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6820. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6821. i10 += ne00 * ir0;
  6822. while (i10 >= ne0) {
  6823. i10 -= ne0;
  6824. if (++i11 == ne1) {
  6825. i11 = 0;
  6826. if (++i12 == ne2) {
  6827. i12 = 0;
  6828. if (++i13 == ne3) {
  6829. i13 = 0;
  6830. }
  6831. }
  6832. }
  6833. }
  6834. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6835. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6836. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6837. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6838. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6839. if (++i10 == ne0) {
  6840. i10 = 0;
  6841. if (++i11 == ne1) {
  6842. i11 = 0;
  6843. if (++i12 == ne2) {
  6844. i12 = 0;
  6845. if (++i13 == ne3) {
  6846. i13 = 0;
  6847. }
  6848. }
  6849. }
  6850. }
  6851. }
  6852. }
  6853. i10 += ne00 * (ne01 - ir1);
  6854. while (i10 >= ne0) {
  6855. i10 -= ne0;
  6856. if (++i11 == ne1) {
  6857. i11 = 0;
  6858. if (++i12 == ne2) {
  6859. i12 = 0;
  6860. if (++i13 == ne3) {
  6861. i13 = 0;
  6862. }
  6863. }
  6864. }
  6865. }
  6866. }
  6867. }
  6868. } else if (dst->type == GGML_TYPE_F32) {
  6869. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6870. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6871. i10 += ne00 * ir0;
  6872. while (i10 >= ne0) {
  6873. i10 -= ne0;
  6874. if (++i11 == ne1) {
  6875. i11 = 0;
  6876. if (++i12 == ne2) {
  6877. i12 = 0;
  6878. if (++i13 == ne3) {
  6879. i13 = 0;
  6880. }
  6881. }
  6882. }
  6883. }
  6884. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6885. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6886. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6887. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6888. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  6889. if (++i10 == ne0) {
  6890. i10 = 0;
  6891. if (++i11 == ne1) {
  6892. i11 = 0;
  6893. if (++i12 == ne2) {
  6894. i12 = 0;
  6895. if (++i13 == ne3) {
  6896. i13 = 0;
  6897. }
  6898. }
  6899. }
  6900. }
  6901. }
  6902. }
  6903. i10 += ne00 * (ne01 - ir1);
  6904. while (i10 >= ne0) {
  6905. i10 -= ne0;
  6906. if (++i11 == ne1) {
  6907. i11 = 0;
  6908. if (++i12 == ne2) {
  6909. i12 = 0;
  6910. if (++i13 == ne3) {
  6911. i13 = 0;
  6912. }
  6913. }
  6914. }
  6915. }
  6916. }
  6917. }
  6918. } else {
  6919. GGML_ASSERT(false); // TODO: implement
  6920. }
  6921. }
  6922. static void ggml_compute_forward_dup_f32(
  6923. const struct ggml_compute_params * params,
  6924. struct ggml_tensor * dst) {
  6925. const struct ggml_tensor * src0 = dst->src[0];
  6926. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6927. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6928. return;
  6929. }
  6930. GGML_TENSOR_UNARY_OP_LOCALS
  6931. const int ith = params->ith; // thread index
  6932. const int nth = params->nth; // number of threads
  6933. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6934. ggml_compute_forward_dup_same_cont(params, dst);
  6935. return;
  6936. }
  6937. // parallelize by rows
  6938. const int nr = ne01;
  6939. // number of rows per thread
  6940. const int dr = (nr + nth - 1) / nth;
  6941. // row range for this thread
  6942. const int ir0 = dr * ith;
  6943. const int ir1 = MIN(ir0 + dr, nr);
  6944. if (src0->type == dst->type &&
  6945. ne00 == ne0 &&
  6946. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6947. // copy by rows
  6948. const size_t rs = ne00*nb00;
  6949. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6950. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6951. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6952. memcpy(
  6953. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6954. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6955. rs);
  6956. }
  6957. }
  6958. }
  6959. return;
  6960. }
  6961. if (ggml_is_contiguous(dst)) {
  6962. // TODO: simplify
  6963. if (nb00 == sizeof(float)) {
  6964. if (dst->type == GGML_TYPE_F32) {
  6965. size_t id = 0;
  6966. const size_t rs = ne00 * nb00;
  6967. char * dst_ptr = (char *) dst->data;
  6968. for (int i03 = 0; i03 < ne03; i03++) {
  6969. for (int i02 = 0; i02 < ne02; i02++) {
  6970. id += rs * ir0;
  6971. for (int i01 = ir0; i01 < ir1; i01++) {
  6972. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6973. memcpy(dst_ptr + id, src0_ptr, rs);
  6974. id += rs;
  6975. }
  6976. id += rs * (ne01 - ir1);
  6977. }
  6978. }
  6979. } else if (type_traits[dst->type].from_float) {
  6980. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6981. size_t id = 0;
  6982. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6983. char * dst_ptr = (char *) dst->data;
  6984. for (int i03 = 0; i03 < ne03; i03++) {
  6985. for (int i02 = 0; i02 < ne02; i02++) {
  6986. id += rs * ir0;
  6987. for (int i01 = ir0; i01 < ir1; i01++) {
  6988. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6989. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6990. id += rs;
  6991. }
  6992. id += rs * (ne01 - ir1);
  6993. }
  6994. }
  6995. } else {
  6996. GGML_ASSERT(false); // TODO: implement
  6997. }
  6998. } else {
  6999. //printf("%s: this is not optimal - fix me\n", __func__);
  7000. if (dst->type == GGML_TYPE_F32) {
  7001. size_t id = 0;
  7002. float * dst_ptr = (float *) dst->data;
  7003. for (int i03 = 0; i03 < ne03; i03++) {
  7004. for (int i02 = 0; i02 < ne02; i02++) {
  7005. id += ne00 * ir0;
  7006. for (int i01 = ir0; i01 < ir1; i01++) {
  7007. for (int i00 = 0; i00 < ne00; i00++) {
  7008. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7009. dst_ptr[id] = *src0_ptr;
  7010. id++;
  7011. }
  7012. }
  7013. id += ne00 * (ne01 - ir1);
  7014. }
  7015. }
  7016. } else if (dst->type == GGML_TYPE_F16) {
  7017. size_t id = 0;
  7018. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7019. for (int i03 = 0; i03 < ne03; i03++) {
  7020. for (int i02 = 0; i02 < ne02; i02++) {
  7021. id += ne00 * ir0;
  7022. for (int i01 = ir0; i01 < ir1; i01++) {
  7023. for (int i00 = 0; i00 < ne00; i00++) {
  7024. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7025. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7026. id++;
  7027. }
  7028. }
  7029. id += ne00 * (ne01 - ir1);
  7030. }
  7031. }
  7032. } else if (dst->type == GGML_TYPE_BF16) {
  7033. size_t id = 0;
  7034. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7035. for (int i03 = 0; i03 < ne03; i03++) {
  7036. for (int i02 = 0; i02 < ne02; i02++) {
  7037. id += ne00 * ir0;
  7038. for (int i01 = ir0; i01 < ir1; i01++) {
  7039. for (int i00 = 0; i00 < ne00; i00++) {
  7040. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7041. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7042. id++;
  7043. }
  7044. }
  7045. id += ne00 * (ne01 - ir1);
  7046. }
  7047. }
  7048. } else {
  7049. GGML_ASSERT(false); // TODO: implement
  7050. }
  7051. }
  7052. return;
  7053. }
  7054. // dst counters
  7055. int64_t i10 = 0;
  7056. int64_t i11 = 0;
  7057. int64_t i12 = 0;
  7058. int64_t i13 = 0;
  7059. if (dst->type == GGML_TYPE_F32) {
  7060. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7061. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7062. i10 += ne00 * ir0;
  7063. while (i10 >= ne0) {
  7064. i10 -= ne0;
  7065. if (++i11 == ne1) {
  7066. i11 = 0;
  7067. if (++i12 == ne2) {
  7068. i12 = 0;
  7069. if (++i13 == ne3) {
  7070. i13 = 0;
  7071. }
  7072. }
  7073. }
  7074. }
  7075. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7076. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7077. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7078. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7079. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7080. if (++i10 == ne0) {
  7081. i10 = 0;
  7082. if (++i11 == ne1) {
  7083. i11 = 0;
  7084. if (++i12 == ne2) {
  7085. i12 = 0;
  7086. if (++i13 == ne3) {
  7087. i13 = 0;
  7088. }
  7089. }
  7090. }
  7091. }
  7092. }
  7093. }
  7094. i10 += ne00 * (ne01 - ir1);
  7095. while (i10 >= ne0) {
  7096. i10 -= ne0;
  7097. if (++i11 == ne1) {
  7098. i11 = 0;
  7099. if (++i12 == ne2) {
  7100. i12 = 0;
  7101. if (++i13 == ne3) {
  7102. i13 = 0;
  7103. }
  7104. }
  7105. }
  7106. }
  7107. }
  7108. }
  7109. } else if (dst->type == GGML_TYPE_F16) {
  7110. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7111. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7112. i10 += ne00 * ir0;
  7113. while (i10 >= ne0) {
  7114. i10 -= ne0;
  7115. if (++i11 == ne1) {
  7116. i11 = 0;
  7117. if (++i12 == ne2) {
  7118. i12 = 0;
  7119. if (++i13 == ne3) {
  7120. i13 = 0;
  7121. }
  7122. }
  7123. }
  7124. }
  7125. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7126. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7127. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7128. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7129. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7130. if (++i10 == ne0) {
  7131. i10 = 0;
  7132. if (++i11 == ne1) {
  7133. i11 = 0;
  7134. if (++i12 == ne2) {
  7135. i12 = 0;
  7136. if (++i13 == ne3) {
  7137. i13 = 0;
  7138. }
  7139. }
  7140. }
  7141. }
  7142. }
  7143. }
  7144. i10 += ne00 * (ne01 - ir1);
  7145. while (i10 >= ne0) {
  7146. i10 -= ne0;
  7147. if (++i11 == ne1) {
  7148. i11 = 0;
  7149. if (++i12 == ne2) {
  7150. i12 = 0;
  7151. if (++i13 == ne3) {
  7152. i13 = 0;
  7153. }
  7154. }
  7155. }
  7156. }
  7157. }
  7158. }
  7159. } else if (dst->type == GGML_TYPE_BF16) {
  7160. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7161. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7162. i10 += ne00 * ir0;
  7163. while (i10 >= ne0) {
  7164. i10 -= ne0;
  7165. if (++i11 == ne1) {
  7166. i11 = 0;
  7167. if (++i12 == ne2) {
  7168. i12 = 0;
  7169. if (++i13 == ne3) {
  7170. i13 = 0;
  7171. }
  7172. }
  7173. }
  7174. }
  7175. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7176. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7177. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7178. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7179. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7180. if (++i10 == ne0) {
  7181. i10 = 0;
  7182. if (++i11 == ne1) {
  7183. i11 = 0;
  7184. if (++i12 == ne2) {
  7185. i12 = 0;
  7186. if (++i13 == ne3) {
  7187. i13 = 0;
  7188. }
  7189. }
  7190. }
  7191. }
  7192. }
  7193. }
  7194. i10 += ne00 * (ne01 - ir1);
  7195. while (i10 >= ne0) {
  7196. i10 -= ne0;
  7197. if (++i11 == ne1) {
  7198. i11 = 0;
  7199. if (++i12 == ne2) {
  7200. i12 = 0;
  7201. if (++i13 == ne3) {
  7202. i13 = 0;
  7203. }
  7204. }
  7205. }
  7206. }
  7207. }
  7208. }
  7209. } else {
  7210. GGML_ASSERT(false); // TODO: implement
  7211. }
  7212. }
  7213. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7214. static void ggml_compute_forward_dup_bytes(
  7215. const struct ggml_compute_params * params,
  7216. struct ggml_tensor * dst) {
  7217. const struct ggml_tensor * src0 = dst->src[0];
  7218. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7219. GGML_ASSERT(src0->type == dst->type);
  7220. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7221. return;
  7222. }
  7223. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7224. ggml_compute_forward_dup_same_cont(params, dst);
  7225. return;
  7226. }
  7227. GGML_TENSOR_UNARY_OP_LOCALS;
  7228. const size_t type_size = ggml_type_size(src0->type);
  7229. const int ith = params->ith; // thread index
  7230. const int nth = params->nth; // number of threads
  7231. // parallelize by rows
  7232. const int nr = ne01;
  7233. // number of rows per thread
  7234. const int dr = (nr + nth - 1) / nth;
  7235. // row range for this thread
  7236. const int ir0 = dr * ith;
  7237. const int ir1 = MIN(ir0 + dr, nr);
  7238. if (src0->type == dst->type &&
  7239. ne00 == ne0 &&
  7240. nb00 == type_size && nb0 == type_size) {
  7241. // copy by rows
  7242. const size_t rs = ne00 * type_size;
  7243. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7244. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7245. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7246. memcpy(
  7247. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7248. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7249. rs);
  7250. }
  7251. }
  7252. }
  7253. return;
  7254. }
  7255. if (ggml_is_contiguous(dst)) {
  7256. size_t id = 0;
  7257. char * dst_ptr = (char *) dst->data;
  7258. const size_t rs = ne00 * type_size;
  7259. if (nb00 == type_size) {
  7260. // src0 is contigous on first dimension, copy by rows
  7261. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7262. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7263. id += rs * ir0;
  7264. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7265. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7266. memcpy(dst_ptr + id, src0_ptr, rs);
  7267. id += rs;
  7268. }
  7269. id += rs * (ne01 - ir1);
  7270. }
  7271. }
  7272. } else {
  7273. //printf("%s: this is not optimal - fix me\n", __func__);
  7274. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7275. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7276. id += rs * ir0;
  7277. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7278. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7279. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7280. memcpy(dst_ptr + id, src0_ptr, type_size);
  7281. id += type_size;
  7282. }
  7283. }
  7284. id += rs * (ne01 - ir1);
  7285. }
  7286. }
  7287. }
  7288. return;
  7289. }
  7290. // dst counters
  7291. int64_t i10 = 0;
  7292. int64_t i11 = 0;
  7293. int64_t i12 = 0;
  7294. int64_t i13 = 0;
  7295. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7296. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7297. i10 += ne00 * ir0;
  7298. while (i10 >= ne0) {
  7299. i10 -= ne0;
  7300. if (++i11 == ne1) {
  7301. i11 = 0;
  7302. if (++i12 == ne2) {
  7303. i12 = 0;
  7304. if (++i13 == ne3) {
  7305. i13 = 0;
  7306. }
  7307. }
  7308. }
  7309. }
  7310. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7311. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7312. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7313. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7314. memcpy(dst_ptr, src0_ptr, type_size);
  7315. if (++i10 == ne0) {
  7316. i10 = 0;
  7317. if (++i11 == ne1) {
  7318. i11 = 0;
  7319. if (++i12 == ne2) {
  7320. i12 = 0;
  7321. if (++i13 == ne3) {
  7322. i13 = 0;
  7323. }
  7324. }
  7325. }
  7326. }
  7327. }
  7328. }
  7329. i10 += ne00 * (ne01 - ir1);
  7330. while (i10 >= ne0) {
  7331. i10 -= ne0;
  7332. if (++i11 == ne1) {
  7333. i11 = 0;
  7334. if (++i12 == ne2) {
  7335. i12 = 0;
  7336. if (++i13 == ne3) {
  7337. i13 = 0;
  7338. }
  7339. }
  7340. }
  7341. }
  7342. }
  7343. }
  7344. }
  7345. static void ggml_compute_forward_dup(
  7346. const struct ggml_compute_params * params,
  7347. struct ggml_tensor * dst) {
  7348. const struct ggml_tensor * src0 = dst->src[0];
  7349. if (src0->type == dst->type) {
  7350. ggml_compute_forward_dup_bytes(params, dst);
  7351. return;
  7352. }
  7353. switch (src0->type) {
  7354. case GGML_TYPE_F16:
  7355. {
  7356. ggml_compute_forward_dup_f16(params, dst);
  7357. } break;
  7358. case GGML_TYPE_BF16:
  7359. {
  7360. ggml_compute_forward_dup_bf16(params, dst);
  7361. } break;
  7362. case GGML_TYPE_F32:
  7363. {
  7364. ggml_compute_forward_dup_f32(params, dst);
  7365. } break;
  7366. default:
  7367. {
  7368. GGML_ASSERT(false);
  7369. } break;
  7370. }
  7371. }
  7372. // ggml_compute_forward_add
  7373. static void ggml_compute_forward_add_f32(
  7374. const struct ggml_compute_params * params,
  7375. struct ggml_tensor * dst) {
  7376. const struct ggml_tensor * src0 = dst->src[0];
  7377. const struct ggml_tensor * src1 = dst->src[1];
  7378. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7379. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7380. return;
  7381. }
  7382. const int ith = params->ith;
  7383. const int nth = params->nth;
  7384. #ifdef GGML_USE_CLBLAST
  7385. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7386. // TODO: OpenCL kernel support full broadcast
  7387. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7388. if (ith == 0) {
  7389. ggml_cl_add(src0, src1, dst);
  7390. }
  7391. return;
  7392. }
  7393. #endif
  7394. const int nr = ggml_nrows(src0);
  7395. GGML_TENSOR_BINARY_OP_LOCALS
  7396. GGML_ASSERT( nb0 == sizeof(float));
  7397. GGML_ASSERT(nb00 == sizeof(float));
  7398. // rows per thread
  7399. const int dr = (nr + nth - 1)/nth;
  7400. // row range for this thread
  7401. const int ir0 = dr*ith;
  7402. const int ir1 = MIN(ir0 + dr, nr);
  7403. if (nb10 == sizeof(float)) {
  7404. for (int ir = ir0; ir < ir1; ++ir) {
  7405. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7406. const int64_t i03 = ir/(ne02*ne01);
  7407. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7408. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7409. const int64_t i13 = i03 % ne13;
  7410. const int64_t i12 = i02 % ne12;
  7411. const int64_t i11 = i01 % ne11;
  7412. const int64_t nr0 = ne00 / ne10;
  7413. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7414. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7415. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7416. for (int64_t r = 0; r < nr0; ++r) {
  7417. #ifdef GGML_USE_ACCELERATE
  7418. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7419. #else
  7420. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7421. #endif
  7422. }
  7423. }
  7424. } else {
  7425. // src1 is not contiguous
  7426. for (int ir = ir0; ir < ir1; ++ir) {
  7427. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7428. const int64_t i03 = ir/(ne02*ne01);
  7429. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7430. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7431. const int64_t i13 = i03 % ne13;
  7432. const int64_t i12 = i02 % ne12;
  7433. const int64_t i11 = i01 % ne11;
  7434. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7435. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7436. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7437. const int64_t i10 = i0 % ne10;
  7438. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7439. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7440. }
  7441. }
  7442. }
  7443. }
  7444. static void ggml_compute_forward_add_f16_f32(
  7445. const struct ggml_compute_params * params,
  7446. struct ggml_tensor * dst) {
  7447. const struct ggml_tensor * src0 = dst->src[0];
  7448. const struct ggml_tensor * src1 = dst->src[1];
  7449. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7450. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7451. return;
  7452. }
  7453. const int ith = params->ith;
  7454. const int nth = params->nth;
  7455. const int nr = ggml_nrows(src0);
  7456. GGML_TENSOR_BINARY_OP_LOCALS
  7457. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7458. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7459. if (dst->type == GGML_TYPE_F32) {
  7460. GGML_ASSERT( nb0 == sizeof(float));
  7461. }
  7462. else {
  7463. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7464. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7465. }
  7466. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7467. // rows per thread
  7468. const int dr = (nr + nth - 1)/nth;
  7469. // row range for this thread
  7470. const int ir0 = dr*ith;
  7471. const int ir1 = MIN(ir0 + dr, nr);
  7472. if (nb10 == sizeof(float)) {
  7473. if (dst->type == GGML_TYPE_F16) {
  7474. for (int ir = ir0; ir < ir1; ++ir) {
  7475. // src0, src1 and dst are same shape => same indices
  7476. const int i3 = ir/(ne2*ne1);
  7477. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7478. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7479. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7480. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7481. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7482. for (int i = 0; i < ne0; i++) {
  7483. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7484. }
  7485. }
  7486. } else {
  7487. for (int ir = ir0; ir < ir1; ++ir) {
  7488. // src0, src1 and dst are same shape => same indices
  7489. const int i3 = ir/(ne2*ne1);
  7490. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7491. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7492. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7493. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7494. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7495. for (int i = 0; i < ne0; i++) {
  7496. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7497. }
  7498. }
  7499. }
  7500. }
  7501. else {
  7502. // src1 is not contiguous
  7503. GGML_ASSERT(false);
  7504. }
  7505. }
  7506. static void ggml_compute_forward_add_bf16_f32(
  7507. const struct ggml_compute_params * params,
  7508. struct ggml_tensor * dst) {
  7509. const struct ggml_tensor * src0 = dst->src[0];
  7510. const struct ggml_tensor * src1 = dst->src[1];
  7511. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7512. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7513. return;
  7514. }
  7515. const int ith = params->ith;
  7516. const int nth = params->nth;
  7517. const int nr = ggml_nrows(src0);
  7518. GGML_TENSOR_BINARY_OP_LOCALS
  7519. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7520. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7521. if (dst->type == GGML_TYPE_F32) {
  7522. GGML_ASSERT( nb0 == sizeof(float));
  7523. }
  7524. else {
  7525. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7526. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7527. }
  7528. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7529. // rows per thread
  7530. const int dr = (nr + nth - 1)/nth;
  7531. // row range for this thread
  7532. const int ir0 = dr*ith;
  7533. const int ir1 = MIN(ir0 + dr, nr);
  7534. if (nb10 == sizeof(float)) {
  7535. if (dst->type == GGML_TYPE_BF16) {
  7536. for (int ir = ir0; ir < ir1; ++ir) {
  7537. // src0, src1 and dst are same shape => same indices
  7538. const int i3 = ir/(ne2*ne1);
  7539. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7540. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7541. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7542. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7543. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7544. for (int i = 0; i < ne0; i++) {
  7545. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7546. }
  7547. }
  7548. } else {
  7549. for (int ir = ir0; ir < ir1; ++ir) {
  7550. // src0, src1 and dst are same shape => same indices
  7551. const int i3 = ir/(ne2*ne1);
  7552. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7553. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7554. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7555. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7556. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7557. for (int i = 0; i < ne0; i++) {
  7558. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7559. }
  7560. }
  7561. }
  7562. }
  7563. else {
  7564. // src1 is not contiguous
  7565. GGML_ASSERT(false);
  7566. }
  7567. }
  7568. static void ggml_compute_forward_add_f16_f16(
  7569. const struct ggml_compute_params * params,
  7570. struct ggml_tensor * dst) {
  7571. const struct ggml_tensor * src0 = dst->src[0];
  7572. const struct ggml_tensor * src1 = dst->src[1];
  7573. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7574. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7575. return;
  7576. }
  7577. const int ith = params->ith;
  7578. const int nth = params->nth;
  7579. const int nr = ggml_nrows(src0);
  7580. GGML_TENSOR_BINARY_OP_LOCALS
  7581. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7582. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7583. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7584. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7585. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7586. // rows per thread
  7587. const int dr = (nr + nth - 1)/nth;
  7588. // row range for this thread
  7589. const int ir0 = dr*ith;
  7590. const int ir1 = MIN(ir0 + dr, nr);
  7591. if (nb10 == sizeof(ggml_fp16_t)) {
  7592. for (int ir = ir0; ir < ir1; ++ir) {
  7593. // src0, src1 and dst are same shape => same indices
  7594. const int i3 = ir/(ne2*ne1);
  7595. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7596. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7597. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7598. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7599. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7600. for (int i = 0; i < ne0; i++) {
  7601. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7602. }
  7603. }
  7604. }
  7605. else {
  7606. // src1 is not contiguous
  7607. GGML_ASSERT(false);
  7608. }
  7609. }
  7610. static void ggml_compute_forward_add_bf16_bf16(
  7611. const struct ggml_compute_params * params,
  7612. struct ggml_tensor * dst) {
  7613. const struct ggml_tensor * src0 = dst->src[0];
  7614. const struct ggml_tensor * src1 = dst->src[1];
  7615. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7616. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7617. return;
  7618. }
  7619. const int ith = params->ith;
  7620. const int nth = params->nth;
  7621. const int nr = ggml_nrows(src0);
  7622. GGML_TENSOR_BINARY_OP_LOCALS
  7623. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7624. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7625. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7626. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7627. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7628. // rows per thread
  7629. const int dr = (nr + nth - 1)/nth;
  7630. // row range for this thread
  7631. const int ir0 = dr*ith;
  7632. const int ir1 = MIN(ir0 + dr, nr);
  7633. if (nb10 == sizeof(ggml_bf16_t)) {
  7634. for (int ir = ir0; ir < ir1; ++ir) {
  7635. // src0, src1 and dst are same shape => same indices
  7636. const int i3 = ir/(ne2*ne1);
  7637. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7638. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7639. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7640. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7641. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7642. for (int i = 0; i < ne0; i++) {
  7643. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7644. }
  7645. }
  7646. }
  7647. else {
  7648. // src1 is not contiguous
  7649. GGML_ASSERT(false);
  7650. }
  7651. }
  7652. static void ggml_compute_forward_add_q_f32(
  7653. const struct ggml_compute_params * params,
  7654. struct ggml_tensor * dst) {
  7655. const struct ggml_tensor * src0 = dst->src[0];
  7656. const struct ggml_tensor * src1 = dst->src[1];
  7657. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7658. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7659. return;
  7660. }
  7661. const int nr = ggml_nrows(src0);
  7662. GGML_TENSOR_BINARY_OP_LOCALS
  7663. const int ith = params->ith;
  7664. const int nth = params->nth;
  7665. const enum ggml_type type = src0->type;
  7666. const enum ggml_type dtype = dst->type;
  7667. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7668. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7669. // we don't support permuted src0 or src1
  7670. GGML_ASSERT(nb00 == ggml_type_size(type));
  7671. GGML_ASSERT(nb10 == sizeof(float));
  7672. // dst cannot be transposed or permuted
  7673. GGML_ASSERT(nb0 <= nb1);
  7674. GGML_ASSERT(nb1 <= nb2);
  7675. GGML_ASSERT(nb2 <= nb3);
  7676. GGML_ASSERT(ggml_is_quantized(src0->type));
  7677. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7678. // rows per thread
  7679. const int dr = (nr + nth - 1)/nth;
  7680. // row range for this thread
  7681. const int ir0 = dr*ith;
  7682. const int ir1 = MIN(ir0 + dr, nr);
  7683. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7684. for (int ir = ir0; ir < ir1; ++ir) {
  7685. // src0 indices
  7686. const int i03 = ir/(ne02*ne01);
  7687. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7688. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7689. // src1 and dst are same shape as src0 => same indices
  7690. const int i13 = i03;
  7691. const int i12 = i02;
  7692. const int i11 = i01;
  7693. const int i3 = i03;
  7694. const int i2 = i02;
  7695. const int i1 = i01;
  7696. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7697. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7698. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7699. assert(ne00 % 32 == 0);
  7700. // unquantize row from src0 to temp buffer
  7701. dequantize_row_q(src0_row, wdata, ne00);
  7702. // add src1
  7703. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7704. // quantize row to dst
  7705. if (quantize_row_q != NULL) {
  7706. quantize_row_q(wdata, dst_row, ne00);
  7707. } else {
  7708. memcpy(dst_row, wdata, ne0*nb0);
  7709. }
  7710. }
  7711. }
  7712. static void ggml_compute_forward_add(
  7713. const struct ggml_compute_params * params,
  7714. struct ggml_tensor * dst) {
  7715. const struct ggml_tensor * src0 = dst->src[0];
  7716. const struct ggml_tensor * src1 = dst->src[1];
  7717. switch (src0->type) {
  7718. case GGML_TYPE_F32:
  7719. {
  7720. if (src1->type == GGML_TYPE_F32) {
  7721. ggml_compute_forward_add_f32(params, dst);
  7722. }
  7723. else {
  7724. GGML_ASSERT(false);
  7725. }
  7726. } break;
  7727. case GGML_TYPE_F16:
  7728. {
  7729. if (src1->type == GGML_TYPE_F16) {
  7730. ggml_compute_forward_add_f16_f16(params, dst);
  7731. }
  7732. else if (src1->type == GGML_TYPE_F32) {
  7733. ggml_compute_forward_add_f16_f32(params, dst);
  7734. }
  7735. else {
  7736. GGML_ASSERT(false);
  7737. }
  7738. } break;
  7739. case GGML_TYPE_BF16:
  7740. {
  7741. if (src1->type == GGML_TYPE_BF16) {
  7742. ggml_compute_forward_add_bf16_bf16(params, dst);
  7743. }
  7744. else if (src1->type == GGML_TYPE_F32) {
  7745. ggml_compute_forward_add_bf16_f32(params, dst);
  7746. }
  7747. else {
  7748. GGML_ASSERT(false);
  7749. }
  7750. } break;
  7751. case GGML_TYPE_Q4_0:
  7752. case GGML_TYPE_Q4_1:
  7753. case GGML_TYPE_Q5_0:
  7754. case GGML_TYPE_Q5_1:
  7755. case GGML_TYPE_Q8_0:
  7756. case GGML_TYPE_Q2_K:
  7757. case GGML_TYPE_Q3_K:
  7758. case GGML_TYPE_Q4_K:
  7759. case GGML_TYPE_Q5_K:
  7760. case GGML_TYPE_Q6_K:
  7761. case GGML_TYPE_IQ2_XXS:
  7762. case GGML_TYPE_IQ2_XS:
  7763. case GGML_TYPE_IQ3_XXS:
  7764. case GGML_TYPE_IQ1_S:
  7765. case GGML_TYPE_IQ1_M:
  7766. case GGML_TYPE_IQ4_NL:
  7767. case GGML_TYPE_IQ4_XS:
  7768. case GGML_TYPE_IQ3_S:
  7769. case GGML_TYPE_IQ2_S:
  7770. {
  7771. ggml_compute_forward_add_q_f32(params, dst);
  7772. } break;
  7773. default:
  7774. {
  7775. GGML_ASSERT(false);
  7776. } break;
  7777. }
  7778. }
  7779. // ggml_compute_forward_add1
  7780. static void ggml_compute_forward_add1_f32(
  7781. const struct ggml_compute_params * params,
  7782. struct ggml_tensor * dst) {
  7783. const struct ggml_tensor * src0 = dst->src[0];
  7784. const struct ggml_tensor * src1 = dst->src[1];
  7785. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7786. GGML_ASSERT(ggml_is_scalar(src1));
  7787. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7788. return;
  7789. }
  7790. const int ith = params->ith;
  7791. const int nth = params->nth;
  7792. const int nr = ggml_nrows(src0);
  7793. GGML_TENSOR_UNARY_OP_LOCALS
  7794. GGML_ASSERT( nb0 == sizeof(float));
  7795. GGML_ASSERT(nb00 == sizeof(float));
  7796. // rows per thread
  7797. const int dr = (nr + nth - 1)/nth;
  7798. // row range for this thread
  7799. const int ir0 = dr*ith;
  7800. const int ir1 = MIN(ir0 + dr, nr);
  7801. for (int ir = ir0; ir < ir1; ++ir) {
  7802. // src0 and dst are same shape => same indices
  7803. const int i3 = ir/(ne2*ne1);
  7804. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7805. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7806. #ifdef GGML_USE_ACCELERATE
  7807. UNUSED(ggml_vec_add1_f32);
  7808. vDSP_vadd(
  7809. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7810. (float *) ((char *) src1->data), 0,
  7811. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7812. ne0);
  7813. #else
  7814. ggml_vec_add1_f32(ne0,
  7815. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7816. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7817. *(float *) src1->data);
  7818. #endif
  7819. }
  7820. }
  7821. static void ggml_compute_forward_add1_f16_f32(
  7822. const struct ggml_compute_params * params,
  7823. struct ggml_tensor * dst) {
  7824. const struct ggml_tensor * src0 = dst->src[0];
  7825. const struct ggml_tensor * src1 = dst->src[1];
  7826. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7827. GGML_ASSERT(ggml_is_scalar(src1));
  7828. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7829. return;
  7830. }
  7831. // scalar to add
  7832. const float v = *(float *) src1->data;
  7833. const int ith = params->ith;
  7834. const int nth = params->nth;
  7835. const int nr = ggml_nrows(src0);
  7836. GGML_TENSOR_UNARY_OP_LOCALS
  7837. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7838. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7839. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7840. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7841. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7842. // rows per thread
  7843. const int dr = (nr + nth - 1)/nth;
  7844. // row range for this thread
  7845. const int ir0 = dr*ith;
  7846. const int ir1 = MIN(ir0 + dr, nr);
  7847. for (int ir = ir0; ir < ir1; ++ir) {
  7848. // src0 and dst are same shape => same indices
  7849. const int i3 = ir/(ne2*ne1);
  7850. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7851. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7852. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7853. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7854. for (int i = 0; i < ne0; i++) {
  7855. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7856. }
  7857. }
  7858. }
  7859. static void ggml_compute_forward_add1_f16_f16(
  7860. const struct ggml_compute_params * params,
  7861. struct ggml_tensor * dst) {
  7862. const struct ggml_tensor * src0 = dst->src[0];
  7863. const struct ggml_tensor * src1 = dst->src[1];
  7864. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7865. GGML_ASSERT(ggml_is_scalar(src1));
  7866. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7867. return;
  7868. }
  7869. // scalar to add
  7870. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7871. const int ith = params->ith;
  7872. const int nth = params->nth;
  7873. const int nr = ggml_nrows(src0);
  7874. GGML_TENSOR_UNARY_OP_LOCALS
  7875. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7876. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7877. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7878. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7879. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7880. // rows per thread
  7881. const int dr = (nr + nth - 1)/nth;
  7882. // row range for this thread
  7883. const int ir0 = dr*ith;
  7884. const int ir1 = MIN(ir0 + dr, nr);
  7885. for (int ir = ir0; ir < ir1; ++ir) {
  7886. // src0 and dst are same shape => same indices
  7887. const int i3 = ir/(ne2*ne1);
  7888. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7889. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7890. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7891. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7892. for (int i = 0; i < ne0; i++) {
  7893. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7894. }
  7895. }
  7896. }
  7897. static void ggml_compute_forward_add1_q_f32(
  7898. const struct ggml_compute_params * params,
  7899. struct ggml_tensor * dst) {
  7900. const struct ggml_tensor * src0 = dst->src[0];
  7901. const struct ggml_tensor * src1 = dst->src[1];
  7902. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7903. GGML_ASSERT(ggml_is_scalar(src1));
  7904. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7905. return;
  7906. }
  7907. // scalar to add
  7908. const float v = *(float *) src1->data;
  7909. const int ith = params->ith;
  7910. const int nth = params->nth;
  7911. const int nr = ggml_nrows(src0);
  7912. GGML_TENSOR_UNARY_OP_LOCALS
  7913. const enum ggml_type type = src0->type;
  7914. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7915. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7916. // we don't support permuted src0
  7917. GGML_ASSERT(nb00 == ggml_type_size(type));
  7918. // dst cannot be transposed or permuted
  7919. GGML_ASSERT(nb0 <= nb1);
  7920. GGML_ASSERT(nb1 <= nb2);
  7921. GGML_ASSERT(nb2 <= nb3);
  7922. GGML_ASSERT(ggml_is_quantized(src0->type));
  7923. GGML_ASSERT(dst->type == src0->type);
  7924. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7925. // rows per thread
  7926. const int dr = (nr + nth - 1)/nth;
  7927. // row range for this thread
  7928. const int ir0 = dr*ith;
  7929. const int ir1 = MIN(ir0 + dr, nr);
  7930. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7931. for (int ir = ir0; ir < ir1; ++ir) {
  7932. // src0 and dst are same shape => same indices
  7933. const int i3 = ir/(ne2*ne1);
  7934. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7935. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7936. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7937. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7938. assert(ne0 % 32 == 0);
  7939. // unquantize row from src0 to temp buffer
  7940. dequantize_row_q(src0_row, wdata, ne0);
  7941. // add src1
  7942. ggml_vec_acc1_f32(ne0, wdata, v);
  7943. // quantize row to dst
  7944. quantize_row_q(wdata, dst_row, ne0);
  7945. }
  7946. }
  7947. static void ggml_compute_forward_add1_bf16_f32(
  7948. const struct ggml_compute_params * params,
  7949. struct ggml_tensor * dst) {
  7950. const struct ggml_tensor * src0 = dst->src[0];
  7951. const struct ggml_tensor * src1 = dst->src[1];
  7952. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7953. GGML_ASSERT(ggml_is_scalar(src1));
  7954. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7955. return;
  7956. }
  7957. // scalar to add
  7958. const float v = *(float *) src1->data;
  7959. const int ith = params->ith;
  7960. const int nth = params->nth;
  7961. const int nr = ggml_nrows(src0);
  7962. GGML_TENSOR_UNARY_OP_LOCALS
  7963. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7964. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7965. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7966. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7967. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7968. // rows per thread
  7969. const int dr = (nr + nth - 1)/nth;
  7970. // row range for this thread
  7971. const int ir0 = dr*ith;
  7972. const int ir1 = MIN(ir0 + dr, nr);
  7973. for (int ir = ir0; ir < ir1; ++ir) {
  7974. // src0 and dst are same shape => same indices
  7975. const int i3 = ir/(ne2*ne1);
  7976. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7977. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7978. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7979. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7980. for (int i = 0; i < ne0; i++) {
  7981. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7982. }
  7983. }
  7984. }
  7985. static void ggml_compute_forward_add1_bf16_bf16(
  7986. const struct ggml_compute_params * params,
  7987. struct ggml_tensor * dst) {
  7988. const struct ggml_tensor * src0 = dst->src[0];
  7989. const struct ggml_tensor * src1 = dst->src[1];
  7990. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7991. GGML_ASSERT(ggml_is_scalar(src1));
  7992. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7993. return;
  7994. }
  7995. // scalar to add
  7996. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  7997. const int ith = params->ith;
  7998. const int nth = params->nth;
  7999. const int nr = ggml_nrows(src0);
  8000. GGML_TENSOR_UNARY_OP_LOCALS
  8001. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8002. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8003. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8004. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8005. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8006. // rows per thread
  8007. const int dr = (nr + nth - 1)/nth;
  8008. // row range for this thread
  8009. const int ir0 = dr*ith;
  8010. const int ir1 = MIN(ir0 + dr, nr);
  8011. for (int ir = ir0; ir < ir1; ++ir) {
  8012. // src0 and dst are same shape => same indices
  8013. const int i3 = ir/(ne2*ne1);
  8014. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8015. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8016. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8017. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8018. for (int i = 0; i < ne0; i++) {
  8019. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8020. }
  8021. }
  8022. }
  8023. static void ggml_compute_forward_add1(
  8024. const struct ggml_compute_params * params,
  8025. struct ggml_tensor * dst) {
  8026. const struct ggml_tensor * src0 = dst->src[0];
  8027. const struct ggml_tensor * src1 = dst->src[1];
  8028. switch (src0->type) {
  8029. case GGML_TYPE_F32:
  8030. {
  8031. ggml_compute_forward_add1_f32(params, dst);
  8032. } break;
  8033. case GGML_TYPE_F16:
  8034. {
  8035. if (src1->type == GGML_TYPE_F16) {
  8036. ggml_compute_forward_add1_f16_f16(params, dst);
  8037. }
  8038. else if (src1->type == GGML_TYPE_F32) {
  8039. ggml_compute_forward_add1_f16_f32(params, dst);
  8040. }
  8041. else {
  8042. GGML_ASSERT(false);
  8043. }
  8044. } break;
  8045. case GGML_TYPE_BF16:
  8046. {
  8047. if (src1->type == GGML_TYPE_BF16) {
  8048. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8049. }
  8050. else if (src1->type == GGML_TYPE_F32) {
  8051. ggml_compute_forward_add1_bf16_f32(params, dst);
  8052. }
  8053. else {
  8054. GGML_ASSERT(false);
  8055. }
  8056. } break;
  8057. case GGML_TYPE_Q4_0:
  8058. case GGML_TYPE_Q4_1:
  8059. case GGML_TYPE_Q5_0:
  8060. case GGML_TYPE_Q5_1:
  8061. case GGML_TYPE_Q8_0:
  8062. case GGML_TYPE_Q8_1:
  8063. case GGML_TYPE_Q2_K:
  8064. case GGML_TYPE_Q3_K:
  8065. case GGML_TYPE_Q4_K:
  8066. case GGML_TYPE_Q5_K:
  8067. case GGML_TYPE_Q6_K:
  8068. case GGML_TYPE_IQ2_XXS:
  8069. case GGML_TYPE_IQ2_XS:
  8070. case GGML_TYPE_IQ3_XXS:
  8071. case GGML_TYPE_IQ1_S:
  8072. case GGML_TYPE_IQ1_M:
  8073. case GGML_TYPE_IQ4_NL:
  8074. case GGML_TYPE_IQ4_XS:
  8075. case GGML_TYPE_IQ3_S:
  8076. case GGML_TYPE_IQ2_S:
  8077. {
  8078. ggml_compute_forward_add1_q_f32(params, dst);
  8079. } break;
  8080. default:
  8081. {
  8082. GGML_ASSERT(false);
  8083. } break;
  8084. }
  8085. }
  8086. // ggml_compute_forward_acc
  8087. static void ggml_compute_forward_acc_f32(
  8088. const struct ggml_compute_params * params,
  8089. struct ggml_tensor * dst) {
  8090. const struct ggml_tensor * src0 = dst->src[0];
  8091. const struct ggml_tensor * src1 = dst->src[1];
  8092. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8093. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8094. // view src0 and dst with these strides and data offset inbytes during acc
  8095. // nb0 is implicitly element_size because src0 and dst are contiguous
  8096. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8097. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8098. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8099. size_t offset = ((int32_t *) dst->op_params)[3];
  8100. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8101. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8102. if (params->ith != 0) {
  8103. return;
  8104. }
  8105. // memcpy needs to be synchronized across threads to avoid race conditions.
  8106. // => do it in INIT phase
  8107. memcpy(
  8108. ((char *) dst->data),
  8109. ((char *) src0->data),
  8110. ggml_nbytes(dst));
  8111. }
  8112. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8113. return;
  8114. }
  8115. const int ith = params->ith;
  8116. const int nth = params->nth;
  8117. const int nr = ggml_nrows(src1);
  8118. const int nc = src1->ne[0];
  8119. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8120. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8121. // src0 and dst as viewed during acc
  8122. const size_t nb0 = ggml_element_size(src0);
  8123. const size_t nb00 = nb0;
  8124. const size_t nb01 = nb1;
  8125. const size_t nb02 = nb2;
  8126. const size_t nb03 = nb3;
  8127. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8128. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8129. GGML_ASSERT(nb10 == sizeof(float));
  8130. // rows per thread
  8131. const int dr = (nr + nth - 1)/nth;
  8132. // row range for this thread
  8133. const int ir0 = dr*ith;
  8134. const int ir1 = MIN(ir0 + dr, nr);
  8135. for (int ir = ir0; ir < ir1; ++ir) {
  8136. // src0 and dst are viewed with shape of src1 and offset
  8137. // => same indices
  8138. const int i3 = ir/(ne12*ne11);
  8139. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8140. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8141. #ifdef GGML_USE_ACCELERATE
  8142. vDSP_vadd(
  8143. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8144. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8145. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8146. #else
  8147. ggml_vec_add_f32(nc,
  8148. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8149. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8150. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8151. #endif
  8152. }
  8153. }
  8154. static void ggml_compute_forward_acc(
  8155. const struct ggml_compute_params * params,
  8156. struct ggml_tensor * dst) {
  8157. const struct ggml_tensor * src0 = dst->src[0];
  8158. switch (src0->type) {
  8159. case GGML_TYPE_F32:
  8160. {
  8161. ggml_compute_forward_acc_f32(params, dst);
  8162. } break;
  8163. case GGML_TYPE_F16:
  8164. case GGML_TYPE_BF16:
  8165. case GGML_TYPE_Q4_0:
  8166. case GGML_TYPE_Q4_1:
  8167. case GGML_TYPE_Q5_0:
  8168. case GGML_TYPE_Q5_1:
  8169. case GGML_TYPE_Q8_0:
  8170. case GGML_TYPE_Q8_1:
  8171. case GGML_TYPE_Q2_K:
  8172. case GGML_TYPE_Q3_K:
  8173. case GGML_TYPE_Q4_K:
  8174. case GGML_TYPE_Q5_K:
  8175. case GGML_TYPE_Q6_K:
  8176. case GGML_TYPE_IQ2_XXS:
  8177. case GGML_TYPE_IQ2_XS:
  8178. case GGML_TYPE_IQ3_XXS:
  8179. case GGML_TYPE_IQ1_S:
  8180. case GGML_TYPE_IQ1_M:
  8181. case GGML_TYPE_IQ4_NL:
  8182. case GGML_TYPE_IQ4_XS:
  8183. case GGML_TYPE_IQ3_S:
  8184. case GGML_TYPE_IQ2_S:
  8185. default:
  8186. {
  8187. GGML_ASSERT(false);
  8188. } break;
  8189. }
  8190. }
  8191. // ggml_compute_forward_sub
  8192. static void ggml_compute_forward_sub_f32(
  8193. const struct ggml_compute_params * params,
  8194. struct ggml_tensor * dst) {
  8195. const struct ggml_tensor * src0 = dst->src[0];
  8196. const struct ggml_tensor * src1 = dst->src[1];
  8197. assert(params->ith == 0);
  8198. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8199. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8200. return;
  8201. }
  8202. const int nr = ggml_nrows(src0);
  8203. GGML_TENSOR_BINARY_OP_LOCALS
  8204. GGML_ASSERT( nb0 == sizeof(float));
  8205. GGML_ASSERT(nb00 == sizeof(float));
  8206. if (nb10 == sizeof(float)) {
  8207. for (int ir = 0; ir < nr; ++ir) {
  8208. // src0, src1 and dst are same shape => same indices
  8209. const int i3 = ir/(ne2*ne1);
  8210. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8211. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8212. #ifdef GGML_USE_ACCELERATE
  8213. vDSP_vsub(
  8214. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8215. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8216. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8217. ne0);
  8218. #else
  8219. ggml_vec_sub_f32(ne0,
  8220. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8221. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8222. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8223. #endif
  8224. // }
  8225. // }
  8226. }
  8227. } else {
  8228. // src1 is not contiguous
  8229. for (int ir = 0; ir < nr; ++ir) {
  8230. // src0, src1 and dst are same shape => same indices
  8231. const int i3 = ir/(ne2*ne1);
  8232. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8233. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8234. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8235. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8236. for (int i0 = 0; i0 < ne0; i0++) {
  8237. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8238. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8239. }
  8240. }
  8241. }
  8242. }
  8243. static void ggml_compute_forward_sub(
  8244. const struct ggml_compute_params * params,
  8245. struct ggml_tensor * dst) {
  8246. const struct ggml_tensor * src0 = dst->src[0];
  8247. switch (src0->type) {
  8248. case GGML_TYPE_F32:
  8249. {
  8250. ggml_compute_forward_sub_f32(params, dst);
  8251. } break;
  8252. default:
  8253. {
  8254. GGML_ASSERT(false);
  8255. } break;
  8256. }
  8257. }
  8258. // ggml_compute_forward_mul
  8259. static void ggml_compute_forward_mul_f32(
  8260. const struct ggml_compute_params * params,
  8261. struct ggml_tensor * dst) {
  8262. const struct ggml_tensor * src0 = dst->src[0];
  8263. const struct ggml_tensor * src1 = dst->src[1];
  8264. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8265. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8266. return;
  8267. }
  8268. const int ith = params->ith;
  8269. const int nth = params->nth;
  8270. #if defined(GGML_USE_CLBLAST)
  8271. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8272. // TODO: OpenCL kernel support full broadcast
  8273. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8274. if (ith == 0) {
  8275. ggml_cl_mul(src0, src1, dst);
  8276. }
  8277. return;
  8278. }
  8279. #endif
  8280. const int64_t nr = ggml_nrows(src0);
  8281. GGML_TENSOR_BINARY_OP_LOCALS
  8282. GGML_ASSERT( nb0 == sizeof(float));
  8283. GGML_ASSERT(nb00 == sizeof(float));
  8284. if (nb10 == sizeof(float)) {
  8285. for (int64_t ir = ith; ir < nr; ir += nth) {
  8286. // src0 and dst are same shape => same indices
  8287. const int64_t i03 = ir/(ne02*ne01);
  8288. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8289. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8290. const int64_t i13 = i03 % ne13;
  8291. const int64_t i12 = i02 % ne12;
  8292. const int64_t i11 = i01 % ne11;
  8293. const int64_t nr0 = ne00 / ne10;
  8294. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8295. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8296. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8297. for (int64_t r = 0 ; r < nr0; ++r) {
  8298. #ifdef GGML_USE_ACCELERATE
  8299. UNUSED(ggml_vec_mul_f32);
  8300. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8301. #else
  8302. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8303. #endif
  8304. }
  8305. }
  8306. } else {
  8307. // src1 is not contiguous
  8308. for (int64_t ir = ith; ir < nr; ir += nth) {
  8309. // src0 and dst are same shape => same indices
  8310. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8311. const int64_t i03 = ir/(ne02*ne01);
  8312. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8313. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8314. const int64_t i13 = i03 % ne13;
  8315. const int64_t i12 = i02 % ne12;
  8316. const int64_t i11 = i01 % ne11;
  8317. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8318. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8319. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8320. const int64_t i10 = i0 % ne10;
  8321. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8322. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8323. }
  8324. }
  8325. }
  8326. }
  8327. static void ggml_compute_forward_mul(
  8328. const struct ggml_compute_params * params,
  8329. struct ggml_tensor * dst) {
  8330. const struct ggml_tensor * src0 = dst->src[0];
  8331. const struct ggml_tensor * src1 = dst->src[1];
  8332. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8333. switch (src0->type) {
  8334. case GGML_TYPE_F32:
  8335. {
  8336. ggml_compute_forward_mul_f32(params, dst);
  8337. } break;
  8338. default:
  8339. {
  8340. GGML_ASSERT(false);
  8341. } break;
  8342. }
  8343. }
  8344. // ggml_compute_forward_div
  8345. static void ggml_compute_forward_div_f32(
  8346. const struct ggml_compute_params * params,
  8347. struct ggml_tensor * dst) {
  8348. const struct ggml_tensor * src0 = dst->src[0];
  8349. const struct ggml_tensor * src1 = dst->src[1];
  8350. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8351. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8352. return;
  8353. }
  8354. const int ith = params->ith;
  8355. const int nth = params->nth;
  8356. const int64_t nr = ggml_nrows(src0);
  8357. GGML_TENSOR_BINARY_OP_LOCALS
  8358. GGML_ASSERT( nb0 == sizeof(float));
  8359. GGML_ASSERT(nb00 == sizeof(float));
  8360. if (nb10 == sizeof(float)) {
  8361. for (int64_t ir = ith; ir < nr; ir += nth) {
  8362. // src0 and dst are same shape => same indices
  8363. const int64_t i03 = ir/(ne02*ne01);
  8364. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8365. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8366. const int64_t i13 = i03 % ne13;
  8367. const int64_t i12 = i02 % ne12;
  8368. const int64_t i11 = i01 % ne11;
  8369. const int64_t nr0 = ne00 / ne10;
  8370. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8371. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8372. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8373. for (int64_t r = 0; r < nr0; ++r) {
  8374. #ifdef GGML_USE_ACCELERATE
  8375. UNUSED(ggml_vec_div_f32);
  8376. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8377. #else
  8378. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8379. #endif
  8380. }
  8381. }
  8382. } else {
  8383. // src1 is not contiguous
  8384. for (int64_t ir = ith; ir < nr; ir += nth) {
  8385. // src0 and dst are same shape => same indices
  8386. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8387. const int64_t i03 = ir/(ne02*ne01);
  8388. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8389. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8390. const int64_t i13 = i03 % ne13;
  8391. const int64_t i12 = i02 % ne12;
  8392. const int64_t i11 = i01 % ne11;
  8393. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8394. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8395. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8396. const int64_t i10 = i0 % ne10;
  8397. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8398. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8399. }
  8400. }
  8401. }
  8402. }
  8403. static void ggml_compute_forward_div(
  8404. const struct ggml_compute_params * params,
  8405. struct ggml_tensor * dst) {
  8406. const struct ggml_tensor * src0 = dst->src[0];
  8407. switch (src0->type) {
  8408. case GGML_TYPE_F32:
  8409. {
  8410. ggml_compute_forward_div_f32(params, dst);
  8411. } break;
  8412. default:
  8413. {
  8414. GGML_ASSERT(false);
  8415. } break;
  8416. }
  8417. }
  8418. // ggml_compute_forward_sqr
  8419. static void ggml_compute_forward_sqr_f32(
  8420. const struct ggml_compute_params * params,
  8421. struct ggml_tensor * dst) {
  8422. const struct ggml_tensor * src0 = dst->src[0];
  8423. assert(params->ith == 0);
  8424. assert(ggml_are_same_shape(src0, dst));
  8425. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8426. return;
  8427. }
  8428. const int n = ggml_nrows(src0);
  8429. const int nc = src0->ne[0];
  8430. assert( dst->nb[0] == sizeof(float));
  8431. assert(src0->nb[0] == sizeof(float));
  8432. for (int i = 0; i < n; i++) {
  8433. ggml_vec_sqr_f32(nc,
  8434. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8435. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8436. }
  8437. }
  8438. static void ggml_compute_forward_sqr(
  8439. const struct ggml_compute_params * params,
  8440. struct ggml_tensor * dst) {
  8441. const struct ggml_tensor * src0 = dst->src[0];
  8442. switch (src0->type) {
  8443. case GGML_TYPE_F32:
  8444. {
  8445. ggml_compute_forward_sqr_f32(params, dst);
  8446. } break;
  8447. default:
  8448. {
  8449. GGML_ASSERT(false);
  8450. } break;
  8451. }
  8452. }
  8453. // ggml_compute_forward_sqrt
  8454. static void ggml_compute_forward_sqrt_f32(
  8455. const struct ggml_compute_params * params,
  8456. struct ggml_tensor * dst) {
  8457. const struct ggml_tensor * src0 = dst->src[0];
  8458. assert(params->ith == 0);
  8459. assert(ggml_are_same_shape(src0, dst));
  8460. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8461. return;
  8462. }
  8463. const int n = ggml_nrows(src0);
  8464. const int nc = src0->ne[0];
  8465. assert( dst->nb[0] == sizeof(float));
  8466. assert(src0->nb[0] == sizeof(float));
  8467. for (int i = 0; i < n; i++) {
  8468. ggml_vec_sqrt_f32(nc,
  8469. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8470. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8471. }
  8472. }
  8473. static void ggml_compute_forward_sqrt(
  8474. const struct ggml_compute_params * params,
  8475. struct ggml_tensor * dst) {
  8476. const struct ggml_tensor * src0 = dst->src[0];
  8477. switch (src0->type) {
  8478. case GGML_TYPE_F32:
  8479. {
  8480. ggml_compute_forward_sqrt_f32(params, dst);
  8481. } break;
  8482. default:
  8483. {
  8484. GGML_ASSERT(false);
  8485. } break;
  8486. }
  8487. }
  8488. // ggml_compute_forward_log
  8489. static void ggml_compute_forward_log_f32(
  8490. const struct ggml_compute_params * params,
  8491. struct ggml_tensor * dst) {
  8492. const struct ggml_tensor * src0 = dst->src[0];
  8493. GGML_ASSERT(params->ith == 0);
  8494. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8495. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8496. return;
  8497. }
  8498. const int n = ggml_nrows(src0);
  8499. const int nc = src0->ne[0];
  8500. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8501. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8502. for (int i = 0; i < n; i++) {
  8503. ggml_vec_log_f32(nc,
  8504. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8505. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8506. }
  8507. }
  8508. static void ggml_compute_forward_log(
  8509. const struct ggml_compute_params * params,
  8510. struct ggml_tensor * dst) {
  8511. const struct ggml_tensor * src0 = dst->src[0];
  8512. switch (src0->type) {
  8513. case GGML_TYPE_F32:
  8514. {
  8515. ggml_compute_forward_log_f32(params, dst);
  8516. } break;
  8517. default:
  8518. {
  8519. GGML_ASSERT(false);
  8520. } break;
  8521. }
  8522. }
  8523. // ggml_compute_forward_sum
  8524. static void ggml_compute_forward_sum_f32(
  8525. const struct ggml_compute_params * params,
  8526. struct ggml_tensor * dst) {
  8527. const struct ggml_tensor * src0 = dst->src[0];
  8528. assert(params->ith == 0);
  8529. assert(ggml_is_scalar(dst));
  8530. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8531. return;
  8532. }
  8533. assert(ggml_is_scalar(dst));
  8534. assert(src0->nb[0] == sizeof(float));
  8535. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8536. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8537. ggml_float sum = 0;
  8538. ggml_float row_sum = 0;
  8539. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8540. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8541. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8542. ggml_vec_sum_f32_ggf(ne00,
  8543. &row_sum,
  8544. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8545. sum += row_sum;
  8546. }
  8547. }
  8548. }
  8549. ((float *) dst->data)[0] = sum;
  8550. }
  8551. static void ggml_compute_forward_sum_f16(
  8552. const struct ggml_compute_params * params,
  8553. struct ggml_tensor * dst) {
  8554. const struct ggml_tensor * src0 = dst->src[0];
  8555. assert(params->ith == 0);
  8556. assert(ggml_is_scalar(dst));
  8557. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8558. return;
  8559. }
  8560. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8561. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8562. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8563. float sum = 0;
  8564. float row_sum = 0;
  8565. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8566. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8567. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8568. ggml_vec_sum_f16_ggf(ne00,
  8569. &row_sum,
  8570. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8571. sum += row_sum;
  8572. }
  8573. }
  8574. }
  8575. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8576. }
  8577. static void ggml_compute_forward_sum_bf16(
  8578. const struct ggml_compute_params * params,
  8579. struct ggml_tensor * dst) {
  8580. const struct ggml_tensor * src0 = dst->src[0];
  8581. assert(params->ith == 0);
  8582. assert(ggml_is_scalar(dst));
  8583. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8584. return;
  8585. }
  8586. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8587. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8588. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8589. float sum = 0;
  8590. float row_sum = 0;
  8591. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8592. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8593. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8594. ggml_vec_sum_bf16_ggf(ne00,
  8595. &row_sum,
  8596. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8597. sum += row_sum;
  8598. }
  8599. }
  8600. }
  8601. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8602. }
  8603. static void ggml_compute_forward_sum(
  8604. const struct ggml_compute_params * params,
  8605. struct ggml_tensor * dst) {
  8606. const struct ggml_tensor * src0 = dst->src[0];
  8607. switch (src0->type) {
  8608. case GGML_TYPE_F32:
  8609. {
  8610. ggml_compute_forward_sum_f32(params, dst);
  8611. } break;
  8612. case GGML_TYPE_F16:
  8613. {
  8614. ggml_compute_forward_sum_f16(params, dst);
  8615. } break;
  8616. case GGML_TYPE_BF16:
  8617. {
  8618. ggml_compute_forward_sum_bf16(params, dst);
  8619. } break;
  8620. default:
  8621. {
  8622. GGML_ASSERT(false);
  8623. } break;
  8624. }
  8625. }
  8626. // ggml_compute_forward_sum_rows
  8627. static void ggml_compute_forward_sum_rows_f32(
  8628. const struct ggml_compute_params * params,
  8629. struct ggml_tensor * dst) {
  8630. const struct ggml_tensor * src0 = dst->src[0];
  8631. GGML_ASSERT(params->ith == 0);
  8632. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8633. return;
  8634. }
  8635. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8636. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8637. GGML_TENSOR_UNARY_OP_LOCALS
  8638. GGML_ASSERT(ne0 == 1);
  8639. GGML_ASSERT(ne1 == ne01);
  8640. GGML_ASSERT(ne2 == ne02);
  8641. GGML_ASSERT(ne3 == ne03);
  8642. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8643. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8644. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8645. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8646. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8647. float row_sum = 0;
  8648. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8649. dst_row[0] = row_sum;
  8650. }
  8651. }
  8652. }
  8653. }
  8654. static void ggml_compute_forward_sum_rows(
  8655. const struct ggml_compute_params * params,
  8656. struct ggml_tensor * dst) {
  8657. const struct ggml_tensor * src0 = dst->src[0];
  8658. switch (src0->type) {
  8659. case GGML_TYPE_F32:
  8660. {
  8661. ggml_compute_forward_sum_rows_f32(params, dst);
  8662. } break;
  8663. default:
  8664. {
  8665. GGML_ASSERT(false);
  8666. } break;
  8667. }
  8668. }
  8669. // ggml_compute_forward_mean
  8670. static void ggml_compute_forward_mean_f32(
  8671. const struct ggml_compute_params * params,
  8672. struct ggml_tensor * dst) {
  8673. const struct ggml_tensor * src0 = dst->src[0];
  8674. assert(params->ith == 0);
  8675. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8676. return;
  8677. }
  8678. assert(src0->nb[0] == sizeof(float));
  8679. GGML_TENSOR_UNARY_OP_LOCALS
  8680. assert(ne0 == 1);
  8681. assert(ne1 == ne01);
  8682. assert(ne2 == ne02);
  8683. assert(ne3 == ne03);
  8684. UNUSED(ne0);
  8685. UNUSED(ne1);
  8686. UNUSED(ne2);
  8687. UNUSED(ne3);
  8688. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8689. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8690. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8691. ggml_vec_sum_f32(ne00,
  8692. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8693. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8694. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8695. }
  8696. }
  8697. }
  8698. }
  8699. static void ggml_compute_forward_mean(
  8700. const struct ggml_compute_params * params,
  8701. struct ggml_tensor * dst) {
  8702. const struct ggml_tensor * src0 = dst->src[0];
  8703. switch (src0->type) {
  8704. case GGML_TYPE_F32:
  8705. {
  8706. ggml_compute_forward_mean_f32(params, dst);
  8707. } break;
  8708. default:
  8709. {
  8710. GGML_ASSERT(false);
  8711. } break;
  8712. }
  8713. }
  8714. // ggml_compute_forward_argmax
  8715. static void ggml_compute_forward_argmax_f32(
  8716. const struct ggml_compute_params * params,
  8717. struct ggml_tensor * dst) {
  8718. const struct ggml_tensor * src0 = dst->src[0];
  8719. assert(params->ith == 0);
  8720. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8721. return;
  8722. }
  8723. assert(src0->nb[0] == sizeof(float));
  8724. assert(dst->nb[0] == sizeof(float));
  8725. const int64_t ne00 = src0->ne[0];
  8726. const int64_t ne01 = src0->ne[1];
  8727. const size_t nb01 = src0->nb[1];
  8728. const size_t nb0 = dst->nb[0];
  8729. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8730. float * src = (float *) ((char *) src0->data + i1*nb01);
  8731. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8732. int v = 0;
  8733. ggml_vec_argmax_f32(ne00, &v, src);
  8734. dst_[0] = v;
  8735. }
  8736. }
  8737. static void ggml_compute_forward_argmax(
  8738. const struct ggml_compute_params * params,
  8739. struct ggml_tensor * dst) {
  8740. const struct ggml_tensor * src0 = dst->src[0];
  8741. switch (src0->type) {
  8742. case GGML_TYPE_F32:
  8743. {
  8744. ggml_compute_forward_argmax_f32(params, dst);
  8745. } break;
  8746. default:
  8747. {
  8748. GGML_ASSERT(false);
  8749. } break;
  8750. }
  8751. }
  8752. // ggml_compute_forward_repeat
  8753. static void ggml_compute_forward_repeat_f32(
  8754. const struct ggml_compute_params * params,
  8755. struct ggml_tensor * dst) {
  8756. const struct ggml_tensor * src0 = dst->src[0];
  8757. GGML_ASSERT(params->ith == 0);
  8758. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8759. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8760. return;
  8761. }
  8762. GGML_TENSOR_UNARY_OP_LOCALS
  8763. // guaranteed to be an integer due to the check in ggml_can_repeat
  8764. const int nr0 = (int)(ne0/ne00);
  8765. const int nr1 = (int)(ne1/ne01);
  8766. const int nr2 = (int)(ne2/ne02);
  8767. const int nr3 = (int)(ne3/ne03);
  8768. // TODO: support for transposed / permuted tensors
  8769. GGML_ASSERT(nb0 == sizeof(float));
  8770. GGML_ASSERT(nb00 == sizeof(float));
  8771. // TODO: maybe this is not optimal?
  8772. for (int i3 = 0; i3 < nr3; i3++) {
  8773. for (int k3 = 0; k3 < ne03; k3++) {
  8774. for (int i2 = 0; i2 < nr2; i2++) {
  8775. for (int k2 = 0; k2 < ne02; k2++) {
  8776. for (int i1 = 0; i1 < nr1; i1++) {
  8777. for (int k1 = 0; k1 < ne01; k1++) {
  8778. for (int i0 = 0; i0 < nr0; i0++) {
  8779. ggml_vec_cpy_f32(ne00,
  8780. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8781. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8782. }
  8783. }
  8784. }
  8785. }
  8786. }
  8787. }
  8788. }
  8789. }
  8790. static void ggml_compute_forward_repeat_f16(
  8791. const struct ggml_compute_params * params,
  8792. struct ggml_tensor * dst) {
  8793. const struct ggml_tensor * src0 = dst->src[0];
  8794. GGML_ASSERT(params->ith == 0);
  8795. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8796. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8797. return;
  8798. }
  8799. GGML_TENSOR_UNARY_OP_LOCALS
  8800. // guaranteed to be an integer due to the check in ggml_can_repeat
  8801. const int nr0 = (int)(ne0/ne00);
  8802. const int nr1 = (int)(ne1/ne01);
  8803. const int nr2 = (int)(ne2/ne02);
  8804. const int nr3 = (int)(ne3/ne03);
  8805. // TODO: support for transposed / permuted tensors
  8806. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8807. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8808. // TODO: maybe this is not optimal?
  8809. for (int i3 = 0; i3 < nr3; i3++) {
  8810. for (int k3 = 0; k3 < ne03; k3++) {
  8811. for (int i2 = 0; i2 < nr2; i2++) {
  8812. for (int k2 = 0; k2 < ne02; k2++) {
  8813. for (int i1 = 0; i1 < nr1; i1++) {
  8814. for (int k1 = 0; k1 < ne01; k1++) {
  8815. for (int i0 = 0; i0 < nr0; i0++) {
  8816. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8817. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8818. // ggml_vec_cpy_f16(ne00, y, x)
  8819. for (int i = 0; i < ne00; ++i) {
  8820. y[i] = x[i];
  8821. }
  8822. }
  8823. }
  8824. }
  8825. }
  8826. }
  8827. }
  8828. }
  8829. }
  8830. static void ggml_compute_forward_repeat(
  8831. const struct ggml_compute_params * params,
  8832. struct ggml_tensor * dst) {
  8833. const struct ggml_tensor * src0 = dst->src[0];
  8834. switch (src0->type) {
  8835. case GGML_TYPE_F16:
  8836. case GGML_TYPE_BF16:
  8837. case GGML_TYPE_I16:
  8838. {
  8839. ggml_compute_forward_repeat_f16(params, dst);
  8840. } break;
  8841. case GGML_TYPE_F32:
  8842. case GGML_TYPE_I32:
  8843. {
  8844. ggml_compute_forward_repeat_f32(params, dst);
  8845. } break;
  8846. default:
  8847. {
  8848. GGML_ASSERT(false);
  8849. } break;
  8850. }
  8851. }
  8852. // ggml_compute_forward_repeat_back
  8853. static void ggml_compute_forward_repeat_back_f32(
  8854. const struct ggml_compute_params * params,
  8855. struct ggml_tensor * dst) {
  8856. const struct ggml_tensor * src0 = dst->src[0];
  8857. GGML_ASSERT(params->ith == 0);
  8858. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8859. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8860. return;
  8861. }
  8862. GGML_TENSOR_UNARY_OP_LOCALS
  8863. // guaranteed to be an integer due to the check in ggml_can_repeat
  8864. const int nr0 = (int)(ne00/ne0);
  8865. const int nr1 = (int)(ne01/ne1);
  8866. const int nr2 = (int)(ne02/ne2);
  8867. const int nr3 = (int)(ne03/ne3);
  8868. // TODO: support for transposed / permuted tensors
  8869. GGML_ASSERT(nb0 == sizeof(float));
  8870. GGML_ASSERT(nb00 == sizeof(float));
  8871. if (ggml_is_contiguous(dst)) {
  8872. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8873. } else {
  8874. for (int k3 = 0; k3 < ne3; k3++) {
  8875. for (int k2 = 0; k2 < ne2; k2++) {
  8876. for (int k1 = 0; k1 < ne1; k1++) {
  8877. ggml_vec_set_f32(ne0,
  8878. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8879. 0);
  8880. }
  8881. }
  8882. }
  8883. }
  8884. // TODO: maybe this is not optimal?
  8885. for (int i3 = 0; i3 < nr3; i3++) {
  8886. for (int k3 = 0; k3 < ne3; k3++) {
  8887. for (int i2 = 0; i2 < nr2; i2++) {
  8888. for (int k2 = 0; k2 < ne2; k2++) {
  8889. for (int i1 = 0; i1 < nr1; i1++) {
  8890. for (int k1 = 0; k1 < ne1; k1++) {
  8891. for (int i0 = 0; i0 < nr0; i0++) {
  8892. ggml_vec_acc_f32(ne0,
  8893. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8894. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8895. }
  8896. }
  8897. }
  8898. }
  8899. }
  8900. }
  8901. }
  8902. }
  8903. static void ggml_compute_forward_repeat_back(
  8904. const struct ggml_compute_params * params,
  8905. struct ggml_tensor * dst) {
  8906. const struct ggml_tensor * src0 = dst->src[0];
  8907. switch (src0->type) {
  8908. case GGML_TYPE_F32:
  8909. {
  8910. ggml_compute_forward_repeat_back_f32(params, dst);
  8911. } break;
  8912. default:
  8913. {
  8914. GGML_ASSERT(false);
  8915. } break;
  8916. }
  8917. }
  8918. // ggml_compute_forward_concat
  8919. static void ggml_compute_forward_concat_f32(
  8920. const struct ggml_compute_params * params,
  8921. struct ggml_tensor * dst) {
  8922. const struct ggml_tensor * src0 = dst->src[0];
  8923. const struct ggml_tensor * src1 = dst->src[1];
  8924. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8925. return;
  8926. }
  8927. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8928. const int ith = params->ith;
  8929. const int nth = params->nth;
  8930. GGML_TENSOR_BINARY_OP_LOCALS
  8931. // TODO: support for transposed / permuted tensors
  8932. GGML_ASSERT(nb0 == sizeof(float));
  8933. GGML_ASSERT(nb00 == sizeof(float));
  8934. GGML_ASSERT(nb10 == sizeof(float));
  8935. for (int i3 = 0; i3 < ne3; i3++) {
  8936. for (int i2 = ith; i2 < ne2; i2 += nth) {
  8937. if (i2 < ne02) { // src0
  8938. for (int i1 = 0; i1 < ne1; i1++) {
  8939. for (int i0 = 0; i0 < ne0; i0++) {
  8940. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8941. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8942. *y = *x;
  8943. }
  8944. }
  8945. } // src1
  8946. else {
  8947. for (int i1 = 0; i1 < ne1; i1++) {
  8948. for (int i0 = 0; i0 < ne0; i0++) {
  8949. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8950. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8951. *y = *x;
  8952. }
  8953. }
  8954. }
  8955. }
  8956. }
  8957. }
  8958. static void ggml_compute_forward_concat(
  8959. const struct ggml_compute_params* params,
  8960. struct ggml_tensor* dst) {
  8961. const struct ggml_tensor * src0 = dst->src[0];
  8962. switch (src0->type) {
  8963. case GGML_TYPE_F32:
  8964. case GGML_TYPE_I32:
  8965. {
  8966. ggml_compute_forward_concat_f32(params, dst);
  8967. } break;
  8968. default:
  8969. {
  8970. GGML_ASSERT(false);
  8971. } break;
  8972. }
  8973. }
  8974. // ggml_compute_forward_abs
  8975. static void ggml_compute_forward_abs_f32(
  8976. const struct ggml_compute_params * params,
  8977. struct ggml_tensor * dst) {
  8978. const struct ggml_tensor * src0 = dst->src[0];
  8979. assert(params->ith == 0);
  8980. assert(ggml_are_same_shape(src0, dst));
  8981. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8982. return;
  8983. }
  8984. const int n = ggml_nrows(src0);
  8985. const int nc = src0->ne[0];
  8986. assert(dst->nb[0] == sizeof(float));
  8987. assert(src0->nb[0] == sizeof(float));
  8988. for (int i = 0; i < n; i++) {
  8989. ggml_vec_abs_f32(nc,
  8990. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8991. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8992. }
  8993. }
  8994. static void ggml_compute_forward_abs(
  8995. const struct ggml_compute_params * params,
  8996. struct ggml_tensor * dst) {
  8997. const struct ggml_tensor * src0 = dst->src[0];
  8998. switch (src0->type) {
  8999. case GGML_TYPE_F32:
  9000. {
  9001. ggml_compute_forward_abs_f32(params, dst);
  9002. } break;
  9003. default:
  9004. {
  9005. GGML_ASSERT(false);
  9006. } break;
  9007. }
  9008. }
  9009. // ggml_compute_forward_sgn
  9010. static void ggml_compute_forward_sgn_f32(
  9011. const struct ggml_compute_params * params,
  9012. struct ggml_tensor * dst) {
  9013. const struct ggml_tensor * src0 = dst->src[0];
  9014. assert(params->ith == 0);
  9015. assert(ggml_are_same_shape(src0, dst));
  9016. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9017. return;
  9018. }
  9019. const int n = ggml_nrows(src0);
  9020. const int nc = src0->ne[0];
  9021. assert(dst->nb[0] == sizeof(float));
  9022. assert(src0->nb[0] == sizeof(float));
  9023. for (int i = 0; i < n; i++) {
  9024. ggml_vec_sgn_f32(nc,
  9025. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9026. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9027. }
  9028. }
  9029. static void ggml_compute_forward_sgn(
  9030. const struct ggml_compute_params * params,
  9031. struct ggml_tensor * dst) {
  9032. const struct ggml_tensor * src0 = dst->src[0];
  9033. switch (src0->type) {
  9034. case GGML_TYPE_F32:
  9035. {
  9036. ggml_compute_forward_sgn_f32(params, dst);
  9037. } break;
  9038. default:
  9039. {
  9040. GGML_ASSERT(false);
  9041. } break;
  9042. }
  9043. }
  9044. // ggml_compute_forward_neg
  9045. static void ggml_compute_forward_neg_f32(
  9046. const struct ggml_compute_params * params,
  9047. struct ggml_tensor * dst) {
  9048. const struct ggml_tensor * src0 = dst->src[0];
  9049. assert(params->ith == 0);
  9050. assert(ggml_are_same_shape(src0, dst));
  9051. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9052. return;
  9053. }
  9054. const int n = ggml_nrows(src0);
  9055. const int nc = src0->ne[0];
  9056. assert(dst->nb[0] == sizeof(float));
  9057. assert(src0->nb[0] == sizeof(float));
  9058. for (int i = 0; i < n; i++) {
  9059. ggml_vec_neg_f32(nc,
  9060. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9061. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9062. }
  9063. }
  9064. static void ggml_compute_forward_neg(
  9065. const struct ggml_compute_params * params,
  9066. struct ggml_tensor * dst) {
  9067. const struct ggml_tensor * src0 = dst->src[0];
  9068. switch (src0->type) {
  9069. case GGML_TYPE_F32:
  9070. {
  9071. ggml_compute_forward_neg_f32(params, dst);
  9072. } break;
  9073. default:
  9074. {
  9075. GGML_ASSERT(false);
  9076. } break;
  9077. }
  9078. }
  9079. // ggml_compute_forward_step
  9080. static void ggml_compute_forward_step_f32(
  9081. const struct ggml_compute_params * params,
  9082. struct ggml_tensor * dst) {
  9083. const struct ggml_tensor * src0 = dst->src[0];
  9084. assert(params->ith == 0);
  9085. assert(ggml_are_same_shape(src0, dst));
  9086. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9087. return;
  9088. }
  9089. const int n = ggml_nrows(src0);
  9090. const int nc = src0->ne[0];
  9091. assert(dst->nb[0] == sizeof(float));
  9092. assert(src0->nb[0] == sizeof(float));
  9093. for (int i = 0; i < n; i++) {
  9094. ggml_vec_step_f32(nc,
  9095. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9096. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9097. }
  9098. }
  9099. static void ggml_compute_forward_step(
  9100. const struct ggml_compute_params * params,
  9101. struct ggml_tensor * dst) {
  9102. const struct ggml_tensor * src0 = dst->src[0];
  9103. switch (src0->type) {
  9104. case GGML_TYPE_F32:
  9105. {
  9106. ggml_compute_forward_step_f32(params, dst);
  9107. } break;
  9108. default:
  9109. {
  9110. GGML_ASSERT(false);
  9111. } break;
  9112. }
  9113. }
  9114. // ggml_compute_forward_tanh
  9115. static void ggml_compute_forward_tanh_f32(
  9116. const struct ggml_compute_params * params,
  9117. struct ggml_tensor * dst) {
  9118. const struct ggml_tensor * src0 = dst->src[0];
  9119. assert(params->ith == 0);
  9120. assert(ggml_are_same_shape(src0, dst));
  9121. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9122. return;
  9123. }
  9124. const int n = ggml_nrows(src0);
  9125. const int nc = src0->ne[0];
  9126. assert(dst->nb[0] == sizeof(float));
  9127. assert(src0->nb[0] == sizeof(float));
  9128. for (int i = 0; i < n; i++) {
  9129. ggml_vec_tanh_f32(nc,
  9130. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9131. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9132. }
  9133. }
  9134. static void ggml_compute_forward_tanh(
  9135. const struct ggml_compute_params * params,
  9136. struct ggml_tensor * dst) {
  9137. const struct ggml_tensor * src0 = dst->src[0];
  9138. switch (src0->type) {
  9139. case GGML_TYPE_F32:
  9140. {
  9141. ggml_compute_forward_tanh_f32(params, dst);
  9142. } break;
  9143. default:
  9144. {
  9145. GGML_ASSERT(false);
  9146. } break;
  9147. }
  9148. }
  9149. // ggml_compute_forward_elu
  9150. static void ggml_compute_forward_elu_f32(
  9151. const struct ggml_compute_params * params,
  9152. struct ggml_tensor * dst) {
  9153. const struct ggml_tensor * src0 = dst->src[0];
  9154. assert(params->ith == 0);
  9155. assert(ggml_are_same_shape(src0, dst));
  9156. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9157. return;
  9158. }
  9159. const int n = ggml_nrows(src0);
  9160. const int nc = src0->ne[0];
  9161. assert(dst->nb[0] == sizeof(float));
  9162. assert(src0->nb[0] == sizeof(float));
  9163. for (int i = 0; i < n; i++) {
  9164. ggml_vec_elu_f32(nc,
  9165. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9166. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9167. }
  9168. }
  9169. static void ggml_compute_forward_elu(
  9170. const struct ggml_compute_params * params,
  9171. struct ggml_tensor * dst) {
  9172. const struct ggml_tensor * src0 = dst->src[0];
  9173. switch (src0->type) {
  9174. case GGML_TYPE_F32:
  9175. {
  9176. ggml_compute_forward_elu_f32(params, dst);
  9177. } break;
  9178. default:
  9179. {
  9180. GGML_ASSERT(false);
  9181. } break;
  9182. }
  9183. }
  9184. // ggml_compute_forward_relu
  9185. static void ggml_compute_forward_relu_f32(
  9186. const struct ggml_compute_params * params,
  9187. struct ggml_tensor * dst) {
  9188. const struct ggml_tensor * src0 = dst->src[0];
  9189. assert(params->ith == 0);
  9190. assert(ggml_are_same_shape(src0, dst));
  9191. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9192. return;
  9193. }
  9194. const int n = ggml_nrows(src0);
  9195. const int nc = src0->ne[0];
  9196. assert(dst->nb[0] == sizeof(float));
  9197. assert(src0->nb[0] == sizeof(float));
  9198. for (int i = 0; i < n; i++) {
  9199. ggml_vec_relu_f32(nc,
  9200. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9201. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9202. }
  9203. }
  9204. static void ggml_compute_forward_relu(
  9205. const struct ggml_compute_params * params,
  9206. struct ggml_tensor * dst) {
  9207. const struct ggml_tensor * src0 = dst->src[0];
  9208. switch (src0->type) {
  9209. case GGML_TYPE_F32:
  9210. {
  9211. ggml_compute_forward_relu_f32(params, dst);
  9212. } break;
  9213. default:
  9214. {
  9215. GGML_ASSERT(false);
  9216. } break;
  9217. }
  9218. }
  9219. // ggml_compute_forward_sigmoid
  9220. static void ggml_compute_forward_sigmoid_f32(
  9221. const struct ggml_compute_params * params,
  9222. struct ggml_tensor * dst) {
  9223. const struct ggml_tensor * src0 = dst->src[0];
  9224. assert(params->ith == 0);
  9225. assert(ggml_are_same_shape(src0, dst));
  9226. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9227. return;
  9228. }
  9229. const int n = ggml_nrows(src0);
  9230. const int nc = src0->ne[0];
  9231. assert(dst->nb[0] == sizeof(float));
  9232. assert(src0->nb[0] == sizeof(float));
  9233. for (int i = 0; i < n; i++) {
  9234. ggml_vec_sigmoid_f32(nc,
  9235. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9236. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9237. }
  9238. }
  9239. static void ggml_compute_forward_sigmoid(
  9240. const struct ggml_compute_params * params,
  9241. struct ggml_tensor * dst) {
  9242. const struct ggml_tensor * src0 = dst->src[0];
  9243. switch (src0->type) {
  9244. case GGML_TYPE_F32:
  9245. {
  9246. ggml_compute_forward_sigmoid_f32(params, dst);
  9247. } break;
  9248. default:
  9249. {
  9250. GGML_ASSERT(false);
  9251. } break;
  9252. }
  9253. }
  9254. // ggml_compute_forward_gelu
  9255. static void ggml_compute_forward_gelu_f32(
  9256. const struct ggml_compute_params * params,
  9257. struct ggml_tensor * dst) {
  9258. const struct ggml_tensor * src0 = dst->src[0];
  9259. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9260. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9261. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9262. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9263. return;
  9264. }
  9265. const int ith = params->ith;
  9266. const int nth = params->nth;
  9267. const int nc = src0->ne[0];
  9268. const int nr = ggml_nrows(src0);
  9269. // rows per thread
  9270. const int dr = (nr + nth - 1)/nth;
  9271. // row range for this thread
  9272. const int ir0 = dr*ith;
  9273. const int ir1 = MIN(ir0 + dr, nr);
  9274. for (int i1 = ir0; i1 < ir1; i1++) {
  9275. ggml_vec_gelu_f32(nc,
  9276. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9277. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9278. #ifndef NDEBUG
  9279. for (int k = 0; k < nc; k++) {
  9280. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9281. UNUSED(x);
  9282. assert(!isnan(x));
  9283. assert(!isinf(x));
  9284. }
  9285. #endif
  9286. }
  9287. }
  9288. static void ggml_compute_forward_gelu(
  9289. const struct ggml_compute_params * params,
  9290. struct ggml_tensor * dst) {
  9291. const struct ggml_tensor * src0 = dst->src[0];
  9292. switch (src0->type) {
  9293. case GGML_TYPE_F32:
  9294. {
  9295. ggml_compute_forward_gelu_f32(params, dst);
  9296. } break;
  9297. default:
  9298. {
  9299. GGML_ASSERT(false);
  9300. } break;
  9301. }
  9302. }
  9303. // ggml_compute_forward_gelu_quick
  9304. static void ggml_compute_forward_gelu_quick_f32(
  9305. const struct ggml_compute_params * params,
  9306. struct ggml_tensor * dst) {
  9307. const struct ggml_tensor * src0 = dst->src[0];
  9308. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9309. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9310. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9311. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9312. return;
  9313. }
  9314. const int ith = params->ith;
  9315. const int nth = params->nth;
  9316. const int nc = src0->ne[0];
  9317. const int nr = ggml_nrows(src0);
  9318. // rows per thread
  9319. const int dr = (nr + nth - 1)/nth;
  9320. // row range for this thread
  9321. const int ir0 = dr*ith;
  9322. const int ir1 = MIN(ir0 + dr, nr);
  9323. for (int i1 = ir0; i1 < ir1; i1++) {
  9324. ggml_vec_gelu_quick_f32(nc,
  9325. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9326. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9327. #ifndef NDEBUG
  9328. for (int k = 0; k < nc; k++) {
  9329. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9330. UNUSED(x);
  9331. assert(!isnan(x));
  9332. assert(!isinf(x));
  9333. }
  9334. #endif
  9335. }
  9336. }
  9337. static void ggml_compute_forward_gelu_quick(
  9338. const struct ggml_compute_params * params,
  9339. struct ggml_tensor * dst) {
  9340. const struct ggml_tensor * src0 = dst->src[0];
  9341. switch (src0->type) {
  9342. case GGML_TYPE_F32:
  9343. {
  9344. ggml_compute_forward_gelu_quick_f32(params, dst);
  9345. } break;
  9346. default:
  9347. {
  9348. GGML_ASSERT(false);
  9349. } break;
  9350. }
  9351. }
  9352. // ggml_compute_forward_silu
  9353. static void ggml_compute_forward_silu_f32(
  9354. const struct ggml_compute_params * params,
  9355. struct ggml_tensor * dst) {
  9356. const struct ggml_tensor * src0 = dst->src[0];
  9357. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9358. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9359. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9360. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9361. return;
  9362. }
  9363. const int ith = params->ith;
  9364. const int nth = params->nth;
  9365. const int nc = src0->ne[0];
  9366. const int nr = ggml_nrows(src0);
  9367. // rows per thread
  9368. const int dr = (nr + nth - 1)/nth;
  9369. // row range for this thread
  9370. const int ir0 = dr*ith;
  9371. const int ir1 = MIN(ir0 + dr, nr);
  9372. for (int i1 = ir0; i1 < ir1; i1++) {
  9373. ggml_vec_silu_f32(nc,
  9374. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9375. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9376. #ifndef NDEBUG
  9377. for (int k = 0; k < nc; k++) {
  9378. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9379. UNUSED(x);
  9380. assert(!isnan(x));
  9381. assert(!isinf(x));
  9382. }
  9383. #endif
  9384. }
  9385. }
  9386. static void ggml_compute_forward_silu(
  9387. const struct ggml_compute_params * params,
  9388. struct ggml_tensor * dst) {
  9389. const struct ggml_tensor * src0 = dst->src[0];
  9390. switch (src0->type) {
  9391. case GGML_TYPE_F32:
  9392. {
  9393. ggml_compute_forward_silu_f32(params, dst);
  9394. } break;
  9395. default:
  9396. {
  9397. GGML_ASSERT(false);
  9398. } break;
  9399. }
  9400. }
  9401. // ggml_compute_forward_leaky_relu
  9402. static void ggml_compute_forward_leaky_relu_f32(
  9403. const struct ggml_compute_params * params,
  9404. struct ggml_tensor * dst) {
  9405. const struct ggml_tensor * src0 = dst->src[0];
  9406. assert(params->ith == 0);
  9407. assert(ggml_are_same_shape(src0, dst));
  9408. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9409. return;
  9410. }
  9411. const int n = ggml_nrows(src0);
  9412. const int nc = src0->ne[0];
  9413. float negative_slope;
  9414. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9415. assert(dst->nb[0] == sizeof(float));
  9416. assert(src0->nb[0] == sizeof(float));
  9417. for (int i = 0; i < n; i++) {
  9418. ggml_vec_leaky_relu_f32(nc,
  9419. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9420. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9421. }
  9422. }
  9423. static void ggml_compute_forward_leaky_relu(
  9424. const struct ggml_compute_params * params,
  9425. struct ggml_tensor * dst) {
  9426. const struct ggml_tensor * src0 = dst->src[0];
  9427. switch (src0->type) {
  9428. case GGML_TYPE_F32:
  9429. {
  9430. ggml_compute_forward_leaky_relu_f32(params, dst);
  9431. } break;
  9432. default:
  9433. {
  9434. GGML_ASSERT(false);
  9435. } break;
  9436. }
  9437. }
  9438. // ggml_compute_forward_silu_back
  9439. static void ggml_compute_forward_silu_back_f32(
  9440. const struct ggml_compute_params * params,
  9441. struct ggml_tensor * dst) {
  9442. const struct ggml_tensor * src0 = dst->src[0];
  9443. const struct ggml_tensor * grad = dst->src[1];
  9444. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9445. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9446. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9447. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9448. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9449. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9450. return;
  9451. }
  9452. const int ith = params->ith;
  9453. const int nth = params->nth;
  9454. const int nc = src0->ne[0];
  9455. const int nr = ggml_nrows(src0);
  9456. // rows per thread
  9457. const int dr = (nr + nth - 1)/nth;
  9458. // row range for this thread
  9459. const int ir0 = dr*ith;
  9460. const int ir1 = MIN(ir0 + dr, nr);
  9461. for (int i1 = ir0; i1 < ir1; i1++) {
  9462. ggml_vec_silu_backward_f32(nc,
  9463. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9464. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9465. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9466. #ifndef NDEBUG
  9467. for (int k = 0; k < nc; k++) {
  9468. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9469. UNUSED(x);
  9470. assert(!isnan(x));
  9471. assert(!isinf(x));
  9472. }
  9473. #endif
  9474. }
  9475. }
  9476. static void ggml_compute_forward_silu_back(
  9477. const struct ggml_compute_params * params,
  9478. struct ggml_tensor * dst) {
  9479. const struct ggml_tensor * src0 = dst->src[0];
  9480. switch (src0->type) {
  9481. case GGML_TYPE_F32:
  9482. {
  9483. ggml_compute_forward_silu_back_f32(params, dst);
  9484. } break;
  9485. default:
  9486. {
  9487. GGML_ASSERT(false);
  9488. } break;
  9489. }
  9490. }
  9491. static void ggml_compute_forward_hardswish_f32(
  9492. const struct ggml_compute_params * params,
  9493. struct ggml_tensor * dst) {
  9494. const struct ggml_tensor * src0 = dst->src[0];
  9495. assert(params->ith == 0);
  9496. assert(ggml_are_same_shape(src0, dst));
  9497. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9498. return;
  9499. }
  9500. const int n = ggml_nrows(src0);
  9501. const int nc = src0->ne[0];
  9502. assert(dst->nb[0] == sizeof(float));
  9503. assert(src0->nb[0] == sizeof(float));
  9504. for (int i = 0; i < n; i++) {
  9505. ggml_vec_hardswish_f32(nc,
  9506. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9507. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9508. }
  9509. }
  9510. static void ggml_compute_forward_hardswish(
  9511. const struct ggml_compute_params * params,
  9512. struct ggml_tensor * dst) {
  9513. const struct ggml_tensor * src0 = dst->src[0];
  9514. switch (src0->type) {
  9515. case GGML_TYPE_F32:
  9516. {
  9517. ggml_compute_forward_hardswish_f32(params, dst);
  9518. } break;
  9519. default:
  9520. {
  9521. GGML_ASSERT(false);
  9522. } break;
  9523. }
  9524. }
  9525. static void ggml_compute_forward_hardsigmoid_f32(
  9526. const struct ggml_compute_params * params,
  9527. struct ggml_tensor * dst) {
  9528. const struct ggml_tensor * src0 = dst->src[0];
  9529. assert(params->ith == 0);
  9530. assert(ggml_are_same_shape(src0, dst));
  9531. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9532. return;
  9533. }
  9534. const int n = ggml_nrows(src0);
  9535. const int nc = src0->ne[0];
  9536. assert(dst->nb[0] == sizeof(float));
  9537. assert(src0->nb[0] == sizeof(float));
  9538. for (int i = 0; i < n; i++) {
  9539. ggml_vec_hardsigmoid_f32(nc,
  9540. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9541. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9542. }
  9543. }
  9544. static void ggml_compute_forward_hardsigmoid(
  9545. const struct ggml_compute_params * params,
  9546. struct ggml_tensor * dst) {
  9547. const struct ggml_tensor * src0 = dst->src[0];
  9548. switch (src0->type) {
  9549. case GGML_TYPE_F32:
  9550. {
  9551. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9552. } break;
  9553. default:
  9554. {
  9555. GGML_ASSERT(false);
  9556. } break;
  9557. }
  9558. }
  9559. // ggml_compute_forward_norm
  9560. static void ggml_compute_forward_norm_f32(
  9561. const struct ggml_compute_params * params,
  9562. struct ggml_tensor * dst) {
  9563. const struct ggml_tensor * src0 = dst->src[0];
  9564. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9565. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9566. return;
  9567. }
  9568. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9569. const int ith = params->ith;
  9570. const int nth = params->nth;
  9571. GGML_TENSOR_UNARY_OP_LOCALS
  9572. float eps;
  9573. memcpy(&eps, dst->op_params, sizeof(float));
  9574. GGML_ASSERT(eps > 0.0f);
  9575. // TODO: optimize
  9576. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9577. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9578. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9579. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9580. ggml_float sum = 0.0;
  9581. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9582. sum += (ggml_float)x[i00];
  9583. }
  9584. float mean = sum/ne00;
  9585. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9586. ggml_float sum2 = 0.0;
  9587. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9588. float v = x[i00] - mean;
  9589. y[i00] = v;
  9590. sum2 += (ggml_float)(v*v);
  9591. }
  9592. float variance = sum2/ne00;
  9593. const float scale = 1.0f/sqrtf(variance + eps);
  9594. ggml_vec_scale_f32(ne00, y, scale);
  9595. }
  9596. }
  9597. }
  9598. }
  9599. static void ggml_compute_forward_norm(
  9600. const struct ggml_compute_params * params,
  9601. struct ggml_tensor * dst) {
  9602. const struct ggml_tensor * src0 = dst->src[0];
  9603. switch (src0->type) {
  9604. case GGML_TYPE_F32:
  9605. {
  9606. ggml_compute_forward_norm_f32(params, dst);
  9607. } break;
  9608. default:
  9609. {
  9610. GGML_ASSERT(false);
  9611. } break;
  9612. }
  9613. }
  9614. // ggml_compute_forward_group_rms_norm
  9615. static void ggml_compute_forward_rms_norm_f32(
  9616. const struct ggml_compute_params * params,
  9617. struct ggml_tensor * dst) {
  9618. const struct ggml_tensor * src0 = dst->src[0];
  9619. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9620. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9621. return;
  9622. }
  9623. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9624. const int ith = params->ith;
  9625. const int nth = params->nth;
  9626. GGML_TENSOR_UNARY_OP_LOCALS
  9627. float eps;
  9628. memcpy(&eps, dst->op_params, sizeof(float));
  9629. GGML_ASSERT(eps > 0.0f);
  9630. // TODO: optimize
  9631. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9632. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9633. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9634. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9635. ggml_float sum = 0.0;
  9636. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9637. sum += (ggml_float)(x[i00] * x[i00]);
  9638. }
  9639. const float mean = sum/ne00;
  9640. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9641. memcpy(y, x, ne00 * sizeof(float));
  9642. // for (int i00 = 0; i00 < ne00; i00++) {
  9643. // y[i00] = x[i00];
  9644. // }
  9645. const float scale = 1.0f/sqrtf(mean + eps);
  9646. ggml_vec_scale_f32(ne00, y, scale);
  9647. }
  9648. }
  9649. }
  9650. }
  9651. static void ggml_compute_forward_rms_norm(
  9652. const struct ggml_compute_params * params,
  9653. struct ggml_tensor * dst) {
  9654. const struct ggml_tensor * src0 = dst->src[0];
  9655. switch (src0->type) {
  9656. case GGML_TYPE_F32:
  9657. {
  9658. ggml_compute_forward_rms_norm_f32(params, dst);
  9659. } break;
  9660. default:
  9661. {
  9662. GGML_ASSERT(false);
  9663. } break;
  9664. }
  9665. }
  9666. static void ggml_compute_forward_rms_norm_back_f32(
  9667. const struct ggml_compute_params * params,
  9668. struct ggml_tensor * dst) {
  9669. const struct ggml_tensor * src0 = dst->src[0];
  9670. const struct ggml_tensor * src1 = dst->src[1];
  9671. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9672. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9673. return;
  9674. }
  9675. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9676. const int ith = params->ith;
  9677. const int nth = params->nth;
  9678. GGML_TENSOR_BINARY_OP_LOCALS
  9679. float eps;
  9680. memcpy(&eps, dst->op_params, sizeof(float));
  9681. // TODO: optimize
  9682. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9683. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9684. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9685. // src1 is same shape as src0 => same indices
  9686. const int64_t i11 = i01;
  9687. const int64_t i12 = i02;
  9688. const int64_t i13 = i03;
  9689. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9690. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9691. ggml_float sum_xx = 0.0;
  9692. ggml_float sum_xdz = 0.0;
  9693. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9694. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9695. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9696. }
  9697. //const float mean = (float)(sum_xx)/ne00;
  9698. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9699. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9700. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9701. // we could cache rms from forward pass to improve performance.
  9702. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9703. //const float rms = sqrtf(mean_eps);
  9704. const float rrms = 1.0f / sqrtf(mean_eps);
  9705. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9706. {
  9707. // z = rms_norm(x)
  9708. //
  9709. // rms_norm(src0) =
  9710. // scale(
  9711. // src0,
  9712. // div(
  9713. // 1,
  9714. // sqrt(
  9715. // add(
  9716. // scale(
  9717. // sum(
  9718. // sqr(
  9719. // src0)),
  9720. // (1.0/N)),
  9721. // eps))));
  9722. // postorder:
  9723. // ## op args grad
  9724. // 00 param src0 grad[#00]
  9725. // 01 const 1
  9726. // 02 sqr (#00) grad[#02]
  9727. // 03 sum (#02) grad[#03]
  9728. // 04 const 1/N
  9729. // 05 scale (#03, #04) grad[#05]
  9730. // 06 const eps
  9731. // 07 add (#05, #06) grad[#07]
  9732. // 08 sqrt (#07) grad[#08]
  9733. // 09 div (#01,#08) grad[#09]
  9734. // 10 scale (#00,#09) grad[#10]
  9735. //
  9736. // backward pass, given grad[#10]
  9737. // #10: scale
  9738. // grad[#00] += scale(grad[#10],#09)
  9739. // grad[#09] += sum(mul(grad[#10],#00))
  9740. // #09: div
  9741. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9742. // #08: sqrt
  9743. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9744. // #07: add
  9745. // grad[#05] += grad[#07]
  9746. // #05: scale
  9747. // grad[#03] += scale(grad[#05],#04)
  9748. // #03: sum
  9749. // grad[#02] += repeat(grad[#03], #02)
  9750. // #02:
  9751. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9752. //
  9753. // substitute and simplify:
  9754. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9755. // grad[#02] = repeat(grad[#03], #02)
  9756. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9757. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9758. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9759. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9760. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9761. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9762. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9763. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9764. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9765. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9766. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9767. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9768. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9769. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9770. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9771. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9772. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9773. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9774. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9775. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9776. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9777. // a = b*c + d*e
  9778. // a = b*c*f/f + d*e*f/f
  9779. // a = (b*c*f + d*e*f)*(1/f)
  9780. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9781. // a = (b + d*e/c)*c
  9782. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9783. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9784. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9785. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9786. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9787. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9788. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9789. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9790. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9791. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9792. }
  9793. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9794. // post-order:
  9795. // dx := x
  9796. // dx := scale(dx,-mean_xdz/mean_eps)
  9797. // dx := add(dx, dz)
  9798. // dx := scale(dx, rrms)
  9799. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9800. ggml_vec_cpy_f32 (ne00, dx, x);
  9801. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9802. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9803. ggml_vec_acc_f32 (ne00, dx, dz);
  9804. ggml_vec_scale_f32(ne00, dx, rrms);
  9805. }
  9806. }
  9807. }
  9808. }
  9809. static void ggml_compute_forward_rms_norm_back(
  9810. const struct ggml_compute_params * params,
  9811. struct ggml_tensor * dst) {
  9812. const struct ggml_tensor * src0 = dst->src[0];
  9813. switch (src0->type) {
  9814. case GGML_TYPE_F32:
  9815. {
  9816. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9817. } break;
  9818. default:
  9819. {
  9820. GGML_ASSERT(false);
  9821. } break;
  9822. }
  9823. }
  9824. // ggml_compute_forward_group_norm
  9825. static void ggml_compute_forward_group_norm_f32(
  9826. const struct ggml_compute_params * params,
  9827. struct ggml_tensor * dst) {
  9828. const struct ggml_tensor * src0 = dst->src[0];
  9829. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9830. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9831. return;
  9832. }
  9833. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9834. const int ith = params->ith;
  9835. const int nth = params->nth;
  9836. GGML_TENSOR_UNARY_OP_LOCALS
  9837. const float eps = 1e-6f; // TODO: make this a parameter
  9838. // TODO: optimize
  9839. int n_channels = src0->ne[2];
  9840. int n_groups = dst->op_params[0];
  9841. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9842. for (int i = ith; i < n_groups; i += nth) {
  9843. int start = i * n_channels_per_group;
  9844. int end = start + n_channels_per_group;
  9845. if (end > n_channels) {
  9846. end = n_channels;
  9847. }
  9848. int step = end - start;
  9849. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9850. ggml_float sum = 0.0;
  9851. for (int64_t i02 = start; i02 < end; i02++) {
  9852. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9853. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9854. ggml_float sumr = 0.0;
  9855. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9856. sumr += (ggml_float)x[i00];
  9857. }
  9858. sum += sumr;
  9859. }
  9860. }
  9861. const float mean = sum / (ne00 * ne01 * step);
  9862. ggml_float sum2 = 0.0;
  9863. for (int64_t i02 = start; i02 < end; i02++) {
  9864. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9865. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9866. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9867. ggml_float sumr = 0.0;
  9868. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9869. float v = x[i00] - mean;
  9870. y[i00] = v;
  9871. sumr += (ggml_float)(v * v);
  9872. }
  9873. sum2 += sumr;
  9874. }
  9875. }
  9876. const float variance = sum2 / (ne00 * ne01 * step);
  9877. const float scale = 1.0f / sqrtf(variance + eps);
  9878. for (int64_t i02 = start; i02 < end; i02++) {
  9879. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9880. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9881. ggml_vec_scale_f32(ne00, y, scale);
  9882. }
  9883. }
  9884. }
  9885. }
  9886. }
  9887. static void ggml_compute_forward_group_norm(
  9888. const struct ggml_compute_params * params,
  9889. struct ggml_tensor * dst) {
  9890. const struct ggml_tensor * src0 = dst->src[0];
  9891. switch (src0->type) {
  9892. case GGML_TYPE_F32:
  9893. {
  9894. ggml_compute_forward_group_norm_f32(params, dst);
  9895. } break;
  9896. default:
  9897. {
  9898. GGML_ASSERT(false);
  9899. } break;
  9900. }
  9901. }
  9902. // ggml_compute_forward_mul_mat
  9903. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9904. // helper function to determine if it is better to use BLAS or not
  9905. // for large matrices, BLAS is faster
  9906. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  9907. const struct ggml_tensor * src0 = dst->src[0];
  9908. const struct ggml_tensor * src1 = dst->src[1];
  9909. //const int64_t ne00 = src0->ne[0];
  9910. //const int64_t ne01 = src0->ne[1];
  9911. const int64_t ne10 = src1->ne[0];
  9912. const int64_t ne0 = dst->ne[0];
  9913. const int64_t ne1 = dst->ne[1];
  9914. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  9915. // all the experts for each batch element and the processing would become incredibly slow
  9916. // TODO: find the optimal values for these
  9917. if (dst->op != GGML_OP_MUL_MAT_ID &&
  9918. ggml_is_contiguous(src0) &&
  9919. ggml_is_contiguous(src1) &&
  9920. //src0->type == GGML_TYPE_F32 &&
  9921. src1->type == GGML_TYPE_F32 &&
  9922. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9923. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9924. return true;
  9925. }
  9926. return false;
  9927. }
  9928. #endif
  9929. static void ggml_compute_forward_mul_mat_one_chunk(
  9930. const struct ggml_compute_params * params,
  9931. struct ggml_tensor * dst,
  9932. const int64_t num_rows_per_vec_dot,
  9933. const int64_t ir0_start,
  9934. const int64_t ir0_end,
  9935. const int64_t ir1_start,
  9936. const int64_t ir1_end) {
  9937. const struct ggml_tensor * src0 = dst->src[0];
  9938. const struct ggml_tensor * src1 = dst->src[1];
  9939. GGML_TENSOR_BINARY_OP_LOCALS
  9940. const enum ggml_type type = src0->type;
  9941. const bool src1_cont = ggml_is_contiguous(src1);
  9942. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9943. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9944. // broadcast factors
  9945. const int64_t r2 = ne12 / ne02;
  9946. const int64_t r3 = ne13 / ne03;
  9947. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  9948. // threads with no work simply yield (not sure if it helps)
  9949. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  9950. return;
  9951. }
  9952. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9953. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9954. assert(ne12 % ne02 == 0);
  9955. assert(ne13 % ne03 == 0);
  9956. // block-tiling attempt
  9957. const int64_t blck_0 = 16;
  9958. const int64_t blck_1 = 16;
  9959. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  9960. // attempt to reduce false-sharing (does not seem to make a difference)
  9961. // 16 * 2, accounting for mmla kernels
  9962. float tmp[32];
  9963. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  9964. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  9965. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  9966. const int64_t i13 = (ir1 / (ne12 * ne1));
  9967. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  9968. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  9969. // broadcast src0 into src1
  9970. const int64_t i03 = i13 / r3;
  9971. const int64_t i02 = i12 / r2;
  9972. const int64_t i1 = i11;
  9973. const int64_t i2 = i12;
  9974. const int64_t i3 = i13;
  9975. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  9976. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9977. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9978. // the original src1 data pointer, so we should index using the indices directly
  9979. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9980. const char * src1_col = (const char*)wdata +
  9981. (src1_cont || src1->type != vec_dot_type
  9982. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  9983. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  9984. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  9985. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  9986. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9987. //}
  9988. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  9989. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  9990. }
  9991. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  9992. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  9993. }
  9994. }
  9995. }
  9996. }
  9997. }
  9998. static void ggml_compute_forward_mul_mat(
  9999. const struct ggml_compute_params * params,
  10000. struct ggml_tensor * dst,
  10001. struct ggml_compute_state * state) {
  10002. const struct ggml_tensor * src0 = dst->src[0];
  10003. const struct ggml_tensor * src1 = dst->src[1];
  10004. int64_t t0 = ggml_perf_time_us();
  10005. UNUSED(t0);
  10006. GGML_TENSOR_BINARY_OP_LOCALS
  10007. const int ith = params->ith;
  10008. const int nth = params->nth;
  10009. const enum ggml_type type = src0->type;
  10010. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10011. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10012. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10013. GGML_ASSERT(ne0 == ne01);
  10014. GGML_ASSERT(ne1 == ne11);
  10015. GGML_ASSERT(ne2 == ne12);
  10016. GGML_ASSERT(ne3 == ne13);
  10017. // we don't support permuted src0 or src1
  10018. GGML_ASSERT(nb00 == ggml_type_size(type));
  10019. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10020. // dst cannot be transposed or permuted
  10021. GGML_ASSERT(nb0 == sizeof(float));
  10022. GGML_ASSERT(nb0 <= nb1);
  10023. GGML_ASSERT(nb1 <= nb2);
  10024. GGML_ASSERT(nb2 <= nb3);
  10025. // broadcast factors
  10026. const int64_t r2 = ne12 / ne02;
  10027. const int64_t r3 = ne13 / ne03;
  10028. UNUSED(r2);
  10029. UNUSED(r3);
  10030. // nb01 >= nb00 - src0 is not transposed
  10031. // compute by src0 rows
  10032. #if defined(GGML_USE_CLBLAST)
  10033. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  10034. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  10035. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  10036. }
  10037. return;
  10038. }
  10039. #endif
  10040. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10041. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10042. const int64_t ne_plane = ne01*ne00;
  10043. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10044. UNUSED(desired_wsize);
  10045. if (params->type == GGML_TASK_TYPE_INIT) {
  10046. if (type != GGML_TYPE_F32) {
  10047. assert(params->wsize >= desired_wsize);
  10048. // parallelize by src0 rows
  10049. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10050. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10051. // broadcast src0 into src1 across 2nd,3rd dimension
  10052. const int64_t i03 = i13/r3;
  10053. const int64_t i02 = i12/r2;
  10054. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10055. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10056. ggml_to_float_t const to_float = type_traits[type].to_float;
  10057. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10058. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10059. }
  10060. }
  10061. }
  10062. }
  10063. return;
  10064. }
  10065. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10066. return;
  10067. }
  10068. // perform sgemm, parallelization controlled by blas lib
  10069. if (ith != 0) {
  10070. return;
  10071. }
  10072. //const int64_t tgemm0 = ggml_perf_time_us();
  10073. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10074. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10075. const int64_t i03 = i13/r3;
  10076. const int64_t i02 = i12/r2;
  10077. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10078. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10079. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10080. if (type != GGML_TYPE_F32) {
  10081. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10082. }
  10083. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10084. ne1, ne01, ne10,
  10085. 1.0f, y, ne10,
  10086. x, ne00,
  10087. 0.0f, d, ne01);
  10088. }
  10089. }
  10090. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10091. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10092. return;
  10093. }
  10094. #endif
  10095. #if GGML_USE_LLAMAFILE
  10096. const bool src1_cont = ggml_is_contiguous(src1);
  10097. if (src1_cont) {
  10098. for (int64_t i13 = 0; i13 < ne13; i13++)
  10099. for (int64_t i12 = 0; i12 < ne12; i12++)
  10100. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10101. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10102. nb01/ggml_type_size(src0->type),
  10103. (const char *)src1->data + i12*nb12 + i13*nb13,
  10104. nb11/ggml_type_size(src1->type),
  10105. (char *)dst->data + i12*nb2 + i13*nb3,
  10106. nb1/ggml_type_size(dst->type),
  10107. ith, nth,
  10108. params->type,
  10109. src0->type,
  10110. src1->type,
  10111. dst->type))
  10112. goto UseGgmlGemm1;
  10113. return;
  10114. }
  10115. UseGgmlGemm1:;
  10116. #endif
  10117. if (params->type == GGML_TASK_TYPE_INIT) {
  10118. if (ith != 0) {
  10119. return;
  10120. }
  10121. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10122. atomic_store(&state->shared->current_chunk, nth);
  10123. if (src1->type != vec_dot_type) {
  10124. char * wdata = params->wdata;
  10125. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10126. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10127. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10128. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10129. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10130. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10131. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10132. wdata += row_size;
  10133. }
  10134. }
  10135. }
  10136. }
  10137. return;
  10138. }
  10139. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10140. return;
  10141. }
  10142. #if GGML_USE_LLAMAFILE
  10143. if (src1->type != vec_dot_type) {
  10144. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10145. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10146. for (int64_t i13 = 0; i13 < ne13; i13++)
  10147. for (int64_t i12 = 0; i12 < ne12; i12++)
  10148. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10149. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10150. nb01/ggml_type_size(src0->type),
  10151. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10152. row_size/ggml_type_size(vec_dot_type),
  10153. (char *)dst->data + i12*nb2 + i13*nb3,
  10154. nb1/ggml_type_size(dst->type),
  10155. ith, nth,
  10156. params->type,
  10157. src0->type,
  10158. vec_dot_type,
  10159. dst->type))
  10160. goto UseGgmlGemm2;
  10161. return;
  10162. }
  10163. UseGgmlGemm2:;
  10164. #endif
  10165. #ifdef GGML_PERF
  10166. int chunks_executed = 0;
  10167. UNUSED(chunks_executed);
  10168. #endif
  10169. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10170. const int64_t nr0 = ne0;
  10171. // This is the size of the rest of the dimensions of the result
  10172. const int64_t nr1 = ne1 * ne2 * ne3;
  10173. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10174. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10175. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10176. // this check can be removed once they are extended to support odd numbered rows/cols too
  10177. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10178. num_rows_per_vec_dot = 1;
  10179. }
  10180. // Now select a reasonable chunk size.
  10181. int chunk_size = 16;
  10182. // We need to step up the size if it's small
  10183. if (nr0 == 1 || nr1 == 1) {
  10184. chunk_size = 64;
  10185. }
  10186. // distribute the work across the inner or outer loop based on which one is larger
  10187. // The number of chunks in the 0/1 dim.
  10188. // CEIL(nr0/chunk_size)
  10189. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10190. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10191. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10192. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10193. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10194. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10195. // distribute the thread work across the inner or outer loop based on which one is larger
  10196. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10197. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10198. }
  10199. // The number of elements in each chunk
  10200. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10201. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10202. //if (ith == 0)
  10203. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10204. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10205. int current_chunk = ith;
  10206. while (current_chunk < nchunk0 * nchunk1) {
  10207. const int64_t ith0 = current_chunk % nchunk0;
  10208. const int64_t ith1 = current_chunk / nchunk0;
  10209. const int64_t ir0_start = dr0 * ith0;
  10210. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10211. const int64_t ir1_start = dr1 * ith1;
  10212. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10213. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10214. #ifdef GGML_PERF
  10215. chunks_executed++;
  10216. #endif
  10217. if (nth >= nchunk0 * nchunk1) {
  10218. break;
  10219. }
  10220. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10221. }
  10222. #ifdef GGML_PERF
  10223. // These numbers are useful when trying to measure how well the threading scheduling works.
  10224. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10225. //float time = (ggml_perf_time_us() - t0);
  10226. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10227. #endif
  10228. }
  10229. // ggml_compute_forward_mul_mat_id
  10230. static void ggml_compute_forward_mul_mat_id(
  10231. const struct ggml_compute_params * params,
  10232. struct ggml_tensor * dst) {
  10233. const struct ggml_tensor * src0 = dst->src[0];
  10234. const struct ggml_tensor * src1 = dst->src[1];
  10235. const struct ggml_tensor * ids = dst->src[2];
  10236. GGML_TENSOR_BINARY_OP_LOCALS
  10237. const int ith = params->ith;
  10238. const int nth = params->nth;
  10239. const enum ggml_type type = src0->type;
  10240. const bool src1_cont = ggml_is_contiguous(src1);
  10241. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10242. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10243. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10244. // we don't support permuted src0 or src1
  10245. GGML_ASSERT(nb00 == ggml_type_size(type));
  10246. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10247. // dst cannot be transposed or permuted
  10248. GGML_ASSERT(nb0 == sizeof(float));
  10249. GGML_ASSERT(nb0 <= nb1);
  10250. GGML_ASSERT(nb1 <= nb2);
  10251. GGML_ASSERT(nb2 <= nb3);
  10252. // row groups
  10253. const int n_ids = ids->ne[0]; // n_expert_used
  10254. const int n_as = ne02; // n_expert
  10255. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10256. (char *) params->wdata :
  10257. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10258. struct mmid_row_mapping {
  10259. int32_t i1;
  10260. int32_t i2;
  10261. };
  10262. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10263. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10264. if (params->type == GGML_TASK_TYPE_INIT) {
  10265. if (ith != 0) {
  10266. return;
  10267. }
  10268. char * wdata = params->wdata;
  10269. if (src1->type != vec_dot_type) {
  10270. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10271. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10272. assert(src1->type == GGML_TYPE_F32);
  10273. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10274. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10275. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10276. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10277. wdata += row_size;
  10278. }
  10279. }
  10280. }
  10281. }
  10282. // initialize matrix_row_counts
  10283. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10284. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10285. // group rows by src0 matrix
  10286. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10287. for (int id = 0; id < n_ids; ++id) {
  10288. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10289. assert(i02 >= 0 && i02 < n_as);
  10290. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10291. matrix_row_counts[i02] += 1;
  10292. }
  10293. }
  10294. return;
  10295. }
  10296. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10297. return;
  10298. }
  10299. // compute each matrix multiplication in sequence
  10300. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10301. const int64_t cne1 = matrix_row_counts[cur_a];
  10302. if (cne1 == 0) {
  10303. continue;
  10304. }
  10305. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10306. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10307. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10308. const int64_t nr0 = ne01; // src0 rows
  10309. const int64_t nr1 = cne1; // src1 rows
  10310. // distribute the thread work across the inner or outer loop based on which one is larger
  10311. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10312. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10313. const int64_t ith0 = ith % nth0;
  10314. const int64_t ith1 = ith / nth0;
  10315. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10316. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10317. const int64_t ir010 = dr0*ith0;
  10318. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10319. const int64_t ir110 = dr1*ith1;
  10320. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10321. // threads with no work simply yield (not sure if it helps)
  10322. //if (ir010 >= ir011 || ir110 >= ir111) {
  10323. // sched_yield();
  10324. // continue;
  10325. //}
  10326. // block-tiling attempt
  10327. const int64_t blck_0 = 16;
  10328. const int64_t blck_1 = 16;
  10329. // attempt to reduce false-sharing (does not seem to make a difference)
  10330. float tmp[16];
  10331. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10332. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10333. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10334. const int64_t _i12 = ir1; // logical row index for this expert
  10335. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10336. const int id = row_mapping.i1; // selected expert index
  10337. const int64_t i11 = id % ne11;
  10338. const int64_t i12 = row_mapping.i2; // row index in src1
  10339. const int64_t i1 = id; // selected expert index
  10340. const int64_t i2 = i12; // row
  10341. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10342. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10343. // the original src1 data pointer, so we should index using the indices directly
  10344. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10345. const char * src1_col = (const char *) wdata +
  10346. (src1_cont || src1->type != vec_dot_type
  10347. ? (i11 + i12*ne11)*row_size
  10348. : (i11*nb11 + i12*nb12));
  10349. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10350. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10351. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10352. //}
  10353. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10354. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10355. }
  10356. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10357. }
  10358. }
  10359. }
  10360. }
  10361. #undef MMID_MATRIX_ROW
  10362. }
  10363. // ggml_compute_forward_out_prod
  10364. static void ggml_compute_forward_out_prod_f32(
  10365. const struct ggml_compute_params * params,
  10366. struct ggml_tensor * dst) {
  10367. const struct ggml_tensor * src0 = dst->src[0];
  10368. const struct ggml_tensor * src1 = dst->src[1];
  10369. // int64_t t0 = ggml_perf_time_us();
  10370. // UNUSED(t0);
  10371. GGML_TENSOR_BINARY_OP_LOCALS
  10372. const int ith = params->ith;
  10373. const int nth = params->nth;
  10374. GGML_ASSERT(ne0 == ne00);
  10375. GGML_ASSERT(ne1 == ne10);
  10376. GGML_ASSERT(ne2 == ne02);
  10377. GGML_ASSERT(ne02 == ne12);
  10378. GGML_ASSERT(ne3 == ne13);
  10379. GGML_ASSERT(ne03 == ne13);
  10380. // we don't support permuted src0 or src1
  10381. GGML_ASSERT(nb00 == sizeof(float));
  10382. // dst cannot be transposed or permuted
  10383. GGML_ASSERT(nb0 == sizeof(float));
  10384. // GGML_ASSERT(nb0 <= nb1);
  10385. // GGML_ASSERT(nb1 <= nb2);
  10386. // GGML_ASSERT(nb2 <= nb3);
  10387. // nb01 >= nb00 - src0 is not transposed
  10388. // compute by src0 rows
  10389. // TODO: #if defined(GGML_USE_CLBLAST)
  10390. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10391. bool use_blas = ggml_is_matrix(src0) &&
  10392. ggml_is_matrix(src1) &&
  10393. ggml_is_contiguous(src0) &&
  10394. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10395. #endif
  10396. if (params->type == GGML_TASK_TYPE_INIT) {
  10397. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10398. if (use_blas) {
  10399. return;
  10400. }
  10401. #endif
  10402. if (ith != 0) {
  10403. return;
  10404. }
  10405. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10406. return;
  10407. }
  10408. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10409. return;
  10410. }
  10411. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10412. if (use_blas) {
  10413. if (params->ith != 0) { // All threads other than the first do no work.
  10414. return;
  10415. }
  10416. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10417. // src0: (k,n)
  10418. // src1: (k,m)
  10419. // dst: (m,n)
  10420. //
  10421. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10422. // Also expressed as (major,minor)
  10423. // a: (m,k): so src1 transposed
  10424. // b: (k,n): so src0
  10425. // c: (m,n)
  10426. //
  10427. // However, if ggml_is_transposed(src1) is true, then
  10428. // src1->data already contains a transposed version, so sgemm mustn't
  10429. // transpose it further.
  10430. int n = src0->ne[0];
  10431. int k = src0->ne[1];
  10432. int m = src1->ne[0];
  10433. int transposeA, lda;
  10434. if (!ggml_is_transposed(src1)) {
  10435. transposeA = CblasTrans;
  10436. lda = m;
  10437. } else {
  10438. transposeA = CblasNoTrans;
  10439. lda = k;
  10440. }
  10441. float * a = (float *) ((char *) src1->data);
  10442. float * b = (float *) ((char *) src0->data);
  10443. float * c = (float *) ((char *) dst->data);
  10444. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10445. return;
  10446. }
  10447. #endif
  10448. // dst[:,:,:,:] = 0
  10449. // for i2,i3:
  10450. // for i1:
  10451. // for i01:
  10452. // for i0:
  10453. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10454. // parallelize by last three dimensions
  10455. // total rows in dst
  10456. const int64_t nr = ne1*ne2*ne3;
  10457. // rows per thread
  10458. const int64_t dr = (nr + nth - 1)/nth;
  10459. // row range for this thread
  10460. const int64_t ir0 = dr*ith;
  10461. const int64_t ir1 = MIN(ir0 + dr, nr);
  10462. // block-tiling attempt
  10463. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10464. const int64_t blck_1 = 16;
  10465. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10466. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10467. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10468. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10469. for (int64_t ir = bir; ir < bir1; ++ir) {
  10470. // dst indices
  10471. const int64_t i3 = ir/(ne2*ne1);
  10472. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10473. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10474. const int64_t i02 = i2;
  10475. const int64_t i03 = i3;
  10476. //const int64_t i10 = i1;
  10477. const int64_t i12 = i2;
  10478. const int64_t i13 = i3;
  10479. #if GGML_VEC_MAD_UNROLL > 2
  10480. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10481. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10482. const int64_t i11 = i01;
  10483. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10484. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10485. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10486. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10487. }
  10488. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10489. const int64_t i11 = i01;
  10490. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10491. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10492. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10493. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10494. }
  10495. #else
  10496. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10497. const int64_t i11 = i01;
  10498. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10499. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10500. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10501. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10502. }
  10503. #endif
  10504. }
  10505. }
  10506. }
  10507. //int64_t t1 = ggml_perf_time_us();
  10508. //static int64_t acc = 0;
  10509. //acc += t1 - t0;
  10510. //if (t1 - t0 > 10) {
  10511. // printf("\n");
  10512. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10513. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10514. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10515. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10516. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10517. //}
  10518. }
  10519. static void ggml_compute_forward_out_prod_q_f32(
  10520. const struct ggml_compute_params * params,
  10521. struct ggml_tensor * dst) {
  10522. const struct ggml_tensor * src0 = dst->src[0];
  10523. const struct ggml_tensor * src1 = dst->src[1];
  10524. // int64_t t0 = ggml_perf_time_us();
  10525. // UNUSED(t0);
  10526. GGML_TENSOR_BINARY_OP_LOCALS;
  10527. const int ith = params->ith;
  10528. const int nth = params->nth;
  10529. const enum ggml_type type = src0->type;
  10530. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10531. GGML_ASSERT(ne02 == ne12);
  10532. GGML_ASSERT(ne03 == ne13);
  10533. GGML_ASSERT(ne2 == ne12);
  10534. GGML_ASSERT(ne3 == ne13);
  10535. // we don't support permuted src0 dim0
  10536. GGML_ASSERT(nb00 == ggml_type_size(type));
  10537. // dst dim0 cannot be transposed or permuted
  10538. GGML_ASSERT(nb0 == sizeof(float));
  10539. // GGML_ASSERT(nb0 <= nb1);
  10540. // GGML_ASSERT(nb1 <= nb2);
  10541. // GGML_ASSERT(nb2 <= nb3);
  10542. GGML_ASSERT(ne0 == ne00);
  10543. GGML_ASSERT(ne1 == ne10);
  10544. GGML_ASSERT(ne2 == ne02);
  10545. GGML_ASSERT(ne3 == ne03);
  10546. // nb01 >= nb00 - src0 is not transposed
  10547. // compute by src0 rows
  10548. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10549. if (params->type == GGML_TASK_TYPE_INIT) {
  10550. if (ith != 0) {
  10551. return;
  10552. }
  10553. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10554. return;
  10555. }
  10556. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10557. return;
  10558. }
  10559. // parallelize by last three dimensions
  10560. // total rows in dst
  10561. const int64_t nr = ne1*ne2*ne3;
  10562. // rows per thread
  10563. const int64_t dr = (nr + nth - 1)/nth;
  10564. // row range for this thread
  10565. const int64_t ir0 = dr*ith;
  10566. const int64_t ir1 = MIN(ir0 + dr, nr);
  10567. // dst[:,:,:,:] = 0
  10568. // for i2,i3:
  10569. // for i1:
  10570. // for i01:
  10571. // for i0:
  10572. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10573. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10574. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10575. // dst indices
  10576. const int64_t i3 = ir/(ne2*ne1);
  10577. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10578. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10579. const int64_t i02 = i2;
  10580. const int64_t i03 = i3;
  10581. //const int64_t i10 = i1;
  10582. const int64_t i12 = i2;
  10583. const int64_t i13 = i3;
  10584. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10585. const int64_t i11 = i01;
  10586. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10587. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10588. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10589. dequantize_row_q(s0, wdata, ne0);
  10590. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10591. }
  10592. }
  10593. //int64_t t1 = ggml_perf_time_us();
  10594. //static int64_t acc = 0;
  10595. //acc += t1 - t0;
  10596. //if (t1 - t0 > 10) {
  10597. // printf("\n");
  10598. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10599. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10600. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10601. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10602. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10603. //}
  10604. }
  10605. static void ggml_compute_forward_out_prod(
  10606. const struct ggml_compute_params * params,
  10607. struct ggml_tensor * dst) {
  10608. const struct ggml_tensor * src0 = dst->src[0];
  10609. switch (src0->type) {
  10610. case GGML_TYPE_Q4_0:
  10611. case GGML_TYPE_Q4_1:
  10612. case GGML_TYPE_Q5_0:
  10613. case GGML_TYPE_Q5_1:
  10614. case GGML_TYPE_Q8_0:
  10615. case GGML_TYPE_Q2_K:
  10616. case GGML_TYPE_Q3_K:
  10617. case GGML_TYPE_Q4_K:
  10618. case GGML_TYPE_Q5_K:
  10619. case GGML_TYPE_Q6_K:
  10620. case GGML_TYPE_IQ2_XXS:
  10621. case GGML_TYPE_IQ2_XS:
  10622. case GGML_TYPE_IQ3_XXS:
  10623. case GGML_TYPE_IQ1_S:
  10624. case GGML_TYPE_IQ1_M:
  10625. case GGML_TYPE_IQ4_NL:
  10626. case GGML_TYPE_IQ4_XS:
  10627. case GGML_TYPE_IQ3_S:
  10628. case GGML_TYPE_IQ2_S:
  10629. {
  10630. ggml_compute_forward_out_prod_q_f32(params, dst);
  10631. } break;
  10632. case GGML_TYPE_F16:
  10633. {
  10634. GGML_ASSERT(false); // todo
  10635. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10636. } break;
  10637. case GGML_TYPE_F32:
  10638. {
  10639. ggml_compute_forward_out_prod_f32(params, dst);
  10640. } break;
  10641. default:
  10642. {
  10643. GGML_ASSERT(false);
  10644. } break;
  10645. }
  10646. }
  10647. // ggml_compute_forward_scale
  10648. static void ggml_compute_forward_scale_f32(
  10649. const struct ggml_compute_params * params,
  10650. struct ggml_tensor * dst) {
  10651. const struct ggml_tensor * src0 = dst->src[0];
  10652. GGML_ASSERT(ggml_is_contiguous(src0));
  10653. GGML_ASSERT(ggml_is_contiguous(dst));
  10654. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10655. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10656. return;
  10657. }
  10658. // scale factor
  10659. float v;
  10660. memcpy(&v, dst->op_params, sizeof(float));
  10661. const int ith = params->ith;
  10662. const int nth = params->nth;
  10663. const int nc = src0->ne[0];
  10664. const int nr = ggml_nrows(src0);
  10665. // rows per thread
  10666. const int dr = (nr + nth - 1)/nth;
  10667. // row range for this thread
  10668. const int ir0 = dr*ith;
  10669. const int ir1 = MIN(ir0 + dr, nr);
  10670. const size_t nb01 = src0->nb[1];
  10671. const size_t nb1 = dst->nb[1];
  10672. for (int i1 = ir0; i1 < ir1; i1++) {
  10673. if (dst->data != src0->data) {
  10674. // src0 is same shape as dst => same indices
  10675. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10676. }
  10677. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10678. }
  10679. }
  10680. static void ggml_compute_forward_scale(
  10681. const struct ggml_compute_params * params,
  10682. struct ggml_tensor * dst) {
  10683. const struct ggml_tensor * src0 = dst->src[0];
  10684. switch (src0->type) {
  10685. case GGML_TYPE_F32:
  10686. {
  10687. ggml_compute_forward_scale_f32(params, dst);
  10688. } break;
  10689. default:
  10690. {
  10691. GGML_ASSERT(false);
  10692. } break;
  10693. }
  10694. }
  10695. // ggml_compute_forward_set
  10696. static void ggml_compute_forward_set_f32(
  10697. const struct ggml_compute_params * params,
  10698. struct ggml_tensor * dst) {
  10699. const struct ggml_tensor * src0 = dst->src[0];
  10700. const struct ggml_tensor * src1 = dst->src[1];
  10701. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10702. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10703. // view src0 and dst with these strides and data offset inbytes during set
  10704. // nb0 is implicitly element_size because src0 and dst are contiguous
  10705. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10706. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10707. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10708. size_t offset = ((int32_t *) dst->op_params)[3];
  10709. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10710. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10711. if (params->ith != 0) {
  10712. return;
  10713. }
  10714. // memcpy needs to be synchronized across threads to avoid race conditions.
  10715. // => do it in INIT phase
  10716. memcpy(
  10717. ((char *) dst->data),
  10718. ((char *) src0->data),
  10719. ggml_nbytes(dst));
  10720. }
  10721. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10722. return;
  10723. }
  10724. const int ith = params->ith;
  10725. const int nth = params->nth;
  10726. const int nr = ggml_nrows(src1);
  10727. const int nc = src1->ne[0];
  10728. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10729. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10730. // src0 and dst as viewed during set
  10731. const size_t nb0 = ggml_element_size(src0);
  10732. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10733. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10734. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10735. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10736. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10737. GGML_ASSERT(nb10 == sizeof(float));
  10738. // rows per thread
  10739. const int dr = (nr + nth - 1)/nth;
  10740. // row range for this thread
  10741. const int ir0 = dr*ith;
  10742. const int ir1 = MIN(ir0 + dr, nr);
  10743. for (int ir = ir0; ir < ir1; ++ir) {
  10744. // src0 and dst are viewed with shape of src1 and offset
  10745. // => same indices
  10746. const int i3 = ir/(ne12*ne11);
  10747. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10748. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10749. ggml_vec_cpy_f32(nc,
  10750. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10751. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10752. }
  10753. }
  10754. static void ggml_compute_forward_set(
  10755. const struct ggml_compute_params * params,
  10756. struct ggml_tensor * dst) {
  10757. const struct ggml_tensor * src0 = dst->src[0];
  10758. switch (src0->type) {
  10759. case GGML_TYPE_F32:
  10760. {
  10761. ggml_compute_forward_set_f32(params, dst);
  10762. } break;
  10763. case GGML_TYPE_F16:
  10764. case GGML_TYPE_BF16:
  10765. case GGML_TYPE_Q4_0:
  10766. case GGML_TYPE_Q4_1:
  10767. case GGML_TYPE_Q5_0:
  10768. case GGML_TYPE_Q5_1:
  10769. case GGML_TYPE_Q8_0:
  10770. case GGML_TYPE_Q8_1:
  10771. case GGML_TYPE_Q2_K:
  10772. case GGML_TYPE_Q3_K:
  10773. case GGML_TYPE_Q4_K:
  10774. case GGML_TYPE_Q5_K:
  10775. case GGML_TYPE_Q6_K:
  10776. case GGML_TYPE_IQ2_XXS:
  10777. case GGML_TYPE_IQ2_XS:
  10778. case GGML_TYPE_IQ3_XXS:
  10779. case GGML_TYPE_IQ1_S:
  10780. case GGML_TYPE_IQ1_M:
  10781. case GGML_TYPE_IQ4_NL:
  10782. case GGML_TYPE_IQ4_XS:
  10783. case GGML_TYPE_IQ3_S:
  10784. case GGML_TYPE_IQ2_S:
  10785. default:
  10786. {
  10787. GGML_ASSERT(false);
  10788. } break;
  10789. }
  10790. }
  10791. // ggml_compute_forward_cpy
  10792. static void ggml_compute_forward_cpy(
  10793. const struct ggml_compute_params * params,
  10794. struct ggml_tensor * dst) {
  10795. ggml_compute_forward_dup(params, dst);
  10796. }
  10797. // ggml_compute_forward_cont
  10798. static void ggml_compute_forward_cont(
  10799. const struct ggml_compute_params * params,
  10800. struct ggml_tensor * dst) {
  10801. ggml_compute_forward_dup(params, dst);
  10802. }
  10803. // ggml_compute_forward_reshape
  10804. static void ggml_compute_forward_reshape(
  10805. const struct ggml_compute_params * params,
  10806. struct ggml_tensor * dst) {
  10807. // NOP
  10808. UNUSED(params);
  10809. UNUSED(dst);
  10810. }
  10811. // ggml_compute_forward_view
  10812. static void ggml_compute_forward_view(
  10813. const struct ggml_compute_params * params,
  10814. const struct ggml_tensor * dst) {
  10815. // NOP
  10816. UNUSED(params);
  10817. UNUSED(dst);
  10818. }
  10819. // ggml_compute_forward_permute
  10820. static void ggml_compute_forward_permute(
  10821. const struct ggml_compute_params * params,
  10822. const struct ggml_tensor * dst) {
  10823. // NOP
  10824. UNUSED(params);
  10825. UNUSED(dst);
  10826. }
  10827. // ggml_compute_forward_transpose
  10828. static void ggml_compute_forward_transpose(
  10829. const struct ggml_compute_params * params,
  10830. const struct ggml_tensor * dst) {
  10831. // NOP
  10832. UNUSED(params);
  10833. UNUSED(dst);
  10834. }
  10835. // ggml_compute_forward_get_rows
  10836. static void ggml_compute_forward_get_rows_q(
  10837. const struct ggml_compute_params * params,
  10838. struct ggml_tensor * dst) {
  10839. const struct ggml_tensor * src0 = dst->src[0];
  10840. const struct ggml_tensor * src1 = dst->src[1];
  10841. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10842. return;
  10843. }
  10844. GGML_TENSOR_BINARY_OP_LOCALS
  10845. const int64_t nc = ne00;
  10846. const int64_t nr = ggml_nelements(src1);
  10847. const enum ggml_type type = src0->type;
  10848. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10849. assert(ne0 == nc);
  10850. assert(ne02 == ne11);
  10851. assert(nb00 == ggml_type_size(type));
  10852. assert(ggml_nrows(dst) == nr);
  10853. const int ith = params->ith;
  10854. const int nth = params->nth;
  10855. // rows per thread
  10856. const int dr = (nr + nth - 1)/nth;
  10857. // row range for this thread
  10858. const int ir0 = dr*ith;
  10859. const int ir1 = MIN(ir0 + dr, nr);
  10860. for (int64_t i = ir0; i < ir1; ++i) {
  10861. const int64_t i12 = i/(ne11*ne10);
  10862. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10863. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10864. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10865. dequantize_row_q(
  10866. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10867. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10868. }
  10869. }
  10870. static void ggml_compute_forward_get_rows_f16(
  10871. const struct ggml_compute_params * params,
  10872. struct ggml_tensor * dst) {
  10873. const struct ggml_tensor * src0 = dst->src[0];
  10874. const struct ggml_tensor * src1 = dst->src[1];
  10875. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10876. return;
  10877. }
  10878. GGML_TENSOR_BINARY_OP_LOCALS
  10879. const int64_t nc = ne00;
  10880. const int64_t nr = ggml_nelements(src1);
  10881. assert(ne0 == nc);
  10882. assert(ne02 == ne11);
  10883. assert(nb00 == sizeof(ggml_fp16_t));
  10884. assert(ggml_nrows(dst) == nr);
  10885. const int ith = params->ith;
  10886. const int nth = params->nth;
  10887. // rows per thread
  10888. const int dr = (nr + nth - 1)/nth;
  10889. // row range for this thread
  10890. const int ir0 = dr*ith;
  10891. const int ir1 = MIN(ir0 + dr, nr);
  10892. for (int64_t i = ir0; i < ir1; ++i) {
  10893. const int64_t i12 = i/(ne11*ne10);
  10894. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10895. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10896. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10897. ggml_fp16_to_fp32_row(
  10898. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10899. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10900. }
  10901. }
  10902. static void ggml_compute_forward_get_rows_bf16(
  10903. const struct ggml_compute_params * params,
  10904. struct ggml_tensor * dst) {
  10905. const struct ggml_tensor * src0 = dst->src[0];
  10906. const struct ggml_tensor * src1 = dst->src[1];
  10907. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10908. return;
  10909. }
  10910. GGML_TENSOR_BINARY_OP_LOCALS
  10911. const int64_t nc = ne00;
  10912. const int64_t nr = ggml_nelements(src1);
  10913. assert(ne0 == nc);
  10914. assert(ne02 == ne11);
  10915. assert(nb00 == sizeof(ggml_bf16_t));
  10916. assert(ggml_nrows(dst) == nr);
  10917. const int ith = params->ith;
  10918. const int nth = params->nth;
  10919. // rows per thread
  10920. const int dr = (nr + nth - 1)/nth;
  10921. // row range for this thread
  10922. const int ir0 = dr*ith;
  10923. const int ir1 = MIN(ir0 + dr, nr);
  10924. for (int64_t i = ir0; i < ir1; ++i) {
  10925. const int64_t i12 = i/(ne11*ne10);
  10926. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10927. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10928. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10929. ggml_bf16_to_fp32_row(
  10930. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10931. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10932. }
  10933. }
  10934. static void ggml_compute_forward_get_rows_f32(
  10935. const struct ggml_compute_params * params,
  10936. struct ggml_tensor * dst) {
  10937. const struct ggml_tensor * src0 = dst->src[0];
  10938. const struct ggml_tensor * src1 = dst->src[1];
  10939. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10940. return;
  10941. }
  10942. GGML_TENSOR_BINARY_OP_LOCALS
  10943. const int64_t nc = ne00;
  10944. const int64_t nr = ggml_nelements(src1);
  10945. assert(ne0 == nc);
  10946. assert(ne02 == ne11);
  10947. assert(nb00 == sizeof(float));
  10948. assert(ggml_nrows(dst) == nr);
  10949. const int ith = params->ith;
  10950. const int nth = params->nth;
  10951. // rows per thread
  10952. const int dr = (nr + nth - 1)/nth;
  10953. // row range for this thread
  10954. const int ir0 = dr*ith;
  10955. const int ir1 = MIN(ir0 + dr, nr);
  10956. for (int64_t i = ir0; i < ir1; ++i) {
  10957. const int64_t i12 = i/(ne11*ne10);
  10958. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10959. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10960. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10961. ggml_vec_cpy_f32(nc,
  10962. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10963. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10964. }
  10965. }
  10966. static void ggml_compute_forward_get_rows(
  10967. const struct ggml_compute_params * params,
  10968. struct ggml_tensor * dst) {
  10969. const struct ggml_tensor * src0 = dst->src[0];
  10970. switch (src0->type) {
  10971. case GGML_TYPE_Q4_0:
  10972. case GGML_TYPE_Q4_1:
  10973. case GGML_TYPE_Q5_0:
  10974. case GGML_TYPE_Q5_1:
  10975. case GGML_TYPE_Q8_0:
  10976. case GGML_TYPE_Q8_1:
  10977. case GGML_TYPE_Q2_K:
  10978. case GGML_TYPE_Q3_K:
  10979. case GGML_TYPE_Q4_K:
  10980. case GGML_TYPE_Q5_K:
  10981. case GGML_TYPE_Q6_K:
  10982. case GGML_TYPE_IQ2_XXS:
  10983. case GGML_TYPE_IQ2_XS:
  10984. case GGML_TYPE_IQ3_XXS:
  10985. case GGML_TYPE_IQ1_S:
  10986. case GGML_TYPE_IQ1_M:
  10987. case GGML_TYPE_IQ4_NL:
  10988. case GGML_TYPE_IQ4_XS:
  10989. case GGML_TYPE_IQ3_S:
  10990. case GGML_TYPE_IQ2_S:
  10991. {
  10992. ggml_compute_forward_get_rows_q(params, dst);
  10993. } break;
  10994. case GGML_TYPE_F16:
  10995. {
  10996. ggml_compute_forward_get_rows_f16(params, dst);
  10997. } break;
  10998. case GGML_TYPE_BF16:
  10999. {
  11000. ggml_compute_forward_get_rows_bf16(params, dst);
  11001. } break;
  11002. case GGML_TYPE_F32:
  11003. case GGML_TYPE_I32:
  11004. {
  11005. ggml_compute_forward_get_rows_f32(params, dst);
  11006. } break;
  11007. default:
  11008. {
  11009. GGML_ASSERT(false);
  11010. } break;
  11011. }
  11012. //static bool first = true;
  11013. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11014. //if (first) {
  11015. // first = false;
  11016. //} else {
  11017. // for (int k = 0; k < dst->ne[1]; ++k) {
  11018. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11019. // for (int i = 0; i < 16; ++i) {
  11020. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11021. // }
  11022. // printf("\n");
  11023. // }
  11024. // printf("\n");
  11025. // }
  11026. // printf("\n");
  11027. // exit(0);
  11028. //}
  11029. }
  11030. // ggml_compute_forward_get_rows_back
  11031. static void ggml_compute_forward_get_rows_back_f32_f16(
  11032. const struct ggml_compute_params * params,
  11033. struct ggml_tensor * dst) {
  11034. const struct ggml_tensor * src0 = dst->src[0];
  11035. const struct ggml_tensor * src1 = dst->src[1];
  11036. GGML_ASSERT(params->ith == 0);
  11037. GGML_ASSERT(ggml_is_contiguous(dst));
  11038. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11039. if (params->type == GGML_TASK_TYPE_INIT) {
  11040. if (params->ith != 0) {
  11041. return;
  11042. }
  11043. memset(dst->data, 0, ggml_nbytes(dst));
  11044. }
  11045. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11046. return;
  11047. }
  11048. const int nc = src0->ne[0];
  11049. const int nr = ggml_nelements(src1);
  11050. GGML_ASSERT( dst->ne[0] == nc);
  11051. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11052. for (int i = 0; i < nr; ++i) {
  11053. const int r = ((int32_t *) src1->data)[i];
  11054. for (int j = 0; j < nc; ++j) {
  11055. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11056. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11057. }
  11058. }
  11059. }
  11060. static void ggml_compute_forward_get_rows_back_f32(
  11061. const struct ggml_compute_params * params,
  11062. struct ggml_tensor * dst) {
  11063. const struct ggml_tensor * src0 = dst->src[0];
  11064. const struct ggml_tensor * src1 = dst->src[1];
  11065. GGML_ASSERT(params->ith == 0);
  11066. GGML_ASSERT(ggml_is_contiguous(dst));
  11067. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11068. if (params->type == GGML_TASK_TYPE_INIT) {
  11069. if (params->ith != 0) {
  11070. return;
  11071. }
  11072. memset(dst->data, 0, ggml_nbytes(dst));
  11073. }
  11074. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11075. return;
  11076. }
  11077. const int nc = src0->ne[0];
  11078. const int nr = ggml_nelements(src1);
  11079. GGML_ASSERT( dst->ne[0] == nc);
  11080. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11081. for (int i = 0; i < nr; ++i) {
  11082. const int r = ((int32_t *) src1->data)[i];
  11083. ggml_vec_add_f32(nc,
  11084. (float *) ((char *) dst->data + r*dst->nb[1]),
  11085. (float *) ((char *) dst->data + r*dst->nb[1]),
  11086. (float *) ((char *) src0->data + i*src0->nb[1]));
  11087. }
  11088. }
  11089. static void ggml_compute_forward_get_rows_back(
  11090. const struct ggml_compute_params * params,
  11091. struct ggml_tensor * dst) {
  11092. const struct ggml_tensor * src0 = dst->src[0];
  11093. switch (src0->type) {
  11094. case GGML_TYPE_F16:
  11095. {
  11096. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11097. } break;
  11098. case GGML_TYPE_F32:
  11099. {
  11100. ggml_compute_forward_get_rows_back_f32(params, dst);
  11101. } break;
  11102. default:
  11103. {
  11104. GGML_ASSERT(false);
  11105. } break;
  11106. }
  11107. //static bool first = true;
  11108. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11109. //if (first) {
  11110. // first = false;
  11111. //} else {
  11112. // for (int k = 0; k < dst->ne[1]; ++k) {
  11113. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11114. // for (int i = 0; i < 16; ++i) {
  11115. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11116. // }
  11117. // printf("\n");
  11118. // }
  11119. // printf("\n");
  11120. // }
  11121. // printf("\n");
  11122. // exit(0);
  11123. //}
  11124. }
  11125. // ggml_compute_forward_diag
  11126. static void ggml_compute_forward_diag_f32(
  11127. const struct ggml_compute_params * params,
  11128. struct ggml_tensor * dst) {
  11129. const struct ggml_tensor * src0 = dst->src[0];
  11130. GGML_ASSERT(params->ith == 0);
  11131. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11132. return;
  11133. }
  11134. // TODO: handle transposed/permuted matrices
  11135. GGML_TENSOR_UNARY_OP_LOCALS
  11136. GGML_ASSERT(ne00 == ne0);
  11137. GGML_ASSERT(ne00 == ne1);
  11138. GGML_ASSERT(ne01 == 1);
  11139. GGML_ASSERT(ne02 == ne2);
  11140. GGML_ASSERT(ne03 == ne3);
  11141. GGML_ASSERT(nb00 == sizeof(float));
  11142. GGML_ASSERT(nb0 == sizeof(float));
  11143. for (int i3 = 0; i3 < ne3; i3++) {
  11144. for (int i2 = 0; i2 < ne2; i2++) {
  11145. for (int i1 = 0; i1 < ne1; i1++) {
  11146. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11147. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11148. for (int i0 = 0; i0 < i1; i0++) {
  11149. d[i0] = 0;
  11150. }
  11151. d[i1] = s[i1];
  11152. for (int i0 = i1+1; i0 < ne0; i0++) {
  11153. d[i0] = 0;
  11154. }
  11155. }
  11156. }
  11157. }
  11158. }
  11159. static void ggml_compute_forward_diag(
  11160. const struct ggml_compute_params * params,
  11161. struct ggml_tensor * dst) {
  11162. const struct ggml_tensor * src0 = dst->src[0];
  11163. switch (src0->type) {
  11164. case GGML_TYPE_F32:
  11165. {
  11166. ggml_compute_forward_diag_f32(params, dst);
  11167. } break;
  11168. default:
  11169. {
  11170. GGML_ASSERT(false);
  11171. } break;
  11172. }
  11173. }
  11174. // ggml_compute_forward_diag_mask_inf
  11175. static void ggml_compute_forward_diag_mask_f32(
  11176. const struct ggml_compute_params * params,
  11177. struct ggml_tensor * dst,
  11178. const float value) {
  11179. const struct ggml_tensor * src0 = dst->src[0];
  11180. const int ith = params->ith;
  11181. const int nth = params->nth;
  11182. const int n_past = ((int32_t *) dst->op_params)[0];
  11183. const bool inplace = src0->data == dst->data;
  11184. GGML_ASSERT(n_past >= 0);
  11185. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11186. if (ith != 0) {
  11187. return;
  11188. }
  11189. // memcpy needs to be synchronized across threads to avoid race conditions.
  11190. // => do it in INIT phase
  11191. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11192. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11193. memcpy(
  11194. ((char *) dst->data),
  11195. ((char *) src0->data),
  11196. ggml_nbytes(dst));
  11197. }
  11198. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11199. return;
  11200. }
  11201. // TODO: handle transposed/permuted matrices
  11202. const int n = ggml_nrows(src0);
  11203. const int nc = src0->ne[0];
  11204. const int nr = src0->ne[1];
  11205. const int nz = n/nr;
  11206. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11207. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11208. for (int k = 0; k < nz; k++) {
  11209. for (int j = ith; j < nr; j += nth) {
  11210. for (int i = n_past; i < nc; i++) {
  11211. if (i > n_past + j) {
  11212. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11213. }
  11214. }
  11215. }
  11216. }
  11217. }
  11218. static void ggml_compute_forward_diag_mask_inf(
  11219. const struct ggml_compute_params * params,
  11220. struct ggml_tensor * dst) {
  11221. const struct ggml_tensor * src0 = dst->src[0];
  11222. switch (src0->type) {
  11223. case GGML_TYPE_F32:
  11224. {
  11225. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11226. } break;
  11227. default:
  11228. {
  11229. GGML_ASSERT(false);
  11230. } break;
  11231. }
  11232. }
  11233. static void ggml_compute_forward_diag_mask_zero(
  11234. const struct ggml_compute_params * params,
  11235. struct ggml_tensor * dst) {
  11236. const struct ggml_tensor * src0 = dst->src[0];
  11237. switch (src0->type) {
  11238. case GGML_TYPE_F32:
  11239. {
  11240. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11241. } break;
  11242. default:
  11243. {
  11244. GGML_ASSERT(false);
  11245. } break;
  11246. }
  11247. }
  11248. // ggml_compute_forward_soft_max
  11249. static void ggml_compute_forward_soft_max_f32(
  11250. const struct ggml_compute_params * params,
  11251. struct ggml_tensor * dst) {
  11252. const struct ggml_tensor * src0 = dst->src[0];
  11253. const struct ggml_tensor * src1 = dst->src[1];
  11254. assert(ggml_is_contiguous(dst));
  11255. assert(ggml_are_same_shape(src0, dst));
  11256. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11257. return;
  11258. }
  11259. float scale = 1.0f;
  11260. float max_bias = 0.0f;
  11261. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11262. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11263. // TODO: handle transposed/permuted matrices
  11264. const int ith = params->ith;
  11265. const int nth = params->nth;
  11266. GGML_TENSOR_UNARY_OP_LOCALS
  11267. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11268. // TODO: is this supposed to be ceil instead of floor?
  11269. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11270. const uint32_t n_head = ne02;
  11271. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11272. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11273. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11274. const int nc = src0->ne[0];
  11275. const int nr = ggml_nrows(src0);
  11276. // rows per thread
  11277. const int dr = (nr + nth - 1)/nth;
  11278. // row range for this thread
  11279. const int ir0 = dr*ith;
  11280. const int ir1 = MIN(ir0 + dr, nr);
  11281. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11282. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11283. for (int i1 = ir0; i1 < ir1; i1++) {
  11284. // ALiBi
  11285. const uint32_t h = (i1/ne01)%ne02; // head
  11286. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11287. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11288. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11289. // broadcast the mask across rows
  11290. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11291. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11292. ggml_vec_cpy_f32 (nc, wp, sp);
  11293. ggml_vec_scale_f32(nc, wp, scale);
  11294. if (mp_f32) {
  11295. if (use_f16) {
  11296. for (int i = 0; i < nc; ++i) {
  11297. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11298. }
  11299. } else {
  11300. for (int i = 0; i < nc; ++i) {
  11301. wp[i] += slope*mp_f32[i];
  11302. }
  11303. }
  11304. }
  11305. #ifndef NDEBUG
  11306. for (int i = 0; i < nc; ++i) {
  11307. //printf("p[%d] = %f\n", i, p[i]);
  11308. assert(!isnan(wp[i]));
  11309. }
  11310. #endif
  11311. float max = -INFINITY;
  11312. ggml_vec_max_f32(nc, &max, wp);
  11313. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11314. assert(sum > 0.0);
  11315. sum = 1.0/sum;
  11316. ggml_vec_scale_f32(nc, dp, sum);
  11317. #ifndef NDEBUG
  11318. for (int i = 0; i < nc; ++i) {
  11319. assert(!isnan(dp[i]));
  11320. assert(!isinf(dp[i]));
  11321. }
  11322. #endif
  11323. }
  11324. }
  11325. static void ggml_compute_forward_soft_max(
  11326. const struct ggml_compute_params * params,
  11327. struct ggml_tensor * dst) {
  11328. const struct ggml_tensor * src0 = dst->src[0];
  11329. switch (src0->type) {
  11330. case GGML_TYPE_F32:
  11331. {
  11332. ggml_compute_forward_soft_max_f32(params, dst);
  11333. } break;
  11334. default:
  11335. {
  11336. GGML_ASSERT(false);
  11337. } break;
  11338. }
  11339. }
  11340. // ggml_compute_forward_soft_max_back
  11341. static void ggml_compute_forward_soft_max_back_f32(
  11342. const struct ggml_compute_params * params,
  11343. struct ggml_tensor * dst) {
  11344. const struct ggml_tensor * src0 = dst->src[0];
  11345. const struct ggml_tensor * src1 = dst->src[1];
  11346. GGML_ASSERT(ggml_is_contiguous(src0));
  11347. GGML_ASSERT(ggml_is_contiguous(src1));
  11348. GGML_ASSERT(ggml_is_contiguous(dst));
  11349. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11350. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11351. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11352. return;
  11353. }
  11354. // TODO: handle transposed/permuted matrices
  11355. const int ith = params->ith;
  11356. const int nth = params->nth;
  11357. const int nc = src0->ne[0];
  11358. const int nr = ggml_nrows(src0);
  11359. // rows per thread
  11360. const int dr = (nr + nth - 1)/nth;
  11361. // row range for this thread
  11362. const int ir0 = dr*ith;
  11363. const int ir1 = MIN(ir0 + dr, nr);
  11364. for (int i1 = ir0; i1 < ir1; i1++) {
  11365. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11366. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11367. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11368. #ifndef NDEBUG
  11369. for (int i = 0; i < nc; ++i) {
  11370. //printf("p[%d] = %f\n", i, p[i]);
  11371. assert(!isnan(dy[i]));
  11372. assert(!isnan(y[i]));
  11373. }
  11374. #endif
  11375. // Jii = yi - yi*yi
  11376. // Jij = -yi*yj
  11377. // J = diag(y)-y.T*y
  11378. // dx = J * dy
  11379. // dxk = sum_i(Jki * dyi)
  11380. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11381. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11382. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11383. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11384. // dxk = -yk * dot(y, dy) + yk*dyk
  11385. // dxk = yk * (- dot(y, dy) + dyk)
  11386. // dxk = yk * (dyk - dot(y, dy))
  11387. //
  11388. // post-order:
  11389. // dot_y_dy := dot(y, dy)
  11390. // dx := dy
  11391. // dx := dx - dot_y_dy
  11392. // dx := dx * y
  11393. // linear runtime, no additional memory
  11394. float dot_y_dy = 0;
  11395. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11396. ggml_vec_cpy_f32 (nc, dx, dy);
  11397. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11398. ggml_vec_mul_f32 (nc, dx, dx, y);
  11399. #ifndef NDEBUG
  11400. for (int i = 0; i < nc; ++i) {
  11401. assert(!isnan(dx[i]));
  11402. assert(!isinf(dx[i]));
  11403. }
  11404. #endif
  11405. }
  11406. }
  11407. static void ggml_compute_forward_soft_max_back(
  11408. const struct ggml_compute_params * params,
  11409. struct ggml_tensor * dst) {
  11410. const struct ggml_tensor * src0 = dst->src[0];
  11411. switch (src0->type) {
  11412. case GGML_TYPE_F32:
  11413. {
  11414. ggml_compute_forward_soft_max_back_f32(params, dst);
  11415. } break;
  11416. default:
  11417. {
  11418. GGML_ASSERT(false);
  11419. } break;
  11420. }
  11421. }
  11422. // ggml_compute_forward_clamp
  11423. static void ggml_compute_forward_clamp_f32(
  11424. const struct ggml_compute_params * params,
  11425. struct ggml_tensor * dst) {
  11426. const struct ggml_tensor * src0 = dst->src[0];
  11427. assert(params->ith == 0);
  11428. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11429. return;
  11430. }
  11431. float min;
  11432. float max;
  11433. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11434. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11435. const int ith = params->ith;
  11436. const int nth = params->nth;
  11437. const int n = ggml_nrows(src0);
  11438. const int nc = src0->ne[0];
  11439. const size_t nb00 = src0->nb[0];
  11440. const size_t nb01 = src0->nb[1];
  11441. const size_t nb0 = dst->nb[0];
  11442. const size_t nb1 = dst->nb[1];
  11443. GGML_ASSERT( nb0 == sizeof(float));
  11444. GGML_ASSERT(nb00 == sizeof(float));
  11445. for (int j = ith; j < n; j += nth) {
  11446. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11447. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11448. for (int i = 0; i < nc; i++) {
  11449. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11450. }
  11451. }
  11452. }
  11453. static void ggml_compute_forward_clamp(
  11454. const struct ggml_compute_params * params,
  11455. struct ggml_tensor * dst) {
  11456. const struct ggml_tensor * src0 = dst->src[0];
  11457. switch (src0->type) {
  11458. case GGML_TYPE_F32:
  11459. {
  11460. ggml_compute_forward_clamp_f32(params, dst);
  11461. } break;
  11462. case GGML_TYPE_F16:
  11463. case GGML_TYPE_BF16:
  11464. case GGML_TYPE_Q4_0:
  11465. case GGML_TYPE_Q4_1:
  11466. case GGML_TYPE_Q5_0:
  11467. case GGML_TYPE_Q5_1:
  11468. case GGML_TYPE_Q8_0:
  11469. case GGML_TYPE_Q8_1:
  11470. case GGML_TYPE_Q2_K:
  11471. case GGML_TYPE_Q3_K:
  11472. case GGML_TYPE_Q4_K:
  11473. case GGML_TYPE_Q5_K:
  11474. case GGML_TYPE_Q6_K:
  11475. case GGML_TYPE_IQ2_XXS:
  11476. case GGML_TYPE_IQ2_XS:
  11477. case GGML_TYPE_IQ3_XXS:
  11478. case GGML_TYPE_IQ1_S:
  11479. case GGML_TYPE_IQ1_M:
  11480. case GGML_TYPE_IQ4_NL:
  11481. case GGML_TYPE_IQ4_XS:
  11482. case GGML_TYPE_IQ3_S:
  11483. case GGML_TYPE_IQ2_S:
  11484. case GGML_TYPE_Q8_K:
  11485. case GGML_TYPE_I8:
  11486. case GGML_TYPE_I16:
  11487. case GGML_TYPE_I32:
  11488. case GGML_TYPE_I64:
  11489. case GGML_TYPE_F64:
  11490. case GGML_TYPE_COUNT:
  11491. {
  11492. GGML_ASSERT(false);
  11493. } break;
  11494. }
  11495. }
  11496. // ggml_compute_forward_rope
  11497. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11498. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11499. return 1 - MIN(1, MAX(0, y));
  11500. }
  11501. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11502. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11503. static void rope_yarn(
  11504. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11505. float * cos_theta, float * sin_theta
  11506. ) {
  11507. // Get n-d rotational scaling corrected for extrapolation
  11508. float theta_interp = freq_scale * theta_extrap;
  11509. float theta = theta_interp;
  11510. if (ext_factor != 0.0f) {
  11511. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11512. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11513. // Get n-d magnitude scaling corrected for interpolation
  11514. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11515. }
  11516. *cos_theta = cosf(theta) * mscale;
  11517. *sin_theta = sinf(theta) * mscale;
  11518. }
  11519. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11520. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11521. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11522. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11523. }
  11524. static void ggml_rope_cache_init(
  11525. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11526. float * cache, float sin_sign, float theta_scale
  11527. ) {
  11528. float theta = theta_base;
  11529. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11530. rope_yarn(
  11531. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11532. );
  11533. cache[i0 + 1] *= sin_sign;
  11534. theta *= theta_scale;
  11535. }
  11536. }
  11537. GGML_CALL void ggml_rope_yarn_corr_dims(
  11538. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11539. ) {
  11540. // start and end correction dims
  11541. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11542. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11543. dims[0] = MAX(0, start);
  11544. dims[1] = MIN(n_dims - 1, end);
  11545. }
  11546. static void ggml_compute_forward_rope_f32(
  11547. const struct ggml_compute_params * params,
  11548. struct ggml_tensor * dst,
  11549. const bool forward) {
  11550. const struct ggml_tensor * src0 = dst->src[0];
  11551. const struct ggml_tensor * src1 = dst->src[1];
  11552. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11553. return;
  11554. }
  11555. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11556. // these two only relevant for xPos RoPE:
  11557. float xpos_base;
  11558. bool xpos_down;
  11559. //const int n_past = ((int32_t *) dst->op_params)[0];
  11560. const int n_dims = ((int32_t *) dst->op_params)[1];
  11561. const int mode = ((int32_t *) dst->op_params)[2];
  11562. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11563. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11564. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11565. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11566. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11567. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11568. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11569. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11570. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11571. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11572. GGML_TENSOR_UNARY_OP_LOCALS
  11573. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11574. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11575. GGML_ASSERT(nb00 == sizeof(float));
  11576. const int ith = params->ith;
  11577. const int nth = params->nth;
  11578. const int nr = ggml_nrows(dst);
  11579. GGML_ASSERT(n_dims <= ne0);
  11580. GGML_ASSERT(n_dims % 2 == 0);
  11581. // rows per thread
  11582. const int dr = (nr + nth - 1)/nth;
  11583. // row range for this thread
  11584. const int ir0 = dr*ith;
  11585. const int ir1 = MIN(ir0 + dr, nr);
  11586. // row index used to determine which thread to use
  11587. int ir = 0;
  11588. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11589. const float inv_ndims = -1.f/n_dims;
  11590. float corr_dims[2];
  11591. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11592. const bool is_neox = mode & 2;
  11593. const bool is_glm = mode & 4;
  11594. // backward process uses inverse rotation by cos and sin.
  11595. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11596. // this essentially just switches the sign of sin.
  11597. const float sin_sign = forward ? 1.0f : -1.0f;
  11598. const int32_t * pos = (const int32_t *) src1->data;
  11599. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11600. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11601. const int64_t p = pos[i2];
  11602. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11603. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11604. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11605. }
  11606. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11607. if (ir++ < ir0) continue;
  11608. if (ir > ir1) break;
  11609. float theta_base = (float)p;
  11610. if (is_glm) {
  11611. theta_base = MIN(p, n_ctx - 2);
  11612. float block_theta = MAX(p - (n_ctx - 2), 0);
  11613. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11614. const float cos_theta = cosf(theta_base);
  11615. const float sin_theta = sinf(theta_base) * sin_sign;
  11616. const float cos_block_theta = cosf(block_theta);
  11617. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11618. theta_base *= theta_scale;
  11619. block_theta *= theta_scale;
  11620. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11621. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11622. const float x0 = src[0];
  11623. const float x1 = src[n_dims/2];
  11624. const float x2 = src[n_dims];
  11625. const float x3 = src[n_dims/2*3];
  11626. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11627. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11628. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11629. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11630. }
  11631. } else if (!is_neox) {
  11632. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11633. const float cos_theta = cache[i0 + 0];
  11634. const float sin_theta = cache[i0 + 1];
  11635. // zeta scaling for xPos only:
  11636. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11637. if (xpos_down) zeta = 1.0f / zeta;
  11638. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11639. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11640. const float x0 = src[0];
  11641. const float x1 = src[1];
  11642. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11643. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11644. }
  11645. } else {
  11646. // TODO: this might be wrong for ne0 != n_dims - need double check
  11647. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11648. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11649. theta_base *= freq_scale;
  11650. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11651. if (ic < n_dims) {
  11652. const int64_t ib = 0;
  11653. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11654. float cur_rot = inv_ndims * ic - ib;
  11655. float cos_theta, sin_theta;
  11656. rope_yarn(
  11657. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11658. &cos_theta, &sin_theta
  11659. );
  11660. sin_theta *= sin_sign;
  11661. theta_base *= theta_scale;
  11662. const int64_t i0 = ib*n_dims + ic/2;
  11663. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11664. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11665. const float x0 = src[0];
  11666. const float x1 = src[n_dims/2];
  11667. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11668. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11669. } else {
  11670. const int64_t i0 = ic;
  11671. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11672. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11673. dst_data[0] = src[0];
  11674. dst_data[1] = src[1];
  11675. }
  11676. }
  11677. }
  11678. }
  11679. }
  11680. }
  11681. }
  11682. static void ggml_compute_forward_rope_f16(
  11683. const struct ggml_compute_params * params,
  11684. struct ggml_tensor * dst,
  11685. const bool forward) {
  11686. const struct ggml_tensor * src0 = dst->src[0];
  11687. const struct ggml_tensor * src1 = dst->src[1];
  11688. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11689. return;
  11690. }
  11691. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11692. //const int n_past = ((int32_t *) dst->op_params)[0];
  11693. const int n_dims = ((int32_t *) dst->op_params)[1];
  11694. const int mode = ((int32_t *) dst->op_params)[2];
  11695. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11696. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11697. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11698. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11699. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11700. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11701. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11702. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11703. GGML_TENSOR_UNARY_OP_LOCALS
  11704. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11705. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11706. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11707. const int ith = params->ith;
  11708. const int nth = params->nth;
  11709. const int nr = ggml_nrows(dst);
  11710. GGML_ASSERT(n_dims <= ne0);
  11711. GGML_ASSERT(n_dims % 2 == 0);
  11712. // rows per thread
  11713. const int dr = (nr + nth - 1)/nth;
  11714. // row range for this thread
  11715. const int ir0 = dr*ith;
  11716. const int ir1 = MIN(ir0 + dr, nr);
  11717. // row index used to determine which thread to use
  11718. int ir = 0;
  11719. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11720. const float inv_ndims = -1.f/n_dims;
  11721. float corr_dims[2];
  11722. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11723. const bool is_neox = mode & 2;
  11724. const bool is_glm = mode & 4;
  11725. // backward process uses inverse rotation by cos and sin.
  11726. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11727. // this essentially just switches the sign of sin.
  11728. const float sin_sign = forward ? 1.0f : -1.0f;
  11729. const int32_t * pos = (const int32_t *) src1->data;
  11730. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11731. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11732. const int64_t p = pos[i2];
  11733. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11734. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11735. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11736. }
  11737. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11738. if (ir++ < ir0) continue;
  11739. if (ir > ir1) break;
  11740. float theta_base = (float)p;
  11741. if (is_glm) {
  11742. theta_base = MIN(p, n_ctx - 2);
  11743. float block_theta = MAX(p - (n_ctx - 2), 0);
  11744. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11745. const float cos_theta = cosf(theta_base);
  11746. const float sin_theta = sinf(theta_base) * sin_sign;
  11747. const float cos_block_theta = cosf(block_theta);
  11748. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11749. theta_base *= theta_scale;
  11750. block_theta *= theta_scale;
  11751. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11752. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11753. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11754. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11755. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11756. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11757. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11758. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11759. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11760. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11761. }
  11762. } else if (!is_neox) {
  11763. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11764. const float cos_theta = cache[i0 + 0];
  11765. const float sin_theta = cache[i0 + 1];
  11766. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11767. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11768. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11769. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11770. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11771. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11772. }
  11773. } else {
  11774. // TODO: this might be wrong for ne0 != n_dims - need double check
  11775. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11776. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11777. theta_base *= freq_scale;
  11778. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11779. if (ic < n_dims) {
  11780. const int64_t ib = 0;
  11781. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11782. float cur_rot = inv_ndims * ic - ib;
  11783. float cos_theta, sin_theta;
  11784. rope_yarn(
  11785. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11786. &cos_theta, &sin_theta
  11787. );
  11788. sin_theta *= sin_sign;
  11789. theta_base *= theta_scale;
  11790. const int64_t i0 = ib*n_dims + ic/2;
  11791. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11792. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11793. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11794. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11795. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11796. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11797. } else {
  11798. const int64_t i0 = ic;
  11799. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11800. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11801. dst_data[0] = src[0];
  11802. dst_data[1] = src[1];
  11803. }
  11804. }
  11805. }
  11806. }
  11807. }
  11808. }
  11809. }
  11810. static void ggml_compute_forward_rope(
  11811. const struct ggml_compute_params * params,
  11812. struct ggml_tensor * dst) {
  11813. const struct ggml_tensor * src0 = dst->src[0];
  11814. switch (src0->type) {
  11815. case GGML_TYPE_F16:
  11816. {
  11817. ggml_compute_forward_rope_f16(params, dst, true);
  11818. } break;
  11819. case GGML_TYPE_F32:
  11820. {
  11821. ggml_compute_forward_rope_f32(params, dst, true);
  11822. } break;
  11823. default:
  11824. {
  11825. GGML_ASSERT(false);
  11826. } break;
  11827. }
  11828. }
  11829. // ggml_compute_forward_rope_back
  11830. static void ggml_compute_forward_rope_back(
  11831. const struct ggml_compute_params * params,
  11832. struct ggml_tensor * dst) {
  11833. const struct ggml_tensor * src0 = dst->src[0];
  11834. switch (src0->type) {
  11835. case GGML_TYPE_F16:
  11836. {
  11837. ggml_compute_forward_rope_f16(params, dst, false);
  11838. } break;
  11839. case GGML_TYPE_F32:
  11840. {
  11841. ggml_compute_forward_rope_f32(params, dst, false);
  11842. } break;
  11843. default:
  11844. {
  11845. GGML_ASSERT(false);
  11846. } break;
  11847. }
  11848. }
  11849. // ggml_compute_forward_conv_transpose_1d
  11850. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11851. const struct ggml_compute_params * params,
  11852. struct ggml_tensor * dst) {
  11853. const struct ggml_tensor * src0 = dst->src[0];
  11854. const struct ggml_tensor * src1 = dst->src[1];
  11855. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11856. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11857. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11858. int64_t t0 = ggml_perf_time_us();
  11859. UNUSED(t0);
  11860. GGML_TENSOR_BINARY_OP_LOCALS
  11861. const int ith = params->ith;
  11862. const int nth = params->nth;
  11863. const int nk = ne00*ne01*ne02;
  11864. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11865. GGML_ASSERT(nb10 == sizeof(float));
  11866. if (params->type == GGML_TASK_TYPE_INIT) {
  11867. if (ith != 0) {
  11868. return;
  11869. }
  11870. memset(params->wdata, 0, params->wsize);
  11871. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11872. {
  11873. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11874. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11875. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11876. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11877. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11878. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11879. dst_data[i00*ne02 + i02] = src[i00];
  11880. }
  11881. }
  11882. }
  11883. }
  11884. // permute source data (src1) from (L x Cin) to (Cin x L)
  11885. {
  11886. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11887. ggml_fp16_t * dst_data = wdata;
  11888. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11889. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11890. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11891. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11892. }
  11893. }
  11894. }
  11895. // need to zero dst since we are accumulating into it
  11896. memset(dst->data, 0, ggml_nbytes(dst));
  11897. return;
  11898. }
  11899. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11900. return;
  11901. }
  11902. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11903. // total rows in dst
  11904. const int nr = ne1;
  11905. // rows per thread
  11906. const int dr = (nr + nth - 1)/nth;
  11907. // row range for this thread
  11908. const int ir0 = dr*ith;
  11909. const int ir1 = MIN(ir0 + dr, nr);
  11910. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11911. ggml_fp16_t * const wdata_src = wdata + nk;
  11912. for (int i1 = ir0; i1 < ir1; i1++) {
  11913. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11914. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11915. for (int i10 = 0; i10 < ne10; i10++) {
  11916. const int i1n = i10*ne11;
  11917. for (int i00 = 0; i00 < ne00; i00++) {
  11918. float v = 0;
  11919. ggml_vec_dot_f16(ne02, &v, 0,
  11920. (ggml_fp16_t *) wdata_src + i1n, 0,
  11921. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11922. dst_data[i10*s0 + i00] += v;
  11923. }
  11924. }
  11925. }
  11926. }
  11927. static void ggml_compute_forward_conv_transpose_1d_f32(
  11928. const struct ggml_compute_params * params,
  11929. struct ggml_tensor * dst) {
  11930. const struct ggml_tensor * src0 = dst->src[0];
  11931. const struct ggml_tensor * src1 = dst->src[1];
  11932. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11933. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11934. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11935. int64_t t0 = ggml_perf_time_us();
  11936. UNUSED(t0);
  11937. GGML_TENSOR_BINARY_OP_LOCALS
  11938. const int ith = params->ith;
  11939. const int nth = params->nth;
  11940. const int nk = ne00*ne01*ne02;
  11941. GGML_ASSERT(nb00 == sizeof(float));
  11942. GGML_ASSERT(nb10 == sizeof(float));
  11943. if (params->type == GGML_TASK_TYPE_INIT) {
  11944. if (ith != 0) {
  11945. return;
  11946. }
  11947. memset(params->wdata, 0, params->wsize);
  11948. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11949. {
  11950. float * const wdata = (float *) params->wdata + 0;
  11951. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11952. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11953. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11954. float * dst_data = wdata + i01*ne00*ne02;
  11955. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11956. dst_data[i00*ne02 + i02] = src[i00];
  11957. }
  11958. }
  11959. }
  11960. }
  11961. // prepare source data (src1)
  11962. {
  11963. float * const wdata = (float *) params->wdata + nk;
  11964. float * dst_data = wdata;
  11965. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11966. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11967. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11968. dst_data[i10*ne11 + i11] = src[i10];
  11969. }
  11970. }
  11971. }
  11972. // need to zero dst since we are accumulating into it
  11973. memset(dst->data, 0, ggml_nbytes(dst));
  11974. return;
  11975. }
  11976. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11977. return;
  11978. }
  11979. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11980. // total rows in dst
  11981. const int nr = ne1;
  11982. // rows per thread
  11983. const int dr = (nr + nth - 1)/nth;
  11984. // row range for this thread
  11985. const int ir0 = dr*ith;
  11986. const int ir1 = MIN(ir0 + dr, nr);
  11987. float * const wdata = (float *) params->wdata + 0;
  11988. float * const wdata_src = wdata + nk;
  11989. for (int i1 = ir0; i1 < ir1; i1++) {
  11990. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11991. float * wdata_kernel = wdata + i1*ne02*ne00;
  11992. for (int i10 = 0; i10 < ne10; i10++) {
  11993. const int i1n = i10*ne11;
  11994. for (int i00 = 0; i00 < ne00; i00++) {
  11995. float v = 0;
  11996. ggml_vec_dot_f32(ne02, &v, 0,
  11997. wdata_src + i1n, 0,
  11998. wdata_kernel + i00*ne02, 0, 1);
  11999. dst_data[i10*s0 + i00] += v;
  12000. }
  12001. }
  12002. }
  12003. }
  12004. static void ggml_compute_forward_conv_transpose_1d(
  12005. const struct ggml_compute_params * params,
  12006. struct ggml_tensor * dst) {
  12007. const struct ggml_tensor * src0 = dst->src[0];
  12008. switch (src0->type) {
  12009. case GGML_TYPE_F16:
  12010. {
  12011. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12012. } break;
  12013. case GGML_TYPE_F32:
  12014. {
  12015. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12016. } break;
  12017. default:
  12018. {
  12019. GGML_ASSERT(false);
  12020. } break;
  12021. }
  12022. }
  12023. // src0: kernel [OC, IC, KH, KW]
  12024. // src1: image [N, IC, IH, IW]
  12025. // dst: result [N, OH, OW, IC*KH*KW]
  12026. static void ggml_compute_forward_im2col_f32(
  12027. const struct ggml_compute_params * params,
  12028. struct ggml_tensor * dst) {
  12029. const struct ggml_tensor * src0 = dst->src[0];
  12030. const struct ggml_tensor * src1 = dst->src[1];
  12031. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12032. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12033. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12034. int64_t t0 = ggml_perf_time_us();
  12035. UNUSED(t0);
  12036. GGML_TENSOR_BINARY_OP_LOCALS;
  12037. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12038. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12039. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12040. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12041. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12042. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12043. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12044. const int ith = params->ith;
  12045. const int nth = params->nth;
  12046. const int64_t N = is_2D ? ne13 : ne12;
  12047. const int64_t IC = is_2D ? ne12 : ne11;
  12048. const int64_t IH = is_2D ? ne11 : 1;
  12049. const int64_t IW = ne10;
  12050. const int64_t KH = is_2D ? ne01 : 1;
  12051. const int64_t KW = ne00;
  12052. const int64_t OH = is_2D ? ne2 : 1;
  12053. const int64_t OW = ne1;
  12054. int ofs0 = is_2D ? nb13 : nb12;
  12055. int ofs1 = is_2D ? nb12 : nb11;
  12056. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12057. GGML_ASSERT(nb10 == sizeof(float));
  12058. if (params->type == GGML_TASK_TYPE_INIT) {
  12059. return;
  12060. }
  12061. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12062. return;
  12063. }
  12064. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12065. {
  12066. float * const wdata = (float *) dst->data;
  12067. for (int64_t in = 0; in < N; in++) {
  12068. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12069. for (int64_t iow = 0; iow < OW; iow++) {
  12070. for (int64_t iic = ith; iic < IC; iic += nth) {
  12071. // micro kernel
  12072. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12073. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12074. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12075. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12076. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12077. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12078. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12079. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12080. } else {
  12081. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12082. }
  12083. }
  12084. }
  12085. }
  12086. }
  12087. }
  12088. }
  12089. }
  12090. }
  12091. // src0: kernel [OC, IC, KH, KW]
  12092. // src1: image [N, IC, IH, IW]
  12093. // dst: result [N, OH, OW, IC*KH*KW]
  12094. static void ggml_compute_forward_im2col_f16(
  12095. const struct ggml_compute_params * params,
  12096. struct ggml_tensor * dst) {
  12097. const struct ggml_tensor * src0 = dst->src[0];
  12098. const struct ggml_tensor * src1 = dst->src[1];
  12099. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12100. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12101. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12102. int64_t t0 = ggml_perf_time_us();
  12103. UNUSED(t0);
  12104. GGML_TENSOR_BINARY_OP_LOCALS;
  12105. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12106. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12107. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12108. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12109. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12110. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12111. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12112. const int ith = params->ith;
  12113. const int nth = params->nth;
  12114. const int64_t N = is_2D ? ne13 : ne12;
  12115. const int64_t IC = is_2D ? ne12 : ne11;
  12116. const int64_t IH = is_2D ? ne11 : 1;
  12117. const int64_t IW = ne10;
  12118. const int64_t KH = is_2D ? ne01 : 1;
  12119. const int64_t KW = ne00;
  12120. const int64_t OH = is_2D ? ne2 : 1;
  12121. const int64_t OW = ne1;
  12122. int ofs0 = is_2D ? nb13 : nb12;
  12123. int ofs1 = is_2D ? nb12 : nb11;
  12124. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12125. GGML_ASSERT(nb10 == sizeof(float));
  12126. if (params->type == GGML_TASK_TYPE_INIT) {
  12127. return;
  12128. }
  12129. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12130. return;
  12131. }
  12132. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12133. {
  12134. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12135. for (int64_t in = 0; in < N; in++) {
  12136. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12137. for (int64_t iow = 0; iow < OW; iow++) {
  12138. for (int64_t iic = ith; iic < IC; iic += nth) {
  12139. // micro kernel
  12140. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12141. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12142. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12143. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12144. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12145. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12146. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12147. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12148. } else {
  12149. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12150. }
  12151. }
  12152. }
  12153. }
  12154. }
  12155. }
  12156. }
  12157. }
  12158. }
  12159. static void ggml_compute_forward_im2col(
  12160. const struct ggml_compute_params * params,
  12161. struct ggml_tensor * dst) {
  12162. switch (dst->type) {
  12163. case GGML_TYPE_F16:
  12164. {
  12165. ggml_compute_forward_im2col_f16(params, dst);
  12166. } break;
  12167. case GGML_TYPE_F32:
  12168. {
  12169. ggml_compute_forward_im2col_f32(params, dst);
  12170. } break;
  12171. default:
  12172. {
  12173. GGML_ASSERT(false);
  12174. } break;
  12175. }
  12176. }
  12177. // ggml_compute_forward_conv_transpose_2d
  12178. static void ggml_compute_forward_conv_transpose_2d(
  12179. const struct ggml_compute_params * params,
  12180. struct ggml_tensor * dst) {
  12181. const struct ggml_tensor * src0 = dst->src[0];
  12182. const struct ggml_tensor * src1 = dst->src[1];
  12183. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12184. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12185. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12186. int64_t t0 = ggml_perf_time_us();
  12187. UNUSED(t0);
  12188. GGML_TENSOR_BINARY_OP_LOCALS
  12189. const int ith = params->ith;
  12190. const int nth = params->nth;
  12191. const int nk = ne00*ne01*ne02*ne03;
  12192. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12193. GGML_ASSERT(nb10 == sizeof(float));
  12194. if (params->type == GGML_TASK_TYPE_INIT) {
  12195. if (ith != 0) {
  12196. return;
  12197. }
  12198. memset(params->wdata, 0, params->wsize);
  12199. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12200. {
  12201. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12202. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12203. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12204. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12205. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12206. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12207. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12208. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12209. }
  12210. }
  12211. }
  12212. }
  12213. }
  12214. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12215. {
  12216. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12217. for (int i12 = 0; i12 < ne12; i12++) {
  12218. for (int i11 = 0; i11 < ne11; i11++) {
  12219. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12220. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12221. for (int i10 = 0; i10 < ne10; i10++) {
  12222. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12223. }
  12224. }
  12225. }
  12226. }
  12227. memset(dst->data, 0, ggml_nbytes(dst));
  12228. return;
  12229. }
  12230. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12231. return;
  12232. }
  12233. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12234. // total patches in dst
  12235. const int np = ne2;
  12236. // patches per thread
  12237. const int dp = (np + nth - 1)/nth;
  12238. // patch range for this thread
  12239. const int ip0 = dp*ith;
  12240. const int ip1 = MIN(ip0 + dp, np);
  12241. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12242. ggml_fp16_t * const wdata_src = wdata + nk;
  12243. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12244. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12245. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12246. for (int i11 = 0; i11 < ne11; i11++) {
  12247. for (int i10 = 0; i10 < ne10; i10++) {
  12248. const int i1n = i11*ne10*ne12 + i10*ne12;
  12249. for (int i01 = 0; i01 < ne01; i01++) {
  12250. for (int i00 = 0; i00 < ne00; i00++) {
  12251. float v = 0;
  12252. ggml_vec_dot_f16(ne03, &v, 0,
  12253. wdata_src + i1n, 0,
  12254. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12255. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12256. }
  12257. }
  12258. }
  12259. }
  12260. }
  12261. }
  12262. // ggml_compute_forward_pool_1d_sk_p0
  12263. static void ggml_compute_forward_pool_1d_sk_p0(
  12264. const struct ggml_compute_params * params,
  12265. const enum ggml_op_pool op,
  12266. const int k,
  12267. struct ggml_tensor * dst) {
  12268. const struct ggml_tensor * src = dst->src[0];
  12269. assert(src->type == GGML_TYPE_F32);
  12270. assert(params->ith == 0);
  12271. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12272. return;
  12273. }
  12274. const char * cdata = (const char *)src->data;
  12275. const char * const data_end = cdata + ggml_nbytes(src);
  12276. float * drow = (float *)dst->data;
  12277. const int64_t rs = dst->ne[0];
  12278. while (cdata < data_end) {
  12279. const float * const srow = (const float *)cdata;
  12280. int j = 0;
  12281. for (int64_t i = 0; i < rs; ++i) {
  12282. switch (op) {
  12283. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12284. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12285. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12286. }
  12287. for (int ki = 0; ki < k; ++ki) {
  12288. switch (op) {
  12289. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12290. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12291. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12292. }
  12293. ++j;
  12294. }
  12295. switch (op) {
  12296. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12297. case GGML_OP_POOL_MAX: break;
  12298. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12299. }
  12300. }
  12301. cdata += src->nb[1];
  12302. drow += rs;
  12303. }
  12304. }
  12305. // ggml_compute_forward_pool_1d
  12306. static void ggml_compute_forward_pool_1d(
  12307. const struct ggml_compute_params * params,
  12308. struct ggml_tensor * dst) {
  12309. const int32_t * opts = (const int32_t *)dst->op_params;
  12310. enum ggml_op_pool op = opts[0];
  12311. const int k0 = opts[1];
  12312. const int s0 = opts[2];
  12313. const int p0 = opts[3];
  12314. GGML_ASSERT(p0 == 0); // padding not supported
  12315. GGML_ASSERT(k0 == s0); // only s = k supported
  12316. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12317. }
  12318. // ggml_compute_forward_pool_2d
  12319. static void ggml_compute_forward_pool_2d(
  12320. const struct ggml_compute_params * params,
  12321. struct ggml_tensor * dst) {
  12322. const struct ggml_tensor * src = dst->src[0];
  12323. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12324. GGML_ASSERT(params->ith == 0);
  12325. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12326. return;
  12327. }
  12328. const int32_t * opts = (const int32_t *)dst->op_params;
  12329. enum ggml_op_pool op = opts[0];
  12330. const int k0 = opts[1];
  12331. const int k1 = opts[2];
  12332. const int s0 = opts[3];
  12333. const int s1 = opts[4];
  12334. const int p0 = opts[5];
  12335. const int p1 = opts[6];
  12336. const char * cdata = (const char*)src->data;
  12337. const char * const data_end = cdata + ggml_nbytes(src);
  12338. const int64_t px = dst->ne[0];
  12339. const int64_t py = dst->ne[1];
  12340. const int64_t pa = px * py;
  12341. float * dplane = (float *)dst->data;
  12342. const int ka = k0 * k1;
  12343. const int offset0 = -p0;
  12344. const int offset1 = -p1;
  12345. while (cdata < data_end) {
  12346. for (int oy = 0; oy < py; ++oy) {
  12347. float * const drow = dplane + oy * px;
  12348. for (int ox = 0; ox < px; ++ox) {
  12349. float * const out = drow + ox;
  12350. switch (op) {
  12351. case GGML_OP_POOL_AVG: *out = 0; break;
  12352. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12353. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12354. }
  12355. const int ix = offset0 + ox * s0;
  12356. const int iy = offset1 + oy * s1;
  12357. for (int ky = 0; ky < k1; ++ky) {
  12358. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12359. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12360. for (int kx = 0; kx < k0; ++kx) {
  12361. int j = ix + kx;
  12362. if (j < 0 || j >= src->ne[0]) continue;
  12363. switch (op) {
  12364. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12365. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12366. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12367. }
  12368. }
  12369. }
  12370. switch (op) {
  12371. case GGML_OP_POOL_AVG: *out /= ka; break;
  12372. case GGML_OP_POOL_MAX: break;
  12373. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12374. }
  12375. }
  12376. }
  12377. cdata += src->nb[2];
  12378. dplane += pa;
  12379. }
  12380. }
  12381. // ggml_compute_forward_upscale
  12382. static void ggml_compute_forward_upscale_f32(
  12383. const struct ggml_compute_params * params,
  12384. struct ggml_tensor * dst) {
  12385. const struct ggml_tensor * src0 = dst->src[0];
  12386. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12387. return;
  12388. }
  12389. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12390. const int ith = params->ith;
  12391. const int nth = params->nth;
  12392. GGML_TENSOR_UNARY_OP_LOCALS
  12393. const float sf0 = (float)ne0/src0->ne[0];
  12394. const float sf1 = (float)ne1/src0->ne[1];
  12395. const float sf2 = (float)ne2/src0->ne[2];
  12396. const float sf3 = (float)ne3/src0->ne[3];
  12397. // TODO: optimize
  12398. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12399. const int64_t i03 = i3 / sf3;
  12400. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12401. const int64_t i02 = i2 / sf2;
  12402. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12403. const int64_t i01 = i1 / sf1;
  12404. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12405. const int64_t i00 = i0 / sf0;
  12406. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12407. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12408. *y = *x;
  12409. }
  12410. }
  12411. }
  12412. }
  12413. }
  12414. static void ggml_compute_forward_upscale(
  12415. const struct ggml_compute_params * params,
  12416. struct ggml_tensor * dst) {
  12417. const struct ggml_tensor * src0 = dst->src[0];
  12418. switch (src0->type) {
  12419. case GGML_TYPE_F32:
  12420. {
  12421. ggml_compute_forward_upscale_f32(params, dst);
  12422. } break;
  12423. default:
  12424. {
  12425. GGML_ASSERT(false);
  12426. } break;
  12427. }
  12428. }
  12429. // ggml_compute_forward_pad
  12430. static void ggml_compute_forward_pad_f32(
  12431. const struct ggml_compute_params * params,
  12432. struct ggml_tensor * dst) {
  12433. const struct ggml_tensor * src0 = dst->src[0];
  12434. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12435. return;
  12436. }
  12437. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12438. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12439. const int ith = params->ith;
  12440. const int nth = params->nth;
  12441. GGML_TENSOR_UNARY_OP_LOCALS
  12442. float * dst_ptr = (float *) dst->data;
  12443. // TODO: optimize
  12444. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12445. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12446. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12447. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12448. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12449. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12450. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12451. dst_ptr[dst_idx] = *src_ptr;
  12452. } else {
  12453. dst_ptr[dst_idx] = 0;
  12454. }
  12455. }
  12456. }
  12457. }
  12458. }
  12459. }
  12460. static void ggml_compute_forward_pad(
  12461. const struct ggml_compute_params * params,
  12462. struct ggml_tensor * dst) {
  12463. const struct ggml_tensor * src0 = dst->src[0];
  12464. switch (src0->type) {
  12465. case GGML_TYPE_F32:
  12466. {
  12467. ggml_compute_forward_pad_f32(params, dst);
  12468. } break;
  12469. default:
  12470. {
  12471. GGML_ASSERT(false);
  12472. } break;
  12473. }
  12474. }
  12475. // ggml_compute_forward_arange
  12476. static void ggml_compute_forward_arange_f32(
  12477. const struct ggml_compute_params * params,
  12478. struct ggml_tensor * dst) {
  12479. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12480. return;
  12481. }
  12482. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12483. const int ith = params->ith;
  12484. const int nth = params->nth;
  12485. const float start = ggml_get_op_params_f32(dst, 0);
  12486. const float stop = ggml_get_op_params_f32(dst, 1);
  12487. const float step = ggml_get_op_params_f32(dst, 2);
  12488. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12489. GGML_ASSERT(ggml_nelements(dst) == steps);
  12490. for (int64_t i = ith; i < steps; i+= nth) {
  12491. float value = start + step * i;
  12492. ((float *)dst->data)[i] = value;
  12493. }
  12494. }
  12495. static void ggml_compute_forward_arange(
  12496. const struct ggml_compute_params * params,
  12497. struct ggml_tensor * dst) {
  12498. switch (dst->type) {
  12499. case GGML_TYPE_F32:
  12500. {
  12501. ggml_compute_forward_arange_f32(params, dst);
  12502. } break;
  12503. default:
  12504. {
  12505. GGML_ASSERT(false);
  12506. } break;
  12507. }
  12508. }
  12509. static void ggml_compute_forward_timestep_embedding_f32(
  12510. const struct ggml_compute_params * params,
  12511. struct ggml_tensor * dst) {
  12512. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12513. return;
  12514. }
  12515. const struct ggml_tensor * src0 = dst->src[0];
  12516. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12517. const int ith = params->ith;
  12518. const int nth = params->nth;
  12519. GGML_TENSOR_UNARY_OP_LOCALS
  12520. const int dim = ggml_get_op_params_i32(dst, 0);
  12521. const int max_period = ggml_get_op_params_i32(dst, 1);
  12522. int half = dim / 2;
  12523. for (int64_t i = 0; i < ne00; i++) {
  12524. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12525. for (int64_t j = ith; j < half; j += nth) {
  12526. float timestep = ((float *)src0->data)[i];
  12527. float freq = (float)expf(-logf(max_period) * j / half);
  12528. float arg = timestep * freq;
  12529. embed_data[j] = cosf(arg);
  12530. embed_data[j + half] = sinf(arg);
  12531. }
  12532. if (dim % 2 != 0 && ith == 0) {
  12533. embed_data[dim] = 0.f;
  12534. }
  12535. }
  12536. }
  12537. static void ggml_compute_forward_timestep_embedding(
  12538. const struct ggml_compute_params * params,
  12539. struct ggml_tensor * dst) {
  12540. const struct ggml_tensor * src0 = dst->src[0];
  12541. switch (src0->type) {
  12542. case GGML_TYPE_F32:
  12543. {
  12544. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12545. } break;
  12546. default:
  12547. {
  12548. GGML_ASSERT(false);
  12549. } break;
  12550. }
  12551. }
  12552. // ggml_compute_forward_argsort
  12553. static void ggml_compute_forward_argsort_f32(
  12554. const struct ggml_compute_params * params,
  12555. struct ggml_tensor * dst) {
  12556. const struct ggml_tensor * src0 = dst->src[0];
  12557. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12558. return;
  12559. }
  12560. GGML_TENSOR_UNARY_OP_LOCALS
  12561. GGML_ASSERT(nb0 == sizeof(float));
  12562. const int ith = params->ith;
  12563. const int nth = params->nth;
  12564. const int64_t nr = ggml_nrows(src0);
  12565. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12566. for (int64_t i = ith; i < nr; i += nth) {
  12567. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12568. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12569. for (int64_t j = 0; j < ne0; j++) {
  12570. dst_data[j] = j;
  12571. }
  12572. // C doesn't have a functional sort, so we do a bubble sort instead
  12573. for (int64_t j = 0; j < ne0; j++) {
  12574. for (int64_t k = j + 1; k < ne0; k++) {
  12575. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12576. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12577. int32_t tmp = dst_data[j];
  12578. dst_data[j] = dst_data[k];
  12579. dst_data[k] = tmp;
  12580. }
  12581. }
  12582. }
  12583. }
  12584. }
  12585. static void ggml_compute_forward_argsort(
  12586. const struct ggml_compute_params * params,
  12587. struct ggml_tensor * dst) {
  12588. const struct ggml_tensor * src0 = dst->src[0];
  12589. switch (src0->type) {
  12590. case GGML_TYPE_F32:
  12591. {
  12592. ggml_compute_forward_argsort_f32(params, dst);
  12593. } break;
  12594. default:
  12595. {
  12596. GGML_ASSERT(false);
  12597. } break;
  12598. }
  12599. }
  12600. // ggml_compute_forward_flash_attn
  12601. static void ggml_compute_forward_flash_attn_f32(
  12602. const struct ggml_compute_params * params,
  12603. const bool masked,
  12604. struct ggml_tensor * dst) {
  12605. const struct ggml_tensor * q = dst->src[0];
  12606. const struct ggml_tensor * k = dst->src[1];
  12607. const struct ggml_tensor * v = dst->src[2];
  12608. int64_t t0 = ggml_perf_time_us();
  12609. UNUSED(t0);
  12610. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12611. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12612. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12613. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12614. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12615. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12616. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12617. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12618. const int ith = params->ith;
  12619. const int nth = params->nth;
  12620. const int64_t D = neq0;
  12621. const int64_t N = neq1;
  12622. const int64_t P = nek1 - N;
  12623. const int64_t M = P + N;
  12624. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12625. GGML_ASSERT(ne0 == D);
  12626. GGML_ASSERT(ne1 == N);
  12627. GGML_ASSERT(P >= 0);
  12628. GGML_ASSERT(nbq0 == sizeof(float));
  12629. GGML_ASSERT(nbk0 == sizeof(float));
  12630. GGML_ASSERT(nbv0 == sizeof(float));
  12631. GGML_ASSERT(neq0 == D);
  12632. GGML_ASSERT(nek0 == D);
  12633. GGML_ASSERT(nev1 == D);
  12634. GGML_ASSERT(neq1 == N);
  12635. GGML_ASSERT(nek1 == N + P);
  12636. GGML_ASSERT(nev1 == D);
  12637. // dst cannot be transposed or permuted
  12638. GGML_ASSERT(nb0 == sizeof(float));
  12639. GGML_ASSERT(nb0 <= nb1);
  12640. GGML_ASSERT(nb1 <= nb2);
  12641. GGML_ASSERT(nb2 <= nb3);
  12642. if (params->type == GGML_TASK_TYPE_INIT) {
  12643. return;
  12644. }
  12645. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12646. return;
  12647. }
  12648. // parallelize by q rows using ggml_vec_dot_f32
  12649. // total rows in q
  12650. const int nr = neq1*neq2*neq3;
  12651. // rows per thread
  12652. const int dr = (nr + nth - 1)/nth;
  12653. // row range for this thread
  12654. const int ir0 = dr*ith;
  12655. const int ir1 = MIN(ir0 + dr, nr);
  12656. const float scale = 1.0f/sqrtf(D);
  12657. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12658. for (int ir = ir0; ir < ir1; ++ir) {
  12659. // q indices
  12660. const int iq3 = ir/(neq2*neq1);
  12661. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12662. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12663. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  12664. for (int i = M; i < Mup; ++i) {
  12665. S[i] = -INFINITY;
  12666. }
  12667. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12668. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12669. // k indices
  12670. const int ik3 = iq3;
  12671. const int ik2 = iq2 % nek2;
  12672. const int ik1 = ic;
  12673. // S indices
  12674. const int i1 = ik1;
  12675. ggml_vec_dot_f32(neq0,
  12676. S + i1, 0,
  12677. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12678. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12679. }
  12680. // scale
  12681. ggml_vec_scale_f32(masked_begin, S, scale);
  12682. for (int64_t i = masked_begin; i < M; i++) {
  12683. S[i] = -INFINITY;
  12684. }
  12685. // softmax
  12686. // exclude known -INF S[..] values from max and loop
  12687. // dont forget to set their SW values to zero
  12688. {
  12689. float max = -INFINITY;
  12690. ggml_vec_max_f32(masked_begin, &max, S);
  12691. ggml_float sum = 0.0;
  12692. {
  12693. #ifdef GGML_SOFT_MAX_ACCELERATE
  12694. max = -max;
  12695. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12696. vvexpf(S, S, &Mup);
  12697. ggml_vec_sum_f32(Mup, &sum, S);
  12698. #else
  12699. sum = ggml_vec_soft_max_f32(Mup, S, S, max);
  12700. #endif
  12701. }
  12702. assert(sum > 0.0);
  12703. sum = 1.0/sum;
  12704. ggml_vec_scale_f32(masked_begin, S, sum);
  12705. #ifndef NDEBUG
  12706. for (int i = 0; i < masked_begin; ++i) {
  12707. assert(!isnan(S[i]));
  12708. assert(!isinf(S[i]));
  12709. }
  12710. #endif
  12711. }
  12712. for (int64_t ic = 0; ic < nev1; ++ic) {
  12713. // dst indices
  12714. const int i1 = iq1;
  12715. const int i2 = iq2;
  12716. const int i3 = iq3;
  12717. // v indices
  12718. const int iv2 = iq2 % nev2;
  12719. const int iv3 = iq3;
  12720. ggml_vec_dot_f32(masked_begin,
  12721. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12722. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12723. S, 0, 1);
  12724. }
  12725. }
  12726. }
  12727. static void ggml_compute_forward_flash_attn_f16(
  12728. const struct ggml_compute_params * params,
  12729. const bool masked,
  12730. struct ggml_tensor * dst) {
  12731. const struct ggml_tensor * q = dst->src[0];
  12732. const struct ggml_tensor * k = dst->src[1];
  12733. const struct ggml_tensor * v = dst->src[2];
  12734. int64_t t0 = ggml_perf_time_us();
  12735. UNUSED(t0);
  12736. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12737. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12738. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12739. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12740. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12741. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12742. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12743. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12744. const int ith = params->ith;
  12745. const int nth = params->nth;
  12746. const int64_t D = neq0;
  12747. const int64_t N = neq1;
  12748. const int64_t P = nek1 - N;
  12749. const int64_t M = P + N;
  12750. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12751. GGML_ASSERT(ne0 == D);
  12752. GGML_ASSERT(ne1 == N);
  12753. GGML_ASSERT(P >= 0);
  12754. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  12755. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12756. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12757. GGML_ASSERT(neq0 == D);
  12758. GGML_ASSERT(nek0 == D);
  12759. GGML_ASSERT(nev1 == D);
  12760. GGML_ASSERT(neq1 == N);
  12761. GGML_ASSERT(nek1 == N + P);
  12762. GGML_ASSERT(nev1 == D);
  12763. // dst cannot be transposed or permuted
  12764. GGML_ASSERT(nb0 == sizeof(float));
  12765. GGML_ASSERT(nb0 <= nb1);
  12766. GGML_ASSERT(nb1 <= nb2);
  12767. GGML_ASSERT(nb2 <= nb3);
  12768. if (params->type == GGML_TASK_TYPE_INIT) {
  12769. return;
  12770. }
  12771. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12772. return;
  12773. }
  12774. // parallelize by q rows using ggml_vec_dot_f32
  12775. // total rows in q
  12776. const int nr = neq1*neq2*neq3;
  12777. // rows per thread
  12778. const int dr = (nr + nth - 1)/nth;
  12779. // row range for this thread
  12780. const int ir0 = dr*ith;
  12781. const int ir1 = MIN(ir0 + dr, nr);
  12782. const float scale = 1.0f/sqrtf(D);
  12783. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12784. for (int ir = ir0; ir < ir1; ++ir) {
  12785. // q indices
  12786. const int iq3 = ir/(neq2*neq1);
  12787. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12788. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12789. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  12790. for (int i = M; i < Mup; ++i) {
  12791. S[i] = -INFINITY;
  12792. }
  12793. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  12794. for (int64_t ic = 0; ic < nek1; ++ic) {
  12795. // k indices
  12796. const int ik3 = iq3;
  12797. const int ik2 = iq2 % nek2;
  12798. const int ik1 = ic;
  12799. // S indices
  12800. const int i1 = ik1;
  12801. ggml_vec_dot_f16(neq0,
  12802. S + i1, 0,
  12803. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12804. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12805. }
  12806. } else {
  12807. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12808. // k indices
  12809. const int ik3 = iq3;
  12810. const int ik2 = iq2 % nek2;
  12811. const int ik1 = ic;
  12812. // S indices
  12813. const int i1 = ik1;
  12814. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12815. S + i1,
  12816. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12817. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12818. }
  12819. }
  12820. // scale
  12821. ggml_vec_scale_f32(nek1, S, scale);
  12822. if (masked) {
  12823. for (int64_t i = P; i < M; i++) {
  12824. if (i > P + iq1) {
  12825. S[i] = -INFINITY;
  12826. }
  12827. }
  12828. }
  12829. // softmax
  12830. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  12831. // dont forget to set their S values to zero
  12832. {
  12833. float max = -INFINITY;
  12834. ggml_vec_max_f32(M, &max, S);
  12835. ggml_float sum = 0.0;
  12836. {
  12837. #ifdef GGML_SOFT_MAX_ACCELERATE
  12838. max = -max;
  12839. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12840. vvexpf(S, S, &Mup);
  12841. ggml_vec_sum_f32(Mup, &sum, S);
  12842. #else
  12843. sum = ggml_vec_soft_max_f32(Mup, S, S, max);
  12844. #endif
  12845. }
  12846. assert(sum > 0.0);
  12847. sum = 1.0/sum;
  12848. ggml_vec_scale_f32(M, S, sum);
  12849. #ifndef NDEBUG
  12850. for (int i = 0; i < M; ++i) {
  12851. assert(!isnan(S[i]));
  12852. assert(!isinf(S[i]));
  12853. }
  12854. #endif
  12855. }
  12856. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12857. for (int64_t i = 0; i < M; i++) {
  12858. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12859. }
  12860. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12861. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12862. for (int64_t ic = 0; ic < nev1; ++ic) {
  12863. // dst indices
  12864. const int i1 = iq1;
  12865. const int i2 = iq2;
  12866. const int i3 = iq3;
  12867. // v indices
  12868. const int iv2 = iq2 % nev2;
  12869. const int iv3 = iq3;
  12870. ggml_vec_dot_f16(nev0,
  12871. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12872. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12873. S16, 0, 1);
  12874. }
  12875. } else {
  12876. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  12877. // dst indices
  12878. const int i1 = iq1;
  12879. const int i2 = iq2;
  12880. const int i3 = iq3;
  12881. // v indices
  12882. const int iv2 = iq2 % nev2;
  12883. const int iv3 = iq3;
  12884. ggml_vec_dot_f16_unroll(nev0, nbv1,
  12885. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12886. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12887. S16);
  12888. }
  12889. }
  12890. }
  12891. }
  12892. static void ggml_compute_forward_flash_attn(
  12893. const struct ggml_compute_params * params,
  12894. const bool masked,
  12895. struct ggml_tensor * dst) {
  12896. const struct ggml_tensor * q = dst->src[0];
  12897. switch (q->type) {
  12898. case GGML_TYPE_F16:
  12899. {
  12900. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  12901. } break;
  12902. case GGML_TYPE_F32:
  12903. {
  12904. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  12905. } break;
  12906. default:
  12907. {
  12908. GGML_ASSERT(false);
  12909. } break;
  12910. }
  12911. }
  12912. // ggml_compute_forward_flash_attn_ext
  12913. static void ggml_compute_forward_flash_attn_ext_f16(
  12914. const struct ggml_compute_params * params,
  12915. const struct ggml_tensor * q,
  12916. const struct ggml_tensor * k,
  12917. const struct ggml_tensor * v,
  12918. const struct ggml_tensor * mask,
  12919. struct ggml_tensor * dst) {
  12920. int64_t t0 = ggml_perf_time_us();
  12921. UNUSED(t0);
  12922. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12923. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12924. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12925. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12926. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12927. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12928. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12929. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12930. const int ith = params->ith;
  12931. const int nth = params->nth;
  12932. const int64_t D = neq0;
  12933. const int64_t N = neq1;
  12934. GGML_ASSERT(ne0 == D);
  12935. GGML_ASSERT(ne2 == N);
  12936. GGML_ASSERT(nbq0 == sizeof(float));
  12937. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12938. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12939. GGML_ASSERT(neq0 == D);
  12940. GGML_ASSERT(nek0 == D);
  12941. GGML_ASSERT(nev0 == D);
  12942. GGML_ASSERT(neq1 == N);
  12943. GGML_ASSERT(nev0 == D);
  12944. // dst cannot be transposed or permuted
  12945. GGML_ASSERT(nb0 == sizeof(float));
  12946. GGML_ASSERT(nb0 <= nb1);
  12947. GGML_ASSERT(nb1 <= nb2);
  12948. GGML_ASSERT(nb2 <= nb3);
  12949. // broadcast factors
  12950. const int64_t rk2 = neq2/nek2;
  12951. const int64_t rk3 = neq3/nek3;
  12952. const int64_t rv2 = neq2/nev2;
  12953. const int64_t rv3 = neq3/nev3;
  12954. if (params->type == GGML_TASK_TYPE_INIT) {
  12955. return;
  12956. }
  12957. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12958. return;
  12959. }
  12960. // parallelize by q rows using ggml_vec_dot_f32
  12961. // total rows in q
  12962. const int nr = neq1*neq2*neq3;
  12963. // rows per thread
  12964. const int dr = (nr + nth - 1)/nth;
  12965. // row range for this thread
  12966. const int ir0 = dr*ith;
  12967. const int ir1 = MIN(ir0 + dr, nr);
  12968. float scale = 1.0f;
  12969. float max_bias = 0.0f;
  12970. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12971. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12972. const uint32_t n_head = neq2;
  12973. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12974. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12975. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12976. // loop over n_batch and n_head
  12977. for (int ir = ir0; ir < ir1; ++ir) {
  12978. // q indices
  12979. const int iq3 = ir/(neq2*neq1);
  12980. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12981. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12982. const uint32_t h = iq2; // head
  12983. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12984. float S = 0.0f;
  12985. float M = -INFINITY;
  12986. float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32);
  12987. ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory
  12988. ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D);
  12989. memset(V16, 0, D*sizeof(ggml_fp16_t));
  12990. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12991. // k indices
  12992. const int ik3 = iq3 / rk3;
  12993. const int ik2 = iq2 / rk2;
  12994. // v indices
  12995. const int iv3 = iq3 / rv3;
  12996. const int iv2 = iq2 / rv2;
  12997. // online softmax / attention
  12998. // loop over n_kv and n_head_kv
  12999. // ref: https://arxiv.org/pdf/2112.05682.pdf
  13000. for (int64_t ic = 0; ic < nek1; ++ic) {
  13001. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  13002. if (mv == -INFINITY) {
  13003. continue;
  13004. }
  13005. float s;
  13006. // convert Q to F16 in V32
  13007. {
  13008. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  13009. for (int64_t d = 0; d < D; ++d) {
  13010. Q16[d] = GGML_FP32_TO_FP16(pq[d]);
  13011. }
  13012. }
  13013. ggml_vec_dot_f16(D,
  13014. &s, 0,
  13015. (ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13016. Q16, 0, 1);
  13017. s = s*scale + mv;
  13018. const float Mold = M;
  13019. float ms = 1.0f;
  13020. float vs = 1.0f;
  13021. if (s > M) {
  13022. M = s;
  13023. ms = expf(Mold - M);
  13024. // V = V*expf(Mold - M)
  13025. ggml_vec_scale_f16(D, V16, ms);
  13026. } else {
  13027. vs = expf(s - M);
  13028. }
  13029. const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  13030. // V += v*expf(s - M)
  13031. ggml_vec_mad_f16(D, V16, v16, vs);
  13032. S = S*ms + vs;
  13033. }
  13034. // V /= S
  13035. for (int64_t d = 0; d < D; ++d) {
  13036. V32[d] = GGML_FP16_TO_FP32(V16[d])/S;
  13037. }
  13038. // dst indices
  13039. const int i1 = iq1;
  13040. const int i2 = iq2;
  13041. const int i3 = iq3;
  13042. // original
  13043. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  13044. // permute(0, 2, 1, 3)
  13045. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1);
  13046. }
  13047. }
  13048. static void ggml_compute_forward_flash_attn_ext(
  13049. const struct ggml_compute_params * params,
  13050. const struct ggml_tensor * q,
  13051. const struct ggml_tensor * k,
  13052. const struct ggml_tensor * v,
  13053. const struct ggml_tensor * mask,
  13054. struct ggml_tensor * dst) {
  13055. switch (dst->op_params[2]) {
  13056. case GGML_PREC_DEFAULT:
  13057. case GGML_PREC_F32:
  13058. {
  13059. // uses F32 accumulators
  13060. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  13061. } break;
  13062. default:
  13063. {
  13064. GGML_ASSERT(false);
  13065. } break;
  13066. }
  13067. }
  13068. // ggml_compute_forward_flash_ff
  13069. static void ggml_compute_forward_flash_ff_f16(
  13070. const struct ggml_compute_params * params,
  13071. struct ggml_tensor * dst) {
  13072. const struct ggml_tensor * a = dst->src[0]; // F16
  13073. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  13074. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  13075. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  13076. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  13077. int64_t t0 = ggml_perf_time_us();
  13078. UNUSED(t0);
  13079. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  13080. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  13081. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  13082. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  13083. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  13084. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  13085. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  13086. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  13087. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  13088. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  13089. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13090. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13091. const int ith = params->ith;
  13092. const int nth = params->nth;
  13093. const int64_t D = nea0;
  13094. //const int64_t N = nea1;
  13095. const int64_t M = neb01;
  13096. GGML_ASSERT(ne0 == nea0);
  13097. GGML_ASSERT(ne1 == nea1);
  13098. GGML_ASSERT(ne2 == nea2);
  13099. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  13100. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  13101. GGML_ASSERT(nbb10 == sizeof(float));
  13102. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  13103. GGML_ASSERT(nbc10 == sizeof(float));
  13104. GGML_ASSERT(neb00 == D);
  13105. GGML_ASSERT(neb01 == M);
  13106. GGML_ASSERT(neb10 == M);
  13107. GGML_ASSERT(neb11 == 1);
  13108. GGML_ASSERT(nec00 == M);
  13109. GGML_ASSERT(nec01 == D);
  13110. GGML_ASSERT(nec10 == D);
  13111. GGML_ASSERT(nec11 == 1);
  13112. // dst cannot be transposed or permuted
  13113. GGML_ASSERT(nb0 == sizeof(float));
  13114. GGML_ASSERT(nb0 <= nb1);
  13115. GGML_ASSERT(nb1 <= nb2);
  13116. GGML_ASSERT(nb2 <= nb3);
  13117. if (params->type == GGML_TASK_TYPE_INIT) {
  13118. return;
  13119. }
  13120. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13121. return;
  13122. }
  13123. // parallelize by a rows using ggml_vec_dot_f32
  13124. // total rows in a
  13125. const int nr = nea1*nea2*nea3;
  13126. // rows per thread
  13127. const int dr = (nr + nth - 1)/nth;
  13128. // row range for this thread
  13129. const int ir0 = dr*ith;
  13130. const int ir1 = MIN(ir0 + dr, nr);
  13131. for (int ir = ir0; ir < ir1; ++ir) {
  13132. // a indices
  13133. const int ia3 = ir/(nea2*nea1);
  13134. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  13135. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  13136. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  13137. for (int64_t ic = 0; ic < neb01; ++ic) {
  13138. // b0 indices
  13139. const int ib03 = ia3;
  13140. const int ib02 = ia2;
  13141. const int ib01 = ic;
  13142. // S indices
  13143. const int i1 = ib01;
  13144. ggml_vec_dot_f16(nea0,
  13145. S + i1, 0,
  13146. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  13147. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  13148. }
  13149. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  13150. //ggml_vec_gelu_f32(neb01, S, S);
  13151. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  13152. for (int64_t i = 0; i < M; i++) {
  13153. S16[i] = GGML_FP32_TO_FP16(S[i]);
  13154. }
  13155. ggml_vec_gelu_f16(neb01, S16, S16);
  13156. {
  13157. // dst indices
  13158. const int i1 = ia1;
  13159. const int i2 = ia2;
  13160. const int i3 = ia3;
  13161. for (int64_t ic = 0; ic < nec01; ++ic) {
  13162. ggml_vec_dot_f16(neb01,
  13163. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  13164. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  13165. S16, 0, 1);
  13166. }
  13167. ggml_vec_add_f32(nec01,
  13168. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  13169. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  13170. (float *) c1->data);
  13171. }
  13172. }
  13173. }
  13174. static void ggml_compute_forward_flash_ff(
  13175. const struct ggml_compute_params * params,
  13176. struct ggml_tensor * dst) {
  13177. const struct ggml_tensor * b0 = dst->src[1];
  13178. switch (b0->type) {
  13179. case GGML_TYPE_F16:
  13180. {
  13181. ggml_compute_forward_flash_ff_f16(params, dst);
  13182. } break;
  13183. case GGML_TYPE_F32:
  13184. {
  13185. GGML_ASSERT(false); // TODO
  13186. } break;
  13187. default:
  13188. {
  13189. GGML_ASSERT(false);
  13190. } break;
  13191. }
  13192. }
  13193. // ggml_compute_forward_flash_attn_back
  13194. static void ggml_compute_forward_flash_attn_back_f32(
  13195. const struct ggml_compute_params * params,
  13196. const bool masked,
  13197. struct ggml_tensor * dst) {
  13198. const struct ggml_tensor * q = dst->src[0];
  13199. const struct ggml_tensor * k = dst->src[1];
  13200. const struct ggml_tensor * v = dst->src[2];
  13201. const struct ggml_tensor * d = dst->src[3];
  13202. int64_t t0 = ggml_perf_time_us();
  13203. UNUSED(t0);
  13204. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13205. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13206. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13207. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13208. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13209. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13210. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  13211. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  13212. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13213. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13214. const int ith = params->ith;
  13215. const int nth = params->nth;
  13216. const int64_t D = neq0;
  13217. const int64_t N = neq1;
  13218. const int64_t P = nek1 - N;
  13219. const int64_t M = P + N;
  13220. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  13221. const int mxDM = MAX(D, Mup);
  13222. // GGML_ASSERT(ne0 == D);
  13223. // GGML_ASSERT(ne1 == N);
  13224. GGML_ASSERT(P >= 0);
  13225. GGML_ASSERT(nbq0 == sizeof(float));
  13226. GGML_ASSERT(nbk0 == sizeof(float));
  13227. GGML_ASSERT(nbv0 == sizeof(float));
  13228. GGML_ASSERT(neq0 == D);
  13229. GGML_ASSERT(nek0 == D);
  13230. GGML_ASSERT(nev1 == D);
  13231. GGML_ASSERT(ned0 == D);
  13232. GGML_ASSERT(neq1 == N);
  13233. GGML_ASSERT(nek1 == N + P);
  13234. GGML_ASSERT(nev1 == D);
  13235. GGML_ASSERT(ned1 == N);
  13236. // dst cannot be transposed or permuted
  13237. GGML_ASSERT(nb0 == sizeof(float));
  13238. GGML_ASSERT(nb0 <= nb1);
  13239. GGML_ASSERT(nb1 <= nb2);
  13240. GGML_ASSERT(nb2 <= nb3);
  13241. if (params->type == GGML_TASK_TYPE_INIT) {
  13242. if (ith == 0) {
  13243. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  13244. }
  13245. return;
  13246. }
  13247. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13248. return;
  13249. }
  13250. const int64_t elem_q = ggml_nelements(q);
  13251. const int64_t elem_k = ggml_nelements(k);
  13252. enum ggml_type result_type = dst->type;
  13253. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13254. const size_t tsize = ggml_type_size(result_type);
  13255. const size_t offs_q = 0;
  13256. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13257. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13258. void * grad_q = (char *) dst->data;
  13259. void * grad_k = (char *) dst->data + offs_k;
  13260. void * grad_v = (char *) dst->data + offs_v;
  13261. const size_t nbgq1 = nb0*neq0;
  13262. const size_t nbgq2 = nb0*neq0*neq1;
  13263. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13264. const size_t nbgk1 = nb0*nek0;
  13265. const size_t nbgk2 = nb0*nek0*nek1;
  13266. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13267. const size_t nbgv1 = nb0*nev0;
  13268. const size_t nbgv2 = nb0*nev0*nev1;
  13269. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13270. // parallelize by k rows using ggml_vec_dot_f32
  13271. // total rows in k
  13272. const int nr = nek2*nek3;
  13273. // rows per thread
  13274. const int dr = (nr + nth - 1)/nth;
  13275. // row range for this thread
  13276. const int ir0 = dr*ith;
  13277. const int ir1 = MIN(ir0 + dr, nr);
  13278. const float scale = 1.0f/sqrtf(D);
  13279. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13280. // how often k2 (and v2) is repeated in q2
  13281. int nrep = neq2/nek2;
  13282. for (int ir = ir0; ir < ir1; ++ir) {
  13283. // q indices
  13284. const int ik3 = ir/(nek2);
  13285. const int ik2 = ir - ik3*nek2;
  13286. const int iq3 = ik3;
  13287. const int id3 = ik3;
  13288. const int iv3 = ik3;
  13289. const int iv2 = ik2;
  13290. for (int irep = 0; irep < nrep; ++irep) {
  13291. const int iq2 = ik2 + irep*nek2;
  13292. const int id2 = iq2;
  13293. // (ik2 + irep*nek2) % nek2 == ik2
  13294. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13295. const int id1 = iq1;
  13296. // not sure about CACHE_LINE_SIZE_F32..
  13297. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13298. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13299. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13300. for (int i = M; i < Mup; ++i) {
  13301. S[i] = -INFINITY;
  13302. }
  13303. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13304. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13305. // k indices
  13306. const int ik1 = ic;
  13307. // S indices
  13308. const int i1 = ik1;
  13309. ggml_vec_dot_f32(neq0,
  13310. S + i1, 0,
  13311. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13312. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13313. }
  13314. // scale
  13315. ggml_vec_scale_f32(masked_begin, S, scale);
  13316. for (int64_t i = masked_begin; i < M; i++) {
  13317. S[i] = -INFINITY;
  13318. }
  13319. // softmax
  13320. // exclude known -INF S[..] values from max and loop
  13321. // dont forget to set their SM values to zero
  13322. {
  13323. float max = -INFINITY;
  13324. ggml_vec_max_f32(masked_begin, &max, S);
  13325. ggml_float sum = 0.0;
  13326. {
  13327. #ifdef GGML_SOFT_MAX_ACCELERATE
  13328. max = -max;
  13329. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13330. vvexpf(SM, SM, &Mup);
  13331. ggml_vec_sum_f32(Mup, &sum, SM);
  13332. #else
  13333. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13334. #endif
  13335. }
  13336. assert(sum > 0.0);
  13337. sum = 1.0/sum;
  13338. ggml_vec_scale_f32(masked_begin, SM, sum);
  13339. }
  13340. // step-by-step explanation
  13341. {
  13342. // forward-process shape grads from backward process
  13343. // parallel_for ik2,ik3:
  13344. // for irep:
  13345. // iq2 = ik2 + irep*nek2
  13346. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13347. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13348. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13349. // for iq1:
  13350. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13351. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13352. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13353. // S0 = -Inf [D,1,1,1]
  13354. // ~S1[i] = dot(kcur[:D,i], qcur)
  13355. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13356. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13357. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13358. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13359. // ~S5[i] = dot(vcur[:,i], S4)
  13360. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13361. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13362. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13363. // dst backward-/ grad[dst] = d
  13364. //
  13365. // output gradients with their dependencies:
  13366. //
  13367. // grad[kcur] = grad[S1].T @ qcur
  13368. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13369. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13370. // grad[S4] = grad[S5] @ vcur
  13371. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13372. // grad[qcur] = grad[S1] @ kcur
  13373. // grad[vcur] = grad[S5].T @ S4
  13374. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13375. //
  13376. // in post-order:
  13377. //
  13378. // S1 = qcur @ kcur.T
  13379. // S2 = S1 * scale
  13380. // S3 = diag_mask_inf(S2, P)
  13381. // S4 = softmax(S3)
  13382. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13383. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13384. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13385. // grad[qcur] = grad[S1] @ kcur
  13386. // grad[kcur] = grad[S1].T @ qcur
  13387. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13388. //
  13389. // using less variables (SM=S4):
  13390. //
  13391. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13392. // SM = softmax(S)
  13393. // S = d[:D,iq1,iq2,iq3] @ vcur
  13394. // dot_SM_gradSM = dot(SM, S)
  13395. // S = SM * (S - dot(SM, S))
  13396. // S = diag_mask_zero(S, P) * scale
  13397. //
  13398. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13399. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13400. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13401. }
  13402. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13403. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13404. // for ic:
  13405. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13406. // exclude known future zero S[..] values from operation
  13407. ggml_vec_set_f32(masked_begin, S, 0);
  13408. for (int64_t ic = 0; ic < D; ++ic) {
  13409. ggml_vec_mad_f32(masked_begin,
  13410. S,
  13411. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13412. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13413. }
  13414. // S = SM * (S - dot(SM, S))
  13415. float dot_SM_gradSM = 0;
  13416. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13417. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13418. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13419. // S = diag_mask_zero(S, P) * scale
  13420. // already done by above ggml_vec_set_f32
  13421. // exclude known zero S[..] values from operation
  13422. ggml_vec_scale_f32(masked_begin, S, scale);
  13423. // S shape [M,1]
  13424. // SM shape [M,1]
  13425. // kcur shape [D,M]
  13426. // qcur shape [D,1]
  13427. // vcur shape [M,D]
  13428. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13429. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13430. // for ic:
  13431. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13432. // exclude known zero S[..] values from loop
  13433. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13434. ggml_vec_mad_f32(D,
  13435. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13436. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13437. S[ic]);
  13438. }
  13439. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13440. // for ic:
  13441. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13442. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13443. // exclude known zero S[..] values from loop
  13444. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13445. ggml_vec_mad_f32(D,
  13446. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13447. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13448. S[ic]);
  13449. }
  13450. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13451. // for ic:
  13452. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13453. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13454. // exclude known zero SM[..] values from mad
  13455. for (int64_t ic = 0; ic < D; ++ic) {
  13456. ggml_vec_mad_f32(masked_begin,
  13457. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13458. SM,
  13459. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13460. }
  13461. }
  13462. }
  13463. }
  13464. }
  13465. static void ggml_compute_forward_flash_attn_back(
  13466. const struct ggml_compute_params * params,
  13467. const bool masked,
  13468. struct ggml_tensor * dst) {
  13469. const struct ggml_tensor * q = dst->src[0];
  13470. switch (q->type) {
  13471. case GGML_TYPE_F32:
  13472. {
  13473. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13474. } break;
  13475. default:
  13476. {
  13477. GGML_ASSERT(false);
  13478. } break;
  13479. }
  13480. }
  13481. // ggml_compute_forward_ssm_conv
  13482. static void ggml_compute_forward_ssm_conv_f32(
  13483. const struct ggml_compute_params * params,
  13484. struct ggml_tensor * dst) {
  13485. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13486. return;
  13487. }
  13488. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13489. const struct ggml_tensor * src1 = dst->src[1]; // x
  13490. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13491. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13492. const int ith = params->ith;
  13493. const int nth = params->nth;
  13494. const int nc = src2->ne[0]; // d_conv
  13495. const int nr = src0->ne[1]; // d_inner
  13496. const int n_t = src1->ne[1]; // n_tokens
  13497. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13498. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13499. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13500. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13501. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13502. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13503. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13504. // for use with the destination state offset between sequences
  13505. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13506. // rows per thread
  13507. const int dr = (nr + nth - 1)/nth;
  13508. // row range for this thread
  13509. const int ir0 = dr*ith;
  13510. const int ir1 = MIN(ir0 + dr, nr);
  13511. const int ir = ir1 - ir0;
  13512. if (n_kv > 1) {
  13513. // multiple sequences means it's hard to know when it's the first time a state is read,
  13514. // so copy them all over to the destination, just to be sure.
  13515. for (int i3 = 0; i3 < n_kv; ++i3) {
  13516. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13517. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13518. // can't use memcpy because of d_conv vs d_conv - 1
  13519. for (int i1 = 0; i1 < ir; ++i1) {
  13520. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13521. // copy s0 to last (d_conv - 1) columns of s
  13522. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13523. }
  13524. }
  13525. }
  13526. }
  13527. for (int i2 = 0; i2 < n_t; ++i2) {
  13528. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13529. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13530. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13531. float * s0; // {d_conv - 1, d_inner, n_kv}
  13532. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13533. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13534. int ne0s0;
  13535. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13536. // avoid needing to copy the state for the first token
  13537. if (i2 == 0) {
  13538. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13539. ne0s0 = src0->ne[0];
  13540. } else {
  13541. // the source is the last (d_conv - 1) columns of the destination
  13542. s0 = s + 1;
  13543. ne0s0 = nc;
  13544. }
  13545. // d_inner
  13546. for (int i1 = 0; i1 < ir; ++i1) {
  13547. // shift state left
  13548. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13549. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13550. }
  13551. // insert x on the last column
  13552. s[(nc - 1) + i1*nc] = x0[i1];
  13553. }
  13554. // handle copies when there are multiple output states
  13555. for (int i3 = 1; i3 < n_kv; ++i3) {
  13556. int32_t seq = sq[i3];
  13557. if (0 <= seq && seq < n_kv) {
  13558. float * s1 = s + (seq - sq[0])*nc*nr;
  13559. memcpy(s1, s, nc*ir*sizeof(float));
  13560. } else {
  13561. // stop at negative or too big seq_ids
  13562. break;
  13563. }
  13564. }
  13565. // it seems a little faster when this is separate from the state shift
  13566. for (int i1 = 0; i1 < ir; ++i1) {
  13567. // rowwise dot product
  13568. float sumf = 0.0f;
  13569. for (int i0 = 0; i0 < nc; ++i0) {
  13570. int i = i0 + i1*nc;
  13571. sumf += s[i] * c[i];
  13572. }
  13573. x[i1] = sumf;
  13574. }
  13575. }
  13576. }
  13577. static void ggml_compute_forward_ssm_conv(
  13578. const struct ggml_compute_params * params,
  13579. struct ggml_tensor * dst) {
  13580. switch (dst->src[0]->type) {
  13581. case GGML_TYPE_F32:
  13582. {
  13583. ggml_compute_forward_ssm_conv_f32(params, dst);
  13584. } break;
  13585. default:
  13586. {
  13587. GGML_ASSERT(false);
  13588. } break;
  13589. }
  13590. }
  13591. // ggml_compute_forward_ssm_scan
  13592. static void ggml_compute_forward_ssm_scan_f32(
  13593. const struct ggml_compute_params * params,
  13594. struct ggml_tensor * dst) {
  13595. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13596. return;
  13597. }
  13598. const struct ggml_tensor * src0 = dst->src[0]; // s
  13599. const struct ggml_tensor * src1 = dst->src[1]; // x
  13600. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13601. const struct ggml_tensor * src3 = dst->src[3]; // A
  13602. const struct ggml_tensor * src4 = dst->src[4]; // B
  13603. const struct ggml_tensor * src5 = dst->src[5]; // C
  13604. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13605. const int ith = params->ith;
  13606. const int nth = params->nth;
  13607. const int64_t nc = src0->ne[0]; // d_state
  13608. const int64_t nr = src0->ne[1]; // d_inner
  13609. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13610. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13611. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13612. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13613. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13614. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13615. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13616. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13617. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13618. // required for the dot product between s and C, and when copying the states
  13619. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13620. // required for per-sequence offsets for states
  13621. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13622. // required to get correct offset for state destination (i.e. src1->nb[2])
  13623. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13624. // rows per thread
  13625. const int dr = (nr + nth - 1)/nth;
  13626. // row range for this thread
  13627. const int ir0 = dr*ith;
  13628. const int ir1 = MIN(ir0 + dr, nr);
  13629. const int ir = ir1 - ir0;
  13630. if (n_kv > 1) {
  13631. // it's hard to know if the source states have already been copied
  13632. // when there are multiple, so copy them already.
  13633. for (int i3 = 0; i3 < n_kv; ++i3) {
  13634. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13635. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13636. memcpy(s, s0, nc*ir*sizeof(float));
  13637. }
  13638. }
  13639. for (int i2 = 0; i2 < n_t; ++i2) {
  13640. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13641. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13642. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13643. float * s0;
  13644. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13645. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13646. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13647. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13648. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13649. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13650. // avoid needing to copy the state for the first token
  13651. if (i2 == 0) {
  13652. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13653. } else {
  13654. // otherwise the source is the same as the destination
  13655. s0 = s;
  13656. }
  13657. // d_inner
  13658. for (int i1 = 0; i1 < ir; ++i1) {
  13659. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13660. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13661. float x_dt = x[i1] * dt_soft_plus;
  13662. float sumf = 0.0f;
  13663. // d_state
  13664. for (int i0 = 0; i0 < nc; ++i0) {
  13665. int i = i0 + i1*nc;
  13666. // state = prev_state * dA + dB * x
  13667. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13668. // y = rowwise_dotprod(state, C)
  13669. sumf += state * C[i0];
  13670. s[i] = state;
  13671. }
  13672. y[i1] = sumf;
  13673. }
  13674. // handle copies when there are multiple output states
  13675. for (int i3 = 1; i3 < n_kv; ++i3) {
  13676. int32_t seq = sq[i3];
  13677. if (0 <= seq && seq < n_kv) {
  13678. float * s1 = s + (seq - sq[0])*nc*nr;
  13679. memcpy(s1, s, nc*ir*sizeof(float));
  13680. } else {
  13681. // stop at negative or too big seq_ids
  13682. break;
  13683. }
  13684. }
  13685. }
  13686. }
  13687. static void ggml_compute_forward_ssm_scan(
  13688. const struct ggml_compute_params * params,
  13689. struct ggml_tensor * dst) {
  13690. switch (dst->src[0]->type) {
  13691. case GGML_TYPE_F32:
  13692. {
  13693. ggml_compute_forward_ssm_scan_f32(params, dst);
  13694. } break;
  13695. default:
  13696. {
  13697. GGML_ASSERT(false);
  13698. } break;
  13699. }
  13700. }
  13701. // ggml_compute_forward_win_part
  13702. static void ggml_compute_forward_win_part_f32(
  13703. const struct ggml_compute_params * params,
  13704. struct ggml_tensor * dst) {
  13705. const struct ggml_tensor * src0 = dst->src[0];
  13706. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13707. return;
  13708. }
  13709. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13710. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13711. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13712. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13713. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13714. assert(ne00 == ne0);
  13715. assert(ne3 == nep0*nep1);
  13716. // TODO: optimize / multi-thread
  13717. for (int py = 0; py < nep1; ++py) {
  13718. for (int px = 0; px < nep0; ++px) {
  13719. const int64_t i3 = py*nep0 + px;
  13720. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13721. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13722. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13723. const int64_t i02 = py*w + i2;
  13724. const int64_t i01 = px*w + i1;
  13725. const int64_t i00 = i0;
  13726. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13727. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13728. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13729. ((float *) dst->data)[i] = 0.0f;
  13730. } else {
  13731. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13732. }
  13733. }
  13734. }
  13735. }
  13736. }
  13737. }
  13738. }
  13739. static void ggml_compute_forward_win_part(
  13740. const struct ggml_compute_params * params,
  13741. struct ggml_tensor * dst) {
  13742. const struct ggml_tensor * src0 = dst->src[0];
  13743. switch (src0->type) {
  13744. case GGML_TYPE_F32:
  13745. {
  13746. ggml_compute_forward_win_part_f32(params, dst);
  13747. } break;
  13748. default:
  13749. {
  13750. GGML_ASSERT(false);
  13751. } break;
  13752. }
  13753. }
  13754. // ggml_compute_forward_win_unpart
  13755. static void ggml_compute_forward_win_unpart_f32(
  13756. const struct ggml_compute_params * params,
  13757. struct ggml_tensor * dst) {
  13758. const struct ggml_tensor * src0 = dst->src[0];
  13759. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13760. return;
  13761. }
  13762. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13763. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13764. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13765. // padding
  13766. const int px = (w - ne1%w)%w;
  13767. //const int py = (w - ne2%w)%w;
  13768. const int npx = (px + ne1)/w;
  13769. //const int npy = (py + ne2)/w;
  13770. assert(ne0 == ne00);
  13771. // TODO: optimize / multi-thread
  13772. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13773. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13774. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13775. const int ip2 = i2/w;
  13776. const int ip1 = i1/w;
  13777. const int64_t i02 = i2%w;
  13778. const int64_t i01 = i1%w;
  13779. const int64_t i00 = i0;
  13780. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13781. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13782. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13783. }
  13784. }
  13785. }
  13786. }
  13787. static void ggml_compute_forward_win_unpart(
  13788. const struct ggml_compute_params * params,
  13789. struct ggml_tensor * dst) {
  13790. const struct ggml_tensor * src0 = dst->src[0];
  13791. switch (src0->type) {
  13792. case GGML_TYPE_F32:
  13793. {
  13794. ggml_compute_forward_win_unpart_f32(params, dst);
  13795. } break;
  13796. default:
  13797. {
  13798. GGML_ASSERT(false);
  13799. } break;
  13800. }
  13801. }
  13802. //gmml_compute_forward_unary
  13803. static void ggml_compute_forward_unary(
  13804. const struct ggml_compute_params * params,
  13805. struct ggml_tensor * dst) {
  13806. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13807. switch (op) {
  13808. case GGML_UNARY_OP_ABS:
  13809. {
  13810. ggml_compute_forward_abs(params, dst);
  13811. } break;
  13812. case GGML_UNARY_OP_SGN:
  13813. {
  13814. ggml_compute_forward_sgn(params, dst);
  13815. } break;
  13816. case GGML_UNARY_OP_NEG:
  13817. {
  13818. ggml_compute_forward_neg(params, dst);
  13819. } break;
  13820. case GGML_UNARY_OP_STEP:
  13821. {
  13822. ggml_compute_forward_step(params, dst);
  13823. } break;
  13824. case GGML_UNARY_OP_TANH:
  13825. {
  13826. ggml_compute_forward_tanh(params, dst);
  13827. } break;
  13828. case GGML_UNARY_OP_ELU:
  13829. {
  13830. ggml_compute_forward_elu(params, dst);
  13831. } break;
  13832. case GGML_UNARY_OP_RELU:
  13833. {
  13834. ggml_compute_forward_relu(params, dst);
  13835. } break;
  13836. case GGML_UNARY_OP_SIGMOID:
  13837. {
  13838. ggml_compute_forward_sigmoid(params, dst);
  13839. } break;
  13840. case GGML_UNARY_OP_GELU:
  13841. {
  13842. ggml_compute_forward_gelu(params, dst);
  13843. } break;
  13844. case GGML_UNARY_OP_GELU_QUICK:
  13845. {
  13846. ggml_compute_forward_gelu_quick(params, dst);
  13847. } break;
  13848. case GGML_UNARY_OP_SILU:
  13849. {
  13850. ggml_compute_forward_silu(params, dst);
  13851. } break;
  13852. case GGML_UNARY_OP_HARDSWISH:
  13853. {
  13854. ggml_compute_forward_hardswish(params, dst);
  13855. } break;
  13856. case GGML_UNARY_OP_HARDSIGMOID:
  13857. {
  13858. ggml_compute_forward_hardsigmoid(params, dst);
  13859. } break;
  13860. default:
  13861. {
  13862. GGML_ASSERT(false);
  13863. } break;
  13864. }
  13865. }
  13866. // ggml_compute_forward_get_rel_pos
  13867. static void ggml_compute_forward_get_rel_pos_f16(
  13868. const struct ggml_compute_params * params,
  13869. struct ggml_tensor * dst) {
  13870. const struct ggml_tensor * src0 = dst->src[0];
  13871. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13872. return;
  13873. }
  13874. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13875. GGML_TENSOR_UNARY_OP_LOCALS
  13876. const int64_t w = ne1;
  13877. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13878. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13879. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13880. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13881. const int64_t pos = (w - i1 - 1) + i2;
  13882. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13883. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13884. }
  13885. }
  13886. }
  13887. }
  13888. static void ggml_compute_forward_get_rel_pos(
  13889. const struct ggml_compute_params * params,
  13890. struct ggml_tensor * dst) {
  13891. const struct ggml_tensor * src0 = dst->src[0];
  13892. switch (src0->type) {
  13893. case GGML_TYPE_F16:
  13894. case GGML_TYPE_BF16:
  13895. {
  13896. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13897. } break;
  13898. default:
  13899. {
  13900. GGML_ASSERT(false);
  13901. } break;
  13902. }
  13903. }
  13904. // ggml_compute_forward_add_rel_pos
  13905. static void ggml_compute_forward_add_rel_pos_f32(
  13906. const struct ggml_compute_params * params,
  13907. struct ggml_tensor * dst) {
  13908. const struct ggml_tensor * src0 = dst->src[0];
  13909. const struct ggml_tensor * src1 = dst->src[1];
  13910. const struct ggml_tensor * src2 = dst->src[2];
  13911. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13912. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13913. if (params->ith != 0) {
  13914. return;
  13915. }
  13916. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13917. return;
  13918. }
  13919. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13920. return;
  13921. }
  13922. int64_t t0 = ggml_perf_time_us();
  13923. UNUSED(t0);
  13924. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13925. float * src1_data = (float *) src1->data;
  13926. float * src2_data = (float *) src2->data;
  13927. float * dst_data = (float *) dst->data;
  13928. const int64_t ne10 = src1->ne[0];
  13929. const int64_t ne11 = src1->ne[1];
  13930. const int64_t ne12 = src1->ne[2];
  13931. const int64_t ne13 = src1->ne[3];
  13932. const int ith = params->ith;
  13933. const int nth = params->nth;
  13934. // total patches in dst
  13935. const int np = ne13;
  13936. // patches per thread
  13937. const int dp = (np + nth - 1)/nth;
  13938. // patch range for this thread
  13939. const int ip0 = dp*ith;
  13940. const int ip1 = MIN(ip0 + dp, np);
  13941. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13942. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13943. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13944. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13945. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13946. const int64_t jp0 = jp1 + i10;
  13947. const float src1_e = src1_data[jp0];
  13948. const float src2_e = src2_data[jp0];
  13949. const int64_t jdh = jp0 * ne10;
  13950. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13951. for (int64_t j = 0; j < ne10; ++j) {
  13952. dst_data[jdh + j ] += src2_e;
  13953. dst_data[jdw + j*ne10] += src1_e;
  13954. }
  13955. }
  13956. }
  13957. }
  13958. }
  13959. }
  13960. static void ggml_compute_forward_add_rel_pos(
  13961. const struct ggml_compute_params * params,
  13962. struct ggml_tensor * dst) {
  13963. const struct ggml_tensor * src0 = dst->src[0];
  13964. switch (src0->type) {
  13965. case GGML_TYPE_F32:
  13966. {
  13967. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13968. } break;
  13969. default:
  13970. {
  13971. GGML_ASSERT(false);
  13972. } break;
  13973. }
  13974. }
  13975. // ggml_compute_forward_map_unary
  13976. static void ggml_compute_forward_map_unary_f32(
  13977. const struct ggml_compute_params * params,
  13978. struct ggml_tensor * dst,
  13979. const ggml_unary_op_f32_t fun) {
  13980. const struct ggml_tensor * src0 = dst->src[0];
  13981. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13982. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13983. return;
  13984. }
  13985. const int n = ggml_nrows(src0);
  13986. const int nc = src0->ne[0];
  13987. assert( dst->nb[0] == sizeof(float));
  13988. assert(src0->nb[0] == sizeof(float));
  13989. for (int i = 0; i < n; i++) {
  13990. fun(nc,
  13991. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13992. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13993. }
  13994. }
  13995. static void ggml_compute_forward_map_unary(
  13996. const struct ggml_compute_params * params,
  13997. struct ggml_tensor * dst,
  13998. const ggml_unary_op_f32_t fun) {
  13999. const struct ggml_tensor * src0 = dst->src[0];
  14000. switch (src0->type) {
  14001. case GGML_TYPE_F32:
  14002. {
  14003. ggml_compute_forward_map_unary_f32(params, dst, fun);
  14004. } break;
  14005. default:
  14006. {
  14007. GGML_ASSERT(false);
  14008. } break;
  14009. }
  14010. }
  14011. // ggml_compute_forward_map_binary
  14012. static void ggml_compute_forward_map_binary_f32(
  14013. const struct ggml_compute_params * params,
  14014. struct ggml_tensor * dst,
  14015. const ggml_binary_op_f32_t fun) {
  14016. const struct ggml_tensor * src0 = dst->src[0];
  14017. const struct ggml_tensor * src1 = dst->src[1];
  14018. assert(params->ith == 0);
  14019. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14020. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14021. return;
  14022. }
  14023. const int n = ggml_nrows(src0);
  14024. const int nc = src0->ne[0];
  14025. assert( dst->nb[0] == sizeof(float));
  14026. assert(src0->nb[0] == sizeof(float));
  14027. assert(src1->nb[0] == sizeof(float));
  14028. for (int i = 0; i < n; i++) {
  14029. fun(nc,
  14030. (float *) ((char *) dst->data + i*( dst->nb[1])),
  14031. (float *) ((char *) src0->data + i*(src0->nb[1])),
  14032. (float *) ((char *) src1->data + i*(src1->nb[1])));
  14033. }
  14034. }
  14035. static void ggml_compute_forward_map_binary(
  14036. const struct ggml_compute_params * params,
  14037. struct ggml_tensor * dst,
  14038. const ggml_binary_op_f32_t fun) {
  14039. const struct ggml_tensor * src0 = dst->src[0];
  14040. switch (src0->type) {
  14041. case GGML_TYPE_F32:
  14042. {
  14043. ggml_compute_forward_map_binary_f32(params, dst, fun);
  14044. } break;
  14045. default:
  14046. {
  14047. GGML_ASSERT(false);
  14048. } break;
  14049. }
  14050. }
  14051. // ggml_compute_forward_map_custom1
  14052. static void ggml_compute_forward_map_custom1_f32(
  14053. const struct ggml_compute_params * params,
  14054. struct ggml_tensor * dst,
  14055. const ggml_custom1_op_f32_t fun) {
  14056. const struct ggml_tensor * a = dst->src[0];
  14057. assert(params->ith == 0);
  14058. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14059. return;
  14060. }
  14061. fun(dst, a);
  14062. }
  14063. // ggml_compute_forward_map_custom2
  14064. static void ggml_compute_forward_map_custom2_f32(
  14065. const struct ggml_compute_params * params,
  14066. struct ggml_tensor * dst,
  14067. const ggml_custom2_op_f32_t fun) {
  14068. const struct ggml_tensor * a = dst->src[0];
  14069. const struct ggml_tensor * b = dst->src[1];
  14070. assert(params->ith == 0);
  14071. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14072. return;
  14073. }
  14074. fun(dst, a, b);
  14075. }
  14076. // ggml_compute_forward_map_custom3
  14077. static void ggml_compute_forward_map_custom3_f32(
  14078. const struct ggml_compute_params * params,
  14079. struct ggml_tensor * dst,
  14080. const ggml_custom3_op_f32_t fun) {
  14081. const struct ggml_tensor * a = dst->src[0];
  14082. const struct ggml_tensor * b = dst->src[1];
  14083. const struct ggml_tensor * c = dst->src[1];
  14084. assert(params->ith == 0);
  14085. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14086. return;
  14087. }
  14088. fun(dst, a, b, c);
  14089. }
  14090. // ggml_compute_forward_map_custom1
  14091. static void ggml_compute_forward_map_custom1(
  14092. const struct ggml_compute_params * params,
  14093. struct ggml_tensor * dst) {
  14094. const struct ggml_tensor * a = dst->src[0];
  14095. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14096. return;
  14097. }
  14098. struct ggml_map_custom1_op_params p;
  14099. memcpy(&p, dst->op_params, sizeof(p));
  14100. p.fun(dst, a, params->ith, params->nth, p.userdata);
  14101. }
  14102. // ggml_compute_forward_map_custom2
  14103. static void ggml_compute_forward_map_custom2(
  14104. const struct ggml_compute_params * params,
  14105. struct ggml_tensor * dst) {
  14106. const struct ggml_tensor * a = dst->src[0];
  14107. const struct ggml_tensor * b = dst->src[1];
  14108. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14109. return;
  14110. }
  14111. struct ggml_map_custom2_op_params p;
  14112. memcpy(&p, dst->op_params, sizeof(p));
  14113. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  14114. }
  14115. // ggml_compute_forward_map_custom3
  14116. static void ggml_compute_forward_map_custom3(
  14117. const struct ggml_compute_params * params,
  14118. struct ggml_tensor * dst) {
  14119. const struct ggml_tensor * a = dst->src[0];
  14120. const struct ggml_tensor * b = dst->src[1];
  14121. const struct ggml_tensor * c = dst->src[2];
  14122. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14123. return;
  14124. }
  14125. struct ggml_map_custom3_op_params p;
  14126. memcpy(&p, dst->op_params, sizeof(p));
  14127. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  14128. }
  14129. // ggml_compute_forward_cross_entropy_loss
  14130. static void ggml_compute_forward_cross_entropy_loss_f32(
  14131. const struct ggml_compute_params * params,
  14132. struct ggml_tensor * dst) {
  14133. const struct ggml_tensor * src0 = dst->src[0];
  14134. const struct ggml_tensor * src1 = dst->src[1];
  14135. GGML_ASSERT(ggml_is_contiguous(src0));
  14136. GGML_ASSERT(ggml_is_contiguous(src1));
  14137. GGML_ASSERT(ggml_is_scalar(dst));
  14138. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  14139. const int ith = params->ith;
  14140. const int nth = params->nth;
  14141. float * sums = (float *) params->wdata;
  14142. // TODO: handle transposed/permuted matrices
  14143. const int nc = src0->ne[0];
  14144. const int nr = ggml_nrows(src0);
  14145. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  14146. if (params->type == GGML_TASK_TYPE_INIT) {
  14147. if (ith == 0) {
  14148. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  14149. }
  14150. return;
  14151. }
  14152. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  14153. if (ith == 0) {
  14154. float * dp = (float *) dst->data;
  14155. ggml_vec_sum_f32(nth, dp, sums);
  14156. dp[0] *= -1.0f / (float) nr;
  14157. }
  14158. return;
  14159. }
  14160. const double eps = 1e-9;
  14161. // rows per thread
  14162. const int dr = (nr + nth - 1)/nth;
  14163. // row range for this thread
  14164. const int ir0 = dr*ith;
  14165. const int ir1 = MIN(ir0 + dr, nr);
  14166. for (int i1 = ir0; i1 < ir1; i1++) {
  14167. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14168. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14169. float * st = ((float *) params->wdata) + nth + ith*nc;
  14170. #ifndef NDEBUG
  14171. for (int i = 0; i < nc; ++i) {
  14172. //printf("p[%d] = %f\n", i, p[i]);
  14173. assert(!isnan(s0[i]));
  14174. assert(!isnan(s1[i]));
  14175. }
  14176. #endif
  14177. // soft_max
  14178. float max = -INFINITY;
  14179. ggml_vec_max_f32(nc, &max, s0);
  14180. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  14181. assert(sum > 0.0);
  14182. sum = (1.0 - eps) / sum;
  14183. // avoid log(0) by rescaling from [0..1] to [eps..1]
  14184. ggml_vec_scale_f32(nc, st, sum);
  14185. ggml_vec_add1_f32(nc, st, st, eps);
  14186. ggml_vec_log_f32(nc, st, st);
  14187. ggml_vec_mul_f32(nc, st, st, s1);
  14188. float st_sum = 0;
  14189. ggml_vec_sum_f32(nc, &st_sum, st);
  14190. sums[ith] += st_sum;
  14191. #ifndef NDEBUG
  14192. for (int i = 0; i < nc; ++i) {
  14193. assert(!isnan(st[i]));
  14194. assert(!isinf(st[i]));
  14195. }
  14196. #endif
  14197. }
  14198. }
  14199. static void ggml_compute_forward_cross_entropy_loss(
  14200. const struct ggml_compute_params * params,
  14201. struct ggml_tensor * dst) {
  14202. const struct ggml_tensor * src0 = dst->src[0];
  14203. switch (src0->type) {
  14204. case GGML_TYPE_F32:
  14205. {
  14206. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  14207. } break;
  14208. default:
  14209. {
  14210. GGML_ASSERT(false);
  14211. } break;
  14212. }
  14213. }
  14214. // ggml_compute_forward_cross_entropy_loss_back
  14215. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  14216. const struct ggml_compute_params * params,
  14217. struct ggml_tensor * dst) {
  14218. const struct ggml_tensor * src0 = dst->src[0];
  14219. const struct ggml_tensor * src1 = dst->src[1];
  14220. const struct ggml_tensor * opt0 = dst->src[2];
  14221. GGML_ASSERT(ggml_is_contiguous(dst));
  14222. GGML_ASSERT(ggml_is_contiguous(src0));
  14223. GGML_ASSERT(ggml_is_contiguous(src1));
  14224. GGML_ASSERT(ggml_is_contiguous(opt0));
  14225. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14226. const int64_t ith = params->ith;
  14227. const int64_t nth = params->nth;
  14228. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14229. return;
  14230. }
  14231. const double eps = 1e-9;
  14232. // TODO: handle transposed/permuted matrices
  14233. const int64_t nc = src0->ne[0];
  14234. const int64_t nr = ggml_nrows(src0);
  14235. // rows per thread
  14236. const int64_t dr = (nr + nth - 1)/nth;
  14237. // row range for this thread
  14238. const int64_t ir0 = dr*ith;
  14239. const int64_t ir1 = MIN(ir0 + dr, nr);
  14240. float * d = (float *) opt0->data;
  14241. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  14242. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  14243. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14244. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14245. #ifndef NDEBUG
  14246. for (int i = 0; i < nc; ++i) {
  14247. //printf("p[%d] = %f\n", i, p[i]);
  14248. assert(!isnan(s0[i]));
  14249. assert(!isnan(s1[i]));
  14250. }
  14251. #endif
  14252. // soft_max
  14253. float max = -INFINITY;
  14254. ggml_vec_max_f32(nc, &max, s0);
  14255. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14256. assert(sum > 0.0);
  14257. sum = (1.0 - eps) / sum;
  14258. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14259. ggml_vec_scale_f32(nc, ds0, sum);
  14260. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14261. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14262. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14263. #ifndef NDEBUG
  14264. for (int i = 0; i < nc; ++i) {
  14265. assert(!isnan(ds0[i]));
  14266. assert(!isinf(ds0[i]));
  14267. }
  14268. #endif
  14269. }
  14270. }
  14271. static void ggml_compute_forward_cross_entropy_loss_back(
  14272. const struct ggml_compute_params * params,
  14273. struct ggml_tensor * dst) {
  14274. const struct ggml_tensor * src0 = dst->src[0];
  14275. switch (src0->type) {
  14276. case GGML_TYPE_F32:
  14277. {
  14278. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14279. } break;
  14280. default:
  14281. {
  14282. GGML_ASSERT(false);
  14283. } break;
  14284. }
  14285. }
  14286. /////////////////////////////////
  14287. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14288. GGML_ASSERT(params);
  14289. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14290. return;
  14291. }
  14292. switch (tensor->op) {
  14293. case GGML_OP_DUP:
  14294. {
  14295. ggml_compute_forward_dup(params, tensor);
  14296. } break;
  14297. case GGML_OP_ADD:
  14298. {
  14299. ggml_compute_forward_add(params, tensor);
  14300. } break;
  14301. case GGML_OP_ADD1:
  14302. {
  14303. ggml_compute_forward_add1(params, tensor);
  14304. } break;
  14305. case GGML_OP_ACC:
  14306. {
  14307. ggml_compute_forward_acc(params, tensor);
  14308. } break;
  14309. case GGML_OP_SUB:
  14310. {
  14311. ggml_compute_forward_sub(params, tensor);
  14312. } break;
  14313. case GGML_OP_MUL:
  14314. {
  14315. ggml_compute_forward_mul(params, tensor);
  14316. } break;
  14317. case GGML_OP_DIV:
  14318. {
  14319. ggml_compute_forward_div(params, tensor);
  14320. } break;
  14321. case GGML_OP_SQR:
  14322. {
  14323. ggml_compute_forward_sqr(params, tensor);
  14324. } break;
  14325. case GGML_OP_SQRT:
  14326. {
  14327. ggml_compute_forward_sqrt(params, tensor);
  14328. } break;
  14329. case GGML_OP_LOG:
  14330. {
  14331. ggml_compute_forward_log(params, tensor);
  14332. } break;
  14333. case GGML_OP_SUM:
  14334. {
  14335. ggml_compute_forward_sum(params, tensor);
  14336. } break;
  14337. case GGML_OP_SUM_ROWS:
  14338. {
  14339. ggml_compute_forward_sum_rows(params, tensor);
  14340. } break;
  14341. case GGML_OP_MEAN:
  14342. {
  14343. ggml_compute_forward_mean(params, tensor);
  14344. } break;
  14345. case GGML_OP_ARGMAX:
  14346. {
  14347. ggml_compute_forward_argmax(params, tensor);
  14348. } break;
  14349. case GGML_OP_REPEAT:
  14350. {
  14351. ggml_compute_forward_repeat(params, tensor);
  14352. } break;
  14353. case GGML_OP_REPEAT_BACK:
  14354. {
  14355. ggml_compute_forward_repeat_back(params, tensor);
  14356. } break;
  14357. case GGML_OP_CONCAT:
  14358. {
  14359. ggml_compute_forward_concat(params, tensor);
  14360. } break;
  14361. case GGML_OP_SILU_BACK:
  14362. {
  14363. ggml_compute_forward_silu_back(params, tensor);
  14364. } break;
  14365. case GGML_OP_NORM:
  14366. {
  14367. ggml_compute_forward_norm(params, tensor);
  14368. } break;
  14369. case GGML_OP_RMS_NORM:
  14370. {
  14371. ggml_compute_forward_rms_norm(params, tensor);
  14372. } break;
  14373. case GGML_OP_RMS_NORM_BACK:
  14374. {
  14375. ggml_compute_forward_rms_norm_back(params, tensor);
  14376. } break;
  14377. case GGML_OP_GROUP_NORM:
  14378. {
  14379. ggml_compute_forward_group_norm(params, tensor);
  14380. } break;
  14381. case GGML_OP_MUL_MAT:
  14382. {
  14383. ggml_compute_forward_mul_mat(params, tensor, state);
  14384. } break;
  14385. case GGML_OP_MUL_MAT_ID:
  14386. {
  14387. ggml_compute_forward_mul_mat_id(params, tensor);
  14388. } break;
  14389. case GGML_OP_OUT_PROD:
  14390. {
  14391. ggml_compute_forward_out_prod(params, tensor);
  14392. } break;
  14393. case GGML_OP_SCALE:
  14394. {
  14395. ggml_compute_forward_scale(params, tensor);
  14396. } break;
  14397. case GGML_OP_SET:
  14398. {
  14399. ggml_compute_forward_set(params, tensor);
  14400. } break;
  14401. case GGML_OP_CPY:
  14402. {
  14403. ggml_compute_forward_cpy(params, tensor);
  14404. } break;
  14405. case GGML_OP_CONT:
  14406. {
  14407. ggml_compute_forward_cont(params, tensor);
  14408. } break;
  14409. case GGML_OP_RESHAPE:
  14410. {
  14411. ggml_compute_forward_reshape(params, tensor);
  14412. } break;
  14413. case GGML_OP_VIEW:
  14414. {
  14415. ggml_compute_forward_view(params, tensor);
  14416. } break;
  14417. case GGML_OP_PERMUTE:
  14418. {
  14419. ggml_compute_forward_permute(params, tensor);
  14420. } break;
  14421. case GGML_OP_TRANSPOSE:
  14422. {
  14423. ggml_compute_forward_transpose(params, tensor);
  14424. } break;
  14425. case GGML_OP_GET_ROWS:
  14426. {
  14427. ggml_compute_forward_get_rows(params, tensor);
  14428. } break;
  14429. case GGML_OP_GET_ROWS_BACK:
  14430. {
  14431. ggml_compute_forward_get_rows_back(params, tensor);
  14432. } break;
  14433. case GGML_OP_DIAG:
  14434. {
  14435. ggml_compute_forward_diag(params, tensor);
  14436. } break;
  14437. case GGML_OP_DIAG_MASK_INF:
  14438. {
  14439. ggml_compute_forward_diag_mask_inf(params, tensor);
  14440. } break;
  14441. case GGML_OP_DIAG_MASK_ZERO:
  14442. {
  14443. ggml_compute_forward_diag_mask_zero(params, tensor);
  14444. } break;
  14445. case GGML_OP_SOFT_MAX:
  14446. {
  14447. ggml_compute_forward_soft_max(params, tensor);
  14448. } break;
  14449. case GGML_OP_SOFT_MAX_BACK:
  14450. {
  14451. ggml_compute_forward_soft_max_back(params, tensor);
  14452. } break;
  14453. case GGML_OP_ROPE:
  14454. {
  14455. ggml_compute_forward_rope(params, tensor);
  14456. } break;
  14457. case GGML_OP_ROPE_BACK:
  14458. {
  14459. ggml_compute_forward_rope_back(params, tensor);
  14460. } break;
  14461. case GGML_OP_CLAMP:
  14462. {
  14463. ggml_compute_forward_clamp(params, tensor);
  14464. } break;
  14465. case GGML_OP_CONV_TRANSPOSE_1D:
  14466. {
  14467. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14468. } break;
  14469. case GGML_OP_IM2COL:
  14470. {
  14471. ggml_compute_forward_im2col(params, tensor);
  14472. } break;
  14473. case GGML_OP_CONV_TRANSPOSE_2D:
  14474. {
  14475. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14476. } break;
  14477. case GGML_OP_POOL_1D:
  14478. {
  14479. ggml_compute_forward_pool_1d(params, tensor);
  14480. } break;
  14481. case GGML_OP_POOL_2D:
  14482. {
  14483. ggml_compute_forward_pool_2d(params, tensor);
  14484. } break;
  14485. case GGML_OP_UPSCALE:
  14486. {
  14487. ggml_compute_forward_upscale(params, tensor);
  14488. } break;
  14489. case GGML_OP_PAD:
  14490. {
  14491. ggml_compute_forward_pad(params, tensor);
  14492. } break;
  14493. case GGML_OP_ARANGE:
  14494. {
  14495. ggml_compute_forward_arange(params, tensor);
  14496. } break;
  14497. case GGML_OP_TIMESTEP_EMBEDDING:
  14498. {
  14499. ggml_compute_forward_timestep_embedding(params, tensor);
  14500. } break;
  14501. case GGML_OP_ARGSORT:
  14502. {
  14503. ggml_compute_forward_argsort(params, tensor);
  14504. } break;
  14505. case GGML_OP_LEAKY_RELU:
  14506. {
  14507. ggml_compute_forward_leaky_relu(params, tensor);
  14508. } break;
  14509. case GGML_OP_FLASH_ATTN:
  14510. {
  14511. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  14512. GGML_ASSERT(t == 0 || t == 1);
  14513. const bool masked = t != 0;
  14514. ggml_compute_forward_flash_attn(params, masked, tensor);
  14515. } break;
  14516. case GGML_OP_FLASH_ATTN_EXT:
  14517. {
  14518. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14519. } break;
  14520. case GGML_OP_FLASH_FF:
  14521. {
  14522. ggml_compute_forward_flash_ff(params, tensor);
  14523. } break;
  14524. case GGML_OP_FLASH_ATTN_BACK:
  14525. {
  14526. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14527. GGML_ASSERT(t == 0 || t == 1);
  14528. bool masked = t != 0;
  14529. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14530. } break;
  14531. case GGML_OP_SSM_CONV:
  14532. {
  14533. ggml_compute_forward_ssm_conv(params, tensor);
  14534. } break;
  14535. case GGML_OP_SSM_SCAN:
  14536. {
  14537. ggml_compute_forward_ssm_scan(params, tensor);
  14538. } break;
  14539. case GGML_OP_WIN_PART:
  14540. {
  14541. ggml_compute_forward_win_part(params, tensor);
  14542. } break;
  14543. case GGML_OP_WIN_UNPART:
  14544. {
  14545. ggml_compute_forward_win_unpart(params, tensor);
  14546. } break;
  14547. case GGML_OP_UNARY:
  14548. {
  14549. ggml_compute_forward_unary(params, tensor);
  14550. } break;
  14551. case GGML_OP_GET_REL_POS:
  14552. {
  14553. ggml_compute_forward_get_rel_pos(params, tensor);
  14554. } break;
  14555. case GGML_OP_ADD_REL_POS:
  14556. {
  14557. ggml_compute_forward_add_rel_pos(params, tensor);
  14558. } break;
  14559. case GGML_OP_MAP_UNARY:
  14560. {
  14561. ggml_unary_op_f32_t fun;
  14562. memcpy(&fun, tensor->op_params, sizeof(fun));
  14563. ggml_compute_forward_map_unary(params, tensor, fun);
  14564. }
  14565. break;
  14566. case GGML_OP_MAP_BINARY:
  14567. {
  14568. ggml_binary_op_f32_t fun;
  14569. memcpy(&fun, tensor->op_params, sizeof(fun));
  14570. ggml_compute_forward_map_binary(params, tensor, fun);
  14571. }
  14572. break;
  14573. case GGML_OP_MAP_CUSTOM1_F32:
  14574. {
  14575. ggml_custom1_op_f32_t fun;
  14576. memcpy(&fun, tensor->op_params, sizeof(fun));
  14577. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14578. }
  14579. break;
  14580. case GGML_OP_MAP_CUSTOM2_F32:
  14581. {
  14582. ggml_custom2_op_f32_t fun;
  14583. memcpy(&fun, tensor->op_params, sizeof(fun));
  14584. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14585. }
  14586. break;
  14587. case GGML_OP_MAP_CUSTOM3_F32:
  14588. {
  14589. ggml_custom3_op_f32_t fun;
  14590. memcpy(&fun, tensor->op_params, sizeof(fun));
  14591. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14592. }
  14593. break;
  14594. case GGML_OP_MAP_CUSTOM1:
  14595. {
  14596. ggml_compute_forward_map_custom1(params, tensor);
  14597. }
  14598. break;
  14599. case GGML_OP_MAP_CUSTOM2:
  14600. {
  14601. ggml_compute_forward_map_custom2(params, tensor);
  14602. }
  14603. break;
  14604. case GGML_OP_MAP_CUSTOM3:
  14605. {
  14606. ggml_compute_forward_map_custom3(params, tensor);
  14607. }
  14608. break;
  14609. case GGML_OP_CROSS_ENTROPY_LOSS:
  14610. {
  14611. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14612. }
  14613. break;
  14614. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14615. {
  14616. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14617. }
  14618. break;
  14619. case GGML_OP_NONE:
  14620. {
  14621. // nop
  14622. } break;
  14623. case GGML_OP_COUNT:
  14624. {
  14625. GGML_ASSERT(false);
  14626. } break;
  14627. }
  14628. }
  14629. ////////////////////////////////////////////////////////////////////////////////
  14630. static size_t ggml_hash_size(size_t min_sz) {
  14631. // next primes after powers of two
  14632. static const size_t primes[] = {
  14633. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14634. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14635. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14636. 16777259, 33554467, 67108879, 134217757, 268435459,
  14637. 536870923, 1073741827, 2147483659
  14638. };
  14639. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14640. // find the smallest prime that is larger or equal to min_sz
  14641. size_t l = 0;
  14642. size_t r = n_primes;
  14643. while (l < r) {
  14644. size_t m = (l + r)/2;
  14645. if (primes[m] < min_sz) {
  14646. l = m + 1;
  14647. } else {
  14648. r = m;
  14649. }
  14650. }
  14651. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14652. return sz;
  14653. }
  14654. static size_t ggml_hash(const void * p) {
  14655. return (size_t)p;
  14656. }
  14657. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14658. size_t h = ggml_hash(key) % hash_set.size;
  14659. // linear probing
  14660. size_t i = h;
  14661. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14662. i = (i + 1) % hash_set.size;
  14663. if (i == h) {
  14664. // visited all hash table entries -> not found
  14665. return GGML_HASHTABLE_FULL;
  14666. }
  14667. }
  14668. return i;
  14669. }
  14670. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14671. size_t i = ggml_hash_find(hash_set, key);
  14672. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14673. }
  14674. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14675. size_t i = ggml_hash_find(hash_set, key);
  14676. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14677. if (hash_set.keys[i] == key) {
  14678. return GGML_HASHTABLE_ALREADY_EXISTS;
  14679. }
  14680. // insert
  14681. GGML_ASSERT(hash_set.keys[i] == NULL);
  14682. hash_set.keys[i] = key;
  14683. return i;
  14684. }
  14685. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14686. size_t i = ggml_hash_find(hash_set, key);
  14687. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14688. hash_set.keys[i] = key;
  14689. return i;
  14690. }
  14691. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14692. size = ggml_hash_size(size);
  14693. struct ggml_hash_set result;
  14694. result.size = size;
  14695. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14696. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14697. return result;
  14698. }
  14699. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14700. GGML_FREE(hash_set.keys);
  14701. }
  14702. struct hash_map {
  14703. struct ggml_hash_set set;
  14704. struct ggml_tensor ** vals;
  14705. };
  14706. static struct hash_map * ggml_new_hash_map(size_t size) {
  14707. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14708. result->set = ggml_hash_set_new(size);
  14709. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14710. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14711. return result;
  14712. }
  14713. static void ggml_hash_map_free(struct hash_map * map) {
  14714. ggml_hash_set_free(map->set);
  14715. GGML_FREE(map->vals);
  14716. GGML_FREE(map);
  14717. }
  14718. // gradient checkpointing
  14719. static struct ggml_tensor * ggml_recompute_graph_node(
  14720. struct ggml_context * ctx,
  14721. struct ggml_cgraph * graph,
  14722. struct hash_map * replacements,
  14723. struct ggml_tensor * node) {
  14724. if (node == NULL) {
  14725. return NULL;
  14726. }
  14727. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14728. return node;
  14729. }
  14730. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14731. return node;
  14732. }
  14733. int count_children = 0;
  14734. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14735. if (node->src[k]) {
  14736. ++count_children;
  14737. }
  14738. }
  14739. if (count_children == 0) {
  14740. return node;
  14741. }
  14742. size_t i = ggml_hash_find(replacements->set, node);
  14743. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14744. if (replacements->set.keys[i] == node) {
  14745. return replacements->vals[i];
  14746. }
  14747. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14748. // insert clone into replacements
  14749. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14750. replacements->set.keys[i] = node;
  14751. replacements->vals[i] = clone;
  14752. clone->op = node->op;
  14753. clone->grad = node->grad;
  14754. clone->flags = node->flags;
  14755. clone->extra = node->extra;
  14756. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14757. clone->nb[k] = node->nb[k];
  14758. }
  14759. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14760. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14761. }
  14762. if (node->view_src != NULL) {
  14763. clone->data = (node->view_src->data == NULL)
  14764. ? NULL // view_src not yet allocated
  14765. : (char *) node->view_src->data // view_src already allocated
  14766. + node->view_offs;
  14767. clone->view_src = node->view_src;
  14768. clone->view_offs = node->view_offs;
  14769. }
  14770. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14771. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14772. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14773. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14774. return clone;
  14775. }
  14776. void ggml_build_backward_gradient_checkpointing(
  14777. struct ggml_context * ctx,
  14778. struct ggml_cgraph * gf,
  14779. struct ggml_cgraph * gb,
  14780. struct ggml_cgraph * gb_tmp,
  14781. struct ggml_tensor * * checkpoints,
  14782. int n_checkpoints) {
  14783. ggml_graph_cpy(gf, gb_tmp);
  14784. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14785. if (n_checkpoints <= 0) {
  14786. ggml_graph_cpy(gb_tmp, gb);
  14787. return;
  14788. }
  14789. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14790. // insert checkpoints in replacements
  14791. for (int i = 0; i < n_checkpoints; ++i) {
  14792. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14793. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14794. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14795. replacements->set.keys[k] = checkpoints[i];
  14796. replacements->vals[k] = checkpoints[i];
  14797. }
  14798. ggml_graph_cpy(gf, gb);
  14799. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14800. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14801. // by recomputing them from checkpoints
  14802. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14803. struct ggml_tensor * node = gb_tmp->nodes[i];
  14804. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14805. // insert new tensors recomputing src, reusing already made replacements,
  14806. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14807. // recurse for input tensors,
  14808. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14809. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14810. }
  14811. // insert rewritten backward node with replacements made into resulting backward graph gb
  14812. ggml_build_forward_expand(gb, node);
  14813. }
  14814. ggml_hash_map_free(replacements);
  14815. }
  14816. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14817. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14818. if (ggml_hash_contains(zero_table, a)) {
  14819. return b;
  14820. } else {
  14821. return ggml_add_impl(ctx, a, b, false);
  14822. }
  14823. }
  14824. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14825. if (ggml_hash_contains(zero_table, a)) {
  14826. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14827. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14828. } else {
  14829. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14830. }
  14831. }
  14832. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14833. if (ggml_hash_contains(zero_table, a)) {
  14834. return ggml_repeat(ctx, b, a);
  14835. } else {
  14836. return ggml_add1_impl(ctx, a, b, false);
  14837. }
  14838. }
  14839. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14840. if (ggml_hash_contains(zero_table, a)) {
  14841. return ggml_neg(ctx, b);
  14842. } else {
  14843. return ggml_sub_impl(ctx, a, b, false);
  14844. }
  14845. }
  14846. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14847. struct ggml_tensor * src0 = tensor->src[0];
  14848. struct ggml_tensor * src1 = tensor->src[1];
  14849. switch (tensor->op) {
  14850. case GGML_OP_DUP:
  14851. {
  14852. if (src0->grad) {
  14853. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14854. }
  14855. } break;
  14856. case GGML_OP_ADD:
  14857. {
  14858. if (src0->grad) {
  14859. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14860. }
  14861. if (src1->grad) {
  14862. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14863. }
  14864. } break;
  14865. case GGML_OP_ADD1:
  14866. {
  14867. if (src0->grad) {
  14868. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14869. }
  14870. if (src1->grad) {
  14871. src1->grad = ggml_add_or_set(ctx,
  14872. src1->grad,
  14873. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14874. zero_table);
  14875. }
  14876. } break;
  14877. case GGML_OP_ACC:
  14878. {
  14879. if (src0->grad) {
  14880. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14881. }
  14882. if (src1->grad) {
  14883. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14884. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14885. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14886. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14887. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14888. tensor->grad,
  14889. src1->grad->ne[0],
  14890. src1->grad->ne[1],
  14891. src1->grad->ne[2],
  14892. src1->grad->ne[3],
  14893. nb1, nb2, nb3, offset);
  14894. src1->grad =
  14895. ggml_add_or_set(ctx,
  14896. src1->grad,
  14897. ggml_reshape(ctx,
  14898. ggml_cont(ctx, tensor_grad_view),
  14899. src1->grad),
  14900. zero_table);
  14901. }
  14902. } break;
  14903. case GGML_OP_SUB:
  14904. {
  14905. if (src0->grad) {
  14906. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14907. }
  14908. if (src1->grad) {
  14909. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14910. }
  14911. } break;
  14912. case GGML_OP_MUL:
  14913. {
  14914. if (src0->grad) {
  14915. src0->grad =
  14916. ggml_add_or_set(ctx,
  14917. src0->grad,
  14918. ggml_mul(ctx, src1, tensor->grad),
  14919. zero_table);
  14920. }
  14921. if (src1->grad) {
  14922. src1->grad =
  14923. ggml_add_or_set(ctx,
  14924. src1->grad,
  14925. ggml_mul(ctx, src0, tensor->grad),
  14926. zero_table);
  14927. }
  14928. } break;
  14929. case GGML_OP_DIV:
  14930. {
  14931. if (src0->grad) {
  14932. src0->grad =
  14933. ggml_add_or_set(ctx,
  14934. src0->grad,
  14935. ggml_div(ctx, tensor->grad, src1),
  14936. zero_table);
  14937. }
  14938. if (src1->grad) {
  14939. src1->grad =
  14940. ggml_sub_or_set(ctx,
  14941. src1->grad,
  14942. ggml_mul(ctx,
  14943. tensor->grad,
  14944. ggml_div(ctx, tensor, src1)),
  14945. zero_table);
  14946. }
  14947. } break;
  14948. case GGML_OP_SQR:
  14949. {
  14950. if (src0->grad) {
  14951. src0->grad =
  14952. ggml_add_or_set(ctx,
  14953. src0->grad,
  14954. ggml_scale(ctx,
  14955. ggml_mul(ctx, src0, tensor->grad),
  14956. 2.0f),
  14957. zero_table);
  14958. }
  14959. } break;
  14960. case GGML_OP_SQRT:
  14961. {
  14962. if (src0->grad) {
  14963. src0->grad =
  14964. ggml_add_or_set(ctx,
  14965. src0->grad,
  14966. ggml_scale(ctx,
  14967. ggml_div(ctx,
  14968. tensor->grad,
  14969. tensor),
  14970. 0.5f),
  14971. zero_table);
  14972. }
  14973. } break;
  14974. case GGML_OP_LOG:
  14975. {
  14976. if (src0->grad) {
  14977. src0->grad =
  14978. ggml_add_or_set(ctx,
  14979. src0->grad,
  14980. ggml_div(ctx,
  14981. tensor->grad,
  14982. src0),
  14983. zero_table);
  14984. }
  14985. } break;
  14986. case GGML_OP_SUM:
  14987. {
  14988. if (src0->grad) {
  14989. src0->grad =
  14990. ggml_add1_or_set(ctx,
  14991. src0->grad,
  14992. tensor->grad,
  14993. zero_table);
  14994. }
  14995. } break;
  14996. case GGML_OP_SUM_ROWS:
  14997. {
  14998. if (src0->grad) {
  14999. src0->grad =
  15000. ggml_add_or_set(ctx,
  15001. src0->grad,
  15002. ggml_repeat(ctx,
  15003. tensor->grad,
  15004. src0->grad),
  15005. zero_table);
  15006. }
  15007. } break;
  15008. case GGML_OP_MEAN:
  15009. case GGML_OP_ARGMAX:
  15010. {
  15011. GGML_ASSERT(false); // TODO: implement
  15012. } break;
  15013. case GGML_OP_REPEAT:
  15014. {
  15015. // necessary for llama
  15016. if (src0->grad) {
  15017. src0->grad = ggml_add_or_set(ctx,
  15018. src0->grad,
  15019. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  15020. zero_table);
  15021. }
  15022. } break;
  15023. case GGML_OP_REPEAT_BACK:
  15024. {
  15025. if (src0->grad) {
  15026. // TODO: test this
  15027. src0->grad = ggml_add_or_set(ctx,
  15028. src0->grad,
  15029. ggml_repeat(ctx, tensor->grad, src0->grad),
  15030. zero_table);
  15031. }
  15032. } break;
  15033. case GGML_OP_CONCAT:
  15034. {
  15035. GGML_ASSERT(false); // TODO: implement
  15036. } break;
  15037. case GGML_OP_SILU_BACK:
  15038. {
  15039. GGML_ASSERT(false); // TODO: not implemented
  15040. } break;
  15041. case GGML_OP_NORM:
  15042. {
  15043. GGML_ASSERT(false); // TODO: not implemented
  15044. } break;
  15045. case GGML_OP_RMS_NORM:
  15046. {
  15047. // necessary for llama
  15048. if (src0->grad) {
  15049. float eps;
  15050. memcpy(&eps, tensor->op_params, sizeof(float));
  15051. src0->grad = ggml_add_or_set(ctx,
  15052. src0->grad,
  15053. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  15054. zero_table);
  15055. }
  15056. } break;
  15057. case GGML_OP_RMS_NORM_BACK:
  15058. {
  15059. GGML_ASSERT(false); // TODO: not implemented
  15060. } break;
  15061. case GGML_OP_GROUP_NORM:
  15062. {
  15063. GGML_ASSERT(false); // TODO: not implemented
  15064. } break;
  15065. case GGML_OP_MUL_MAT:
  15066. {
  15067. // https://cs231n.github.io/optimization-2/#staged
  15068. // # forward pass
  15069. // s0 = np.random.randn(5, 10)
  15070. // s1 = np.random.randn(10, 3)
  15071. // t = s0.dot(s1)
  15072. // # now suppose we had the gradient on t from above in the circuit
  15073. // dt = np.random.randn(*t.shape) # same shape as t
  15074. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  15075. // ds1 = t.T.dot(dt)
  15076. // tensor.shape [m,p,qq,rr]
  15077. // src0.shape [n,m,q1,r1]
  15078. // src1.shape [n,p,qq,rr]
  15079. // necessary for llama
  15080. if (src0->grad) {
  15081. struct ggml_tensor * s1_tg =
  15082. ggml_out_prod(ctx, // [n,m,qq,rr]
  15083. src1, // [n,p,qq,rr]
  15084. tensor->grad); // [m,p,qq,rr]
  15085. const int64_t qq = s1_tg->ne[2];
  15086. const int64_t rr = s1_tg->ne[3];
  15087. const int64_t q1 = src0->ne[2];
  15088. const int64_t r1 = src0->ne[3];
  15089. const bool ne2_broadcasted = qq > q1;
  15090. const bool ne3_broadcasted = rr > r1;
  15091. if (ne2_broadcasted || ne3_broadcasted) {
  15092. // sum broadcast repetitions of s1_tg into shape of src0
  15093. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  15094. }
  15095. src0->grad =
  15096. ggml_add_or_set(ctx,
  15097. src0->grad, // [n,m,q1,r1]
  15098. s1_tg, // [n,m,q1,r1]
  15099. zero_table);
  15100. }
  15101. if (src1->grad) {
  15102. src1->grad =
  15103. ggml_add_or_set(ctx,
  15104. src1->grad, // [n,p,qq,rr]
  15105. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  15106. // ggml_cont(ctx, // [m,n,q1,r1]
  15107. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  15108. // tensor->grad), // [m,p,qq,rr]
  15109. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  15110. // // avoid transpose of src0, rather transpose smaller tensor->grad
  15111. // // and then use ggml_out_prod
  15112. ggml_out_prod(ctx, // [n,p,qq,rr]
  15113. src0, // [n,m,q1,r1]
  15114. ggml_transpose(ctx, // [p,m,qq,rr]
  15115. tensor->grad)), // [m,p,qq,rr]
  15116. zero_table);
  15117. }
  15118. } break;
  15119. case GGML_OP_MUL_MAT_ID:
  15120. {
  15121. GGML_ASSERT(false); // TODO: not implemented
  15122. } break;
  15123. case GGML_OP_OUT_PROD:
  15124. {
  15125. GGML_ASSERT(false); // TODO: not implemented
  15126. } break;
  15127. case GGML_OP_SCALE:
  15128. {
  15129. // necessary for llama
  15130. if (src0->grad) {
  15131. float s;
  15132. memcpy(&s, tensor->op_params, sizeof(float));
  15133. src0->grad =
  15134. ggml_add_or_set(ctx,
  15135. src0->grad,
  15136. ggml_scale_impl(ctx, tensor->grad, s, false),
  15137. zero_table);
  15138. }
  15139. } break;
  15140. case GGML_OP_SET:
  15141. {
  15142. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15143. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15144. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15145. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15146. struct ggml_tensor * tensor_grad_view = NULL;
  15147. if (src0->grad || src1->grad) {
  15148. GGML_ASSERT(src0->type == tensor->type);
  15149. GGML_ASSERT(tensor->grad->type == tensor->type);
  15150. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  15151. tensor_grad_view = ggml_view_4d(ctx,
  15152. tensor->grad,
  15153. src1->grad->ne[0],
  15154. src1->grad->ne[1],
  15155. src1->grad->ne[2],
  15156. src1->grad->ne[3],
  15157. nb1, nb2, nb3, offset);
  15158. }
  15159. if (src0->grad) {
  15160. src0->grad = ggml_add_or_set(ctx,
  15161. src0->grad,
  15162. ggml_acc_impl(ctx,
  15163. tensor->grad,
  15164. ggml_neg(ctx, tensor_grad_view),
  15165. nb1, nb2, nb3, offset, false),
  15166. zero_table);
  15167. }
  15168. if (src1->grad) {
  15169. src1->grad =
  15170. ggml_add_or_set(ctx,
  15171. src1->grad,
  15172. ggml_reshape(ctx,
  15173. ggml_cont(ctx, tensor_grad_view),
  15174. src1->grad),
  15175. zero_table);
  15176. }
  15177. } break;
  15178. case GGML_OP_CPY:
  15179. {
  15180. // necessary for llama
  15181. // cpy overwrites value of src1 by src0 and returns view(src1)
  15182. // the overwriting is mathematically equivalent to:
  15183. // tensor = src0 * 1 + src1 * 0
  15184. if (src0->grad) {
  15185. // dsrc0 = dtensor * 1
  15186. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15187. }
  15188. if (src1->grad) {
  15189. // dsrc1 = dtensor * 0 -> noop
  15190. }
  15191. } break;
  15192. case GGML_OP_CONT:
  15193. {
  15194. // same as cpy
  15195. if (src0->grad) {
  15196. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  15197. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  15198. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15199. }
  15200. } break;
  15201. case GGML_OP_RESHAPE:
  15202. {
  15203. // necessary for llama
  15204. if (src0->grad) {
  15205. src0->grad =
  15206. ggml_add_or_set(ctx, src0->grad,
  15207. ggml_reshape(ctx,
  15208. ggml_is_contiguous(tensor->grad)
  15209. ? tensor->grad
  15210. : ggml_cont(ctx, tensor->grad),
  15211. src0->grad),
  15212. zero_table);
  15213. }
  15214. } break;
  15215. case GGML_OP_VIEW:
  15216. {
  15217. // necessary for llama
  15218. if (src0->grad) {
  15219. size_t offset;
  15220. memcpy(&offset, tensor->op_params, sizeof(offset));
  15221. size_t nb1 = tensor->nb[1];
  15222. size_t nb2 = tensor->nb[2];
  15223. size_t nb3 = tensor->nb[3];
  15224. if (src0->type != src0->grad->type) {
  15225. // gradient is typically F32, but src0 could be other type
  15226. size_t ng = ggml_element_size(src0->grad);
  15227. size_t n0 = ggml_element_size(src0);
  15228. GGML_ASSERT(offset % n0 == 0);
  15229. GGML_ASSERT(nb1 % n0 == 0);
  15230. GGML_ASSERT(nb2 % n0 == 0);
  15231. GGML_ASSERT(nb3 % n0 == 0);
  15232. offset = (offset / n0) * ng;
  15233. nb1 = (nb1 / n0) * ng;
  15234. nb2 = (nb2 / n0) * ng;
  15235. nb3 = (nb3 / n0) * ng;
  15236. }
  15237. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  15238. }
  15239. } break;
  15240. case GGML_OP_PERMUTE:
  15241. {
  15242. // necessary for llama
  15243. if (src0->grad) {
  15244. int32_t * axes = (int32_t *) tensor->op_params;
  15245. int axis0 = axes[0] & 0x3;
  15246. int axis1 = axes[1] & 0x3;
  15247. int axis2 = axes[2] & 0x3;
  15248. int axis3 = axes[3] & 0x3;
  15249. int axes_backward[4] = {0,0,0,0};
  15250. axes_backward[axis0] = 0;
  15251. axes_backward[axis1] = 1;
  15252. axes_backward[axis2] = 2;
  15253. axes_backward[axis3] = 3;
  15254. src0->grad =
  15255. ggml_add_or_set(ctx, src0->grad,
  15256. ggml_permute(ctx,
  15257. tensor->grad,
  15258. axes_backward[0],
  15259. axes_backward[1],
  15260. axes_backward[2],
  15261. axes_backward[3]),
  15262. zero_table);
  15263. }
  15264. } break;
  15265. case GGML_OP_TRANSPOSE:
  15266. {
  15267. // necessary for llama
  15268. if (src0->grad) {
  15269. src0->grad =
  15270. ggml_add_or_set(ctx, src0->grad,
  15271. ggml_transpose(ctx, tensor->grad),
  15272. zero_table);
  15273. }
  15274. } break;
  15275. case GGML_OP_GET_ROWS:
  15276. {
  15277. // necessary for llama (only for tokenizer)
  15278. if (src0->grad) {
  15279. src0->grad =
  15280. ggml_add_or_set(ctx, src0->grad,
  15281. // last ggml_get_rows_back argument src0->grad is only
  15282. // necessary to setup correct output shape
  15283. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15284. zero_table);
  15285. }
  15286. if (src1->grad) {
  15287. // noop
  15288. }
  15289. } break;
  15290. case GGML_OP_GET_ROWS_BACK:
  15291. {
  15292. GGML_ASSERT(false); // TODO: not implemented
  15293. } break;
  15294. case GGML_OP_DIAG:
  15295. {
  15296. GGML_ASSERT(false); // TODO: not implemented
  15297. } break;
  15298. case GGML_OP_DIAG_MASK_INF:
  15299. {
  15300. // necessary for llama
  15301. if (src0->grad) {
  15302. const int n_past = ((int32_t *) tensor->op_params)[0];
  15303. src0->grad =
  15304. ggml_add_or_set(ctx, src0->grad,
  15305. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15306. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15307. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15308. zero_table);
  15309. }
  15310. } break;
  15311. case GGML_OP_DIAG_MASK_ZERO:
  15312. {
  15313. // necessary for llama
  15314. if (src0->grad) {
  15315. const int n_past = ((int32_t *) tensor->op_params)[0];
  15316. src0->grad =
  15317. ggml_add_or_set(ctx, src0->grad,
  15318. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15319. zero_table);
  15320. }
  15321. } break;
  15322. case GGML_OP_SOFT_MAX:
  15323. {
  15324. // necessary for llama
  15325. if (src0->grad) {
  15326. src0->grad =
  15327. ggml_add_or_set(ctx, src0->grad,
  15328. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15329. zero_table);
  15330. }
  15331. } break;
  15332. case GGML_OP_SOFT_MAX_BACK:
  15333. {
  15334. GGML_ASSERT(false); // TODO: not implemented
  15335. } break;
  15336. case GGML_OP_ROPE:
  15337. {
  15338. // necessary for llama
  15339. if (src0->grad) {
  15340. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15341. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15342. const int mode = ((int32_t *) tensor->op_params)[2];
  15343. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15344. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15345. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15346. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15347. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15348. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15349. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15350. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15351. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15352. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15353. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15354. src0->grad = ggml_add_or_set(ctx,
  15355. src0->grad,
  15356. ggml_rope_back(ctx,
  15357. tensor->grad,
  15358. src1,
  15359. n_dims,
  15360. mode,
  15361. n_ctx,
  15362. n_orig_ctx,
  15363. freq_base,
  15364. freq_scale,
  15365. ext_factor,
  15366. attn_factor,
  15367. beta_fast,
  15368. beta_slow,
  15369. xpos_base,
  15370. xpos_down),
  15371. zero_table);
  15372. }
  15373. } break;
  15374. case GGML_OP_ROPE_BACK:
  15375. {
  15376. if (src0->grad) {
  15377. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15378. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15379. const int mode = ((int32_t *) tensor->op_params)[2];
  15380. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15381. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15382. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15383. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15384. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15385. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15386. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15387. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15388. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15389. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15390. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15391. src0->grad = ggml_add_or_set(ctx,
  15392. src0->grad,
  15393. ggml_rope_impl(ctx,
  15394. tensor->grad,
  15395. src1,
  15396. n_dims,
  15397. mode,
  15398. n_ctx,
  15399. n_orig_ctx,
  15400. freq_base,
  15401. freq_scale,
  15402. ext_factor,
  15403. attn_factor,
  15404. beta_fast,
  15405. beta_slow,
  15406. xpos_base,
  15407. xpos_down,
  15408. false),
  15409. zero_table);
  15410. }
  15411. } break;
  15412. case GGML_OP_CLAMP:
  15413. {
  15414. GGML_ASSERT(false); // TODO: not implemented
  15415. } break;
  15416. case GGML_OP_CONV_TRANSPOSE_1D:
  15417. {
  15418. GGML_ASSERT(false); // TODO: not implemented
  15419. } break;
  15420. case GGML_OP_IM2COL:
  15421. {
  15422. GGML_ASSERT(false); // TODO: not implemented
  15423. } break;
  15424. case GGML_OP_CONV_TRANSPOSE_2D:
  15425. {
  15426. GGML_ASSERT(false); // TODO: not implemented
  15427. } break;
  15428. case GGML_OP_POOL_1D:
  15429. {
  15430. GGML_ASSERT(false); // TODO: not implemented
  15431. } break;
  15432. case GGML_OP_POOL_2D:
  15433. {
  15434. GGML_ASSERT(false); // TODO: not implemented
  15435. } break;
  15436. case GGML_OP_UPSCALE:
  15437. {
  15438. GGML_ASSERT(false); // TODO: not implemented
  15439. } break;
  15440. case GGML_OP_PAD:
  15441. {
  15442. GGML_ASSERT(false); // TODO: not implemented
  15443. } break;
  15444. case GGML_OP_ARANGE:
  15445. {
  15446. GGML_ASSERT(false); // TODO: not implemented
  15447. } break;
  15448. case GGML_OP_TIMESTEP_EMBEDDING:
  15449. {
  15450. GGML_ASSERT(false); // TODO: not implemented
  15451. } break;
  15452. case GGML_OP_ARGSORT:
  15453. {
  15454. GGML_ASSERT(false); // TODO: not implemented
  15455. } break;
  15456. case GGML_OP_LEAKY_RELU:
  15457. {
  15458. GGML_ASSERT(false); // TODO: not implemented
  15459. } break;
  15460. case GGML_OP_FLASH_ATTN:
  15461. case GGML_OP_FLASH_ATTN_EXT:
  15462. {
  15463. struct ggml_tensor * flash_grad = NULL;
  15464. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15465. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15466. GGML_ASSERT(t == 0 || t == 1);
  15467. bool masked = t != 0;
  15468. flash_grad =
  15469. ggml_flash_attn_back(ctx,
  15470. src0,
  15471. src1,
  15472. tensor->src[2],
  15473. tensor->grad,
  15474. masked);
  15475. }
  15476. struct ggml_tensor * src2 = tensor->src[2];
  15477. const int64_t elem_q = ggml_nelements(src0);
  15478. const int64_t elem_k = ggml_nelements(src1);
  15479. const int64_t elem_v = ggml_nelements(src2);
  15480. enum ggml_type result_type = flash_grad->type;
  15481. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15482. const size_t tsize = ggml_type_size(result_type);
  15483. const size_t offs_q = 0;
  15484. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15485. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15486. if (src0->grad) {
  15487. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15488. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15489. src0->grad = ggml_add_or_set(ctx,
  15490. src0->grad,
  15491. grad_q,
  15492. zero_table);
  15493. }
  15494. if (src1->grad) {
  15495. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15496. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15497. src1->grad = ggml_add_or_set(ctx,
  15498. src1->grad,
  15499. grad_k,
  15500. zero_table);
  15501. }
  15502. if (src2->grad) {
  15503. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15504. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15505. src2->grad = ggml_add_or_set(ctx,
  15506. src2->grad,
  15507. grad_v,
  15508. zero_table);
  15509. }
  15510. } break;
  15511. case GGML_OP_FLASH_FF:
  15512. {
  15513. GGML_ASSERT(false); // not supported
  15514. } break;
  15515. case GGML_OP_FLASH_ATTN_BACK:
  15516. {
  15517. GGML_ASSERT(false); // not supported
  15518. } break;
  15519. case GGML_OP_SSM_CONV:
  15520. case GGML_OP_SSM_SCAN:
  15521. {
  15522. GGML_ASSERT(false); // TODO: not implemented
  15523. } break;
  15524. case GGML_OP_WIN_PART:
  15525. case GGML_OP_WIN_UNPART:
  15526. case GGML_OP_UNARY:
  15527. {
  15528. switch (ggml_get_unary_op(tensor)) {
  15529. case GGML_UNARY_OP_ABS:
  15530. {
  15531. if (src0->grad) {
  15532. src0->grad =
  15533. ggml_add_or_set(ctx,
  15534. src0->grad,
  15535. ggml_mul(ctx,
  15536. ggml_sgn(ctx, src0),
  15537. tensor->grad),
  15538. zero_table);
  15539. }
  15540. } break;
  15541. case GGML_UNARY_OP_SGN:
  15542. {
  15543. if (src0->grad) {
  15544. // noop
  15545. }
  15546. } break;
  15547. case GGML_UNARY_OP_NEG:
  15548. {
  15549. if (src0->grad) {
  15550. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15551. }
  15552. } break;
  15553. case GGML_UNARY_OP_STEP:
  15554. {
  15555. if (src0->grad) {
  15556. // noop
  15557. }
  15558. } break;
  15559. case GGML_UNARY_OP_TANH:
  15560. {
  15561. GGML_ASSERT(false); // TODO: not implemented
  15562. } break;
  15563. case GGML_UNARY_OP_ELU:
  15564. {
  15565. GGML_ASSERT(false); // TODO: not implemented
  15566. } break;
  15567. case GGML_UNARY_OP_RELU:
  15568. {
  15569. if (src0->grad) {
  15570. src0->grad = ggml_add_or_set(ctx,
  15571. src0->grad,
  15572. ggml_mul(ctx,
  15573. ggml_step(ctx, src0),
  15574. tensor->grad),
  15575. zero_table);
  15576. }
  15577. } break;
  15578. case GGML_UNARY_OP_SIGMOID:
  15579. {
  15580. GGML_ASSERT(false); // TODO: not implemented
  15581. } break;
  15582. case GGML_UNARY_OP_GELU:
  15583. {
  15584. GGML_ASSERT(false); // TODO: not implemented
  15585. } break;
  15586. case GGML_UNARY_OP_GELU_QUICK:
  15587. {
  15588. GGML_ASSERT(false); // TODO: not implemented
  15589. } break;
  15590. case GGML_UNARY_OP_SILU:
  15591. {
  15592. // necessary for llama
  15593. if (src0->grad) {
  15594. src0->grad = ggml_add_or_set(ctx,
  15595. src0->grad,
  15596. ggml_silu_back(ctx, src0, tensor->grad),
  15597. zero_table);
  15598. }
  15599. } break;
  15600. default:
  15601. GGML_ASSERT(false);
  15602. }
  15603. } break;
  15604. case GGML_OP_GET_REL_POS:
  15605. case GGML_OP_ADD_REL_POS:
  15606. case GGML_OP_MAP_UNARY:
  15607. case GGML_OP_MAP_BINARY:
  15608. case GGML_OP_MAP_CUSTOM1_F32:
  15609. case GGML_OP_MAP_CUSTOM2_F32:
  15610. case GGML_OP_MAP_CUSTOM3_F32:
  15611. case GGML_OP_MAP_CUSTOM1:
  15612. case GGML_OP_MAP_CUSTOM2:
  15613. case GGML_OP_MAP_CUSTOM3:
  15614. {
  15615. GGML_ASSERT(false); // not supported
  15616. } break;
  15617. case GGML_OP_CROSS_ENTROPY_LOSS:
  15618. {
  15619. if (src0->grad) {
  15620. src0->grad = ggml_add_or_set(ctx,
  15621. src0->grad,
  15622. ggml_cross_entropy_loss_back(ctx,
  15623. src0,
  15624. src1,
  15625. tensor->grad),
  15626. zero_table);
  15627. }
  15628. } break;
  15629. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15630. {
  15631. GGML_ASSERT(false); // not supported
  15632. } break;
  15633. case GGML_OP_NONE:
  15634. {
  15635. // nop
  15636. } break;
  15637. case GGML_OP_COUNT:
  15638. {
  15639. GGML_ASSERT(false);
  15640. } break;
  15641. }
  15642. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15643. if (tensor->src[i] && tensor->src[i]->grad) {
  15644. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15645. }
  15646. }
  15647. }
  15648. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15649. if (node->grad == NULL) {
  15650. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15651. // it can also happen during forward pass, if the user performs computations with constants
  15652. if (node->op != GGML_OP_NONE) {
  15653. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15654. }
  15655. }
  15656. // check if already visited
  15657. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15658. return;
  15659. }
  15660. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15661. const int k =
  15662. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15663. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15664. /* unknown order, just fall back to using i*/ i;
  15665. if (node->src[k]) {
  15666. ggml_visit_parents(cgraph, node->src[k]);
  15667. }
  15668. }
  15669. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15670. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15671. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15672. if (strlen(node->name) == 0) {
  15673. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15674. }
  15675. cgraph->leafs[cgraph->n_leafs] = node;
  15676. cgraph->n_leafs++;
  15677. } else {
  15678. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15679. if (strlen(node->name) == 0) {
  15680. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15681. }
  15682. cgraph->nodes[cgraph->n_nodes] = node;
  15683. if (cgraph->grads) {
  15684. cgraph->grads[cgraph->n_nodes] = node->grad;
  15685. }
  15686. cgraph->n_nodes++;
  15687. }
  15688. }
  15689. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15690. if (!expand) {
  15691. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15692. ggml_graph_clear(cgraph);
  15693. }
  15694. const int n0 = cgraph->n_nodes;
  15695. UNUSED(n0);
  15696. ggml_visit_parents(cgraph, tensor);
  15697. const int n_new = cgraph->n_nodes - n0;
  15698. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15699. if (n_new > 0) {
  15700. // the last added node should always be starting point
  15701. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15702. }
  15703. }
  15704. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15705. ggml_build_forward_impl(cgraph, tensor, true);
  15706. }
  15707. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15708. GGML_ASSERT(gf->n_nodes > 0);
  15709. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15710. if (keep) {
  15711. for (int i = 0; i < gf->n_nodes; i++) {
  15712. struct ggml_tensor * node = gf->nodes[i];
  15713. if (node->grad) {
  15714. node->grad = ggml_dup_tensor(ctx, node);
  15715. gf->grads[i] = node->grad;
  15716. }
  15717. }
  15718. }
  15719. // remember original gradients which start with zero values
  15720. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15721. for (int i = 0; i < gf->n_nodes; i++) {
  15722. if (gf->grads[i]) {
  15723. ggml_hash_insert(zero_table, gf->grads[i]);
  15724. }
  15725. }
  15726. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15727. struct ggml_tensor * node = gf->nodes[i];
  15728. // inplace operations to add gradients are not created by ggml_compute_backward
  15729. // use allocator to automatically make inplace operations
  15730. if (node->grad) {
  15731. ggml_compute_backward(ctx, node, zero_table);
  15732. }
  15733. }
  15734. for (int i = 0; i < gf->n_nodes; i++) {
  15735. struct ggml_tensor * node = gf->nodes[i];
  15736. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15737. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15738. ggml_build_forward_expand(gb, node->grad);
  15739. }
  15740. }
  15741. ggml_hash_set_free(zero_table);
  15742. }
  15743. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15744. size_t nbytes = sizeof(struct ggml_cgraph);
  15745. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15746. if (grads) {
  15747. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15748. }
  15749. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15750. return nbytes;
  15751. }
  15752. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15753. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15754. }
  15755. size_t ggml_graph_overhead(void) {
  15756. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15757. }
  15758. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15759. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15760. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15761. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15762. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15763. size_t hash_size = ggml_hash_size(size * 2);
  15764. struct ggml_tensor ** nodes_ptr = data_start;
  15765. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15766. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15767. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15768. // check that we allocated the correct amount of memory
  15769. assert(obj_size == (size_t) (
  15770. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15771. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15772. *cgraph = (struct ggml_cgraph) {
  15773. /*.size =*/ size,
  15774. /*.n_nodes =*/ 0,
  15775. /*.n_leafs =*/ 0,
  15776. /*.nodes =*/ nodes_ptr,
  15777. /*.grads =*/ grads_ptr,
  15778. /*.leafs =*/ leafs_ptr,
  15779. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15780. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15781. /*.perf_runs =*/ 0,
  15782. /*.perf_cycles =*/ 0,
  15783. /*.perf_time_us =*/ 0,
  15784. };
  15785. return cgraph;
  15786. }
  15787. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15788. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15789. }
  15790. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15791. struct ggml_cgraph cgraph = {
  15792. /*.size =*/ 0,
  15793. /*.n_nodes =*/ i1 - i0,
  15794. /*.n_leafs =*/ 0,
  15795. /*.nodes =*/ cgraph0->nodes + i0,
  15796. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15797. /*.leafs =*/ NULL,
  15798. /*.hash_table =*/ { 0, NULL },
  15799. /*.order =*/ cgraph0->order,
  15800. /*.perf_runs =*/ 0,
  15801. /*.perf_cycles =*/ 0,
  15802. /*.perf_time_us =*/ 0,
  15803. };
  15804. return cgraph;
  15805. }
  15806. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15807. GGML_ASSERT(dst->size >= src->n_leafs);
  15808. GGML_ASSERT(dst->size >= src->n_nodes);
  15809. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15810. dst->n_leafs = src->n_leafs;
  15811. dst->n_nodes = src->n_nodes;
  15812. dst->order = src->order;
  15813. for (int i = 0; i < src->n_leafs; ++i) {
  15814. dst->leafs[i] = src->leafs[i];
  15815. }
  15816. for (int i = 0; i < src->n_nodes; ++i) {
  15817. dst->nodes[i] = src->nodes[i];
  15818. }
  15819. if (src->grads) {
  15820. GGML_ASSERT(dst->grads != NULL);
  15821. for (int i = 0; i < src->n_nodes; ++i) {
  15822. dst->grads[i] = src->grads[i];
  15823. }
  15824. }
  15825. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15826. if (src->visited_hash_table.keys[i]) {
  15827. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15828. }
  15829. }
  15830. }
  15831. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15832. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15833. ggml_graph_cpy(cgraph, result);
  15834. return result;
  15835. }
  15836. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15837. GGML_ASSERT(cgraph->grads != NULL);
  15838. for (int i = 0; i < cgraph->n_nodes; i++) {
  15839. struct ggml_tensor * grad = cgraph->grads[i];
  15840. if (grad) {
  15841. ggml_set_zero(grad);
  15842. }
  15843. }
  15844. }
  15845. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15846. cgraph->n_leafs = 0;
  15847. cgraph->n_nodes = 0;
  15848. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15849. }
  15850. //
  15851. // thread data
  15852. //
  15853. // synchronization is done via busy loops
  15854. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15855. //
  15856. #ifdef __APPLE__
  15857. //#include <os/lock.h>
  15858. //
  15859. //typedef os_unfair_lock ggml_lock_t;
  15860. //
  15861. //#define ggml_lock_init(x) UNUSED(x)
  15862. //#define ggml_lock_destroy(x) UNUSED(x)
  15863. //#define ggml_lock_lock os_unfair_lock_lock
  15864. //#define ggml_lock_unlock os_unfair_lock_unlock
  15865. //
  15866. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15867. typedef int ggml_lock_t;
  15868. #define ggml_lock_init(x) UNUSED(x)
  15869. #define ggml_lock_destroy(x) UNUSED(x)
  15870. #define ggml_lock_lock(x) UNUSED(x)
  15871. #define ggml_lock_unlock(x) UNUSED(x)
  15872. #define GGML_LOCK_INITIALIZER 0
  15873. #define ggml_thread_create pthread_create
  15874. #define ggml_thread_join pthread_join
  15875. #else
  15876. //typedef pthread_spinlock_t ggml_lock_t;
  15877. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15878. //#define ggml_lock_destroy pthread_spin_destroy
  15879. //#define ggml_lock_lock pthread_spin_lock
  15880. //#define ggml_lock_unlock pthread_spin_unlock
  15881. typedef int ggml_lock_t;
  15882. #define ggml_lock_init(x) UNUSED(x)
  15883. #define ggml_lock_destroy(x) UNUSED(x)
  15884. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15885. #define ggml_lock_lock(x) _mm_pause()
  15886. #else
  15887. #define ggml_lock_lock(x) UNUSED(x)
  15888. #endif
  15889. #define ggml_lock_unlock(x) UNUSED(x)
  15890. #define GGML_LOCK_INITIALIZER 0
  15891. #define ggml_thread_create pthread_create
  15892. #define ggml_thread_join pthread_join
  15893. #endif
  15894. // Android's libc implementation "bionic" does not support setting affinity
  15895. #if defined(__gnu_linux__)
  15896. static void set_numa_thread_affinity(int thread_n) {
  15897. if (!ggml_is_numa()) {
  15898. return;
  15899. }
  15900. int node_num;
  15901. int rv;
  15902. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15903. switch(g_state.numa.numa_strategy) {
  15904. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15905. // run thread on node_num thread_n / (threads per node)
  15906. node_num = thread_n % g_state.numa.n_nodes;
  15907. break;
  15908. case GGML_NUMA_STRATEGY_ISOLATE:
  15909. // run thread on current_node
  15910. node_num = g_state.numa.current_node;
  15911. break;
  15912. case GGML_NUMA_STRATEGY_NUMACTL:
  15913. // use the cpuset that numactl gave us
  15914. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15915. if (rv) {
  15916. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15917. }
  15918. return;
  15919. default:
  15920. return;
  15921. }
  15922. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15923. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15924. CPU_ZERO_S(setsize, cpus);
  15925. for (size_t i = 0; i < node->n_cpus; ++i) {
  15926. CPU_SET_S(node->cpus[i], setsize, cpus);
  15927. }
  15928. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15929. if (rv) {
  15930. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15931. }
  15932. CPU_FREE(cpus);
  15933. }
  15934. static void clear_numa_thread_affinity(void) {
  15935. if (!ggml_is_numa()) {
  15936. return;
  15937. }
  15938. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15939. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15940. CPU_ZERO_S(setsize, cpus);
  15941. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15942. CPU_SET_S(i, setsize, cpus);
  15943. }
  15944. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15945. if (rv) {
  15946. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15947. }
  15948. CPU_FREE(cpus);
  15949. }
  15950. #else
  15951. // TODO: Windows etc.
  15952. // (the linux implementation may also work on BSD, someone should test)
  15953. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15954. static void clear_numa_thread_affinity(void) {}
  15955. #endif
  15956. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15957. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15958. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15959. node->perf_runs++;
  15960. node->perf_cycles += cycles_cur;
  15961. node->perf_time_us += time_us_cur;
  15962. }
  15963. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15964. int n_tasks = 0;
  15965. if (ggml_is_empty(node)) {
  15966. // no need to multi-thread a no-op
  15967. n_tasks = 1;
  15968. return n_tasks;
  15969. }
  15970. switch (node->op) {
  15971. case GGML_OP_CPY:
  15972. case GGML_OP_DUP:
  15973. case GGML_OP_ADD:
  15974. case GGML_OP_ADD1:
  15975. case GGML_OP_ACC:
  15976. {
  15977. n_tasks = n_threads;
  15978. } break;
  15979. case GGML_OP_SUB:
  15980. case GGML_OP_SQR:
  15981. case GGML_OP_SQRT:
  15982. case GGML_OP_LOG:
  15983. case GGML_OP_SUM:
  15984. case GGML_OP_SUM_ROWS:
  15985. case GGML_OP_MEAN:
  15986. case GGML_OP_ARGMAX:
  15987. case GGML_OP_REPEAT:
  15988. case GGML_OP_REPEAT_BACK:
  15989. case GGML_OP_LEAKY_RELU:
  15990. {
  15991. n_tasks = 1;
  15992. } break;
  15993. case GGML_OP_UNARY:
  15994. switch (ggml_get_unary_op(node)) {
  15995. case GGML_UNARY_OP_ABS:
  15996. case GGML_UNARY_OP_SGN:
  15997. case GGML_UNARY_OP_NEG:
  15998. case GGML_UNARY_OP_STEP:
  15999. case GGML_UNARY_OP_TANH:
  16000. case GGML_UNARY_OP_ELU:
  16001. case GGML_UNARY_OP_RELU:
  16002. case GGML_UNARY_OP_SIGMOID:
  16003. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  16004. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  16005. {
  16006. n_tasks = 1;
  16007. } break;
  16008. case GGML_UNARY_OP_GELU:
  16009. case GGML_UNARY_OP_GELU_QUICK:
  16010. case GGML_UNARY_OP_SILU:
  16011. {
  16012. n_tasks = n_threads;
  16013. } break;
  16014. default:
  16015. GGML_ASSERT(false);
  16016. }
  16017. break;
  16018. case GGML_OP_SILU_BACK:
  16019. case GGML_OP_MUL:
  16020. case GGML_OP_DIV:
  16021. case GGML_OP_NORM:
  16022. case GGML_OP_RMS_NORM:
  16023. case GGML_OP_RMS_NORM_BACK:
  16024. case GGML_OP_GROUP_NORM:
  16025. case GGML_OP_CONCAT:
  16026. {
  16027. n_tasks = n_threads;
  16028. } break;
  16029. case GGML_OP_MUL_MAT:
  16030. {
  16031. n_tasks = n_threads;
  16032. // TODO: use different scheduling for different matrix sizes
  16033. //const int nr0 = ggml_nrows(node->src[0]);
  16034. //const int nr1 = ggml_nrows(node->src[1]);
  16035. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  16036. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  16037. } break;
  16038. case GGML_OP_MUL_MAT_ID:
  16039. {
  16040. n_tasks = n_threads;
  16041. } break;
  16042. case GGML_OP_OUT_PROD:
  16043. {
  16044. n_tasks = n_threads;
  16045. } break;
  16046. case GGML_OP_GET_ROWS:
  16047. {
  16048. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  16049. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  16050. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  16051. } break;
  16052. case GGML_OP_SCALE:
  16053. case GGML_OP_SET:
  16054. case GGML_OP_CONT:
  16055. case GGML_OP_RESHAPE:
  16056. case GGML_OP_VIEW:
  16057. case GGML_OP_PERMUTE:
  16058. case GGML_OP_TRANSPOSE:
  16059. case GGML_OP_GET_ROWS_BACK:
  16060. case GGML_OP_DIAG:
  16061. {
  16062. n_tasks = 1;
  16063. } break;
  16064. case GGML_OP_DIAG_MASK_ZERO:
  16065. case GGML_OP_DIAG_MASK_INF:
  16066. case GGML_OP_SOFT_MAX_BACK:
  16067. case GGML_OP_ROPE:
  16068. case GGML_OP_ROPE_BACK:
  16069. case GGML_OP_ADD_REL_POS:
  16070. {
  16071. n_tasks = n_threads;
  16072. } break;
  16073. case GGML_OP_CLAMP:
  16074. {
  16075. n_tasks = 1; //TODO
  16076. } break;
  16077. case GGML_OP_SOFT_MAX:
  16078. {
  16079. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  16080. } break;
  16081. case GGML_OP_CONV_TRANSPOSE_1D:
  16082. {
  16083. n_tasks = n_threads;
  16084. } break;
  16085. case GGML_OP_IM2COL:
  16086. {
  16087. n_tasks = n_threads;
  16088. } break;
  16089. case GGML_OP_CONV_TRANSPOSE_2D:
  16090. {
  16091. n_tasks = n_threads;
  16092. } break;
  16093. case GGML_OP_POOL_1D:
  16094. case GGML_OP_POOL_2D:
  16095. {
  16096. n_tasks = 1;
  16097. } break;
  16098. case GGML_OP_UPSCALE:
  16099. {
  16100. n_tasks = n_threads;
  16101. } break;
  16102. case GGML_OP_PAD:
  16103. {
  16104. n_tasks = n_threads;
  16105. } break;
  16106. case GGML_OP_ARANGE:
  16107. {
  16108. n_tasks = n_threads;
  16109. } break;
  16110. case GGML_OP_TIMESTEP_EMBEDDING:
  16111. {
  16112. n_tasks = n_threads;
  16113. } break;
  16114. case GGML_OP_ARGSORT:
  16115. {
  16116. n_tasks = n_threads;
  16117. } break;
  16118. case GGML_OP_FLASH_ATTN:
  16119. case GGML_OP_FLASH_ATTN_EXT:
  16120. {
  16121. n_tasks = n_threads;
  16122. } break;
  16123. case GGML_OP_FLASH_FF:
  16124. {
  16125. n_tasks = n_threads;
  16126. } break;
  16127. case GGML_OP_FLASH_ATTN_BACK:
  16128. {
  16129. n_tasks = n_threads;
  16130. } break;
  16131. case GGML_OP_SSM_CONV:
  16132. case GGML_OP_SSM_SCAN:
  16133. {
  16134. n_tasks = n_threads;
  16135. } break;
  16136. case GGML_OP_WIN_PART:
  16137. case GGML_OP_WIN_UNPART:
  16138. case GGML_OP_GET_REL_POS:
  16139. case GGML_OP_MAP_UNARY:
  16140. case GGML_OP_MAP_BINARY:
  16141. case GGML_OP_MAP_CUSTOM1_F32:
  16142. case GGML_OP_MAP_CUSTOM2_F32:
  16143. case GGML_OP_MAP_CUSTOM3_F32:
  16144. {
  16145. n_tasks = 1;
  16146. } break;
  16147. case GGML_OP_MAP_CUSTOM1:
  16148. {
  16149. struct ggml_map_custom1_op_params p;
  16150. memcpy(&p, node->op_params, sizeof(p));
  16151. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16152. n_tasks = n_threads;
  16153. } else {
  16154. n_tasks = MIN(p.n_tasks, n_threads);
  16155. }
  16156. } break;
  16157. case GGML_OP_MAP_CUSTOM2:
  16158. {
  16159. struct ggml_map_custom2_op_params p;
  16160. memcpy(&p, node->op_params, sizeof(p));
  16161. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16162. n_tasks = n_threads;
  16163. } else {
  16164. n_tasks = MIN(p.n_tasks, n_threads);
  16165. }
  16166. } break;
  16167. case GGML_OP_MAP_CUSTOM3:
  16168. {
  16169. struct ggml_map_custom3_op_params p;
  16170. memcpy(&p, node->op_params, sizeof(p));
  16171. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16172. n_tasks = n_threads;
  16173. } else {
  16174. n_tasks = MIN(p.n_tasks, n_threads);
  16175. }
  16176. } break;
  16177. case GGML_OP_CROSS_ENTROPY_LOSS:
  16178. {
  16179. n_tasks = n_threads;
  16180. } break;
  16181. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16182. {
  16183. n_tasks = n_threads;
  16184. } break;
  16185. case GGML_OP_NONE:
  16186. {
  16187. n_tasks = 1;
  16188. } break;
  16189. case GGML_OP_COUNT:
  16190. {
  16191. GGML_ASSERT(false);
  16192. } break;
  16193. default:
  16194. {
  16195. fprintf(stderr, "%s: op not implemented: ", __func__);
  16196. if (node->op < GGML_OP_COUNT) {
  16197. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16198. } else {
  16199. fprintf(stderr, "%d\n", node->op);
  16200. }
  16201. GGML_ASSERT(false);
  16202. } break;
  16203. }
  16204. assert(n_tasks > 0);
  16205. return n_tasks;
  16206. }
  16207. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  16208. // wait for other threads to finish
  16209. const int last_node_n = * node_n;
  16210. while (true) {
  16211. if (do_yield) {
  16212. sched_yield();
  16213. }
  16214. * node_n = atomic_load(&state->shared->node_n);
  16215. if (* node_n != last_node_n) break;
  16216. #if defined(__SSE3__)
  16217. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  16218. _mm_pause();
  16219. #endif
  16220. }
  16221. }
  16222. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  16223. // wait for other threads to finish
  16224. const int last_task_phase = * task_phase;
  16225. while (true) {
  16226. if (do_yield) {
  16227. sched_yield();
  16228. }
  16229. * task_phase = atomic_load(&state->shared->node_task);
  16230. if (* task_phase != last_task_phase) break;
  16231. #if defined(__SSE3__)
  16232. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  16233. _mm_pause();
  16234. #endif
  16235. }
  16236. }
  16237. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16238. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16239. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  16240. const struct ggml_cplan * cplan = state->shared->cplan;
  16241. const int n_threads = state->shared->n_threads;
  16242. set_numa_thread_affinity(state->ith);
  16243. int node_n = -1;
  16244. int task_phase = GGML_TASK_TYPE_FINALIZE;
  16245. while (true) {
  16246. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16247. state->shared->node_n += 1;
  16248. state->ec = GGML_STATUS_ABORTED;
  16249. return 0;
  16250. }
  16251. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16252. // all other threads are finished and spinning
  16253. // do finalize and init here so we don't have synchronize again
  16254. struct ggml_compute_params params = {
  16255. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  16256. /*.ith =*/ 0,
  16257. /*.nth =*/ 0,
  16258. /*.wsize =*/ cplan->work_size,
  16259. /*.wdata =*/ cplan->work_data,
  16260. };
  16261. if (node_n != -1) {
  16262. /* FINALIZE */
  16263. struct ggml_tensor * node = cgraph->nodes[node_n];
  16264. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16265. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16266. ggml_compute_forward(&params, node, state);
  16267. }
  16268. ggml_graph_compute_perf_stats_node(node, state->shared);
  16269. }
  16270. // distribute new work or execute it direct if 1T
  16271. while (++node_n < cgraph->n_nodes) {
  16272. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  16273. struct ggml_tensor * node = cgraph->nodes[node_n];
  16274. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16275. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16276. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16277. params.nth = n_tasks;
  16278. if (n_tasks == 1) {
  16279. /* INIT */
  16280. if (GGML_OP_HAS_INIT[node->op]) {
  16281. params.type = GGML_TASK_TYPE_INIT;
  16282. ggml_compute_forward(&params, node, state);
  16283. }
  16284. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16285. // they do something more efficient than spinning (?)
  16286. params.type = GGML_TASK_TYPE_COMPUTE;
  16287. ggml_compute_forward(&params, node, state);
  16288. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16289. params.type = GGML_TASK_TYPE_FINALIZE;
  16290. ggml_compute_forward(&params, node, state);
  16291. }
  16292. ggml_graph_compute_perf_stats_node(node, state->shared);
  16293. } else {
  16294. break;
  16295. }
  16296. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16297. break;
  16298. }
  16299. }
  16300. task_phase = GGML_TASK_TYPE_INIT;
  16301. atomic_store(&state->shared->n_active, n_threads);
  16302. atomic_store(&state->shared->node_n, node_n);
  16303. atomic_store(&state->shared->node_task, task_phase);
  16304. } else {
  16305. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16306. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16307. }
  16308. // check if we should stop
  16309. if (node_n >= cgraph->n_nodes) break;
  16310. /* INIT & COMPUTE */
  16311. struct ggml_tensor * node = cgraph->nodes[node_n];
  16312. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16313. struct ggml_compute_params params = {
  16314. /*.type =*/ GGML_TASK_TYPE_INIT,
  16315. /*.ith =*/ state->ith,
  16316. /*.nth =*/ n_tasks,
  16317. /*.wsize =*/ cplan->work_size,
  16318. /*.wdata =*/ cplan->work_data,
  16319. };
  16320. if (state->ith < n_tasks) {
  16321. if (GGML_OP_HAS_INIT[node->op]) {
  16322. ggml_compute_forward(&params, node, state);
  16323. }
  16324. }
  16325. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16326. task_phase = GGML_TASK_TYPE_COMPUTE;
  16327. atomic_store(&state->shared->n_active, n_threads);
  16328. atomic_store(&state->shared->node_task, task_phase);
  16329. }
  16330. else {
  16331. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16332. // depending on the workload and the operating system.
  16333. // since it is not clear what is the best approach, it should potentially become user-configurable
  16334. // ref: https://github.com/ggerganov/ggml/issues/291
  16335. // UPD: adding the do_yield flag seems to resolve the issue universally
  16336. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16337. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16338. }
  16339. if (state->ith < n_tasks) {
  16340. params.type = GGML_TASK_TYPE_COMPUTE;
  16341. ggml_compute_forward(&params, node, state);
  16342. }
  16343. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16344. task_phase = GGML_TASK_TYPE_FINALIZE;
  16345. atomic_store(&state->shared->n_active, n_threads);
  16346. atomic_store(&state->shared->node_task, task_phase);
  16347. }
  16348. else {
  16349. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16350. }
  16351. }
  16352. return 0;
  16353. }
  16354. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16355. if (n_threads <= 0) {
  16356. n_threads = GGML_DEFAULT_N_THREADS;
  16357. }
  16358. size_t work_size = 0;
  16359. struct ggml_cplan cplan;
  16360. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16361. int max_tasks = 1;
  16362. // thread scheduling for the different operations + work buffer size estimation
  16363. for (int i = 0; i < cgraph->n_nodes; i++) {
  16364. struct ggml_tensor * node = cgraph->nodes[i];
  16365. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16366. max_tasks = MAX(max_tasks, n_tasks);
  16367. size_t cur = 0;
  16368. switch (node->op) {
  16369. case GGML_OP_CPY:
  16370. case GGML_OP_DUP:
  16371. {
  16372. if (ggml_is_quantized(node->type) ||
  16373. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16374. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16375. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16376. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16377. }
  16378. } break;
  16379. case GGML_OP_ADD:
  16380. case GGML_OP_ADD1:
  16381. {
  16382. if (ggml_is_quantized(node->src[0]->type)) {
  16383. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16384. }
  16385. } break;
  16386. case GGML_OP_ACC:
  16387. {
  16388. if (ggml_is_quantized(node->src[0]->type)) {
  16389. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16390. }
  16391. } break;
  16392. case GGML_OP_MUL_MAT:
  16393. {
  16394. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16395. #if defined(GGML_USE_CLBLAST)
  16396. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16397. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16398. } else
  16399. #endif
  16400. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16401. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16402. if (node->src[0]->type != GGML_TYPE_F32) {
  16403. // here we need memory for fully dequantized matrix from src0
  16404. // take into account that src0 can be broadcasted into src1[2,3]
  16405. cur = ggml_type_size(GGML_TYPE_F32)
  16406. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16407. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16408. }
  16409. } else
  16410. #endif
  16411. if (node->src[1]->type != vec_dot_type) {
  16412. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16413. }
  16414. } break;
  16415. case GGML_OP_MUL_MAT_ID:
  16416. {
  16417. cur = 0;
  16418. const struct ggml_tensor * src0 = node->src[0];
  16419. const struct ggml_tensor * src1 = node->src[1];
  16420. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16421. if (src1->type != vec_dot_type) {
  16422. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16423. }
  16424. const int n_as = src0->ne[2];
  16425. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16426. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16427. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16428. } break;
  16429. case GGML_OP_OUT_PROD:
  16430. {
  16431. if (ggml_is_quantized(node->src[0]->type)) {
  16432. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16433. }
  16434. } break;
  16435. case GGML_OP_SOFT_MAX:
  16436. case GGML_OP_ROPE:
  16437. {
  16438. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16439. } break;
  16440. case GGML_OP_CONV_TRANSPOSE_1D:
  16441. {
  16442. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16443. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16444. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16445. const int64_t ne00 = node->src[0]->ne[0]; // K
  16446. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16447. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16448. const int64_t ne10 = node->src[1]->ne[0]; // L
  16449. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16450. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16451. node->src[0]->type == GGML_TYPE_BF16) &&
  16452. node->src[1]->type == GGML_TYPE_F32) {
  16453. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16454. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16455. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16456. node->src[1]->type == GGML_TYPE_F32) {
  16457. cur += sizeof(float)*ne00*ne01*ne02;
  16458. cur += sizeof(float)*ne10*ne11;
  16459. } else {
  16460. GGML_ASSERT(false);
  16461. }
  16462. } break;
  16463. case GGML_OP_CONV_TRANSPOSE_2D:
  16464. {
  16465. const int64_t ne00 = node->src[0]->ne[0]; // W
  16466. const int64_t ne01 = node->src[0]->ne[1]; // H
  16467. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16468. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16469. const int64_t ne10 = node->src[1]->ne[0]; // W
  16470. const int64_t ne11 = node->src[1]->ne[1]; // H
  16471. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16472. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16473. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16474. } break;
  16475. case GGML_OP_FLASH_ATTN:
  16476. {
  16477. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16478. if (node->src[1]->type == GGML_TYPE_F32) {
  16479. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16480. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16481. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16482. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16483. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16484. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16485. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16486. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16487. }
  16488. } break;
  16489. case GGML_OP_FLASH_ATTN_EXT:
  16490. {
  16491. const int64_t ne00 = node->src[0]->ne[0]; // D
  16492. cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size
  16493. } break;
  16494. case GGML_OP_FLASH_FF:
  16495. {
  16496. if (node->src[1]->type == GGML_TYPE_F32) {
  16497. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16498. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16499. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16500. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16501. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16502. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16503. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16504. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16505. }
  16506. } break;
  16507. case GGML_OP_FLASH_ATTN_BACK:
  16508. {
  16509. const int64_t D = node->src[0]->ne[0];
  16510. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16511. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16512. if (node->src[1]->type == GGML_TYPE_F32) {
  16513. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16514. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16515. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16516. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16517. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16518. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16519. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16520. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16521. }
  16522. } break;
  16523. case GGML_OP_CROSS_ENTROPY_LOSS:
  16524. {
  16525. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16526. } break;
  16527. case GGML_OP_COUNT:
  16528. {
  16529. GGML_ASSERT(false);
  16530. } break;
  16531. default:
  16532. break;
  16533. }
  16534. work_size = MAX(work_size, cur);
  16535. }
  16536. if (work_size > 0) {
  16537. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16538. }
  16539. cplan.n_threads = MIN(max_tasks, n_threads);
  16540. cplan.work_size = work_size;
  16541. cplan.work_data = NULL;
  16542. return cplan;
  16543. }
  16544. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16545. {
  16546. GGML_ASSERT(cplan);
  16547. GGML_ASSERT(cplan->n_threads > 0);
  16548. if (cplan->work_size > 0) {
  16549. GGML_ASSERT(cplan->work_data);
  16550. }
  16551. }
  16552. const int n_threads = cplan->n_threads;
  16553. struct ggml_compute_state_shared state_shared = {
  16554. /*.cgraph =*/ cgraph,
  16555. /*.cgraph_plan =*/ cplan,
  16556. /*.perf_node_start_cycles =*/ 0,
  16557. /*.perf_node_start_time_us =*/ 0,
  16558. /*.n_threads =*/ n_threads,
  16559. /*.n_active =*/ n_threads,
  16560. /*.node_n =*/ -1,
  16561. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16562. /*.abort_callback =*/ NULL,
  16563. /*.abort_callback_data =*/ NULL,
  16564. /*.current_chunk; =*/ 0,
  16565. };
  16566. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16567. // create thread pool
  16568. if (n_threads > 1) {
  16569. for (int j = 1; j < n_threads; ++j) {
  16570. workers[j] = (struct ggml_compute_state) {
  16571. .thrd = 0,
  16572. .ith = j,
  16573. .shared = &state_shared,
  16574. .ec = GGML_STATUS_SUCCESS,
  16575. };
  16576. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16577. GGML_ASSERT(rc == 0);
  16578. UNUSED(rc);
  16579. }
  16580. }
  16581. workers[0].ith = 0;
  16582. workers[0].shared = &state_shared;
  16583. workers[0].ec = GGML_STATUS_SUCCESS;
  16584. const int64_t perf_start_cycles = ggml_perf_cycles();
  16585. const int64_t perf_start_time_us = ggml_perf_time_us();
  16586. // this is a work thread too
  16587. ggml_graph_compute_thread(&workers[0]);
  16588. enum ggml_status compute_status = workers[0].ec;
  16589. // don't leave affinity set on the main thread
  16590. clear_numa_thread_affinity();
  16591. // join or kill thread pool
  16592. if (n_threads > 1) {
  16593. for (int j = 1; j < n_threads; j++) {
  16594. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16595. GGML_ASSERT(rc == 0);
  16596. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16597. compute_status = workers[j].ec;
  16598. }
  16599. }
  16600. // performance stats (graph)
  16601. {
  16602. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16603. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16604. cgraph->perf_runs++;
  16605. cgraph->perf_cycles += perf_cycles_cur;
  16606. cgraph->perf_time_us += perf_time_us_cur;
  16607. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16608. __func__, cgraph->perf_runs,
  16609. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16610. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16611. (double) perf_time_us_cur / 1000.0,
  16612. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16613. }
  16614. return compute_status;
  16615. }
  16616. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16617. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16618. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16619. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16620. return ggml_graph_compute(cgraph, &cplan);
  16621. }
  16622. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16623. for (int i = 0; i < cgraph->n_leafs; i++) {
  16624. struct ggml_tensor * leaf = cgraph->leafs[i];
  16625. if (strcmp(leaf->name, name) == 0) {
  16626. return leaf;
  16627. }
  16628. }
  16629. for (int i = 0; i < cgraph->n_nodes; i++) {
  16630. struct ggml_tensor * node = cgraph->nodes[i];
  16631. if (strcmp(node->name, name) == 0) {
  16632. return node;
  16633. }
  16634. }
  16635. return NULL;
  16636. }
  16637. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16638. const int64_t * ne = tensor->ne;
  16639. const size_t * nb = tensor->nb;
  16640. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16641. ggml_type_name(tensor->type),
  16642. ggml_op_name (tensor->op),
  16643. ggml_n_dims(tensor),
  16644. ne[0], ne[1], ne[2], ne[3],
  16645. nb[0], nb[1], nb[2], nb[3],
  16646. tensor->data,
  16647. tensor->name);
  16648. }
  16649. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16650. const int64_t * ne = tensor->ne;
  16651. const size_t * nb = tensor->nb;
  16652. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16653. arg,
  16654. ggml_type_name(tensor->type),
  16655. ggml_op_name (tensor->op),
  16656. ggml_n_dims(tensor),
  16657. ne[0], ne[1], ne[2], ne[3],
  16658. nb[0], nb[1], nb[2], nb[3],
  16659. tensor->data,
  16660. tensor->name);
  16661. }
  16662. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16663. uint64_t size_eval = 0;
  16664. // compute size of intermediate results
  16665. // TODO: does not take into account scratch buffers !!!!
  16666. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16667. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16668. }
  16669. // print
  16670. {
  16671. FILE * fout = stdout;
  16672. fprintf(fout, "\n");
  16673. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16674. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16675. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16676. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16677. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16678. // header
  16679. fprintf(fout, "\n");
  16680. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16681. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16682. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16683. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16684. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16685. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16686. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16687. }
  16688. // header
  16689. fprintf(fout, "\n");
  16690. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16691. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16692. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16693. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16694. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16695. if (cgraph->nodes[i]->src[j]) {
  16696. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16697. }
  16698. }
  16699. fprintf(fout, "\n");
  16700. }
  16701. fprintf(fout, "\n");
  16702. }
  16703. // write binary data
  16704. {
  16705. FILE * fout = ggml_fopen(fname, "wb");
  16706. if (!fout) {
  16707. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16708. return;
  16709. }
  16710. // header
  16711. {
  16712. const uint32_t magic = GGML_FILE_MAGIC;
  16713. const uint32_t version = GGML_FILE_VERSION;
  16714. const uint32_t n_leafs = cgraph->n_leafs;
  16715. const uint32_t n_nodes = cgraph->n_nodes;
  16716. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16717. fwrite(&version, sizeof(uint32_t), 1, fout);
  16718. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16719. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16720. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16721. }
  16722. // leafs
  16723. {
  16724. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16725. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16726. const uint32_t type = tensor->type;
  16727. const uint32_t op = tensor->op;
  16728. fwrite(&type, sizeof(uint32_t), 1, fout);
  16729. fwrite(&op, sizeof(uint32_t), 1, fout);
  16730. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16731. const uint64_t ne = tensor->ne[j];
  16732. const uint64_t nb = tensor->nb[j];
  16733. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16734. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16735. }
  16736. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16737. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16738. // dump the data
  16739. // TODO: pad this to 32 byte boundary
  16740. {
  16741. const size_t size = ggml_nbytes(tensor);
  16742. fwrite(tensor->data, sizeof(char), size, fout);
  16743. }
  16744. }
  16745. }
  16746. // nodes
  16747. {
  16748. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16749. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16750. const uint32_t type = tensor->type;
  16751. const uint32_t op = tensor->op;
  16752. fwrite(&type, sizeof(uint32_t), 1, fout);
  16753. fwrite(&op, sizeof(uint32_t), 1, fout);
  16754. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16755. const uint64_t ne = tensor->ne[j];
  16756. const uint64_t nb = tensor->nb[j];
  16757. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16758. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16759. }
  16760. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16761. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16762. // output the op arguments
  16763. {
  16764. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16765. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16766. args[j] = tensor->src[j];
  16767. }
  16768. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16769. if (args[j]) {
  16770. int32_t idx = -1;
  16771. // check if leaf
  16772. {
  16773. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16774. if (args[j] == cgraph->leafs[k]) {
  16775. idx = k;
  16776. break;
  16777. }
  16778. }
  16779. }
  16780. // check if node
  16781. if (idx == -1) {
  16782. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16783. if (args[j] == cgraph->nodes[k]) {
  16784. idx = cgraph->n_leafs + k;
  16785. break;
  16786. }
  16787. }
  16788. }
  16789. if (idx == -1) {
  16790. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16791. fclose(fout);
  16792. return;
  16793. }
  16794. fwrite(&idx, sizeof(int32_t), 1, fout);
  16795. } else {
  16796. const int32_t nul = -1;
  16797. fwrite(&nul, sizeof(int32_t), 1, fout);
  16798. }
  16799. }
  16800. }
  16801. }
  16802. }
  16803. fclose(fout);
  16804. }
  16805. }
  16806. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16807. assert(*ctx_data == NULL);
  16808. assert(*ctx_eval == NULL);
  16809. struct ggml_cgraph * result = NULL;
  16810. struct ggml_tensor * data = NULL;
  16811. // read file into data
  16812. {
  16813. FILE * fin = ggml_fopen(fname, "rb");
  16814. if (!fin) {
  16815. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16816. return result;
  16817. }
  16818. size_t fsize = 0;
  16819. fseek(fin, 0, SEEK_END);
  16820. fsize = ftell(fin);
  16821. fseek(fin, 0, SEEK_SET);
  16822. // create the data context
  16823. {
  16824. const size_t overhead = 1*ggml_tensor_overhead();
  16825. struct ggml_init_params params = {
  16826. .mem_size = fsize + overhead,
  16827. .mem_buffer = NULL,
  16828. .no_alloc = false,
  16829. };
  16830. *ctx_data = ggml_init(params);
  16831. if (!*ctx_data) {
  16832. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16833. fclose(fin);
  16834. return result;
  16835. }
  16836. }
  16837. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16838. {
  16839. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16840. if (ret != fsize) {
  16841. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16842. fclose(fin);
  16843. return result;
  16844. }
  16845. }
  16846. fclose(fin);
  16847. }
  16848. // populate result
  16849. {
  16850. char * ptr = (char *) data->data;
  16851. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16852. if (magic != GGML_FILE_MAGIC) {
  16853. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16854. return result;
  16855. }
  16856. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16857. if (version != GGML_FILE_VERSION) {
  16858. fprintf(stderr, "%s: invalid version number\n", __func__);
  16859. return result;
  16860. }
  16861. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16862. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16863. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16864. const int graph_size = MAX(n_leafs, n_nodes);
  16865. // create the data context
  16866. {
  16867. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16868. struct ggml_init_params params = {
  16869. .mem_size = size_eval + overhead,
  16870. .mem_buffer = NULL,
  16871. .no_alloc = true,
  16872. };
  16873. *ctx_eval = ggml_init(params);
  16874. if (!*ctx_eval) {
  16875. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16876. return result;
  16877. }
  16878. }
  16879. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16880. result->n_leafs = n_leafs;
  16881. result->n_nodes = n_nodes;
  16882. // leafs
  16883. {
  16884. uint32_t type;
  16885. uint32_t op;
  16886. for (uint32_t i = 0; i < n_leafs; ++i) {
  16887. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16888. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16889. int64_t ne[GGML_MAX_DIMS];
  16890. size_t nb[GGML_MAX_DIMS];
  16891. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16892. uint64_t ne_cur;
  16893. uint64_t nb_cur;
  16894. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16895. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16896. ne[j] = ne_cur;
  16897. nb[j] = nb_cur;
  16898. }
  16899. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16900. tensor->op = (enum ggml_op) op;
  16901. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16902. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16903. tensor->data = (void *) ptr;
  16904. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16905. tensor->nb[j] = nb[j];
  16906. }
  16907. result->leafs[i] = tensor;
  16908. ptr += ggml_nbytes(tensor);
  16909. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16910. }
  16911. }
  16912. ggml_set_no_alloc(*ctx_eval, false);
  16913. // nodes
  16914. {
  16915. uint32_t type;
  16916. uint32_t op;
  16917. for (uint32_t i = 0; i < n_nodes; ++i) {
  16918. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16919. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16920. enum ggml_op eop = (enum ggml_op) op;
  16921. int64_t ne[GGML_MAX_DIMS];
  16922. size_t nb[GGML_MAX_DIMS];
  16923. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16924. uint64_t ne_cur;
  16925. uint64_t nb_cur;
  16926. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16927. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16928. ne[j] = ne_cur;
  16929. nb[j] = nb_cur;
  16930. }
  16931. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16932. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16933. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16934. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16935. // parse args
  16936. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16937. const int32_t arg_idx = ptr_arg_idx[j];
  16938. if (arg_idx == -1) {
  16939. continue;
  16940. }
  16941. if (arg_idx < result->n_leafs) {
  16942. args[j] = result->leafs[arg_idx];
  16943. } else {
  16944. args[j] = result->nodes[arg_idx - result->n_leafs];
  16945. }
  16946. }
  16947. // create the tensor
  16948. // "view" operations are handled differently
  16949. // TODO: handle inplace ops - currently a copy is always made
  16950. struct ggml_tensor * tensor = NULL;
  16951. switch (eop) {
  16952. // TODO: implement other view ops
  16953. case GGML_OP_RESHAPE:
  16954. {
  16955. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16956. } break;
  16957. case GGML_OP_VIEW:
  16958. {
  16959. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16960. size_t offs;
  16961. memcpy(&offs, ptr_op_params, sizeof(offs));
  16962. tensor->data = ((char *) tensor->data) + offs;
  16963. } break;
  16964. case GGML_OP_TRANSPOSE:
  16965. {
  16966. tensor = ggml_transpose(*ctx_eval, args[0]);
  16967. } break;
  16968. case GGML_OP_PERMUTE:
  16969. {
  16970. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16971. } break;
  16972. default:
  16973. {
  16974. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16975. tensor->op = eop;
  16976. } break;
  16977. }
  16978. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16979. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16980. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16981. tensor->nb[j] = nb[j];
  16982. }
  16983. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16984. tensor->src[j] = args[j];
  16985. }
  16986. result->nodes[i] = tensor;
  16987. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16988. }
  16989. }
  16990. }
  16991. return result;
  16992. }
  16993. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16994. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16995. GGML_PRINT("=== GRAPH ===\n");
  16996. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16997. for (int i = 0; i < cgraph->n_nodes; i++) {
  16998. struct ggml_tensor * node = cgraph->nodes[i];
  16999. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  17000. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  17001. i,
  17002. node->ne[0], node->ne[1], node->ne[2],
  17003. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  17004. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  17005. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  17006. (double) node->perf_time_us / 1000.0,
  17007. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  17008. }
  17009. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  17010. for (int i = 0; i < cgraph->n_leafs; i++) {
  17011. struct ggml_tensor * node = cgraph->leafs[i];
  17012. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  17013. i,
  17014. node->ne[0], node->ne[1],
  17015. ggml_op_name(node->op),
  17016. ggml_get_name(node));
  17017. }
  17018. for (int i = 0; i < GGML_OP_COUNT; i++) {
  17019. if (perf_total_per_op_us[i] == 0) {
  17020. continue;
  17021. }
  17022. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  17023. }
  17024. GGML_PRINT("========================================\n");
  17025. }
  17026. // check if node is part of the graph
  17027. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17028. if (cgraph == NULL) {
  17029. return true;
  17030. }
  17031. for (int i = 0; i < cgraph->n_nodes; i++) {
  17032. if (cgraph->nodes[i] == node) {
  17033. return true;
  17034. }
  17035. }
  17036. return false;
  17037. }
  17038. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17039. for (int i = 0; i < cgraph->n_nodes; i++) {
  17040. struct ggml_tensor * parent = cgraph->nodes[i];
  17041. if (parent->grad == node) {
  17042. return parent;
  17043. }
  17044. }
  17045. return NULL;
  17046. }
  17047. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17048. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  17049. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  17050. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  17051. gparent0 ? (void *) gparent0 : (void *) parent,
  17052. gparent0 ? "g" : "x",
  17053. gparent ? (void *) gparent : (void *) node,
  17054. gparent ? "g" : "x",
  17055. gparent ? "empty" : "vee",
  17056. gparent ? "dashed" : "solid",
  17057. label);
  17058. }
  17059. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17060. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  17061. (void *) parent, "x",
  17062. (void *) node, "x",
  17063. label);
  17064. }
  17065. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  17066. char color[16];
  17067. FILE * fp = ggml_fopen(filename, "w");
  17068. GGML_ASSERT(fp);
  17069. fprintf(fp, "digraph G {\n");
  17070. fprintf(fp, " newrank = true;\n");
  17071. fprintf(fp, " rankdir = LR;\n");
  17072. for (int i = 0; i < gb->n_nodes; i++) {
  17073. struct ggml_tensor * node = gb->nodes[i];
  17074. if (ggml_graph_get_parent(gb, node) != NULL) {
  17075. continue;
  17076. }
  17077. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  17078. snprintf(color, sizeof(color), "yellow");
  17079. } else if (node->grad) {
  17080. if (ggml_graph_find(gf, node)) {
  17081. snprintf(color, sizeof(color), "green");
  17082. } else {
  17083. snprintf(color, sizeof(color), "lightblue");
  17084. }
  17085. } else {
  17086. snprintf(color, sizeof(color), "white");
  17087. }
  17088. fprintf(fp, " \"%p\" [ "
  17089. "style = filled; fillcolor = %s; shape = record; "
  17090. "label=\"",
  17091. (void *) node, color);
  17092. if (strlen(node->name) > 0) {
  17093. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17094. } else {
  17095. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17096. }
  17097. if (ggml_is_matrix(node)) {
  17098. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  17099. } else {
  17100. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  17101. }
  17102. if (node->grad) {
  17103. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  17104. } else {
  17105. fprintf(fp, "\"; ]\n");
  17106. }
  17107. }
  17108. for (int i = 0; i < gb->n_leafs; i++) {
  17109. struct ggml_tensor * node = gb->leafs[i];
  17110. snprintf(color, sizeof(color), "pink");
  17111. fprintf(fp, " \"%p\" [ "
  17112. "style = filled; fillcolor = %s; shape = record; "
  17113. "label=\"<x>",
  17114. (void *) node, color);
  17115. if (strlen(node->name) > 0) {
  17116. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17117. } else {
  17118. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17119. }
  17120. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  17121. if (ggml_nelements(node) < 5) {
  17122. fprintf(fp, " | (");
  17123. for (int j = 0; j < ggml_nelements(node); j++) {
  17124. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  17125. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  17126. }
  17127. else if (node->type == GGML_TYPE_F32 ||
  17128. node->type == GGML_TYPE_F16 ||
  17129. node->type == GGML_TYPE_BF16) {
  17130. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  17131. }
  17132. else {
  17133. fprintf(fp, "#");
  17134. }
  17135. if (j < ggml_nelements(node) - 1) {
  17136. fprintf(fp, ", ");
  17137. }
  17138. }
  17139. fprintf(fp, ")");
  17140. }
  17141. fprintf(fp, "\"; ]\n");
  17142. }
  17143. for (int i = 0; i < gb->n_nodes; i++) {
  17144. struct ggml_tensor * node = gb->nodes[i];
  17145. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17146. if (node->src[j]) {
  17147. char label[16];
  17148. snprintf(label, sizeof(label), "src %d", j);
  17149. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  17150. }
  17151. }
  17152. }
  17153. for (int i = 0; i < gb->n_leafs; i++) {
  17154. struct ggml_tensor * node = gb->leafs[i];
  17155. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17156. if (node->src[j]) {
  17157. char label[16];
  17158. snprintf(label, sizeof(label), "src %d", j);
  17159. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  17160. }
  17161. }
  17162. }
  17163. fprintf(fp, "}\n");
  17164. fclose(fp);
  17165. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  17166. }
  17167. ////////////////////////////////////////////////////////////////////////////////
  17168. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  17169. int i = 0;
  17170. for (int p = 0; p < np; ++p) {
  17171. const int64_t ne = ggml_nelements(ps[p]) ;
  17172. // TODO: add function to set tensor from array
  17173. for (int64_t j = 0; j < ne; ++j) {
  17174. ggml_set_f32_1d(ps[p], j, x[i++]);
  17175. }
  17176. }
  17177. }
  17178. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  17179. int i = 0;
  17180. for (int p = 0; p < np; ++p) {
  17181. const int64_t ne = ggml_nelements(ps[p]) ;
  17182. // TODO: add function to get all elements at once
  17183. for (int64_t j = 0; j < ne; ++j) {
  17184. x[i++] = ggml_get_f32_1d(ps[p], j);
  17185. }
  17186. }
  17187. }
  17188. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  17189. int64_t i = 0;
  17190. for (int p = 0; p < np; ++p) {
  17191. const int64_t ne = ggml_nelements(ps[p]) ;
  17192. // TODO: add function to get all elements at once
  17193. for (int64_t j = 0; j < ne; ++j) {
  17194. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17195. }
  17196. }
  17197. }
  17198. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17199. int64_t i = 0;
  17200. for (int p = 0; p < np; ++p) {
  17201. const int64_t ne = ggml_nelements(ps[p]) ;
  17202. // TODO: add function to get all elements at once
  17203. for (int64_t j = 0; j < ne; ++j) {
  17204. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17205. }
  17206. }
  17207. }
  17208. //
  17209. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17210. //
  17211. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17212. //
  17213. static enum ggml_opt_result ggml_opt_adam(
  17214. struct ggml_context * ctx,
  17215. struct ggml_opt_context * opt,
  17216. struct ggml_opt_params params,
  17217. struct ggml_tensor * f,
  17218. struct ggml_cgraph * gf,
  17219. struct ggml_cgraph * gb,
  17220. ggml_opt_callback callback,
  17221. void * callback_data) {
  17222. GGML_ASSERT(ggml_is_scalar(f));
  17223. // these will store the parameters we want to optimize
  17224. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17225. int np = 0;
  17226. int64_t nx = 0;
  17227. for (int i = 0; i < gf->n_nodes; ++i) {
  17228. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17229. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17230. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17231. ps[np++] = gf->nodes[i];
  17232. nx += ggml_nelements(gf->nodes[i]);
  17233. }
  17234. }
  17235. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17236. int iter = opt->iter;
  17237. ggml_opt_init(opt->ctx, opt, params, nx);
  17238. opt->iter = iter;
  17239. }
  17240. // constants
  17241. float sched = params.adam.sched;
  17242. const float alpha = params.adam.alpha;
  17243. const float decay = params.adam.decay * alpha;
  17244. const float beta1 = params.adam.beta1;
  17245. const float beta2 = params.adam.beta2;
  17246. const float eps = params.adam.eps;
  17247. const float gclip = params.adam.gclip;
  17248. const int decay_min_ndim = params.adam.decay_min_ndim;
  17249. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17250. const float accum_norm = 1.0f / (float) n_accum;
  17251. float * g = opt->adam.g->data; // gradients
  17252. float * m = opt->adam.m->data; // first moment
  17253. float * v = opt->adam.v->data; // second moment
  17254. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17255. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17256. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17257. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17258. bool cancel = false;
  17259. // compute the function value
  17260. float fx = 0;
  17261. ggml_set_zero(opt->adam.g);
  17262. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17263. if (callback) {
  17264. callback(callback_data, accum_step, &sched, &cancel);
  17265. if (cancel) {
  17266. return GGML_OPT_RESULT_CANCEL;
  17267. }
  17268. }
  17269. // ggml_graph_reset (gf);
  17270. ggml_set_f32 (f->grad, 1.0f);
  17271. ggml_graph_compute(gb, &cplan);
  17272. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17273. fx += ggml_get_f32_1d(f, 0);
  17274. }
  17275. fx *= accum_norm;
  17276. opt->adam.fx_prev = fx;
  17277. opt->adam.fx_best = opt->adam.fx_prev;
  17278. if (pf) {
  17279. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17280. }
  17281. opt->loss_before = opt->adam.fx_prev;
  17282. opt->loss_after = opt->adam.fx_prev;
  17283. // initialize
  17284. if (opt->just_initialized) {
  17285. opt->adam.n_no_improvement = 0;
  17286. opt->just_initialized = false;
  17287. }
  17288. float * fx_best = &opt->adam.fx_best;
  17289. float * fx_prev = &opt->adam.fx_prev;
  17290. int * n_no_improvement = &opt->adam.n_no_improvement;
  17291. int iter0 = opt->iter;
  17292. // run the optimizer
  17293. for (int t = 0; t < params.adam.n_iter; ++t) {
  17294. opt->iter = iter0 + t + 1;
  17295. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17296. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17297. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17298. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17299. for (int i = 0; i < np; ++i) {
  17300. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17301. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17302. }
  17303. const int64_t t_start_wall = ggml_time_us();
  17304. const int64_t t_start_cpu = ggml_cycles();
  17305. UNUSED(t_start_wall);
  17306. UNUSED(t_start_cpu);
  17307. {
  17308. float gnorm = 1.0f;
  17309. if (gclip > 0.0f) {
  17310. // gradient clipping
  17311. ggml_float sum = 0.0;
  17312. for (int64_t i = 0; i < nx; ++i) {
  17313. sum += (ggml_float)(g[i]*g[i]);
  17314. }
  17315. ggml_float norm = sqrt(sum);
  17316. if (norm > (ggml_float) gclip) {
  17317. gnorm = (float) ((ggml_float) gclip / norm);
  17318. }
  17319. }
  17320. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17321. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17322. int64_t i = 0;
  17323. for (int p = 0; p < np; ++p) {
  17324. const int64_t ne = ggml_nelements(ps[p]);
  17325. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17326. for (int64_t j = 0; j < ne; ++j) {
  17327. float x = ggml_get_f32_1d(ps[p], j);
  17328. float g_ = g[i]*gnorm;
  17329. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17330. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17331. float mh = m[i]*beta1h;
  17332. float vh = v[i]*beta2h;
  17333. vh = sqrtf(vh) + eps;
  17334. x = x*(1.0f - p_decay) - mh/vh;
  17335. ggml_set_f32_1d(ps[p], j, x);
  17336. ++i;
  17337. }
  17338. }
  17339. }
  17340. fx = 0;
  17341. ggml_set_zero(opt->adam.g);
  17342. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17343. if (callback) {
  17344. callback(callback_data, accum_step, &sched, &cancel);
  17345. if (cancel) {
  17346. return GGML_OPT_RESULT_CANCEL;;
  17347. }
  17348. }
  17349. // ggml_graph_reset (gf);
  17350. ggml_set_f32 (f->grad, 1.0f);
  17351. ggml_graph_compute(gb, &cplan);
  17352. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17353. fx += ggml_get_f32_1d(f, 0);
  17354. }
  17355. fx *= accum_norm;
  17356. opt->loss_after = fx;
  17357. // check convergence
  17358. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17359. GGML_PRINT_DEBUG("converged\n");
  17360. return GGML_OPT_RESULT_OK;
  17361. }
  17362. // delta-based convergence test
  17363. if (pf != NULL) {
  17364. // need at least params.past iterations to start checking for convergence
  17365. if (params.past <= iter0 + t) {
  17366. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17367. if (fabsf(rate) < params.delta) {
  17368. return GGML_OPT_RESULT_OK;
  17369. }
  17370. }
  17371. pf[(iter0 + t)%params.past] = fx;
  17372. }
  17373. // check for improvement
  17374. if (params.max_no_improvement > 0) {
  17375. if (fx_best[0] > fx) {
  17376. fx_best[0] = fx;
  17377. n_no_improvement[0] = 0;
  17378. } else {
  17379. ++n_no_improvement[0];
  17380. if (n_no_improvement[0] >= params.max_no_improvement) {
  17381. return GGML_OPT_RESULT_OK;
  17382. }
  17383. }
  17384. }
  17385. fx_prev[0] = fx;
  17386. {
  17387. const int64_t t_end_cpu = ggml_cycles();
  17388. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17389. UNUSED(t_end_cpu);
  17390. const int64_t t_end_wall = ggml_time_us();
  17391. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17392. UNUSED(t_end_wall);
  17393. }
  17394. }
  17395. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17396. }
  17397. //
  17398. // L-BFGS
  17399. //
  17400. // the L-BFGS implementation below is based on the following implementation:
  17401. //
  17402. // https://github.com/chokkan/liblbfgs
  17403. //
  17404. struct ggml_lbfgs_iteration_data {
  17405. float alpha;
  17406. float ys;
  17407. float * s;
  17408. float * y;
  17409. };
  17410. static enum ggml_opt_result linesearch_backtracking(
  17411. const struct ggml_opt_params * params,
  17412. int nx,
  17413. float * x,
  17414. float * fx,
  17415. float * g,
  17416. float * d,
  17417. float * step,
  17418. const float * xp,
  17419. struct ggml_tensor * f,
  17420. struct ggml_cgraph * gb,
  17421. struct ggml_cplan * cplan,
  17422. const int np,
  17423. struct ggml_tensor * ps[],
  17424. bool * cancel,
  17425. ggml_opt_callback callback,
  17426. void * callback_data) {
  17427. int count = 0;
  17428. float width = 0.0f;
  17429. float dg = 0.0f;
  17430. float finit = 0.0f;
  17431. float dginit = 0.0f;
  17432. float dgtest = 0.0f;
  17433. const float dec = 0.5f;
  17434. const float inc = 2.1f;
  17435. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17436. const float accum_norm = 1.0f / (float) n_accum;
  17437. if (*step <= 0.f) {
  17438. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17439. }
  17440. // compute the initial gradient in the search direction
  17441. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17442. // make sure that d points to a descent direction
  17443. if (0 < dginit) {
  17444. return GGML_LINESEARCH_FAIL;
  17445. }
  17446. // initialize local variables
  17447. finit = *fx;
  17448. dgtest = params->lbfgs.ftol*dginit;
  17449. while (true) {
  17450. ggml_vec_cpy_f32(nx, x, xp);
  17451. ggml_vec_mad_f32(nx, x, d, *step);
  17452. // evaluate the function and gradient values
  17453. {
  17454. ggml_opt_set_params(np, ps, x);
  17455. *fx = 0;
  17456. memset(g, 0, sizeof(float)*nx);
  17457. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17458. if (callback) {
  17459. // LBFG-S does not support learning rate -> ignore learning schedule
  17460. float sched = 0;
  17461. callback(callback_data, accum_step, &sched, cancel);
  17462. if (*cancel) {
  17463. return GGML_OPT_RESULT_CANCEL;
  17464. }
  17465. }
  17466. // ggml_graph_reset (gf);
  17467. ggml_set_f32 (f->grad, 1.0f);
  17468. ggml_graph_compute(gb, cplan);
  17469. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17470. *fx += ggml_get_f32_1d(f, 0);
  17471. }
  17472. *fx *= accum_norm;
  17473. }
  17474. ++count;
  17475. if (*fx > finit + (*step)*dgtest) {
  17476. width = dec;
  17477. } else {
  17478. // Armijo condition is satisfied
  17479. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17480. return count;
  17481. }
  17482. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17483. // check the Wolfe condition
  17484. if (dg < params->lbfgs.wolfe * dginit) {
  17485. width = inc;
  17486. } else {
  17487. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17488. // regular Wolfe conditions
  17489. return count;
  17490. }
  17491. if(dg > -params->lbfgs.wolfe*dginit) {
  17492. width = dec;
  17493. } else {
  17494. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17495. return count;
  17496. }
  17497. }
  17498. }
  17499. if (*step < params->lbfgs.min_step) {
  17500. return GGML_LINESEARCH_MINIMUM_STEP;
  17501. }
  17502. if (*step > params->lbfgs.max_step) {
  17503. return GGML_LINESEARCH_MAXIMUM_STEP;
  17504. }
  17505. if (params->lbfgs.max_linesearch <= count) {
  17506. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17507. }
  17508. (*step) *= width;
  17509. }
  17510. GGML_ASSERT(false && "line search failed");
  17511. return GGML_LINESEARCH_FAIL;
  17512. }
  17513. static enum ggml_opt_result ggml_opt_lbfgs(
  17514. struct ggml_context * ctx,
  17515. struct ggml_opt_context * opt,
  17516. struct ggml_opt_params params,
  17517. struct ggml_tensor * f,
  17518. struct ggml_cgraph * gf,
  17519. struct ggml_cgraph * gb,
  17520. ggml_opt_callback callback,
  17521. void * callback_data) {
  17522. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17523. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17524. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17525. return GGML_OPT_RESULT_INVALID_WOLFE;
  17526. }
  17527. }
  17528. const int m = params.lbfgs.m;
  17529. // these will store the parameters we want to optimize
  17530. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17531. int np = 0;
  17532. int nx = 0;
  17533. for (int i = 0; i < gf->n_nodes; ++i) {
  17534. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17535. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17536. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17537. ps[np++] = gf->nodes[i];
  17538. nx += ggml_nelements(gf->nodes[i]);
  17539. }
  17540. }
  17541. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17542. int iter = opt->iter;
  17543. ggml_opt_init(ctx, opt, params, nx);
  17544. opt->iter = iter;
  17545. }
  17546. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17547. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17548. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17549. float * x = opt->lbfgs.x->data; // current parameters
  17550. float * xp = opt->lbfgs.xp->data; // previous parameters
  17551. float * g = opt->lbfgs.g->data; // current gradient
  17552. float * gp = opt->lbfgs.gp->data; // previous gradient
  17553. float * d = opt->lbfgs.d->data; // search direction
  17554. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17555. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17556. const float accum_norm = 1.0f / (float) n_accum;
  17557. float fx = 0.0f; // cost function value
  17558. float xnorm = 0.0f; // ||x||
  17559. float gnorm = 0.0f; // ||g||
  17560. // initialize x from the graph nodes
  17561. ggml_opt_get_params(np, ps, x);
  17562. // the L-BFGS memory
  17563. float * lm_alpha = opt->lbfgs.lmal->data;
  17564. float * lm_ys = opt->lbfgs.lmys->data;
  17565. float * lm_s = opt->lbfgs.lms->data;
  17566. float * lm_y = opt->lbfgs.lmy->data;
  17567. bool cancel = false;
  17568. // evaluate the function value and its gradient
  17569. {
  17570. ggml_opt_set_params(np, ps, x);
  17571. fx = 0;
  17572. memset(g, 0, sizeof(float)*nx);
  17573. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17574. if (callback) {
  17575. // LBFG-S does not support learning rate -> ignore learning schedule
  17576. float sched = 0;
  17577. callback(callback_data, accum_step, &sched, &cancel);
  17578. if (cancel) {
  17579. return GGML_OPT_RESULT_CANCEL;
  17580. }
  17581. }
  17582. // ggml_graph_reset (gf);
  17583. ggml_set_f32 (f->grad, 1.0f);
  17584. ggml_graph_compute(gb, &cplan);
  17585. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17586. fx += ggml_get_f32_1d(f, 0);
  17587. }
  17588. fx *= accum_norm;
  17589. opt->loss_before = fx;
  17590. opt->loss_after = fx;
  17591. }
  17592. // search direction = -gradient
  17593. ggml_vec_neg_f32(nx, d, g);
  17594. // ||x||, ||g||
  17595. ggml_vec_norm_f32(nx, &xnorm, x);
  17596. ggml_vec_norm_f32(nx, &gnorm, g);
  17597. if (xnorm < 1.0f) {
  17598. xnorm = 1.0f;
  17599. }
  17600. // already optimized
  17601. if (gnorm/xnorm <= params.lbfgs.eps) {
  17602. return GGML_OPT_RESULT_OK;
  17603. }
  17604. if (opt->just_initialized) {
  17605. if (pf) {
  17606. pf[0] = fx;
  17607. }
  17608. opt->lbfgs.fx_best = fx;
  17609. // initial step
  17610. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17611. opt->lbfgs.j = 0;
  17612. opt->lbfgs.k = 1;
  17613. opt->lbfgs.end = 0;
  17614. opt->lbfgs.n_no_improvement = 0;
  17615. opt->just_initialized = false;
  17616. }
  17617. float * fx_best = &opt->lbfgs.fx_best;
  17618. float * step = &opt->lbfgs.step;
  17619. int * j = &opt->lbfgs.j;
  17620. int * k = &opt->lbfgs.k;
  17621. int * end = &opt->lbfgs.end;
  17622. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17623. int ls = 0;
  17624. int bound = 0;
  17625. float ys = 0.0f;
  17626. float yy = 0.0f;
  17627. float beta = 0.0f;
  17628. int it = 0;
  17629. while (true) {
  17630. // store the current position and gradient vectors
  17631. ggml_vec_cpy_f32(nx, xp, x);
  17632. ggml_vec_cpy_f32(nx, gp, g);
  17633. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17634. // to determine if the optimization should be cancelled
  17635. // this is a simple change, but not doing this atm, since I don't have a nice
  17636. // way to test and don't want to break something with so many changes lined up
  17637. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17638. if (cancel) {
  17639. return GGML_OPT_RESULT_CANCEL;
  17640. }
  17641. if (ls < 0) {
  17642. // linesearch failed - go back to the previous point and return
  17643. ggml_vec_cpy_f32(nx, x, xp);
  17644. ggml_vec_cpy_f32(nx, g, gp);
  17645. return ls;
  17646. }
  17647. opt->loss_after = fx;
  17648. ggml_vec_norm_f32(nx, &xnorm, x);
  17649. ggml_vec_norm_f32(nx, &gnorm, g);
  17650. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17651. if (xnorm < 1.0f) {
  17652. xnorm = 1.0f;
  17653. }
  17654. if (gnorm/xnorm <= params.lbfgs.eps) {
  17655. // converged
  17656. return GGML_OPT_RESULT_OK;
  17657. }
  17658. // delta-based convergence test
  17659. if (pf != NULL) {
  17660. // need at least params.past iterations to start checking for convergence
  17661. if (params.past <= k[0]) {
  17662. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17663. if (fabsf(rate) < params.delta) {
  17664. return GGML_OPT_RESULT_OK;
  17665. }
  17666. }
  17667. pf[k[0]%params.past] = fx;
  17668. }
  17669. // check for improvement
  17670. if (params.max_no_improvement > 0) {
  17671. if (fx < fx_best[0]) {
  17672. fx_best[0] = fx;
  17673. n_no_improvement[0] = 0;
  17674. } else {
  17675. n_no_improvement[0]++;
  17676. if (n_no_improvement[0] >= params.max_no_improvement) {
  17677. return GGML_OPT_RESULT_OK;
  17678. }
  17679. }
  17680. }
  17681. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17682. // reached the maximum number of iterations
  17683. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17684. }
  17685. // update vectors s and y:
  17686. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17687. // y_{k+1} = g_{k+1} - g_{k}.
  17688. //
  17689. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17690. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17691. // compute scalars ys and yy:
  17692. // ys = y^t \cdot s -> 1 / \rho.
  17693. // yy = y^t \cdot y.
  17694. //
  17695. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17696. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17697. lm_ys[end[0]] = ys;
  17698. // find new search direction
  17699. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17700. bound = (m <= k[0]) ? m : k[0];
  17701. k[0]++;
  17702. it++;
  17703. end[0] = (end[0] + 1)%m;
  17704. // initialize search direction with -g
  17705. ggml_vec_neg_f32(nx, d, g);
  17706. j[0] = end[0];
  17707. for (int i = 0; i < bound; ++i) {
  17708. j[0] = (j[0] + m - 1) % m;
  17709. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17710. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17711. lm_alpha[j[0]] /= lm_ys[j[0]];
  17712. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17713. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17714. }
  17715. ggml_vec_scale_f32(nx, d, ys/yy);
  17716. for (int i = 0; i < bound; ++i) {
  17717. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17718. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17719. beta /= lm_ys[j[0]];
  17720. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17721. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17722. j[0] = (j[0] + 1)%m;
  17723. }
  17724. step[0] = 1.0;
  17725. }
  17726. GGML_ASSERT(false && "lbfgs failed");
  17727. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17728. }
  17729. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17730. struct ggml_opt_params result;
  17731. switch (type) {
  17732. case GGML_OPT_TYPE_ADAM:
  17733. {
  17734. result = (struct ggml_opt_params) {
  17735. .type = GGML_OPT_TYPE_ADAM,
  17736. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17737. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17738. .past = 0,
  17739. .delta = 1e-5f,
  17740. .max_no_improvement = 100,
  17741. .print_forward_graph = true,
  17742. .print_backward_graph = true,
  17743. .n_gradient_accumulation = 1,
  17744. .adam = {
  17745. .n_iter = 10000,
  17746. .sched = 1.000f,
  17747. .decay = 0.0f,
  17748. .decay_min_ndim = 2,
  17749. .alpha = 0.001f,
  17750. .beta1 = 0.9f,
  17751. .beta2 = 0.999f,
  17752. .eps = 1e-8f,
  17753. .eps_f = 1e-5f,
  17754. .eps_g = 1e-3f,
  17755. .gclip = 0.0f,
  17756. },
  17757. };
  17758. } break;
  17759. case GGML_OPT_TYPE_LBFGS:
  17760. {
  17761. result = (struct ggml_opt_params) {
  17762. .type = GGML_OPT_TYPE_LBFGS,
  17763. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17764. .n_threads = 1,
  17765. .past = 0,
  17766. .delta = 1e-5f,
  17767. .max_no_improvement = 0,
  17768. .print_forward_graph = true,
  17769. .print_backward_graph = true,
  17770. .n_gradient_accumulation = 1,
  17771. .lbfgs = {
  17772. .m = 6,
  17773. .n_iter = 100,
  17774. .max_linesearch = 20,
  17775. .eps = 1e-5f,
  17776. .ftol = 1e-4f,
  17777. .wolfe = 0.9f,
  17778. .min_step = 1e-20f,
  17779. .max_step = 1e+20f,
  17780. .linesearch = GGML_LINESEARCH_DEFAULT,
  17781. },
  17782. };
  17783. } break;
  17784. }
  17785. return result;
  17786. }
  17787. GGML_API void ggml_opt_init(
  17788. struct ggml_context * ctx,
  17789. struct ggml_opt_context * opt,
  17790. struct ggml_opt_params params,
  17791. int64_t nx) {
  17792. opt->ctx = ctx;
  17793. opt->params = params;
  17794. opt->iter = 0;
  17795. opt->nx = nx;
  17796. opt->just_initialized = true;
  17797. if (opt->ctx == NULL) {
  17798. struct ggml_init_params ctx_opt_params;
  17799. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17800. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17801. if (opt->params.past > 0) {
  17802. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17803. }
  17804. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17805. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17806. if (opt->params.past > 0) {
  17807. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17808. }
  17809. }
  17810. ctx_opt_params.mem_buffer = NULL;
  17811. ctx_opt_params.no_alloc = false;
  17812. opt->ctx = ggml_init(ctx_opt_params);
  17813. }
  17814. switch (opt->params.type) {
  17815. case GGML_OPT_TYPE_ADAM:
  17816. {
  17817. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17818. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17819. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17820. opt->adam.pf = params.past > 0
  17821. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17822. : NULL;
  17823. ggml_set_zero(opt->adam.m);
  17824. ggml_set_zero(opt->adam.v);
  17825. if (opt->adam.pf) {
  17826. ggml_set_zero(opt->adam.pf);
  17827. }
  17828. } break;
  17829. case GGML_OPT_TYPE_LBFGS:
  17830. {
  17831. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17832. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17833. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17834. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17835. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17836. opt->lbfgs.pf = params.past > 0
  17837. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17838. : NULL;
  17839. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17840. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17841. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17842. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17843. ggml_set_zero(opt->lbfgs.x);
  17844. ggml_set_zero(opt->lbfgs.xp);
  17845. ggml_set_zero(opt->lbfgs.g);
  17846. ggml_set_zero(opt->lbfgs.gp);
  17847. ggml_set_zero(opt->lbfgs.d);
  17848. if (opt->lbfgs.pf) {
  17849. ggml_set_zero(opt->lbfgs.pf);
  17850. }
  17851. ggml_set_zero(opt->lbfgs.lmal);
  17852. ggml_set_zero(opt->lbfgs.lmys);
  17853. ggml_set_zero(opt->lbfgs.lms);
  17854. ggml_set_zero(opt->lbfgs.lmy);
  17855. } break;
  17856. }
  17857. }
  17858. enum ggml_opt_result ggml_opt(
  17859. struct ggml_context * ctx,
  17860. struct ggml_opt_params params,
  17861. struct ggml_tensor * f) {
  17862. bool free_ctx = false;
  17863. if (ctx == NULL) {
  17864. struct ggml_init_params params_ctx = {
  17865. .mem_size = 16*1024*1024,
  17866. .mem_buffer = NULL,
  17867. .no_alloc = false,
  17868. };
  17869. ctx = ggml_init(params_ctx);
  17870. if (ctx == NULL) {
  17871. return GGML_OPT_RESULT_NO_CONTEXT;
  17872. }
  17873. free_ctx = true;
  17874. }
  17875. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17876. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17877. ggml_opt_init(ctx, opt, params, 0);
  17878. result = ggml_opt_resume(ctx, opt, f);
  17879. if (free_ctx) {
  17880. ggml_free(ctx);
  17881. }
  17882. return result;
  17883. }
  17884. enum ggml_opt_result ggml_opt_resume(
  17885. struct ggml_context * ctx,
  17886. struct ggml_opt_context * opt,
  17887. struct ggml_tensor * f) {
  17888. // build forward + backward compute graphs
  17889. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17890. ggml_build_forward_expand(gf, f);
  17891. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17892. ggml_build_backward_expand(ctx, gf, gb, true);
  17893. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17894. }
  17895. enum ggml_opt_result ggml_opt_resume_g(
  17896. struct ggml_context * ctx,
  17897. struct ggml_opt_context * opt,
  17898. struct ggml_tensor * f,
  17899. struct ggml_cgraph * gf,
  17900. struct ggml_cgraph * gb,
  17901. ggml_opt_callback callback,
  17902. void * callback_data) {
  17903. // build forward + backward compute graphs
  17904. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17905. switch (opt->params.type) {
  17906. case GGML_OPT_TYPE_ADAM:
  17907. {
  17908. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17909. } break;
  17910. case GGML_OPT_TYPE_LBFGS:
  17911. {
  17912. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17913. } break;
  17914. }
  17915. if (opt->params.print_forward_graph) {
  17916. ggml_graph_print (gf);
  17917. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17918. }
  17919. if (opt->params.print_backward_graph) {
  17920. ggml_graph_print (gb);
  17921. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17922. }
  17923. return result;
  17924. }
  17925. ////////////////////////////////////////////////////////////////////////////////
  17926. void ggml_set_input(struct ggml_tensor * tensor) {
  17927. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17928. }
  17929. void ggml_set_output(struct ggml_tensor * tensor) {
  17930. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17931. }
  17932. ////////////////////////////////////////////////////////////////////////////////
  17933. void ggml_quantize_init(enum ggml_type type) {
  17934. ggml_critical_section_start();
  17935. switch (type) {
  17936. case GGML_TYPE_IQ2_XXS:
  17937. case GGML_TYPE_IQ2_XS:
  17938. case GGML_TYPE_IQ2_S:
  17939. case GGML_TYPE_IQ1_S:
  17940. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17941. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17942. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17943. default: // nothing
  17944. break;
  17945. }
  17946. ggml_critical_section_end();
  17947. }
  17948. void ggml_quantize_free(void) {
  17949. ggml_critical_section_start();
  17950. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17951. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17952. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17953. iq3xs_free_impl(256);
  17954. ggml_critical_section_end();
  17955. }
  17956. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17957. return
  17958. type == GGML_TYPE_IQ2_XXS ||
  17959. type == GGML_TYPE_IQ2_XS ||
  17960. type == GGML_TYPE_IQ1_S;// ||
  17961. //type == GGML_TYPE_IQ1_M;
  17962. }
  17963. size_t ggml_quantize_chunk(
  17964. enum ggml_type type,
  17965. const float * src,
  17966. void * dst,
  17967. int64_t start,
  17968. int64_t nrows,
  17969. int64_t n_per_row,
  17970. const float * imatrix) {
  17971. const int64_t n = (int64_t) nrows * n_per_row;
  17972. if (ggml_quantize_requires_imatrix(type)) {
  17973. GGML_ASSERT(imatrix != NULL);
  17974. }
  17975. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17976. GGML_ASSERT(start % n_per_row == 0);
  17977. ggml_quantize_init(type); // this is noop if already initialized
  17978. const size_t start_row = start / n_per_row;
  17979. const size_t row_size = ggml_row_size(type, n_per_row);
  17980. size_t result = 0;
  17981. switch (type) {
  17982. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17983. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17984. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17985. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17986. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17987. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17988. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17989. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17990. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17991. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17992. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17993. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17994. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17995. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17996. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17997. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17998. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17999. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18000. #if QK_K == 64
  18001. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18002. #else
  18003. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18004. #endif
  18005. case GGML_TYPE_F16:
  18006. {
  18007. size_t elemsize = sizeof(ggml_fp16_t);
  18008. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  18009. result = n * elemsize;
  18010. } break;
  18011. case GGML_TYPE_BF16:
  18012. {
  18013. size_t elemsize = sizeof(ggml_bf16_t);
  18014. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  18015. result = n * elemsize;
  18016. } break;
  18017. case GGML_TYPE_F32:
  18018. {
  18019. size_t elemsize = sizeof(float);
  18020. result = n * elemsize;
  18021. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  18022. } break;
  18023. default:
  18024. assert(false);
  18025. }
  18026. GGML_ASSERT(result == nrows * row_size);
  18027. return result;
  18028. }
  18029. ////////////////////////////////////////////////////////////////////////////////
  18030. struct gguf_str {
  18031. uint64_t n; // GGUFv2
  18032. char * data;
  18033. };
  18034. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  18035. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  18036. [GGUF_TYPE_INT8] = sizeof(int8_t),
  18037. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  18038. [GGUF_TYPE_INT16] = sizeof(int16_t),
  18039. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  18040. [GGUF_TYPE_INT32] = sizeof(int32_t),
  18041. [GGUF_TYPE_FLOAT32] = sizeof(float),
  18042. [GGUF_TYPE_BOOL] = sizeof(bool),
  18043. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  18044. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  18045. [GGUF_TYPE_INT64] = sizeof(int64_t),
  18046. [GGUF_TYPE_FLOAT64] = sizeof(double),
  18047. [GGUF_TYPE_ARRAY] = 0, // undefined
  18048. };
  18049. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18050. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  18051. [GGUF_TYPE_UINT8] = "u8",
  18052. [GGUF_TYPE_INT8] = "i8",
  18053. [GGUF_TYPE_UINT16] = "u16",
  18054. [GGUF_TYPE_INT16] = "i16",
  18055. [GGUF_TYPE_UINT32] = "u32",
  18056. [GGUF_TYPE_INT32] = "i32",
  18057. [GGUF_TYPE_FLOAT32] = "f32",
  18058. [GGUF_TYPE_BOOL] = "bool",
  18059. [GGUF_TYPE_STRING] = "str",
  18060. [GGUF_TYPE_ARRAY] = "arr",
  18061. [GGUF_TYPE_UINT64] = "u64",
  18062. [GGUF_TYPE_INT64] = "i64",
  18063. [GGUF_TYPE_FLOAT64] = "f64",
  18064. };
  18065. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18066. union gguf_value {
  18067. uint8_t uint8;
  18068. int8_t int8;
  18069. uint16_t uint16;
  18070. int16_t int16;
  18071. uint32_t uint32;
  18072. int32_t int32;
  18073. float float32;
  18074. uint64_t uint64;
  18075. int64_t int64;
  18076. double float64;
  18077. bool bool_;
  18078. struct gguf_str str;
  18079. struct {
  18080. enum gguf_type type;
  18081. uint64_t n; // GGUFv2
  18082. void * data;
  18083. } arr;
  18084. };
  18085. struct gguf_kv {
  18086. struct gguf_str key;
  18087. enum gguf_type type;
  18088. union gguf_value value;
  18089. };
  18090. struct gguf_header {
  18091. char magic[4];
  18092. uint32_t version;
  18093. uint64_t n_tensors; // GGUFv2
  18094. uint64_t n_kv; // GGUFv2
  18095. };
  18096. struct gguf_tensor_info {
  18097. struct gguf_str name;
  18098. uint32_t n_dims;
  18099. uint64_t ne[GGML_MAX_DIMS];
  18100. enum ggml_type type;
  18101. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  18102. // for writing API
  18103. const void * data;
  18104. size_t size;
  18105. };
  18106. struct gguf_context {
  18107. struct gguf_header header;
  18108. struct gguf_kv * kv;
  18109. struct gguf_tensor_info * infos;
  18110. size_t alignment;
  18111. size_t offset; // offset of `data` from beginning of file
  18112. size_t size; // size of `data` in bytes
  18113. //uint8_t * padding;
  18114. void * data;
  18115. };
  18116. static size_t gguf_type_size(enum gguf_type type) {
  18117. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  18118. return GGUF_TYPE_SIZE[type];
  18119. }
  18120. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  18121. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  18122. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  18123. for (uint32_t i = 0; i < info->n_dims; ++i) {
  18124. GGML_ASSERT(info->ne[i] > 0);
  18125. }
  18126. // prevent overflow for total number of elements
  18127. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  18128. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  18129. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  18130. }
  18131. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  18132. const size_t n = fread(dst, 1, size, file);
  18133. *offset += n;
  18134. return n == size;
  18135. }
  18136. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  18137. p->n = 0;
  18138. p->data = NULL;
  18139. bool ok = true;
  18140. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  18141. // early exit if string length is invalid, prevents from integer overflow
  18142. if (p->n == SIZE_MAX) {
  18143. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  18144. return false;
  18145. }
  18146. p->data = GGML_CALLOC(p->n + 1, 1);
  18147. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  18148. return ok;
  18149. }
  18150. static void gguf_free_kv(struct gguf_kv * kv) {
  18151. if (kv->key.data) {
  18152. GGML_FREE(kv->key.data);
  18153. }
  18154. if (kv->type == GGUF_TYPE_STRING) {
  18155. if (kv->value.str.data) {
  18156. GGML_FREE(kv->value.str.data);
  18157. }
  18158. }
  18159. if (kv->type == GGUF_TYPE_ARRAY) {
  18160. if (kv->value.arr.data) {
  18161. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  18162. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18163. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  18164. if (str->data) {
  18165. GGML_FREE(str->data);
  18166. }
  18167. }
  18168. }
  18169. GGML_FREE(kv->value.arr.data);
  18170. }
  18171. }
  18172. }
  18173. struct gguf_context * gguf_init_empty(void) {
  18174. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18175. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  18176. ctx->header.version = GGUF_VERSION;
  18177. ctx->header.n_tensors = 0;
  18178. ctx->header.n_kv = 0;
  18179. ctx->kv = NULL;
  18180. ctx->infos = NULL;
  18181. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18182. ctx->offset = 0;
  18183. ctx->size = 0;
  18184. ctx->data = NULL;
  18185. return ctx;
  18186. }
  18187. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  18188. FILE * file = ggml_fopen(fname, "rb");
  18189. if (!file) {
  18190. return NULL;
  18191. }
  18192. // offset from start of file
  18193. size_t offset = 0;
  18194. char magic[4];
  18195. // check the magic before making allocations
  18196. {
  18197. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18198. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18199. if (magic[i] != GGUF_MAGIC[i]) {
  18200. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18201. fclose(file);
  18202. return NULL;
  18203. }
  18204. }
  18205. }
  18206. bool ok = true;
  18207. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18208. // read the header
  18209. {
  18210. strncpy(ctx->header.magic, magic, 4);
  18211. ctx->kv = NULL;
  18212. ctx->infos = NULL;
  18213. ctx->data = NULL;
  18214. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18215. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18216. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18217. if (ctx->header.version == 1) {
  18218. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18219. fclose(file);
  18220. gguf_free(ctx);
  18221. return NULL;
  18222. }
  18223. // sanity-checks to prevent from integer/buffer overflows
  18224. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18225. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18226. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18227. if (!ok) {
  18228. fprintf(stderr, "%s: failed to read header\n", __func__);
  18229. fclose(file);
  18230. gguf_free(ctx);
  18231. return NULL;
  18232. }
  18233. }
  18234. // read the kv pairs
  18235. {
  18236. const uint64_t n_kv = ctx->header.n_kv;
  18237. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18238. ctx->header.n_kv = 0;
  18239. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18240. for (uint64_t i = 0; i < n_kv; ++i) {
  18241. struct gguf_kv * kv = &ctx->kv[i];
  18242. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18243. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18244. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18245. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18246. switch (kv->type) {
  18247. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18248. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18249. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18250. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18251. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18252. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18253. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18254. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18255. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18256. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18257. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18258. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18259. case GGUF_TYPE_ARRAY:
  18260. {
  18261. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18262. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18263. switch (kv->value.arr.type) {
  18264. case GGUF_TYPE_UINT8:
  18265. case GGUF_TYPE_INT8:
  18266. case GGUF_TYPE_UINT16:
  18267. case GGUF_TYPE_INT16:
  18268. case GGUF_TYPE_UINT32:
  18269. case GGUF_TYPE_INT32:
  18270. case GGUF_TYPE_FLOAT32:
  18271. case GGUF_TYPE_UINT64:
  18272. case GGUF_TYPE_INT64:
  18273. case GGUF_TYPE_FLOAT64:
  18274. case GGUF_TYPE_BOOL:
  18275. {
  18276. // prevent from integer overflow in the malloc below
  18277. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18278. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18279. fclose(file);
  18280. gguf_free(ctx);
  18281. return NULL;
  18282. }
  18283. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18284. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18285. } break;
  18286. case GGUF_TYPE_STRING:
  18287. {
  18288. // prevent from integer overflow in the malloc below
  18289. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18290. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18291. fclose(file);
  18292. gguf_free(ctx);
  18293. return NULL;
  18294. }
  18295. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18296. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18297. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18298. }
  18299. } break;
  18300. case GGUF_TYPE_ARRAY:
  18301. default: GGML_ASSERT(false && "invalid type"); break;
  18302. }
  18303. } break;
  18304. default: GGML_ASSERT(false && "invalid type");
  18305. }
  18306. if (!ok) {
  18307. break;
  18308. }
  18309. ctx->header.n_kv++;
  18310. }
  18311. if (!ok) {
  18312. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18313. fclose(file);
  18314. gguf_free(ctx);
  18315. return NULL;
  18316. }
  18317. }
  18318. // read the tensor infos
  18319. if (ctx->header.n_tensors > 0) {
  18320. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18321. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18322. struct gguf_tensor_info * info = &ctx->infos[i];
  18323. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18324. info->ne[j] = 1;
  18325. }
  18326. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18327. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18328. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18329. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18330. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18331. }
  18332. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18333. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18334. // TODO: return an error instead of crashing with GGML_ASSERT
  18335. gguf_tensor_info_sanitize(info);
  18336. // make sure there is no duplicated tensor names
  18337. for (uint64_t j = 0; j < i; ++j) {
  18338. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18339. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18340. ok = false;
  18341. }
  18342. }
  18343. if (!ok) {
  18344. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18345. fclose(file);
  18346. gguf_free(ctx);
  18347. return NULL;
  18348. }
  18349. }
  18350. }
  18351. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18352. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18353. if (alignment_idx != -1) {
  18354. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18355. }
  18356. // we require the data section to be aligned, so take into account any padding
  18357. {
  18358. const size_t offset_pad = offset % ctx->alignment;
  18359. if (offset_pad != 0) {
  18360. offset += ctx->alignment - offset_pad;
  18361. fseek(file, offset, SEEK_SET);
  18362. }
  18363. }
  18364. // store the current file offset - this is where the data section starts
  18365. ctx->offset = offset;
  18366. // compute the total size of the data section, taking into account the alignment
  18367. {
  18368. ctx->size = 0;
  18369. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18370. struct gguf_tensor_info * info = &ctx->infos[i];
  18371. const int64_t ne =
  18372. (int64_t) info->ne[0] *
  18373. (int64_t) info->ne[1] *
  18374. (int64_t) info->ne[2] *
  18375. (int64_t) info->ne[3];
  18376. if (ne % ggml_blck_size(info->type) != 0) {
  18377. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18378. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18379. fclose(file);
  18380. gguf_free(ctx);
  18381. return NULL;
  18382. }
  18383. const size_t size_cur = ggml_row_size(info->type, ne);
  18384. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18385. }
  18386. }
  18387. // load the tensor data only if requested
  18388. if (params.ctx != NULL) {
  18389. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18390. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18391. // the ggml_tensor structs to the appropriate locations in the binary blob
  18392. // compute the exact size needed for the new ggml_context
  18393. const size_t mem_size =
  18394. params.no_alloc ?
  18395. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18396. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18397. struct ggml_init_params pdata = {
  18398. .mem_size = mem_size,
  18399. .mem_buffer = NULL,
  18400. .no_alloc = params.no_alloc,
  18401. };
  18402. *params.ctx = ggml_init(pdata);
  18403. struct ggml_context * ctx_data = *params.ctx;
  18404. struct ggml_tensor * data = NULL;
  18405. if (!params.no_alloc) {
  18406. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18407. ok = ok && data != NULL;
  18408. // read the binary blob with the tensor data
  18409. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18410. if (!ok) {
  18411. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18412. fclose(file);
  18413. ggml_free(ctx_data);
  18414. gguf_free(ctx);
  18415. return NULL;
  18416. }
  18417. ctx->data = data->data;
  18418. }
  18419. ggml_set_no_alloc(ctx_data, true);
  18420. // create the tensors
  18421. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18422. const int64_t ne[GGML_MAX_DIMS] = {
  18423. ctx->infos[i].ne[0],
  18424. ctx->infos[i].ne[1],
  18425. ctx->infos[i].ne[2],
  18426. ctx->infos[i].ne[3],
  18427. };
  18428. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18429. ok = ok && cur != NULL;
  18430. if (!ok) {
  18431. break;
  18432. }
  18433. ggml_set_name(cur, ctx->infos[i].name.data);
  18434. // point the data member to the appropriate location in the binary blob using the tensor infos
  18435. if (!params.no_alloc) {
  18436. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18437. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18438. }
  18439. }
  18440. if (!ok) {
  18441. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18442. fclose(file);
  18443. ggml_free(ctx_data);
  18444. gguf_free(ctx);
  18445. return NULL;
  18446. }
  18447. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18448. }
  18449. fclose(file);
  18450. return ctx;
  18451. }
  18452. void gguf_free(struct gguf_context * ctx) {
  18453. if (ctx == NULL) {
  18454. return;
  18455. }
  18456. if (ctx->kv) {
  18457. // free string memory - not great..
  18458. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18459. gguf_free_kv(&ctx->kv[i]);
  18460. }
  18461. GGML_FREE(ctx->kv);
  18462. }
  18463. if (ctx->infos) {
  18464. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18465. struct gguf_tensor_info * info = &ctx->infos[i];
  18466. if (info->name.data) {
  18467. GGML_FREE(info->name.data);
  18468. }
  18469. }
  18470. GGML_FREE(ctx->infos);
  18471. }
  18472. GGML_FREE(ctx);
  18473. }
  18474. const char * gguf_type_name(enum gguf_type type) {
  18475. return GGUF_TYPE_NAME[type];
  18476. }
  18477. int gguf_get_version(const struct gguf_context * ctx) {
  18478. return ctx->header.version;
  18479. }
  18480. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18481. return ctx->alignment;
  18482. }
  18483. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18484. return ctx->offset;
  18485. }
  18486. void * gguf_get_data(const struct gguf_context * ctx) {
  18487. return ctx->data;
  18488. }
  18489. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18490. return ctx->header.n_kv;
  18491. }
  18492. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18493. // return -1 if key not found
  18494. int keyfound = -1;
  18495. const int n_kv = gguf_get_n_kv(ctx);
  18496. for (int i = 0; i < n_kv; ++i) {
  18497. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18498. keyfound = i;
  18499. break;
  18500. }
  18501. }
  18502. return keyfound;
  18503. }
  18504. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18505. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18506. return ctx->kv[key_id].key.data;
  18507. }
  18508. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18509. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18510. return ctx->kv[key_id].type;
  18511. }
  18512. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18513. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18514. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18515. return ctx->kv[key_id].value.arr.type;
  18516. }
  18517. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18518. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18519. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18520. return ctx->kv[key_id].value.arr.data;
  18521. }
  18522. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18523. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18524. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18525. struct gguf_kv * kv = &ctx->kv[key_id];
  18526. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18527. return str->data;
  18528. }
  18529. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18530. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18531. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18532. return ctx->kv[key_id].value.arr.n;
  18533. }
  18534. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18535. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18536. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18537. return ctx->kv[key_id].value.uint8;
  18538. }
  18539. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18540. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18541. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18542. return ctx->kv[key_id].value.int8;
  18543. }
  18544. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18545. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18546. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18547. return ctx->kv[key_id].value.uint16;
  18548. }
  18549. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18550. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18551. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18552. return ctx->kv[key_id].value.int16;
  18553. }
  18554. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18555. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18556. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18557. return ctx->kv[key_id].value.uint32;
  18558. }
  18559. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18560. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18561. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18562. return ctx->kv[key_id].value.int32;
  18563. }
  18564. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18565. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18566. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18567. return ctx->kv[key_id].value.float32;
  18568. }
  18569. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18570. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18571. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18572. return ctx->kv[key_id].value.uint64;
  18573. }
  18574. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18575. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18576. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18577. return ctx->kv[key_id].value.int64;
  18578. }
  18579. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18580. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18581. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18582. return ctx->kv[key_id].value.float64;
  18583. }
  18584. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18585. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18586. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18587. return ctx->kv[key_id].value.bool_;
  18588. }
  18589. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18590. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18591. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18592. return ctx->kv[key_id].value.str.data;
  18593. }
  18594. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18595. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18596. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18597. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18598. return &ctx->kv[key_id].value;
  18599. }
  18600. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18601. return ctx->header.n_tensors;
  18602. }
  18603. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18604. // return -1 if tensor not found
  18605. int tensorfound = -1;
  18606. const int n_tensors = gguf_get_n_tensors(ctx);
  18607. for (int i = 0; i < n_tensors; ++i) {
  18608. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18609. tensorfound = i;
  18610. break;
  18611. }
  18612. }
  18613. return tensorfound;
  18614. }
  18615. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18616. return ctx->infos[i].offset;
  18617. }
  18618. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18619. return ctx->infos[i].name.data;
  18620. }
  18621. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18622. return ctx->infos[i].type;
  18623. }
  18624. // returns the index
  18625. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18626. const int idx = gguf_find_key(ctx, key);
  18627. if (idx >= 0) {
  18628. return idx;
  18629. }
  18630. const int n_kv = gguf_get_n_kv(ctx);
  18631. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18632. ctx->kv[n_kv].key.n = strlen(key);
  18633. ctx->kv[n_kv].key.data = strdup(key);
  18634. ctx->header.n_kv++;
  18635. return n_kv;
  18636. }
  18637. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18638. const int idx = gguf_find_key(ctx, key);
  18639. if (idx >= 0) {
  18640. const int n_kv = gguf_get_n_kv(ctx);
  18641. gguf_free_kv(&ctx->kv[idx]);
  18642. for (int i = idx; i < n_kv-1; ++i) {
  18643. ctx->kv[i] = ctx->kv[i+1];
  18644. }
  18645. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18646. ctx->header.n_kv--;
  18647. }
  18648. }
  18649. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18650. const int idx = gguf_get_or_add_key(ctx, key);
  18651. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18652. ctx->kv[idx].value.uint8 = val;
  18653. }
  18654. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18655. const int idx = gguf_get_or_add_key(ctx, key);
  18656. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18657. ctx->kv[idx].value.int8 = val;
  18658. }
  18659. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18660. const int idx = gguf_get_or_add_key(ctx, key);
  18661. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18662. ctx->kv[idx].value.uint16 = val;
  18663. }
  18664. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18665. const int idx = gguf_get_or_add_key(ctx, key);
  18666. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18667. ctx->kv[idx].value.int16 = val;
  18668. }
  18669. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18670. const int idx = gguf_get_or_add_key(ctx, key);
  18671. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18672. ctx->kv[idx].value.uint32 = val;
  18673. }
  18674. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18675. const int idx = gguf_get_or_add_key(ctx, key);
  18676. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18677. ctx->kv[idx].value.int32 = val;
  18678. }
  18679. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18680. const int idx = gguf_get_or_add_key(ctx, key);
  18681. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18682. ctx->kv[idx].value.float32 = val;
  18683. }
  18684. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18685. const int idx = gguf_get_or_add_key(ctx, key);
  18686. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18687. ctx->kv[idx].value.uint64 = val;
  18688. }
  18689. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18690. const int idx = gguf_get_or_add_key(ctx, key);
  18691. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18692. ctx->kv[idx].value.int64 = val;
  18693. }
  18694. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18695. const int idx = gguf_get_or_add_key(ctx, key);
  18696. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18697. ctx->kv[idx].value.float64 = val;
  18698. }
  18699. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18700. const int idx = gguf_get_or_add_key(ctx, key);
  18701. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18702. ctx->kv[idx].value.bool_ = val;
  18703. }
  18704. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18705. const int idx = gguf_get_or_add_key(ctx, key);
  18706. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18707. ctx->kv[idx].value.str.n = strlen(val);
  18708. ctx->kv[idx].value.str.data = strdup(val);
  18709. }
  18710. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18711. const int idx = gguf_get_or_add_key(ctx, key);
  18712. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18713. ctx->kv[idx].value.arr.type = type;
  18714. ctx->kv[idx].value.arr.n = n;
  18715. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18716. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18717. }
  18718. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18719. const int idx = gguf_get_or_add_key(ctx, key);
  18720. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18721. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18722. ctx->kv[idx].value.arr.n = n;
  18723. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18724. for (int i = 0; i < n; i++) {
  18725. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18726. str->n = strlen(data[i]);
  18727. str->data = strdup(data[i]);
  18728. }
  18729. }
  18730. // set or add KV pairs from another context
  18731. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18732. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18733. switch (src->kv[i].type) {
  18734. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18735. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18736. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18737. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18738. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18739. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18740. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18741. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18742. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18743. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18744. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18745. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18746. case GGUF_TYPE_ARRAY:
  18747. {
  18748. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18749. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18750. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18751. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18752. }
  18753. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18754. GGML_FREE((void *)data);
  18755. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18756. GGML_ASSERT(false && "nested arrays not supported");
  18757. } else {
  18758. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18759. }
  18760. } break;
  18761. default: GGML_ASSERT(false && "invalid type"); break;
  18762. }
  18763. }
  18764. }
  18765. void gguf_add_tensor(
  18766. struct gguf_context * ctx,
  18767. const struct ggml_tensor * tensor) {
  18768. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18769. GGML_ASSERT(false && "duplicated tensor name");
  18770. }
  18771. const int idx = ctx->header.n_tensors;
  18772. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18773. ctx->infos[idx].name.n = strlen(tensor->name);
  18774. ctx->infos[idx].name.data = strdup(tensor->name);
  18775. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18776. ctx->infos[idx].ne[i] = 1;
  18777. }
  18778. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18779. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18780. ctx->infos[idx].ne[i] = tensor->ne[i];
  18781. }
  18782. ctx->infos[idx].type = tensor->type;
  18783. ctx->infos[idx].offset = 0;
  18784. ctx->infos[idx].data = tensor->data;
  18785. ctx->infos[idx].size = ggml_nbytes(tensor);
  18786. if (ctx->header.n_tensors > 0) {
  18787. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18788. }
  18789. ctx->header.n_tensors++;
  18790. }
  18791. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18792. const int idx = gguf_find_tensor(ctx, name);
  18793. if (idx < 0) {
  18794. GGML_ASSERT(false && "tensor not found");
  18795. }
  18796. ctx->infos[idx].type = type;
  18797. }
  18798. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18799. const int idx = gguf_find_tensor(ctx, name);
  18800. if (idx < 0) {
  18801. GGML_ASSERT(false && "tensor not found");
  18802. }
  18803. ctx->infos[idx].data = data;
  18804. ctx->infos[idx].size = size;
  18805. // update offsets
  18806. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18807. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18808. }
  18809. }
  18810. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18811. // fwrite(&val->n, sizeof(val->n), 1, file);
  18812. // fwrite(val->data, sizeof(char), val->n, file);
  18813. //}
  18814. //
  18815. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18816. // fwrite(val, sizeof(char), size, file);
  18817. //}
  18818. struct gguf_buf {
  18819. void * data;
  18820. size_t size;
  18821. size_t offset;
  18822. };
  18823. static struct gguf_buf gguf_buf_init(size_t size) {
  18824. struct gguf_buf buf = {
  18825. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18826. /*buf.size =*/ size,
  18827. /*buf.offset =*/ 0,
  18828. };
  18829. return buf;
  18830. }
  18831. static void gguf_buf_free(struct gguf_buf buf) {
  18832. if (buf.data) {
  18833. GGML_FREE(buf.data);
  18834. }
  18835. }
  18836. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18837. if (buf->offset + size > buf->size) {
  18838. buf->size = 1.5*(buf->offset + size);
  18839. if (buf->data) {
  18840. buf->data = realloc(buf->data, buf->size);
  18841. }
  18842. }
  18843. }
  18844. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18845. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18846. if (buf->data) {
  18847. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18848. }
  18849. buf->offset += sizeof(val->n);
  18850. if (buf->data) {
  18851. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18852. }
  18853. buf->offset += val->n;
  18854. }
  18855. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18856. gguf_buf_grow(buf, el_size);
  18857. if (buf->data) {
  18858. memcpy((char *) buf->data + buf->offset, val, el_size);
  18859. }
  18860. buf->offset += el_size;
  18861. }
  18862. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18863. // write header
  18864. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18865. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18866. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18867. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18868. // write key-value pairs
  18869. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18870. struct gguf_kv * kv = &ctx->kv[i];
  18871. gguf_bwrite_str(buf, &kv->key);
  18872. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18873. switch (kv->type) {
  18874. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18875. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18876. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18877. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18878. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18879. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18880. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18881. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18882. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18883. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18884. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18885. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18886. case GGUF_TYPE_ARRAY:
  18887. {
  18888. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18889. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18890. switch (kv->value.arr.type) {
  18891. case GGUF_TYPE_UINT8:
  18892. case GGUF_TYPE_INT8:
  18893. case GGUF_TYPE_UINT16:
  18894. case GGUF_TYPE_INT16:
  18895. case GGUF_TYPE_UINT32:
  18896. case GGUF_TYPE_INT32:
  18897. case GGUF_TYPE_FLOAT32:
  18898. case GGUF_TYPE_UINT64:
  18899. case GGUF_TYPE_INT64:
  18900. case GGUF_TYPE_FLOAT64:
  18901. case GGUF_TYPE_BOOL:
  18902. {
  18903. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18904. } break;
  18905. case GGUF_TYPE_STRING:
  18906. {
  18907. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18908. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18909. }
  18910. } break;
  18911. case GGUF_TYPE_ARRAY:
  18912. default: GGML_ASSERT(false && "invalid type"); break;
  18913. }
  18914. } break;
  18915. default: GGML_ASSERT(false && "invalid type");
  18916. }
  18917. }
  18918. // write tensor infos
  18919. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18920. struct gguf_tensor_info * info = &ctx->infos[i];
  18921. gguf_bwrite_str(buf, &info->name);
  18922. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18923. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18924. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18925. }
  18926. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18927. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18928. }
  18929. // we require the data section to be aligned, so take into account any padding
  18930. {
  18931. const size_t offset = buf->offset;
  18932. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18933. if (offset_pad != offset) {
  18934. uint8_t pad = 0;
  18935. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18936. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18937. }
  18938. }
  18939. }
  18940. if (only_meta) {
  18941. return;
  18942. }
  18943. size_t offset = 0;
  18944. // write tensor data
  18945. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18946. struct gguf_tensor_info * info = &ctx->infos[i];
  18947. const size_t size = info->size;
  18948. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18949. gguf_bwrite_el(buf, info->data, size);
  18950. if (size_pad != size) {
  18951. uint8_t pad = 0;
  18952. for (size_t j = 0; j < size_pad - size; ++j) {
  18953. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18954. }
  18955. }
  18956. GGML_ASSERT(offset == info->offset);
  18957. offset += size_pad;
  18958. }
  18959. }
  18960. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18961. FILE * file = ggml_fopen(fname, "wb");
  18962. if (!file) {
  18963. GGML_ASSERT(false && "failed to open file for writing");
  18964. }
  18965. struct gguf_buf buf = gguf_buf_init(16*1024);
  18966. gguf_write_to_buf(ctx, &buf, only_meta);
  18967. fwrite(buf.data, 1, buf.offset, file);
  18968. gguf_buf_free(buf);
  18969. fclose(file);
  18970. }
  18971. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18972. // no allocs - only compute size
  18973. struct gguf_buf buf = gguf_buf_init(0);
  18974. gguf_write_to_buf(ctx, &buf, true);
  18975. return buf.offset;
  18976. }
  18977. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18978. struct gguf_buf buf = gguf_buf_init(16*1024);
  18979. gguf_write_to_buf(ctx, &buf, true);
  18980. memcpy(data, buf.data, buf.offset);
  18981. gguf_buf_free(buf);
  18982. }
  18983. ////////////////////////////////////////////////////////////////////////////////
  18984. int ggml_cpu_has_avx(void) {
  18985. #if defined(__AVX__)
  18986. return 1;
  18987. #else
  18988. return 0;
  18989. #endif
  18990. }
  18991. int ggml_cpu_has_avx_vnni(void) {
  18992. #if defined(__AVXVNNI__)
  18993. return 1;
  18994. #else
  18995. return 0;
  18996. #endif
  18997. }
  18998. int ggml_cpu_has_avx2(void) {
  18999. #if defined(__AVX2__)
  19000. return 1;
  19001. #else
  19002. return 0;
  19003. #endif
  19004. }
  19005. int ggml_cpu_has_avx512(void) {
  19006. #if defined(__AVX512F__)
  19007. return 1;
  19008. #else
  19009. return 0;
  19010. #endif
  19011. }
  19012. int ggml_cpu_has_avx512_vbmi(void) {
  19013. #if defined(__AVX512VBMI__)
  19014. return 1;
  19015. #else
  19016. return 0;
  19017. #endif
  19018. }
  19019. int ggml_cpu_has_avx512_vnni(void) {
  19020. #if defined(__AVX512VNNI__)
  19021. return 1;
  19022. #else
  19023. return 0;
  19024. #endif
  19025. }
  19026. int ggml_cpu_has_fma(void) {
  19027. #if defined(__FMA__)
  19028. return 1;
  19029. #else
  19030. return 0;
  19031. #endif
  19032. }
  19033. int ggml_cpu_has_neon(void) {
  19034. #if defined(__ARM_NEON)
  19035. return 1;
  19036. #else
  19037. return 0;
  19038. #endif
  19039. }
  19040. int ggml_cpu_has_arm_fma(void) {
  19041. #if defined(__ARM_FEATURE_FMA)
  19042. return 1;
  19043. #else
  19044. return 0;
  19045. #endif
  19046. }
  19047. int ggml_cpu_has_metal(void) {
  19048. #if defined(GGML_USE_METAL)
  19049. return 1;
  19050. #else
  19051. return 0;
  19052. #endif
  19053. }
  19054. int ggml_cpu_has_f16c(void) {
  19055. #if defined(__F16C__)
  19056. return 1;
  19057. #else
  19058. return 0;
  19059. #endif
  19060. }
  19061. int ggml_cpu_has_fp16_va(void) {
  19062. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  19063. return 1;
  19064. #else
  19065. return 0;
  19066. #endif
  19067. }
  19068. int ggml_cpu_has_wasm_simd(void) {
  19069. #if defined(__wasm_simd128__)
  19070. return 1;
  19071. #else
  19072. return 0;
  19073. #endif
  19074. }
  19075. int ggml_cpu_has_blas(void) {
  19076. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  19077. return 1;
  19078. #else
  19079. return 0;
  19080. #endif
  19081. }
  19082. int ggml_cpu_has_cuda(void) {
  19083. #if defined(GGML_USE_CUDA)
  19084. return 1;
  19085. #else
  19086. return 0;
  19087. #endif
  19088. }
  19089. int ggml_cpu_has_clblast(void) {
  19090. #if defined(GGML_USE_CLBLAST)
  19091. return 1;
  19092. #else
  19093. return 0;
  19094. #endif
  19095. }
  19096. int ggml_cpu_has_vulkan(void) {
  19097. #if defined(GGML_USE_VULKAN)
  19098. return 1;
  19099. #else
  19100. return 0;
  19101. #endif
  19102. }
  19103. int ggml_cpu_has_kompute(void) {
  19104. #if defined(GGML_USE_KOMPUTE)
  19105. return 1;
  19106. #else
  19107. return 0;
  19108. #endif
  19109. }
  19110. int ggml_cpu_has_sycl(void) {
  19111. #if defined(GGML_USE_SYCL)
  19112. return 1;
  19113. #else
  19114. return 0;
  19115. #endif
  19116. }
  19117. int ggml_cpu_has_gpublas(void) {
  19118. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  19119. ggml_cpu_has_sycl();
  19120. }
  19121. int ggml_cpu_has_sse3(void) {
  19122. #if defined(__SSE3__)
  19123. return 1;
  19124. #else
  19125. return 0;
  19126. #endif
  19127. }
  19128. int ggml_cpu_has_ssse3(void) {
  19129. #if defined(__SSSE3__)
  19130. return 1;
  19131. #else
  19132. return 0;
  19133. #endif
  19134. }
  19135. int ggml_cpu_has_vsx(void) {
  19136. #if defined(__POWER9_VECTOR__)
  19137. return 1;
  19138. #else
  19139. return 0;
  19140. #endif
  19141. }
  19142. int ggml_cpu_has_matmul_int8(void) {
  19143. #if defined(__ARM_FEATURE_MATMUL_INT8)
  19144. return 1;
  19145. #else
  19146. return 0;
  19147. #endif
  19148. }
  19149. ////////////////////////////////////////////////////////////////////////////////