llama.h 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178
  1. /**
  2. * llama.cpp - git 059031b8c40e1f4ba60586842c5b1ed3ddf61842
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #ifndef LLAMA_H
  27. #define LLAMA_H
  28. #include "ggml.h"
  29. #include "ggml-backend.h"
  30. #include <stddef.h>
  31. #include <stdint.h>
  32. #include <stdio.h>
  33. #include <stdbool.h>
  34. #ifdef LLAMA_SHARED
  35. # if defined(_WIN32) && !defined(__MINGW32__)
  36. # ifdef LLAMA_BUILD
  37. # define LLAMA_API __declspec(dllexport)
  38. # else
  39. # define LLAMA_API __declspec(dllimport)
  40. # endif
  41. # else
  42. # define LLAMA_API __attribute__ ((visibility ("default")))
  43. # endif
  44. #else
  45. # define LLAMA_API
  46. #endif
  47. #ifdef __GNUC__
  48. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  49. #elif defined(_MSC_VER)
  50. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  51. #else
  52. # define DEPRECATED(func, hint) func
  53. #endif
  54. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  55. #define LLAMA_MAX_RNG_STATE (64*1024)
  56. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  57. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  58. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  59. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  60. #define LLAMA_SESSION_VERSION 6
  61. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  62. #define LLAMA_STATE_SEQ_VERSION 1
  63. #ifdef __cplusplus
  64. extern "C" {
  65. #endif
  66. //
  67. // C interface
  68. //
  69. // TODO: show sample usage
  70. //
  71. struct llama_model;
  72. struct llama_context;
  73. typedef int32_t llama_pos;
  74. typedef int32_t llama_token;
  75. typedef int32_t llama_seq_id;
  76. enum llama_vocab_type {
  77. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  78. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  79. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  80. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  81. };
  82. // pre-tokenization types
  83. enum llama_vocab_pre_type {
  84. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  85. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  86. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  87. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  88. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  89. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  90. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  91. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  92. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  93. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  94. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 10,
  95. LLAMA_VOCAB_PRE_TYPE_OLMO = 11,
  96. LLAMA_VOCAB_PRE_TYPE_DBRX = 12,
  97. };
  98. // note: these values should be synchronized with ggml_rope
  99. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  100. enum llama_rope_type {
  101. LLAMA_ROPE_TYPE_NONE = -1,
  102. LLAMA_ROPE_TYPE_NORM = 0,
  103. LLAMA_ROPE_TYPE_NEOX = 2,
  104. LLAMA_ROPE_TYPE_GLM = 4,
  105. };
  106. enum llama_token_type {
  107. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  108. LLAMA_TOKEN_TYPE_NORMAL = 1,
  109. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  110. LLAMA_TOKEN_TYPE_CONTROL = 3,
  111. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  112. LLAMA_TOKEN_TYPE_UNUSED = 5,
  113. LLAMA_TOKEN_TYPE_BYTE = 6,
  114. };
  115. // model file types
  116. enum llama_ftype {
  117. LLAMA_FTYPE_ALL_F32 = 0,
  118. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  119. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  120. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  121. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  122. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  123. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  124. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  125. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  126. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  127. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  128. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  129. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  130. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  131. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  132. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  133. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  134. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  135. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  136. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  137. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  138. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  139. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  140. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  141. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  142. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  143. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  144. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  145. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  146. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  147. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  148. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  149. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  150. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  151. };
  152. enum llama_rope_scaling_type {
  153. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  154. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  155. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  156. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  157. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  158. };
  159. enum llama_pooling_type {
  160. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  161. LLAMA_POOLING_TYPE_NONE = 0,
  162. LLAMA_POOLING_TYPE_MEAN = 1,
  163. LLAMA_POOLING_TYPE_CLS = 2,
  164. };
  165. enum llama_split_mode {
  166. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  167. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  168. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  169. };
  170. typedef struct llama_token_data {
  171. llama_token id; // token id
  172. float logit; // log-odds of the token
  173. float p; // probability of the token
  174. } llama_token_data;
  175. typedef struct llama_token_data_array {
  176. llama_token_data * data;
  177. size_t size;
  178. bool sorted;
  179. } llama_token_data_array;
  180. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  181. // Input data for llama_decode
  182. // A llama_batch object can contain input about one or many sequences
  183. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  184. //
  185. // - token : the token ids of the input (used when embd is NULL)
  186. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  187. // - pos : the positions of the respective token in the sequence
  188. // - seq_id : the sequence to which the respective token belongs
  189. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  190. //
  191. typedef struct llama_batch {
  192. int32_t n_tokens;
  193. llama_token * token;
  194. float * embd;
  195. llama_pos * pos;
  196. int32_t * n_seq_id;
  197. llama_seq_id ** seq_id;
  198. int8_t * logits; // TODO: rename this to "output"
  199. // NOTE: helpers for smooth API transition - can be deprecated in the future
  200. // for future-proof code, use the above fields instead and ignore everything below
  201. //
  202. // pos[i] = all_pos_0 + i*all_pos_1
  203. //
  204. llama_pos all_pos_0; // used if pos == NULL
  205. llama_pos all_pos_1; // used if pos == NULL
  206. llama_seq_id all_seq_id; // used if seq_id == NULL
  207. } llama_batch;
  208. enum llama_model_kv_override_type {
  209. LLAMA_KV_OVERRIDE_TYPE_INT,
  210. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  211. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  212. LLAMA_KV_OVERRIDE_TYPE_STR,
  213. };
  214. struct llama_model_kv_override {
  215. enum llama_model_kv_override_type tag;
  216. char key[128];
  217. union {
  218. int64_t val_i64;
  219. double val_f64;
  220. bool val_bool;
  221. char val_str[128];
  222. };
  223. };
  224. struct llama_model_params {
  225. int32_t n_gpu_layers; // number of layers to store in VRAM
  226. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  227. // main_gpu interpretation depends on split_mode:
  228. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  229. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  230. // LLAMA_SPLIT_LAYER: ignored
  231. int32_t main_gpu;
  232. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  233. const float * tensor_split;
  234. // comma separated list of RPC servers to use for offloading
  235. const char * rpc_servers;
  236. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  237. // If the provided progress_callback returns true, model loading continues.
  238. // If it returns false, model loading is immediately aborted.
  239. llama_progress_callback progress_callback;
  240. // context pointer passed to the progress callback
  241. void * progress_callback_user_data;
  242. // override key-value pairs of the model meta data
  243. const struct llama_model_kv_override * kv_overrides;
  244. // Keep the booleans together to avoid misalignment during copy-by-value.
  245. bool vocab_only; // only load the vocabulary, no weights
  246. bool use_mmap; // use mmap if possible
  247. bool use_mlock; // force system to keep model in RAM
  248. bool check_tensors; // validate model tensor data
  249. };
  250. struct llama_context_params {
  251. uint32_t seed; // RNG seed, -1 for random
  252. uint32_t n_ctx; // text context, 0 = from model
  253. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  254. uint32_t n_ubatch; // physical maximum batch size
  255. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  256. uint32_t n_threads; // number of threads to use for generation
  257. uint32_t n_threads_batch; // number of threads to use for batch processing
  258. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  259. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  260. // (ignored if no pooling layer)
  261. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  262. float rope_freq_base; // RoPE base frequency, 0 = from model
  263. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  264. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  265. float yarn_attn_factor; // YaRN magnitude scaling factor
  266. float yarn_beta_fast; // YaRN low correction dim
  267. float yarn_beta_slow; // YaRN high correction dim
  268. uint32_t yarn_orig_ctx; // YaRN original context size
  269. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  270. ggml_backend_sched_eval_callback cb_eval;
  271. void * cb_eval_user_data;
  272. enum ggml_type type_k; // data type for K cache
  273. enum ggml_type type_v; // data type for V cache
  274. // Keep the booleans together to avoid misalignment during copy-by-value.
  275. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  276. bool embeddings; // if true, extract embeddings (together with logits)
  277. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  278. bool flash_attn; // whether to use flash attention
  279. // Abort callback
  280. // if it returns true, execution of llama_decode() will be aborted
  281. // currently works only with CPU execution
  282. ggml_abort_callback abort_callback;
  283. void * abort_callback_data;
  284. };
  285. // model quantization parameters
  286. typedef struct llama_model_quantize_params {
  287. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  288. enum llama_ftype ftype; // quantize to this llama_ftype
  289. enum ggml_type output_tensor_type; // output tensor type
  290. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  291. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  292. bool quantize_output_tensor; // quantize output.weight
  293. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  294. bool pure; // quantize all tensors to the default type
  295. bool keep_split; // quantize to the same number of shards
  296. void * imatrix; // pointer to importance matrix data
  297. void * kv_overrides; // pointer to vector containing overrides
  298. } llama_model_quantize_params;
  299. // grammar types
  300. struct llama_grammar;
  301. // grammar element type
  302. enum llama_gretype {
  303. // end of rule definition
  304. LLAMA_GRETYPE_END = 0,
  305. // start of alternate definition for rule
  306. LLAMA_GRETYPE_ALT = 1,
  307. // non-terminal element: reference to rule
  308. LLAMA_GRETYPE_RULE_REF = 2,
  309. // terminal element: character (code point)
  310. LLAMA_GRETYPE_CHAR = 3,
  311. // inverse char(s) ([^a], [^a-b] [^abc])
  312. LLAMA_GRETYPE_CHAR_NOT = 4,
  313. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  314. // be an inclusive range ([a-z])
  315. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  316. // modifies a preceding LLAMA_GRETYPE_CHAR or
  317. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  318. LLAMA_GRETYPE_CHAR_ALT = 6,
  319. };
  320. typedef struct llama_grammar_element {
  321. enum llama_gretype type;
  322. uint32_t value; // Unicode code point or rule ID
  323. } llama_grammar_element;
  324. // performance timing information
  325. struct llama_timings {
  326. double t_start_ms;
  327. double t_end_ms;
  328. double t_load_ms;
  329. double t_sample_ms;
  330. double t_p_eval_ms;
  331. double t_eval_ms;
  332. int32_t n_sample;
  333. int32_t n_p_eval;
  334. int32_t n_eval;
  335. };
  336. // used in chat template
  337. typedef struct llama_chat_message {
  338. const char * role;
  339. const char * content;
  340. } llama_chat_message;
  341. // Helpers for getting default parameters
  342. LLAMA_API struct llama_model_params llama_model_default_params(void);
  343. LLAMA_API struct llama_context_params llama_context_default_params(void);
  344. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  345. // Initialize the llama + ggml backend
  346. // If numa is true, use NUMA optimizations
  347. // Call once at the start of the program
  348. LLAMA_API void llama_backend_init(void);
  349. //optional:
  350. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  351. // Call once at the end of the program - currently only used for MPI
  352. LLAMA_API void llama_backend_free(void);
  353. LLAMA_API struct llama_model * llama_load_model_from_file(
  354. const char * path_model,
  355. struct llama_model_params params);
  356. LLAMA_API void llama_free_model(struct llama_model * model);
  357. LLAMA_API struct llama_context * llama_new_context_with_model(
  358. struct llama_model * model,
  359. struct llama_context_params params);
  360. // Frees all allocated memory
  361. LLAMA_API void llama_free(struct llama_context * ctx);
  362. LLAMA_API int64_t llama_time_us(void);
  363. LLAMA_API size_t llama_max_devices(void);
  364. LLAMA_API bool llama_supports_mmap (void);
  365. LLAMA_API bool llama_supports_mlock (void);
  366. LLAMA_API bool llama_supports_gpu_offload(void);
  367. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  368. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  369. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  370. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  371. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  372. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  373. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  374. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  375. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  376. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  377. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  378. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  379. // Get the model's RoPE frequency scaling factor
  380. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  381. // Functions to access the model's GGUF metadata scalar values
  382. // - The functions return the length of the string on success, or -1 on failure
  383. // - The output string is always null-terminated and cleared on failure
  384. // - GGUF array values are not supported by these functions
  385. // Get metadata value as a string by key name
  386. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  387. // Get the number of metadata key/value pairs
  388. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  389. // Get metadata key name by index
  390. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  391. // Get metadata value as a string by index
  392. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  393. // Get a string describing the model type
  394. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  395. // Returns the total size of all the tensors in the model in bytes
  396. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  397. // Returns the total number of parameters in the model
  398. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  399. // Get a llama model tensor
  400. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  401. // Returns 0 on success
  402. LLAMA_API uint32_t llama_model_quantize(
  403. const char * fname_inp,
  404. const char * fname_out,
  405. const llama_model_quantize_params * params);
  406. // Apply a LoRA adapter to a loaded model
  407. // path_base_model is the path to a higher quality model to use as a base for
  408. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  409. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  410. // will be applied on top of the previous one
  411. // Returns 0 on success
  412. LLAMA_API int32_t llama_model_apply_lora_from_file(
  413. const struct llama_model * model,
  414. const char * path_lora,
  415. float scale,
  416. const char * path_base_model,
  417. int32_t n_threads);
  418. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  419. // the currently loaded vector.
  420. // n_embd should be the size of a single layer's control, and data should point
  421. // to an n_embd x n_layers buffer starting from layer 1.
  422. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  423. // See llama_control_vector_load in common to load a control vector.
  424. LLAMA_API int32_t llama_control_vector_apply(
  425. struct llama_context * lctx,
  426. const float * data,
  427. size_t len,
  428. int32_t n_embd,
  429. int32_t il_start,
  430. int32_t il_end);
  431. //
  432. // KV cache
  433. //
  434. // Information associated with an individual cell in the KV cache view.
  435. struct llama_kv_cache_view_cell {
  436. // The position for this cell. Takes KV cache shifts into account.
  437. // May be negative if the cell is not populated.
  438. llama_pos pos;
  439. };
  440. // An updateable view of the KV cache.
  441. struct llama_kv_cache_view {
  442. // Number of KV cache cells. This will be the same as the context size.
  443. int32_t n_cells;
  444. // Maximum number of sequences that can exist in a cell. It's not an error
  445. // if there are more sequences in a cell than this value, however they will
  446. // not be visible in the view cells_sequences.
  447. int32_t n_seq_max;
  448. // Number of tokens in the cache. For example, if there are two populated
  449. // cells, the first with 1 sequence id in it and the second with 2 sequence
  450. // ids then you'll have 3 tokens.
  451. int32_t token_count;
  452. // Number of populated cache cells.
  453. int32_t used_cells;
  454. // Maximum contiguous empty slots in the cache.
  455. int32_t max_contiguous;
  456. // Index to the start of the max_contiguous slot range. Can be negative
  457. // when cache is full.
  458. int32_t max_contiguous_idx;
  459. // Information for an individual cell.
  460. struct llama_kv_cache_view_cell * cells;
  461. // The sequences for each cell. There will be n_seq_max items per cell.
  462. llama_seq_id * cells_sequences;
  463. };
  464. // Create an empty KV cache view. (use only for debugging purposes)
  465. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  466. // Free a KV cache view. (use only for debugging purposes)
  467. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  468. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  469. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  470. // Returns the number of tokens in the KV cache (slow, use only for debug)
  471. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  472. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  473. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  474. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  475. // Clear the KV cache - both cell info is erased and KV data is zeroed
  476. LLAMA_API void llama_kv_cache_clear(
  477. struct llama_context * ctx);
  478. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  479. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  480. // seq_id < 0 : match any sequence
  481. // p0 < 0 : [0, p1]
  482. // p1 < 0 : [p0, inf)
  483. LLAMA_API bool llama_kv_cache_seq_rm(
  484. struct llama_context * ctx,
  485. llama_seq_id seq_id,
  486. llama_pos p0,
  487. llama_pos p1);
  488. // Copy all tokens that belong to the specified sequence to another sequence
  489. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  490. // p0 < 0 : [0, p1]
  491. // p1 < 0 : [p0, inf)
  492. LLAMA_API void llama_kv_cache_seq_cp(
  493. struct llama_context * ctx,
  494. llama_seq_id seq_id_src,
  495. llama_seq_id seq_id_dst,
  496. llama_pos p0,
  497. llama_pos p1);
  498. // Removes all tokens that do not belong to the specified sequence
  499. LLAMA_API void llama_kv_cache_seq_keep(
  500. struct llama_context * ctx,
  501. llama_seq_id seq_id);
  502. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  503. // If the KV cache is RoPEd, the KV data is updated accordingly:
  504. // - lazily on next llama_decode()
  505. // - explicitly with llama_kv_cache_update()
  506. // p0 < 0 : [0, p1]
  507. // p1 < 0 : [p0, inf)
  508. LLAMA_API void llama_kv_cache_seq_add(
  509. struct llama_context * ctx,
  510. llama_seq_id seq_id,
  511. llama_pos p0,
  512. llama_pos p1,
  513. llama_pos delta);
  514. // Integer division of the positions by factor of `d > 1`
  515. // If the KV cache is RoPEd, the KV data is updated accordingly:
  516. // - lazily on next llama_decode()
  517. // - explicitly with llama_kv_cache_update()
  518. // p0 < 0 : [0, p1]
  519. // p1 < 0 : [p0, inf)
  520. LLAMA_API void llama_kv_cache_seq_div(
  521. struct llama_context * ctx,
  522. llama_seq_id seq_id,
  523. llama_pos p0,
  524. llama_pos p1,
  525. int d);
  526. // Returns the largest position present in the KV cache for the specified sequence
  527. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  528. struct llama_context * ctx,
  529. llama_seq_id seq_id);
  530. // Defragment the KV cache
  531. // This will be applied:
  532. // - lazily on next llama_decode()
  533. // - explicitly with llama_kv_cache_update()
  534. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  535. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  536. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  537. //
  538. // State / sessions
  539. //
  540. // Returns the maximum size in bytes of the state (rng, logits, embedding
  541. // and kv_cache) - will often be smaller after compacting tokens
  542. LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
  543. LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
  544. "use llama_state_get_size instead");
  545. // Copies the state to the specified destination address.
  546. // Destination needs to have allocated enough memory.
  547. // Returns the number of bytes copied
  548. LLAMA_API size_t llama_state_get_data(
  549. struct llama_context * ctx,
  550. uint8_t * dst);
  551. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  552. struct llama_context * ctx,
  553. uint8_t * dst),
  554. "use llama_state_get_data instead");
  555. // Set the state reading from the specified address
  556. // Returns the number of bytes read
  557. LLAMA_API size_t llama_state_set_data(
  558. struct llama_context * ctx,
  559. const uint8_t * src);
  560. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  561. struct llama_context * ctx,
  562. const uint8_t * src),
  563. "use llama_state_set_data instead");
  564. // Save/load session file
  565. LLAMA_API bool llama_state_load_file(
  566. struct llama_context * ctx,
  567. const char * path_session,
  568. llama_token * tokens_out,
  569. size_t n_token_capacity,
  570. size_t * n_token_count_out);
  571. LLAMA_API DEPRECATED(bool llama_load_session_file(
  572. struct llama_context * ctx,
  573. const char * path_session,
  574. llama_token * tokens_out,
  575. size_t n_token_capacity,
  576. size_t * n_token_count_out),
  577. "use llama_state_load_file instead");
  578. LLAMA_API bool llama_state_save_file(
  579. struct llama_context * ctx,
  580. const char * path_session,
  581. const llama_token * tokens,
  582. size_t n_token_count);
  583. LLAMA_API DEPRECATED(bool llama_save_session_file(
  584. struct llama_context * ctx,
  585. const char * path_session,
  586. const llama_token * tokens,
  587. size_t n_token_count),
  588. "use llama_state_save_file instead");
  589. // Get the exact size needed to copy the KV cache of a single sequence
  590. LLAMA_API size_t llama_state_seq_get_size(
  591. struct llama_context * ctx,
  592. llama_seq_id seq_id);
  593. // Copy the KV cache of a single sequence into the specified buffer
  594. LLAMA_API size_t llama_state_seq_get_data(
  595. struct llama_context * ctx,
  596. uint8_t * dst,
  597. llama_seq_id seq_id);
  598. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  599. // Returns:
  600. // - Positive: Ok
  601. // - Zero: Failed to load
  602. LLAMA_API size_t llama_state_seq_set_data(
  603. struct llama_context * ctx,
  604. const uint8_t * src,
  605. llama_seq_id dest_seq_id);
  606. LLAMA_API size_t llama_state_seq_save_file(
  607. struct llama_context * ctx,
  608. const char * filepath,
  609. llama_seq_id seq_id,
  610. const llama_token * tokens,
  611. size_t n_token_count);
  612. LLAMA_API size_t llama_state_seq_load_file(
  613. struct llama_context * ctx,
  614. const char * filepath,
  615. llama_seq_id dest_seq_id,
  616. llama_token * tokens_out,
  617. size_t n_token_capacity,
  618. size_t * n_token_count_out);
  619. //
  620. // Decoding
  621. //
  622. // Return batch for single sequence of tokens starting at pos_0
  623. //
  624. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  625. //
  626. LLAMA_API struct llama_batch llama_batch_get_one(
  627. llama_token * tokens,
  628. int32_t n_tokens,
  629. llama_pos pos_0,
  630. llama_seq_id seq_id);
  631. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  632. // Each token can be assigned up to n_seq_max sequence ids
  633. // The batch has to be freed with llama_batch_free()
  634. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  635. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  636. // The rest of the llama_batch members are allocated with size n_tokens
  637. // All members are left uninitialized
  638. LLAMA_API struct llama_batch llama_batch_init(
  639. int32_t n_tokens,
  640. int32_t embd,
  641. int32_t n_seq_max);
  642. // Frees a batch of tokens allocated with llama_batch_init()
  643. LLAMA_API void llama_batch_free(struct llama_batch batch);
  644. // Positive return values does not mean a fatal error, but rather a warning.
  645. // 0 - success
  646. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  647. // < 0 - error
  648. LLAMA_API int32_t llama_decode(
  649. struct llama_context * ctx,
  650. struct llama_batch batch);
  651. // Set the number of threads used for decoding
  652. // n_threads is the number of threads used for generation (single token)
  653. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  654. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  655. // Set whether to use causal attention or not
  656. // If set to true, the model will only attend to the past tokens
  657. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  658. // Set abort callback
  659. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  660. // Wait until all computations are finished
  661. // This is automatically done when using one of the functions below to obtain the computation results
  662. // and is not necessary to call it explicitly in most cases
  663. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  664. // Token logits obtained from the last call to llama_decode()
  665. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  666. // in the order they have appeared in the batch.
  667. // Rows: number of tokens for which llama_batch.logits[i] != 0
  668. // Cols: n_vocab
  669. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  670. // Logits for the ith token. For positive indices, Equivalent to:
  671. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  672. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  673. // returns NULL for invalid ids.
  674. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  675. // Get all output token embeddings.
  676. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  677. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  678. // in the order they have appeared in the batch.
  679. // shape: [n_outputs*n_embd]
  680. // Otherwise, returns NULL.
  681. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  682. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  683. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  684. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  685. // shape: [n_embd] (1-dimensional)
  686. // returns NULL for invalid ids.
  687. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  688. // Get the embeddings for a sequence id
  689. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  690. // shape: [n_embd] (1-dimensional)
  691. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  692. //
  693. // Vocab
  694. //
  695. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  696. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  697. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  698. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  699. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  700. // Special tokens
  701. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  702. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  703. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  704. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  705. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  706. // Returns -1 if unknown, 1 for true or 0 for false.
  707. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  708. // Returns -1 if unknown, 1 for true or 0 for false.
  709. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  710. // Codellama infill tokens
  711. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  712. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  713. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  714. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  715. //
  716. // Tokenization
  717. //
  718. /// @details Convert the provided text into tokens.
  719. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  720. /// @return Returns the number of tokens on success, no more than n_tokens_max
  721. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  722. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  723. /// as plaintext. Does not insert a leading space.
  724. LLAMA_API int32_t llama_tokenize(
  725. const struct llama_model * model,
  726. const char * text,
  727. int32_t text_len,
  728. llama_token * tokens,
  729. int32_t n_tokens_max,
  730. bool add_special,
  731. bool parse_special);
  732. // Token Id -> Piece.
  733. // Uses the vocabulary in the provided context.
  734. // Does not write null terminator to the buffer.
  735. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  736. // @param special If true, special tokens are rendered in the output.
  737. LLAMA_API int32_t llama_token_to_piece(
  738. const struct llama_model * model,
  739. llama_token token,
  740. char * buf,
  741. int32_t length,
  742. bool special);
  743. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  744. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  745. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  746. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  747. /// @param chat Pointer to a list of multiple llama_chat_message
  748. /// @param n_msg Number of llama_chat_message in this chat
  749. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  750. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  751. /// @param length The size of the allocated buffer
  752. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  753. LLAMA_API int32_t llama_chat_apply_template(
  754. const struct llama_model * model,
  755. const char * tmpl,
  756. const struct llama_chat_message * chat,
  757. size_t n_msg,
  758. bool add_ass,
  759. char * buf,
  760. int32_t length);
  761. //
  762. // Grammar
  763. //
  764. LLAMA_API struct llama_grammar * llama_grammar_init(
  765. const llama_grammar_element ** rules,
  766. size_t n_rules,
  767. size_t start_rule_index);
  768. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  769. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  770. //
  771. // Sampling functions
  772. //
  773. // Sets the current rng seed.
  774. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  775. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  776. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  777. LLAMA_API void llama_sample_repetition_penalties(
  778. struct llama_context * ctx,
  779. llama_token_data_array * candidates,
  780. const llama_token * last_tokens,
  781. size_t penalty_last_n,
  782. float penalty_repeat,
  783. float penalty_freq,
  784. float penalty_present);
  785. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  786. /// @param logits Logits extracted from the original generation context.
  787. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  788. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  789. LLAMA_API void llama_sample_apply_guidance(
  790. struct llama_context * ctx,
  791. float * logits,
  792. float * logits_guidance,
  793. float scale);
  794. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  795. LLAMA_API void llama_sample_softmax(
  796. struct llama_context * ctx,
  797. llama_token_data_array * candidates);
  798. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  799. LLAMA_API void llama_sample_top_k(
  800. struct llama_context * ctx,
  801. llama_token_data_array * candidates,
  802. int32_t k,
  803. size_t min_keep);
  804. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  805. LLAMA_API void llama_sample_top_p(
  806. struct llama_context * ctx,
  807. llama_token_data_array * candidates,
  808. float p,
  809. size_t min_keep);
  810. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  811. LLAMA_API void llama_sample_min_p(
  812. struct llama_context * ctx,
  813. llama_token_data_array * candidates,
  814. float p,
  815. size_t min_keep);
  816. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  817. LLAMA_API void llama_sample_tail_free(
  818. struct llama_context * ctx,
  819. llama_token_data_array * candidates,
  820. float z,
  821. size_t min_keep);
  822. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  823. LLAMA_API void llama_sample_typical(
  824. struct llama_context * ctx,
  825. llama_token_data_array * candidates,
  826. float p,
  827. size_t min_keep);
  828. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  829. LLAMA_API void llama_sample_entropy(
  830. struct llama_context * ctx,
  831. llama_token_data_array * candidates_p,
  832. float min_temp,
  833. float max_temp,
  834. float exponent_val);
  835. LLAMA_API void llama_sample_temp(
  836. struct llama_context * ctx,
  837. llama_token_data_array * candidates,
  838. float temp);
  839. /// @details Apply constraints from grammar
  840. LLAMA_API void llama_sample_grammar(
  841. struct llama_context * ctx,
  842. llama_token_data_array * candidates,
  843. const struct llama_grammar * grammar);
  844. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  845. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  846. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  847. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  848. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  849. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  850. LLAMA_API llama_token llama_sample_token_mirostat(
  851. struct llama_context * ctx,
  852. llama_token_data_array * candidates,
  853. float tau,
  854. float eta,
  855. int32_t m,
  856. float * mu);
  857. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  858. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  859. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  860. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  861. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  862. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  863. struct llama_context * ctx,
  864. llama_token_data_array * candidates,
  865. float tau,
  866. float eta,
  867. float * mu);
  868. /// @details Selects the token with the highest probability.
  869. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  870. LLAMA_API llama_token llama_sample_token_greedy(
  871. struct llama_context * ctx,
  872. llama_token_data_array * candidates);
  873. /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
  874. LLAMA_API llama_token llama_sample_token(
  875. struct llama_context * ctx,
  876. llama_token_data_array * candidates);
  877. /// @details Accepts the sampled token into the grammar
  878. LLAMA_API void llama_grammar_accept_token(
  879. struct llama_context * ctx,
  880. struct llama_grammar * grammar,
  881. llama_token token);
  882. //
  883. // Beam search
  884. //
  885. struct llama_beam_view {
  886. const llama_token * tokens;
  887. size_t n_tokens;
  888. float p; // Cumulative beam probability (renormalized relative to all beams)
  889. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  890. };
  891. // Passed to beam_search_callback function.
  892. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  893. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  894. // These pointers are valid only during the synchronous callback, so should not be saved.
  895. struct llama_beams_state {
  896. struct llama_beam_view * beam_views;
  897. size_t n_beams; // Number of elements in beam_views[].
  898. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  899. bool last_call; // True iff this is the last callback invocation.
  900. };
  901. // Type of pointer to the beam_search_callback function.
  902. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  903. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  904. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  905. /// @details Deterministically returns entire sentence constructed by a beam search.
  906. /// @param ctx Pointer to the llama_context.
  907. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  908. /// @param callback_data A pointer that is simply passed back to callback.
  909. /// @param n_beams Number of beams to use.
  910. /// @param n_past Number of tokens already evaluated.
  911. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  912. LLAMA_API void llama_beam_search(
  913. struct llama_context * ctx,
  914. llama_beam_search_callback_fn_t callback,
  915. void * callback_data,
  916. size_t n_beams,
  917. int32_t n_past,
  918. int32_t n_predict);
  919. /// @details Build a split GGUF final path for this chunk.
  920. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  921. // Returns the split_path length.
  922. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  923. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  924. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  925. // Returns the split_prefix length.
  926. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  927. // Performance information
  928. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  929. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  930. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  931. // Print system information
  932. LLAMA_API const char * llama_print_system_info(void);
  933. // Set callback for all future logging events.
  934. // If this is not called, or NULL is supplied, everything is output on stderr.
  935. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  936. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  937. #ifdef __cplusplus
  938. }
  939. #endif
  940. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  941. #ifdef LLAMA_API_INTERNAL
  942. #include <random>
  943. #include <string>
  944. #include <vector>
  945. struct ggml_tensor;
  946. struct llama_partial_utf8 {
  947. uint32_t value; // bit value so far (unshifted)
  948. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  949. };
  950. struct llama_grammar {
  951. const std::vector<std::vector<llama_grammar_element>> rules;
  952. std::vector<std::vector<const llama_grammar_element *>> stacks;
  953. // buffer for partially generated UTF-8 sequence from accepted tokens
  954. llama_partial_utf8 partial_utf8;
  955. };
  956. struct llama_grammar_candidate {
  957. size_t index;
  958. const uint32_t * code_points;
  959. llama_partial_utf8 partial_utf8;
  960. };
  961. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  962. struct llama_context * ctx
  963. );
  964. void llama_grammar_accept(
  965. const std::vector<std::vector<llama_grammar_element>> & rules,
  966. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  967. const uint32_t chr,
  968. std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
  969. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  970. const std::string & src,
  971. llama_partial_utf8 partial_start);
  972. // Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
  973. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
  974. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
  975. #endif // LLAMA_API_INTERNAL
  976. #endif // LLAMA_H