convert_gemma3.go 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
  1. package convert
  2. import "github.com/ollama/ollama/fs/ggml"
  3. type gemma3Model struct {
  4. gemmaModel
  5. TextModel gemma3TextModel `json:"text_config"`
  6. VisionModel gemma3VisionModel `json:"vision_config"`
  7. }
  8. type gemma3TextModel struct {
  9. MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
  10. HiddenSize uint32 `json:"hidden_size"`
  11. HiddenLayers uint32 `json:"num_hidden_layers"`
  12. IntermediateSize uint32 `json:"intermediate_size"`
  13. NumAttentionHeads uint32 `json:"num_attention_heads"`
  14. NumKeyValueHeads uint32 `json:"num_key_value_heads"`
  15. RMSNormEPS float32 `json:"rms_norm_eps"`
  16. HeadDim uint32 `json:"head_dim"`
  17. SlidingWindow uint32 `json:"sliding_window"`
  18. AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
  19. FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
  20. RopeLocalTheta float32 `json:"rope_local_base_freq"`
  21. RopeGlobalTheta float32 `json:"rope_global_base_freq"`
  22. }
  23. type gemma3VisionModel struct {
  24. ImageSize uint32 `json:"image_size"`
  25. NumChannels uint32 `json:"num_channels"`
  26. HiddenLayers uint32 `json:"num_hidden_layers"`
  27. }
  28. func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
  29. kv := p.ModelParameters.KV(t)
  30. kv["general.architecture"] = "gemma3"
  31. kv["gemma3.context_length"] = p.TextModel.MaxPositionEmbeddings
  32. kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
  33. kv["gemma3.block_count"] = p.TextModel.HiddenLayers
  34. kv["gemma3.text.feed_forward_length"] = p.TextModel.IntermediateSize
  35. kv["gemma3.attention.head_count"] = p.TextModel.NumAttentionHeads
  36. kv["gemma3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
  37. kv["gemma3.text.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
  38. kv["gemma3.attention.key_length"] = p.TextModel.HeadDim
  39. kv["gemma3.attention.value_length"] = p.TextModel.HeadDim
  40. kv["gemma3.text.attention.sliding_window"] = p.TextModel.SlidingWindow
  41. kv["gemma3.text.final_logit_softcapping"] = p.TextModel.FinalLogitSoftcap
  42. kv["gemma3.text.rope.local.freq_base"] = p.TextModel.RopeLocalTheta
  43. kv["gemma3.text.rope.global.freq_base"] = p.TextModel.RopeGlobalTheta
  44. kv["tokenizer.ggml.bos_token_id"] = uint32(2)
  45. kv["tokenizer.ggml.eot_token_id"] = uint32(1)
  46. kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
  47. kv["gemma3.vision.num_channels"] = p.VisionModel.NumChannels
  48. kv["gemma3.vision.block_count"] = p.VisionModel.HiddenLayers
  49. return kv
  50. }
  51. func (p *gemma3Model) Replacements() []string {
  52. return []string{
  53. "lm_head", "output",
  54. "model.embed_tokens", "token_embd",
  55. "model.norm", "output_norm",
  56. "vision_model.vision_model", "v",
  57. "language_model.", "",
  58. "model.layers", "blk",
  59. "encoder.layers", "blk",
  60. "vision_tower.vision_model.embeddings", "v",
  61. "input_layernorm", "attn_norm",
  62. "self_attn.q_proj", "attn_q",
  63. "self_attn.q_norm", "attn_q_norm",
  64. "self_attn.k_proj", "attn_k",
  65. "self_attn.k_norm", "attn_k_norm",
  66. "self_attn.v_proj", "attn_v",
  67. "self_attn.o_proj", "attn_output",
  68. "mlp.gate_proj", "ffn_gate",
  69. "mlp.down_proj", "ffn_down",
  70. "mlp.up_proj", "ffn_up",
  71. "post_attention_layernorm", "post_attention_norm",
  72. "pre_feedforward_layernorm", "ffn_norm",
  73. "post_feedforward_layernorm", "post_ffw_norm",
  74. }
  75. }