123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- package convert
- import "github.com/ollama/ollama/fs/ggml"
- type gemma3Model struct {
- gemmaModel
- TextModel gemma3TextModel `json:"text_config"`
- VisionModel gemma3VisionModel `json:"vision_config"`
- }
- type gemma3TextModel struct {
- MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
- HiddenSize uint32 `json:"hidden_size"`
- HiddenLayers uint32 `json:"num_hidden_layers"`
- IntermediateSize uint32 `json:"intermediate_size"`
- NumAttentionHeads uint32 `json:"num_attention_heads"`
- NumKeyValueHeads uint32 `json:"num_key_value_heads"`
- RMSNormEPS float32 `json:"rms_norm_eps"`
- HeadDim uint32 `json:"head_dim"`
- SlidingWindow uint32 `json:"sliding_window"`
- AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
- FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
- RopeLocalTheta float32 `json:"rope_local_base_freq"`
- RopeGlobalTheta float32 `json:"rope_global_base_freq"`
- }
- type gemma3VisionModel struct {
- ImageSize uint32 `json:"image_size"`
- NumChannels uint32 `json:"num_channels"`
- HiddenLayers uint32 `json:"num_hidden_layers"`
- }
- func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
- kv := p.ModelParameters.KV(t)
- kv["general.architecture"] = "gemma3"
- kv["gemma3.context_length"] = p.TextModel.MaxPositionEmbeddings
- kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
- kv["gemma3.block_count"] = p.TextModel.HiddenLayers
- kv["gemma3.text.feed_forward_length"] = p.TextModel.IntermediateSize
- kv["gemma3.attention.head_count"] = p.TextModel.NumAttentionHeads
- kv["gemma3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
- kv["gemma3.text.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
- kv["gemma3.attention.key_length"] = p.TextModel.HeadDim
- kv["gemma3.attention.value_length"] = p.TextModel.HeadDim
- kv["gemma3.text.attention.sliding_window"] = p.TextModel.SlidingWindow
- kv["gemma3.text.final_logit_softcapping"] = p.TextModel.FinalLogitSoftcap
- kv["gemma3.text.rope.local.freq_base"] = p.TextModel.RopeLocalTheta
- kv["gemma3.text.rope.global.freq_base"] = p.TextModel.RopeGlobalTheta
- kv["tokenizer.ggml.bos_token_id"] = uint32(2)
- kv["tokenizer.ggml.eot_token_id"] = uint32(1)
- kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
- kv["gemma3.vision.num_channels"] = p.VisionModel.NumChannels
- kv["gemma3.vision.block_count"] = p.VisionModel.HiddenLayers
- return kv
- }
- func (p *gemma3Model) Replacements() []string {
- return []string{
- "lm_head", "output",
- "model.embed_tokens", "token_embd",
- "model.norm", "output_norm",
- "vision_model.vision_model", "v",
- "language_model.", "",
- "model.layers", "blk",
- "encoder.layers", "blk",
- "vision_tower.vision_model.embeddings", "v",
- "input_layernorm", "attn_norm",
- "self_attn.q_proj", "attn_q",
- "self_attn.q_norm", "attn_q_norm",
- "self_attn.k_proj", "attn_k",
- "self_attn.k_norm", "attn_k_norm",
- "self_attn.v_proj", "attn_v",
- "self_attn.o_proj", "attn_output",
- "mlp.gate_proj", "ffn_gate",
- "mlp.down_proj", "ffn_down",
- "mlp.up_proj", "ffn_up",
- "post_attention_layernorm", "post_attention_norm",
- "pre_feedforward_layernorm", "ffn_norm",
- "post_feedforward_layernorm", "post_ffw_norm",
- }
- }
|