123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- package mllama
- import (
- "math"
- "slices"
- "github.com/ollama/ollama/kvcache"
- "github.com/ollama/ollama/ml"
- "github.com/ollama/ollama/ml/nn"
- )
- type TextSelfAttention struct {
- Query *nn.Linear `gguf:"attn_q"`
- Key *nn.Linear `gguf:"attn_k"`
- Value *nn.Linear `gguf:"attn_v"`
- Output *nn.Linear `gguf:"attn_output"`
- RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
- }
- func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
- batchSize := hiddenState.Dim(1)
- headDim := opts.hiddenSize / opts.numHeads
- ropeType := uint32(0)
- query := sa.Query.Forward(ctx, hiddenState)
- query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
- query = query.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
- key := sa.Key.Forward(ctx, hiddenState)
- key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
- key = key.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
- value := sa.Value.Forward(ctx, hiddenState)
- value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
- scaleFactor := 1.0 / math.Sqrt(float64(headDim))
- attention := nn.Attention(ctx, query, key, value, scaleFactor, cache)
- attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
- return sa.Output.Forward(ctx, attention)
- }
- func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
- // This will only get called for layers in the cache, which are just the self attention layers
- if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
- return key.RoPE(ctx, shift, sa.SelfAttention.RopeFactors, m.ropeDim, uint32(0), m.ropeBase, m.ropeScale), nil
- }
- return key, nil
- }
- type TextMLP struct {
- Up *nn.Linear `gguf:"ffn_up"`
- Down *nn.Linear `gguf:"ffn_down"`
- Gate *nn.Linear `gguf:"ffn_gate"`
- }
- func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextModelOptions) ml.Tensor {
- hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
- return mlp.Down.Forward(ctx, hiddenState)
- }
- type TextSelfAttentionDecoderLayer struct {
- AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
- SelfAttention *TextSelfAttention
- MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
- MLP *TextMLP
- }
- func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, positions, outputs, mask, _, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
- residual := hiddenState
- hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
- hiddenState = d.SelfAttention.Forward(ctx, hiddenState, positions, mask, cache, opts)
- // In the final layer (outputs != nil), optimize by pruning to just the token positions
- // we need logits for.
- if outputs != nil {
- hiddenState = hiddenState.Rows(ctx, outputs)
- residual = residual.Rows(ctx, outputs)
- }
- hiddenState = hiddenState.Add(ctx, residual)
- residual = hiddenState
- hiddenState = d.MLPNorm.Forward(ctx, hiddenState, opts.eps)
- hiddenState = d.MLP.Forward(ctx, hiddenState, opts)
- return hiddenState.Add(ctx, residual)
- }
- type TextCrossAttention struct {
- QueryNorm *nn.RMSNorm `gguf:"cross_attn_q_norm"`
- Query *nn.Linear `gguf:"cross_attn_q_proj"`
- KeyNorm *nn.RMSNorm `gguf:"cross_attn_k_norm"`
- Key *nn.Linear `gguf:"cross_attn_k_proj"`
- Value *nn.Linear `gguf:"cross_attn_v_proj"`
- Output *nn.Linear `gguf:"cross_attn_o_proj"`
- }
- func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentionStates ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
- batchSize := hiddenState.Dim(1)
- headDim := opts.hiddenSize / opts.numHeads
- query := ca.Query.Forward(ctx, hiddenState)
- query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
- query = ca.QueryNorm.Forward(ctx, query, opts.eps)
- var key, value ml.Tensor
- if crossAttentionStates != nil {
- numVisionTokens, numTiles := crossAttentionStates.Dim(1), crossAttentionStates.Dim(2)
- key = ca.Key.Forward(ctx, crossAttentionStates)
- key = key.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
- key = ca.KeyNorm.Forward(ctx, key, opts.eps)
- value = ca.Value.Forward(ctx, crossAttentionStates)
- value = value.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
- cache.Put(ctx, key, value)
- }
- key, value, _ = cache.Get(ctx)
- scaleFactor := 1.0 / math.Sqrt(float64(headDim))
- query = query.Permute(ctx, 0, 2, 1, 3)
- key = key.Permute(ctx, 0, 2, 1, 3)
- value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
- kq := key.MulmatFullPrec(ctx, query)
- kq = kq.Scale(ctx, scaleFactor)
- kq = kq.Softmax(ctx)
- kqv := value.Mulmat(ctx, kq)
- attention := kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
- attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
- return ca.Output.Forward(ctx, attention)
- }
- type TextCrossAttentionDecoderLayer struct {
- AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
- CrossAttention *TextCrossAttention
- AttentionGate ml.Tensor `gguf:"cross_attn_attn_gate"`
- MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
- MLP *TextMLP
- MLPGate ml.Tensor `gguf:"cross_attn_mlp_gate"`
- }
- func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _, _, _, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
- residual := hiddenState
- hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
- hiddenState = d.CrossAttention.Forward(ctx, hiddenState, crossAttentionStates, cache, opts)
- hiddenState = hiddenState.Mul(ctx, d.AttentionGate.Tanh(ctx))
- hiddenState = hiddenState.Add(ctx, residual)
- residual = hiddenState
- hiddenState = d.MLPNorm.Forward(ctx, hiddenState, opts.eps)
- hiddenState = d.MLP.Forward(ctx, hiddenState, opts)
- hiddenState = hiddenState.Mul(ctx, d.MLPGate.Tanh(ctx))
- return hiddenState.Add(ctx, residual)
- }
- type TextDecoderLayer interface {
- Forward(ctx ml.Context, hiddenState, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor
- }
- type TextDecoder struct {
- Layers []TextDecoderLayer
- }
- func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
- for i, layer := range d.Layers {
- layerType := selfAttentionLayer
- if slices.Contains(opts.crossAttentionLayers, uint32(i)) {
- layerType = crossAttentionLayer
- }
- cache.SetLayer(i)
- cache.SetLayerType(layerType)
- if layerType == selfAttentionLayer || crossAttentionStates != nil || cache.UnderlyingCache().(*kvcache.EncoderCache).EncoderCached() {
- var lastLayerOutputs ml.Tensor
- if i == len(d.Layers)-1 {
- lastLayerOutputs = outputs
- }
- hiddenState = layer.Forward(ctx, hiddenState, positionIDs, lastLayerOutputs, mask, crossAttentionStates, crossAttentionMask, cache, opts)
- }
- }
- return hiddenState
- }
- type TextModelOptions struct {
- hiddenSize, numHeads, numKVHeads int
- eps, ropeBase, ropeScale float32
- ropeDim uint32
- crossAttentionLayers []uint32
- }
- type TextModel struct {
- TokenEmbedding *nn.Embedding `gguf:"token_embd"`
- Transformer *TextDecoder `gguf:"blk"`
- OutputNorm *nn.RMSNorm `gguf:"output_norm"`
- Output *nn.Linear `gguf:"output"`
- *TextModelOptions
- }
- func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache) ml.Tensor {
- hiddenState := m.TokenEmbedding.Forward(ctx, inputIDs)
- hiddenState = m.Transformer.Forward(ctx, hiddenState, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask, cache, m.TextModelOptions)
- hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
- return m.Output.Forward(ctx, hiddenState)
- }
- func newTextModel(c ml.Config) *TextModel {
- var decoderLayers []TextDecoderLayer
- for i := range c.Uint("block_count") {
- var textDecoderLayer TextDecoderLayer
- if slices.Contains(c.Uints("attention.cross_attention_layers"), i) {
- textDecoderLayer = &TextCrossAttentionDecoderLayer{}
- } else {
- textDecoderLayer = &TextSelfAttentionDecoderLayer{}
- }
- decoderLayers = append(decoderLayers, textDecoderLayer)
- }
- return &TextModel{
- Transformer: &TextDecoder{Layers: decoderLayers},
- TextModelOptions: &TextModelOptions{
- hiddenSize: int(c.Uint("embedding_length")),
- numHeads: int(c.Uint("attention.head_count")),
- numKVHeads: int(c.Uint("attention.head_count_kv")),
- eps: c.Float("attention.layer_norm_rms_epsilon"),
- ropeBase: c.Float("rope.freq_base"),
- ropeScale: c.Float("rope.freq_scale", 1),
- ropeDim: c.Uint("rope.dimension_count"),
- crossAttentionLayers: c.Uints("attention.cross_attention_layers"),
- },
- }
- }
|