ggml.go 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623
  1. package ggml
  2. // #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
  3. // #include <stdlib.h>
  4. // #include <stdint.h>
  5. // #include "ggml.h"
  6. // #include "ggml-cpu.h"
  7. // #include "ggml-backend.h"
  8. import "C"
  9. import (
  10. "bytes"
  11. "encoding/binary"
  12. "fmt"
  13. "io"
  14. "log/slog"
  15. "os"
  16. "sync"
  17. "unsafe"
  18. "github.com/ollama/ollama/format"
  19. fs "github.com/ollama/ollama/fs/ggml"
  20. "github.com/ollama/ollama/ml"
  21. "golang.org/x/sync/errgroup"
  22. ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
  23. )
  24. type device struct {
  25. d *C.struct_ggml_backend_device
  26. }
  27. func (d device) LogValue() slog.Value {
  28. var free, total uint64
  29. C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
  30. kind := "unknown"
  31. switch C.ggml_backend_dev_type(d.d) {
  32. case C.GGML_BACKEND_DEVICE_TYPE_CPU:
  33. kind = "cpu"
  34. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  35. kind = "gpu"
  36. case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  37. kind = "accel"
  38. }
  39. return slog.GroupValue(
  40. slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
  41. slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
  42. slog.String("kind", kind),
  43. slog.String("free", format.HumanBytes2(free)),
  44. slog.String("total", format.HumanBytes2(total)),
  45. )
  46. }
  47. var devices = sync.OnceValue(func() []device {
  48. ggml.OnceLoad()
  49. s := make([]device, C.ggml_backend_dev_count())
  50. for i := range s {
  51. s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
  52. }
  53. return s
  54. })
  55. type Backend struct {
  56. meta *fs.GGML
  57. cpus, gpus []Context
  58. tensors map[string]*Context
  59. }
  60. func New(r *os.File) (ml.Backend, error) {
  61. meta, n, err := fs.Decode(r, -1)
  62. if err != nil {
  63. return nil, err
  64. }
  65. slog.Info(
  66. "",
  67. "architecture", meta.KV().Architecture(),
  68. "file_type", meta.KV().FileType(),
  69. "name", meta.KV().String("general.name"),
  70. "description", meta.KV().String("general.description"),
  71. "num_tensors", len(meta.Tensors().Items()),
  72. "num_key_values", len(meta.KV()),
  73. )
  74. var cpus, gpus []Context
  75. for _, d := range devices() {
  76. switch C.ggml_backend_dev_type(d.d) {
  77. case C.GGML_BACKEND_DEVICE_TYPE_CPU,
  78. C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  79. slog.Info("cpu", "device", d)
  80. cpus = append(cpus, Context{
  81. ctx: C.ggml_init(C.struct_ggml_init_params{
  82. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  83. no_alloc: true,
  84. }),
  85. backend: C.ggml_backend_dev_init(d.d, nil),
  86. })
  87. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  88. slog.Info("gpu", "device", d)
  89. gpus = append(gpus, Context{
  90. ctx: C.ggml_init(C.struct_ggml_init_params{
  91. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  92. no_alloc: true,
  93. }),
  94. backend: C.ggml_backend_dev_init(d.d, nil),
  95. })
  96. }
  97. }
  98. ctxFunc := func(s []Context) (*Context, error) {
  99. for _, e := range s {
  100. return &e, nil
  101. }
  102. return nil, fmt.Errorf("no devices available")
  103. }
  104. tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
  105. for _, t := range meta.Tensors().Items() {
  106. c, err := ctxFunc(append(gpus, cpus...))
  107. if err != nil {
  108. return nil, err
  109. }
  110. func() {
  111. tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
  112. cname := C.CString(t.Name)
  113. defer C.free(unsafe.Pointer(cname))
  114. C.ggml_set_name(tt, cname)
  115. tensors[t] = c
  116. }()
  117. }
  118. for _, b := range append(gpus, cpus...) {
  119. C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
  120. }
  121. sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
  122. var g errgroup.Group
  123. for t, c := range tensors {
  124. g.Go(func() error {
  125. bts := make([]byte, t.Size())
  126. n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
  127. if err != nil {
  128. return err
  129. }
  130. if n != int(t.Size()) {
  131. return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
  132. }
  133. cname := C.CString(t.Name)
  134. defer C.free(unsafe.Pointer(cname))
  135. C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
  136. return nil
  137. })
  138. }
  139. if err := g.Wait(); err != nil {
  140. return nil, err
  141. }
  142. return &Backend{
  143. meta: meta,
  144. cpus: cpus,
  145. gpus: gpus,
  146. }, nil
  147. }
  148. func init() {
  149. ml.RegisterBackend("ggml", New)
  150. }
  151. func (b *Backend) Config() ml.Config {
  152. return b.meta.KV()
  153. }
  154. func (b *Backend) Get(name string) ml.Tensor {
  155. cname := C.CString(name)
  156. defer C.free(unsafe.Pointer(cname))
  157. for _, c := range append(b.gpus, b.cpus...) {
  158. if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
  159. return &Tensor{t: t}
  160. }
  161. }
  162. return nil
  163. }
  164. func (b *Backend) NewContext() ml.Context {
  165. nodes := max(8192, len(b.meta.Tensors().Items())*5)
  166. c := C.ggml_init(C.struct_ggml_init_params{
  167. mem_buffer: nil,
  168. mem_size: C.size_t(nodes)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(nodes), false),
  169. no_alloc: true,
  170. })
  171. backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
  172. bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
  173. for i, c := range append(b.gpus, b.cpus...) {
  174. backends[i] = c.backend
  175. bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
  176. }
  177. return &Context{
  178. ctx: c,
  179. backend: backends[0],
  180. nodes: nodes,
  181. sched: C.ggml_backend_sched_new(
  182. (*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
  183. (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
  184. C.int(len(backends)),
  185. C.size_t(nodes),
  186. true,
  187. ),
  188. traceGraph: ml.Graph{},
  189. }
  190. }
  191. type Context struct {
  192. ctx *C.struct_ggml_context
  193. backend *C.struct_ggml_backend
  194. sched *C.struct_ggml_backend_sched
  195. graph *C.struct_ggml_cgraph
  196. nodes int
  197. debug bool
  198. traceGraph ml.Graph
  199. }
  200. func (c *Context) Forward(t ml.Tensor) {
  201. if c.graph == nil {
  202. c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
  203. }
  204. C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
  205. }
  206. func (c *Context) Compute(t ml.Tensor) ml.Tensor {
  207. C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
  208. if t != nil && C.ggml_nbytes(t.(*Tensor).t) != 0 {
  209. backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t)
  210. t.(*Tensor).data = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
  211. C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).data[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
  212. }
  213. return t
  214. }
  215. func (c Context) Zeros(dtype ml.DType, shape ...int64) ml.Tensor {
  216. if len(shape) < 1 || len(shape) > 4 {
  217. panic("unsupported number of dimensions")
  218. }
  219. for _, dim := range shape {
  220. if dim < 1 {
  221. panic("invalid shape")
  222. }
  223. }
  224. var t *C.struct_ggml_tensor
  225. switch dtype {
  226. case ml.DTypeF32:
  227. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
  228. case ml.DTypeI32:
  229. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
  230. default:
  231. panic("unsupported dtype")
  232. }
  233. b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
  234. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  235. C.ggml_set_zero(t)
  236. return &Tensor{t: t}
  237. }
  238. func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
  239. n := len(s)
  240. if n == 0 {
  241. shape := 0
  242. t := C.ggml_new_tensor(ctx.ctx, dtype, 1, (*C.int64_t)(unsafe.Pointer(&shape)))
  243. return &Tensor{t: t}, nil
  244. }
  245. for _, v := range shape {
  246. n /= v
  247. }
  248. if n != 1 {
  249. return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
  250. }
  251. t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
  252. b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
  253. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  254. C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
  255. return &Tensor{t: t}, nil
  256. }
  257. func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
  258. return fromSlice(c, s, shape, C.GGML_TYPE_F32)
  259. }
  260. func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
  261. return fromSlice(c, s, shape, C.GGML_TYPE_I32)
  262. }
  263. func (c *Context) Close() error {
  264. C.ggml_backend_sched_free(c.sched)
  265. C.ggml_free(c.ctx)
  266. return nil
  267. }
  268. func (c *Context) SetDebug(debug bool) {
  269. c.debug = debug
  270. }
  271. func (c *Context) Trace(name string, t ml.Tensor) {
  272. if !c.debug {
  273. return
  274. }
  275. shape := t.Shape()
  276. shapeArr := make([]int64, 4)
  277. for i := 0; i < len(shape); i++ {
  278. shapeArr[i] = shape[i]
  279. }
  280. c.traceGraph.Graph = append(
  281. c.traceGraph.Graph,
  282. ml.GraphLayer{
  283. Name: name,
  284. Shape: shapeArr,
  285. },
  286. )
  287. }
  288. func (c *Context) GetTrace() ml.Graph {
  289. return c.traceGraph
  290. }
  291. type Tensor struct {
  292. t *C.struct_ggml_tensor
  293. data []byte
  294. }
  295. func (t *Tensor) LogValue() slog.Value {
  296. return slog.GroupValue(
  297. slog.String("name", C.GoString(C.ggml_get_name(t.t))),
  298. slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
  299. slog.Any("shape", t.Shape()),
  300. )
  301. }
  302. func (t *Tensor) Dim(n int) int64 {
  303. return int64(t.t.ne[n])
  304. }
  305. func (t *Tensor) Stride(n int) int64 {
  306. return int64(t.t.nb[n])
  307. }
  308. func (t *Tensor) Shape() []int64 {
  309. shape := make([]int64, C.ggml_n_dims(t.t))
  310. for i := range shape {
  311. shape[i] = t.Dim(i)
  312. }
  313. return shape
  314. }
  315. func (t *Tensor) Bytes() []byte {
  316. if bts := C.ggml_get_data(t.t); bts != nil {
  317. return C.GoBytes(bts, C.int(C.ggml_nbytes(t.t)))
  318. }
  319. return nil
  320. }
  321. func (t *Tensor) Floats() (f32s []float32) {
  322. if t.data != nil {
  323. f32s = make([]float32, C.ggml_nelements(t.t))
  324. _ = binary.Read(bytes.NewReader(t.data), binary.LittleEndian, f32s)
  325. }
  326. return
  327. }
  328. func (t *Tensor) DType() ml.DType {
  329. switch t.t._type {
  330. case C.GGML_TYPE_F32:
  331. return ml.DTypeF32
  332. case C.GGML_TYPE_I32:
  333. return ml.DTypeI32
  334. default:
  335. return ml.DTypeOther
  336. }
  337. }
  338. func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  339. return &Tensor{
  340. t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  341. }
  342. }
  343. func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
  344. if len(s) > 0 {
  345. return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
  346. }
  347. return t
  348. }
  349. func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
  350. return &Tensor{
  351. t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
  352. }
  353. }
  354. func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
  355. return &Tensor{
  356. t: C.ggml_cont(ctx.(*Context).ctx, t.t),
  357. }
  358. }
  359. func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  360. return &Tensor{
  361. t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  362. }
  363. }
  364. func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  365. return &Tensor{
  366. t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  367. }
  368. }
  369. func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
  370. tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
  371. if b != nil {
  372. tt = tt.Add(ctx, b)
  373. }
  374. return tt
  375. }
  376. func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
  377. return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
  378. }
  379. func (t *Tensor) Pad(ctx ml.Context, shape ...int64) ml.Tensor {
  380. if len(shape) != 4 {
  381. panic("expected 4 dimensions")
  382. }
  383. return &Tensor{
  384. t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  385. }
  386. }
  387. func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
  388. if len(shape) != 4 {
  389. panic("expected 4 dimensions")
  390. }
  391. return &Tensor{
  392. t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  393. }
  394. }
  395. func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  396. return &Tensor{
  397. t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  398. }
  399. }
  400. func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  401. return &Tensor{
  402. t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  403. }
  404. }
  405. func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor {
  406. switch len(shape) {
  407. case 1:
  408. return &Tensor{
  409. t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
  410. }
  411. case 2:
  412. return &Tensor{
  413. t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
  414. }
  415. case 3:
  416. return &Tensor{
  417. t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
  418. }
  419. case 4:
  420. return &Tensor{
  421. t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
  422. }
  423. default:
  424. panic("unsupported number of dimensions")
  425. }
  426. }
  427. func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
  428. return &Tensor{
  429. t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
  430. }
  431. }
  432. func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
  433. return &Tensor{
  434. t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
  435. }
  436. }
  437. func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
  438. return &Tensor{
  439. t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
  440. }
  441. }
  442. func (t *Tensor) Unpad(ctx ml.Context, shape ...int64) ml.Tensor {
  443. if len(shape) != 4 {
  444. panic("expected 4 dimensions")
  445. }
  446. return &Tensor{
  447. t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  448. }
  449. }
  450. func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
  451. switch len(shape) {
  452. case 1:
  453. return &Tensor{
  454. t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
  455. }
  456. case 3:
  457. return &Tensor{
  458. t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
  459. C.int64_t(shape[0]), C.int64_t(shape[2]),
  460. C.size_t(shape[1]),
  461. C.size_t(offset)),
  462. }
  463. case 5:
  464. return &Tensor{
  465. t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
  466. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
  467. C.size_t(shape[1]), C.size_t(shape[3]),
  468. C.size_t(offset)),
  469. }
  470. case 7:
  471. return &Tensor{
  472. t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
  473. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
  474. C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
  475. C.size_t(offset)),
  476. }
  477. default:
  478. panic("unsupported number of dimensions")
  479. }
  480. }
  481. const (
  482. ropeTypeNorm C.int = iota
  483. )
  484. func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
  485. if ropeFactors == nil {
  486. ropeFactors = &Tensor{}
  487. }
  488. return &Tensor{
  489. t: C.ggml_rope_ext(
  490. ctx.(*Context).ctx,
  491. t.t, // a tensor
  492. positionIDs.(*Tensor).t, // b tensor with dims [512, 1, 1, 1]
  493. nil, // c tensor (not shown in log)
  494. C.int(64), // n_dims: 64
  495. 2, // mode: 2 (ropeTypeNeox = 2)
  496. C.int(32768), // n_ctx_orig: 32768
  497. C.float(1000000.0), // freq_base: 1000000.000000
  498. C.float(1.0), // freq_scale: 1.000000
  499. C.float(0.0), // ext_factor: 0.000000
  500. C.float(1.0), // attn_factor: 1.000000
  501. C.float(32.0), // beta_fast: 32.000000
  502. C.float(1.0), // beta_slow: 1.000000
  503. ),
  504. }
  505. }
  506. func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
  507. return &Tensor{
  508. t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
  509. }
  510. }
  511. func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
  512. return &Tensor{
  513. t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
  514. }
  515. }
  516. func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
  517. return &Tensor{
  518. t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
  519. }
  520. }