llama.go 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484
  1. package llm
  2. /*
  3. #cgo CPPFLAGS: -O3 -Wall -Wextra -Wno-unused-function -Wno-unused-variable -DNDEBUG -DGGML_USE_K_QUANTS
  4. #cgo CXXFLAGS: -std=gnu++11
  5. #cgo darwin CPPFLAGS: -DGGML_USE_ACCELERATE
  6. #cgo darwin,arm64 CPPFLAGS: -DGGML_USE_METAL -DGGML_METAL_NDEBUG
  7. #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
  8. #include <stdlib.h>
  9. #include "llama.h"
  10. struct llama_sample_options
  11. {
  12. float repeat_penalty;
  13. float frequency_penalty;
  14. float presence_penalty;
  15. float temperature;
  16. int32_t top_k;
  17. float top_p;
  18. float tfs_z;
  19. float typical_p;
  20. int mirostat;
  21. float mirostat_tau;
  22. float mirostat_eta;
  23. bool penalize_newline;
  24. };
  25. llama_token llama_sample(
  26. struct llama_context *ctx,
  27. struct llama_token_data *candidates,
  28. size_t n_candidates,
  29. const llama_token *last_tokens,
  30. size_t n_last_tokens,
  31. struct llama_sample_options *opts)
  32. {
  33. llama_token_data_array candidates_p = {
  34. candidates,
  35. n_candidates,
  36. false,
  37. };
  38. struct llama_token_data newline = candidates_p.data[llama_token_nl()];
  39. llama_sample_repetition_penalty(
  40. ctx, &candidates_p,
  41. last_tokens, n_last_tokens,
  42. opts->repeat_penalty);
  43. llama_sample_frequency_and_presence_penalties(
  44. ctx, &candidates_p,
  45. last_tokens, n_last_tokens,
  46. opts->frequency_penalty, opts->presence_penalty);
  47. if (!opts->penalize_newline) {
  48. candidates_p.data[llama_token_nl()] = newline;
  49. }
  50. if (opts->temperature <= 0) {
  51. return llama_sample_token_greedy(ctx, &candidates_p);
  52. }
  53. if (opts->mirostat == 1) {
  54. int mirostat_m = 100;
  55. float mirostat_mu = 2.0f * opts->mirostat_tau;
  56. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  57. return llama_sample_token_mirostat(
  58. ctx, &candidates_p,
  59. opts->mirostat_tau, opts->mirostat_eta,
  60. mirostat_m, &mirostat_mu);
  61. } else if (opts->mirostat == 2) {
  62. float mirostat_mu = 2.0f * opts->mirostat_tau;
  63. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  64. return llama_sample_token_mirostat_v2(
  65. ctx, &candidates_p,
  66. opts->mirostat_tau, opts->mirostat_eta,
  67. &mirostat_mu);
  68. } else {
  69. llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
  70. llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
  71. llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
  72. llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
  73. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  74. return llama_sample_token(ctx, &candidates_p);
  75. }
  76. }
  77. */
  78. import "C"
  79. import (
  80. "bytes"
  81. "embed"
  82. "errors"
  83. "fmt"
  84. "io"
  85. "log"
  86. "os"
  87. "strings"
  88. "sync"
  89. "unicode/utf8"
  90. "unsafe"
  91. "github.com/jmorganca/ollama/api"
  92. )
  93. //go:embed ggml-metal.metal
  94. var fs embed.FS
  95. type llama struct {
  96. params *C.struct_llama_context_params
  97. model *C.struct_llama_model
  98. ctx *C.struct_llama_context
  99. last []C.llama_token
  100. embd []C.llama_token
  101. cursor int
  102. mu sync.Mutex
  103. gc bool
  104. api.Options
  105. }
  106. type llamaHyperparameters struct {
  107. // NumVocab is the size of the model's vocabulary.
  108. NumVocab uint32
  109. // NumEmbd is the size of the model's embedding layer.
  110. NumEmbd uint32
  111. NumMult uint32
  112. NumHead uint32
  113. // NumLayer is the number of layers in the model.
  114. NumLayer uint32
  115. NumRot uint32
  116. // FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
  117. FileType
  118. }
  119. func newLlama(model string, adapters []string, opts api.Options) (*llama, error) {
  120. if _, err := os.Stat(model); err != nil {
  121. return nil, err
  122. }
  123. llm := llama{Options: opts}
  124. C.llama_backend_init(C.bool(llm.UseNUMA))
  125. params := C.llama_context_default_params()
  126. params.seed = C.uint(llm.Seed)
  127. params.n_ctx = C.int(llm.NumCtx)
  128. params.n_batch = C.int(llm.NumBatch)
  129. params.n_gqa = C.int(llm.NumGQA)
  130. params.n_gpu_layers = C.int(llm.NumGPU)
  131. params.main_gpu = C.int(llm.MainGPU)
  132. params.low_vram = C.bool(llm.LowVRAM)
  133. params.f16_kv = C.bool(llm.F16KV)
  134. params.logits_all = C.bool(llm.LogitsAll)
  135. params.vocab_only = C.bool(llm.VocabOnly)
  136. params.use_mmap = C.bool(llm.UseMMap)
  137. params.use_mlock = C.bool(llm.UseMLock)
  138. params.embedding = C.bool(llm.EmbeddingOnly)
  139. params.rope_freq_base = C.float(llm.RopeFrequencyBase)
  140. params.rope_freq_scale = C.float(llm.RopeFrequencyScale)
  141. if len(adapters) > 0 && llm.UseMMap {
  142. log.Printf("must disable mmap to use lora adapters")
  143. params.use_mmap = C.bool(false)
  144. }
  145. llm.params = &params
  146. cModel := C.CString(model)
  147. defer C.free(unsafe.Pointer(cModel))
  148. llm.model = C.llama_load_model_from_file(cModel, params)
  149. if llm.model == nil {
  150. return nil, errors.New("failed to load model")
  151. }
  152. llm.ctx = C.llama_new_context_with_model(llm.model, params)
  153. if llm.ctx == nil {
  154. return nil, errors.New("failed to create context")
  155. }
  156. for _, adapter := range adapters {
  157. cAdapter := C.CString(adapter)
  158. defer C.free(unsafe.Pointer(cAdapter))
  159. if retval := C.llama_model_apply_lora_from_file(llm.model, cAdapter, nil, C.int(llm.NumThread)); retval != 0 {
  160. return nil, fmt.Errorf("failed to load adapter %s", adapter)
  161. }
  162. }
  163. // warm up the model
  164. bos := []C.llama_token{C.llama_token_bos()}
  165. C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
  166. C.llama_reset_timings(llm.ctx)
  167. return &llm, nil
  168. }
  169. func (llm *llama) Close() {
  170. llm.gc = true
  171. llm.mu.Lock()
  172. defer llm.mu.Unlock()
  173. defer C.llama_free_model(llm.model)
  174. defer C.llama_free(llm.ctx)
  175. C.llama_print_timings(llm.ctx)
  176. }
  177. func (llm *llama) SetOptions(opts api.Options) {
  178. llm.Options = opts
  179. }
  180. var errNeedMoreData = errors.New("need more data")
  181. func (llm *llama) Predict(ctx []int, prompt string, fn func(api.GenerateResponse)) error {
  182. C.llama_reset_timings(llm.ctx)
  183. llm.marshalPrompt(ctx, prompt)
  184. C.llama_set_rng_seed(llm.ctx, C.uint(llm.Seed))
  185. var b bytes.Buffer
  186. for {
  187. token, err := llm.next()
  188. if llm.gc {
  189. return nil
  190. } else if errors.Is(err, io.EOF) {
  191. break
  192. } else if err != nil {
  193. return err
  194. }
  195. b.WriteString(llm.Decode(int(token)))
  196. if err := llm.checkStopConditions(b); err != nil {
  197. if errors.Is(err, io.EOF) {
  198. break
  199. } else if errors.Is(err, errNeedMoreData) {
  200. continue
  201. }
  202. return err
  203. }
  204. if utf8.Valid(b.Bytes()) || b.Len() >= utf8.UTFMax {
  205. fn(api.GenerateResponse{Response: b.String()})
  206. b.Reset()
  207. }
  208. }
  209. embd := make([]int, len(llm.embd))
  210. for i := range llm.embd {
  211. embd[i] = int(llm.embd[i])
  212. }
  213. timings := C.llama_get_timings(llm.ctx)
  214. fn(api.GenerateResponse{
  215. Done: true,
  216. Context: embd,
  217. SampleCount: int(timings.n_sample),
  218. SampleDuration: parseDurationMs(float64(timings.t_sample_ms)),
  219. PromptEvalCount: int(timings.n_p_eval),
  220. PromptEvalDuration: parseDurationMs(float64(timings.t_p_eval_ms)),
  221. EvalCount: int(timings.n_eval),
  222. EvalDuration: parseDurationMs(float64(timings.t_eval_ms)),
  223. })
  224. return nil
  225. }
  226. func (llm *llama) checkStopConditions(b bytes.Buffer) error {
  227. for _, stopCondition := range llm.Stop {
  228. if stopCondition == strings.TrimSpace(b.String()) {
  229. return io.EOF
  230. } else if strings.HasPrefix(stopCondition, strings.TrimSpace(b.String())) {
  231. return errNeedMoreData
  232. }
  233. }
  234. return nil
  235. }
  236. func (llm *llama) marshalPrompt(ctx []int, prompt string) []C.llama_token {
  237. tokens := append(ctx, llm.Encode(prompt)...)
  238. if llm.NumKeep < 0 {
  239. llm.NumKeep = len(tokens)
  240. }
  241. cTokens := make([]C.llama_token, len(tokens))
  242. for i := range tokens {
  243. cTokens[i] = C.llama_token(tokens[i])
  244. }
  245. // min(llm.NumCtx - 4, llm.NumKeep)
  246. if llm.NumCtx-4 < llm.NumKeep {
  247. llm.NumKeep = llm.NumCtx - 4
  248. }
  249. if len(tokens) >= llm.NumCtx {
  250. // truncate input
  251. numLeft := (llm.NumCtx - llm.NumKeep) / 2
  252. truncated := cTokens[:llm.NumKeep]
  253. erasedBlocks := (len(cTokens) - llm.NumKeep - numLeft - 1) / numLeft
  254. truncated = append(truncated, cTokens[llm.NumKeep+erasedBlocks*numLeft:]...)
  255. copy(llm.last, cTokens[len(cTokens)-llm.NumCtx:])
  256. cTokens = truncated
  257. log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated))
  258. } else {
  259. llm.last = make([]C.llama_token, llm.NumCtx-len(cTokens))
  260. llm.last = append(llm.last, cTokens...)
  261. }
  262. var i int
  263. for i = 0; i < len(llm.embd) && i < len(cTokens) && llm.embd[i] == cTokens[i]; i++ {
  264. // noop
  265. }
  266. llm.embd = cTokens
  267. if i == len(cTokens) {
  268. // evaluate at least one token to generate logits
  269. i--
  270. }
  271. llm.cursor = i
  272. log.Printf("prompt: num_past=%d cached=%v eval=%v", i, len(llm.embd[:i]), len(llm.embd[i:]))
  273. return cTokens
  274. }
  275. func (llm *llama) Encode(prompt string) []int {
  276. cPrompt := C.CString(prompt)
  277. defer C.free(unsafe.Pointer(cPrompt))
  278. cTokens := make([]C.llama_token, len(prompt)+1)
  279. if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(cTokens), C.int(len(cTokens)), true); n > 0 {
  280. tokens := make([]int, n)
  281. for i := range cTokens[:n] {
  282. tokens[i] = int(cTokens[i])
  283. }
  284. return tokens
  285. }
  286. return nil
  287. }
  288. func (llm *llama) Decode(tokens ...int) string {
  289. var sb strings.Builder
  290. for _, token := range tokens {
  291. sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, C.llama_token(token))))
  292. }
  293. return sb.String()
  294. }
  295. func (llm *llama) next() (C.llama_token, error) {
  296. llm.mu.Lock()
  297. defer llm.mu.Unlock()
  298. if len(llm.embd) >= llm.NumCtx {
  299. numLeft := (llm.NumCtx - llm.NumKeep) / 2
  300. truncated := llm.embd[:llm.NumKeep]
  301. truncated = append(truncated, llm.embd[len(llm.embd)-numLeft:]...)
  302. llm.embd = truncated
  303. llm.cursor = llm.NumKeep
  304. log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d cursor=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated), llm.cursor)
  305. }
  306. for {
  307. if llm.gc {
  308. return 0, io.EOF
  309. }
  310. if llm.cursor >= len(llm.embd) {
  311. break
  312. }
  313. numEval := len(llm.embd) - llm.cursor
  314. if numEval > llm.NumBatch {
  315. numEval = llm.NumBatch
  316. }
  317. if retval := C.llama_eval(llm.ctx, unsafe.SliceData(llm.embd[llm.cursor:]), C.int(numEval), C.int(llm.cursor), C.int(llm.NumThread)); retval != 0 {
  318. return 0, fmt.Errorf("llama_eval: %d", retval)
  319. }
  320. llm.cursor += numEval
  321. }
  322. var sampleOpts C.struct_llama_sample_options
  323. sampleOpts.repeat_penalty = C.float(llm.RepeatPenalty)
  324. sampleOpts.frequency_penalty = C.float(llm.FrequencyPenalty)
  325. sampleOpts.presence_penalty = C.float(llm.PresencePenalty)
  326. sampleOpts.temperature = C.float(llm.Temperature)
  327. sampleOpts.top_k = C.int(llm.TopK)
  328. sampleOpts.top_p = C.float(llm.TopP)
  329. sampleOpts.tfs_z = C.float(llm.TFSZ)
  330. sampleOpts.typical_p = C.float(llm.TypicalP)
  331. sampleOpts.mirostat = C.int(llm.Mirostat)
  332. sampleOpts.mirostat_tau = C.float(llm.MirostatTau)
  333. sampleOpts.mirostat_eta = C.float(llm.MirostatEta)
  334. sampleOpts.penalize_newline = C.bool(llm.PenalizeNewline)
  335. numVocab := C.llama_n_vocab(llm.ctx)
  336. logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
  337. // TODO: logit bias
  338. candidates := make([]C.llama_token_data, numVocab)
  339. for i := range logits {
  340. candidates[i] = C.llama_token_data{
  341. id: C.int(i),
  342. logit: logits[i],
  343. p: 0,
  344. }
  345. }
  346. repeatLastN := llm.RepeatLastN
  347. if len(llm.last) < repeatLastN {
  348. repeatLastN = len(llm.last)
  349. }
  350. if llm.NumCtx < repeatLastN {
  351. repeatLastN = llm.NumCtx
  352. }
  353. lastN := llm.last[len(llm.last)-repeatLastN:]
  354. token := C.llama_sample(
  355. llm.ctx,
  356. unsafe.SliceData(candidates), C.size_t(len(candidates)),
  357. unsafe.SliceData(lastN), C.size_t(len(lastN)),
  358. &sampleOpts,
  359. )
  360. llm.last = append(llm.last, token)
  361. llm.embd = append(llm.embd, token)
  362. if token == C.llama_token_eos() {
  363. return 0, io.EOF
  364. }
  365. return token, nil
  366. }
  367. func (llm *llama) Embedding(input string) ([]float64, error) {
  368. if !llm.EmbeddingOnly {
  369. return nil, errors.New("llama: embedding not enabled")
  370. }
  371. tokens := llm.Encode(input)
  372. if tokens == nil {
  373. return nil, errors.New("llama: tokenize embedding")
  374. }
  375. cTokens := make([]C.llama_token, len(tokens))
  376. for i := range tokens {
  377. cTokens[i] = C.llama_token(tokens[i])
  378. }
  379. retval := C.llama_eval(llm.ctx, unsafe.SliceData(cTokens), C.int(len(tokens)), 0, C.int(llm.NumThread))
  380. if retval != 0 {
  381. return nil, errors.New("llama: eval")
  382. }
  383. n := C.llama_n_embd(llm.ctx)
  384. if n <= 0 {
  385. return nil, errors.New("llama: no embeddings generated")
  386. }
  387. cEmbeddings := unsafe.Slice(C.llama_get_embeddings(llm.ctx), n)
  388. embeddings := make([]float64, len(cEmbeddings))
  389. for i, v := range cEmbeddings {
  390. embeddings[i] = float64(v)
  391. }
  392. return embeddings, nil
  393. }