llama.go 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. package convert
  2. import (
  3. "encoding/binary"
  4. "fmt"
  5. "io"
  6. "log/slog"
  7. "regexp"
  8. "strings"
  9. "github.com/nlpodyssey/gopickle/pytorch"
  10. "github.com/pdevine/tensor"
  11. "github.com/pdevine/tensor/native"
  12. "github.com/x448/float16"
  13. "github.com/ollama/ollama/llm"
  14. )
  15. type LlamaModel struct {
  16. ModelData
  17. }
  18. func llamaLayerHandler(w io.Writer, r torchWriterTo) error {
  19. slog.Debug(fmt.Sprintf("repacking layer '%s'", r.t.Name))
  20. data := r.storage.(*pytorch.HalfStorage).Data
  21. tData := make([]uint16, len(data))
  22. for cnt, v := range data {
  23. tData[cnt] = uint16(float16.Fromfloat32(v))
  24. }
  25. var err error
  26. var heads uint32
  27. if strings.Contains(r.t.Name, "attn_q") {
  28. heads = uint32(r.params.AttentionHeads)
  29. } else if strings.Contains(r.t.Name, "attn_k") {
  30. heads = uint32(r.params.KeyValHeads)
  31. if heads == 0 {
  32. heads = uint32(r.params.AttentionHeads)
  33. }
  34. } else {
  35. return fmt.Errorf("unknown layer type")
  36. }
  37. slog.Debug(fmt.Sprintf("heads = %d", heads))
  38. tData, err = llamaRepack(tData, int(heads), r.t.Shape)
  39. if err != nil {
  40. return err
  41. }
  42. if err = binary.Write(w, r.bo, tData); err != nil {
  43. return err
  44. }
  45. return nil
  46. }
  47. func llamaRepack(data []uint16, heads int, shape []uint64) ([]uint16, error) {
  48. n := tensor.New(tensor.WithShape(int(shape[0]), int(shape[1])), tensor.WithBacking(data))
  49. origShape := n.Shape().Clone()
  50. // reshape the tensor and swap axes 1 and 2 to unpack the layer for gguf
  51. if err := n.Reshape(heads, 2, origShape[0]/heads/2, origShape[1]); err != nil {
  52. return nil, err
  53. }
  54. if err := n.T(0, 2, 1, 3); err != nil {
  55. return nil, err
  56. }
  57. if err := n.Reshape(origShape...); err != nil {
  58. return nil, err
  59. }
  60. if err := n.Transpose(); err != nil {
  61. return nil, err
  62. }
  63. newN, err := native.SelectU16(n, 1)
  64. if err != nil {
  65. return nil, err
  66. }
  67. var fullTensor []uint16
  68. for _, v := range newN {
  69. fullTensor = append(fullTensor, v...)
  70. }
  71. return fullTensor, nil
  72. }
  73. func (m *LlamaModel) GetTensors() error {
  74. t, err := m.Format.GetTensors(m.Path, m.Params)
  75. if err != nil {
  76. return err
  77. }
  78. m.Tensors = []llm.Tensor{}
  79. pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
  80. re, err := regexp.Compile(pattern)
  81. if err != nil {
  82. return err
  83. }
  84. for _, l := range t {
  85. matches := re.FindAllStringSubmatch(l.Name, -1)
  86. if len(matches) > 0 {
  87. slog.Debug(fmt.Sprintf("setting handler for: %s", l.Name))
  88. wt := l.WriterTo.(torchWriterTo)
  89. wt.handler = llamaLayerHandler
  90. l.WriterTo = wt
  91. }
  92. m.Tensors = append(m.Tensors, l)
  93. }
  94. return nil
  95. }
  96. func (m *LlamaModel) LoadVocab() error {
  97. var v *Vocab
  98. var err error
  99. slog.Debug("loading vocab")
  100. v, err = LoadSentencePieceTokens(m.Path, m.Params)
  101. if err != nil {
  102. return err
  103. }
  104. slog.Debug("vocab loaded")
  105. m.Vocab = v
  106. return nil
  107. }
  108. func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
  109. kv := llm.KV{
  110. "general.architecture": "llama",
  111. "general.name": m.Name,
  112. "llama.vocab_size": uint32(len(m.Vocab.Tokens)),
  113. "llama.context_length": uint32(m.Params.ContextSize),
  114. "llama.embedding_length": uint32(m.Params.HiddenSize),
  115. "llama.block_count": uint32(m.Params.HiddenLayers),
  116. "llama.feed_forward_length": uint32(m.Params.IntermediateSize),
  117. "llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
  118. "llama.attention.head_count": uint32(m.Params.AttentionHeads),
  119. "llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
  120. "llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
  121. "general.file_type": uint32(1),
  122. "tokenizer.ggml.model": "llama",
  123. "tokenizer.ggml.tokens": m.Vocab.Tokens,
  124. "tokenizer.ggml.scores": m.Vocab.Scores,
  125. "tokenizer.ggml.token_type": m.Vocab.Types,
  126. "tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
  127. "tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
  128. "tokenizer.ggml.unknown_token_id": uint32(0),
  129. "tokenizer.ggml.add_bos_token": true,
  130. "tokenizer.ggml.add_eos_token": false,
  131. }
  132. return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
  133. }