123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358 |
- diff --git a/common/common.cpp b/common/common.cpp
- index dbb724fb..c26fe6ee 100644
- --- a/common/common.cpp
- +++ b/common/common.cpp
- @@ -2087,14 +2087,27 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
- for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
- const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
- float lora_scale = std::get<1>(params.lora_adapter[i]);
- +
- + // try to load as gguf
- auto adapter = llama_lora_adapter_init(model, lora_adapter.c_str());
- if (adapter == nullptr) {
- - fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
- - llama_free(lctx);
- - llama_free_model(model);
- - return std::make_tuple(nullptr, nullptr);
- + fprintf(stderr, "%s: error: failed to apply lora adapter, trying ggla\n", __func__);
- +
- + // if that fails, try loading as ggla for compatibility
- + int err = llama_model_apply_lora_from_file(model,
- + lora_adapter.c_str(),
- + lora_scale,
- + nullptr,
- + params.n_threads);
- + if (err != 0) {
- + fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
- + llama_free(lctx);
- + llama_free_model(model);
- + return std::make_tuple(nullptr, nullptr);
- + }
- + } else {
- + llama_lora_adapter_set(lctx, adapter, lora_scale);
- }
- - llama_lora_adapter_set(lctx, adapter, lora_scale);
- }
-
- if (params.ignore_eos) {
- diff --git a/include/llama.h b/include/llama.h
- index 93fd77ca..b0fb37a6 100644
- --- a/include/llama.h
- +++ b/include/llama.h
- @@ -1160,6 +1160,20 @@ extern "C" {
-
- LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
-
- + // Apply a LoRA adapter to a loaded model
- + // path_base_model is the path to a higher quality model to use as a base for
- + // the layers modified by the adapter. Can be NULL to use the current loaded model.
- + // The model needs to be reloaded before applying a new adapter, otherwise the adapter
- + // will be applied on top of the previous one
- + // Returns 0 on success
- + LLAMA_API int32_t llama_model_apply_lora_from_file(
- + const struct llama_model * model,
- + const char * path_lora,
- + float scale,
- + const char * path_base_model,
- + int32_t n_threads);
- +
- +
- #ifdef __cplusplus
- }
- #endif
- diff --git a/src/llama.cpp b/src/llama.cpp
- index 80a0dd0f..9d7b0e17 100644
- --- a/src/llama.cpp
- +++ b/src/llama.cpp
- @@ -21880,3 +21880,290 @@ static void llama_log_callback_default(ggml_log_level level, const char * text,
- fputs(text, stderr);
- fflush(stderr);
- }
- +
- +static int llama_apply_lora_from_file_internal(
- + const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
- +) {
- + LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
- +
- + const int64_t t_start_lora_us = ggml_time_us();
- +
- + llama_file fin(path_lora, "rb");
- +
- + // verify magic and version
- + {
- + uint32_t magic = fin.read_u32();
- + if (magic != LLAMA_FILE_MAGIC_GGLA) {
- + LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
- + return 1;
- + }
- +
- + uint32_t format_version = fin.read_u32();
- + if (format_version != 1) {
- + LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
- + return 1;
- + }
- + }
- +
- + int32_t lora_r = fin.read_u32();
- + int32_t lora_alpha = fin.read_u32();
- + float scaling = scale * (float)lora_alpha / (float)lora_r;
- +
- + LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
- +
- + // load base model
- + std::unique_ptr<llama_model_loader> ml;
- + if (path_base_model) {
- + LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
- + ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
- + ml->init_mappings(/*prefetch*/ false); // no prefetching
- + }
- +
- + struct tensor_meta {
- + std::string name;
- + ggml_type type;
- + int32_t ne[2];
- + size_t offset;
- + };
- + std::map<std::string, tensor_meta> tensor_meta_map;
- +
- + // load all tensor meta
- + while (true) {
- + if (fin.tell() == fin.size) {
- + // eof
- + break;
- + }
- +
- + int32_t n_dims;
- + int32_t name_len;
- + int32_t ftype;
- +
- + fin.read_raw(&n_dims, sizeof(n_dims));
- + fin.read_raw(&name_len, sizeof(name_len));
- + fin.read_raw(&ftype, sizeof(ftype));
- +
- + if (n_dims != 1 && n_dims != 2) {
- + LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
- + return 1;
- + }
- +
- + int32_t ne[2] = { 1, 1 };
- + for (int i = 0; i < n_dims; ++i) {
- + fin.read_raw(&ne[i], sizeof(ne[i]));
- + }
- +
- + std::string name;
- + {
- + GGML_ASSERT(name_len < GGML_MAX_NAME);
- + char buf[GGML_MAX_NAME];
- + fin.read_raw(buf, name_len);
- + name = std::string(buf, name_len);
- + }
- +
- + // check for lora suffix
- + std::string lora_suffix;
- + if (name.length() > 6) {
- + lora_suffix = name.substr(name.length() - 6);
- + }
- + if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
- + LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
- + return 1;
- + }
- +
- + // tensor type
- + ggml_type wtype;
- + switch (ftype) {
- + case 0: wtype = GGML_TYPE_F32; break;
- + case 1: wtype = GGML_TYPE_F16; break;
- + default:
- + {
- + LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
- + __func__, ftype);
- + return 1;
- + }
- + }
- +
- + // data offset
- + size_t offset = fin.tell();
- + offset = (offset + 31) & -32;
- +
- + // skip tensor data
- + fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
- +
- + tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
- + }
- +
- + bool warned = false;
- + int n_tensors = 0;
- +
- + // apply
- + ggml_backend_t backend_cpu = ggml_backend_cpu_init();
- + if (backend_cpu == nullptr) {
- + LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
- + return 1;
- + }
- + ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
- +
- + std::vector<no_init<uint8_t>> read_buf;
- + for (const auto & it : model.tensors_by_name) {
- + const std::string & base_name = it.first;
- + ggml_tensor * model_t = it.second;
- +
- + if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
- + tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
- + continue;
- + }
- +
- + tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
- + tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
- +
- + ggml_init_params lora_init_params = {
- + /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
- + /* .mem_buffer */ nullptr,
- + /* .no_alloc */ true,
- + };
- + ggml_context * lora_ctx = ggml_init(lora_init_params);
- + if (lora_ctx == nullptr) {
- + LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
- + ggml_backend_free(backend_cpu);
- + return 1;
- + }
- +
- + // create tensors
- + ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
- + ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
- + ggml_set_name(loraA, metaA.name.c_str());
- + ggml_set_name(loraB, metaB.name.c_str());
- +
- + ggml_tensor * base_t;
- + if (ml) {
- + if (!ml->get_tensor_meta(base_name.c_str())) {
- + LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
- + return 1;
- + }
- + base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
- + } else {
- + base_t = ggml_dup_tensor(lora_ctx, model_t);
- + }
- + ggml_set_name(base_t, base_name.c_str());
- +
- + // allocate in backend buffer
- + ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
- + if (lora_buf == nullptr) {
- + LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
- + return 1;
- + }
- +
- + // load tensor data
- + auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
- + read_buf.resize(ggml_nbytes(tensor));
- + fin.seek(tensor_meta.offset, SEEK_SET);
- + fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
- + ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
- + };
- + load_tensor(metaA, loraA);
- + load_tensor(metaB, loraB);
- +
- + // load base model tensor data
- + if (ml) {
- + ml->load_data_for(base_t);
- + } else {
- + ggml_backend_tensor_copy(model_t, base_t);
- + }
- +
- + if (ggml_is_quantized(base_t->type) && !warned) {
- + LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
- + "use a f16 or f32 base model with --lora-base\n", __func__);
- + warned = true;
- + }
- +
- + if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
- + LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
- + " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
- + ggml_free(lora_ctx);
- + ggml_backend_buffer_free(lora_buf);
- + ggml_backend_free(backend_cpu);
- + return 1;
- + }
- +
- + auto build_lora_graph = [&]() {
- + // w = w + BA*s
- + ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
- + ggml_set_name(BA, "BA");
- +
- + if (scaling != 1.0f) {
- + BA = ggml_scale(lora_ctx, BA, scaling);
- + ggml_set_name(BA, "BA_scaled");
- + }
- +
- + ggml_tensor * r;
- + r = ggml_add_inplace(lora_ctx, base_t, BA);
- + ggml_set_name(r, "r_add");
- +
- + if (base_t->type != model_t->type) {
- + // convert the result to the model type
- + r = ggml_cast(lora_ctx, r, model_t->type);
- + ggml_set_name(r, "r_cast");
- + }
- +
- + return r;
- + };
- +
- + ggml_cgraph * gf = ggml_new_graph(lora_ctx);
- + ggml_tensor * r = build_lora_graph();
- + ggml_build_forward_expand(gf, r);
- +
- + ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
- + if (graph_buf == nullptr) {
- + LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
- + ggml_free(lora_ctx);
- + ggml_backend_buffer_free(lora_buf);
- + ggml_backend_free(backend_cpu);
- + return 1;
- + }
- +
- + ggml_backend_graph_compute(backend_cpu, gf);
- +
- + ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
- +
- +#if 0
- + // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
- + //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
- +
- + // sched compute
- + ggml_build_forward_expand(gf, build_graph());
- + ggml_backend_sched_init_measure(sched, gf);
- +
- + // create the graph again, since the previous one was destroyed by the measure
- + ggml_graph_clear(gf);
- + ggml_build_forward_expand(gf, build_graph());
- + ggml_backend_sched_graph_compute(sched, gf);
- + ggml_backend_sched_free(sched);
- +#endif
- +
- + ggml_backend_buffer_free(lora_buf);
- + ggml_backend_buffer_free(graph_buf);
- + ggml_free(lora_ctx);
- +
- + n_tensors++;
- + if (n_tensors % 4 == 0) {
- + LLAMA_LOG_INFO(".");
- + }
- + }
- +
- + ggml_backend_free(backend_cpu);
- +
- + const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
- + LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
- +
- + return 0;
- +}
- +
- +int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
- + try {
- + return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
- + } catch (const std::exception & err) {
- + LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
- + return 1;
- + }
- +}
- \ No newline at end of file
|