llama.go 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. package llm
  2. /*
  3. #cgo CPPFLAGS: -O3 -Wall -Wextra -Wno-unused-function -Wno-unused-variable -DNDEBUG -DGGML_USE_K_QUANTS
  4. #cgo CXXFLAGS: -std=gnu++11
  5. #cgo darwin CPPFLAGS: -DGGML_USE_ACCELERATE
  6. #cgo darwin,arm64 CPPFLAGS: -DGGML_USE_METAL -DGGML_METAL_NDEBUG
  7. #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
  8. #include <stdlib.h>
  9. #include "llama.h"
  10. struct llama_sample_options
  11. {
  12. float repeat_penalty;
  13. float frequency_penalty;
  14. float presence_penalty;
  15. float temperature;
  16. int32_t top_k;
  17. float top_p;
  18. float tfs_z;
  19. float typical_p;
  20. int mirostat;
  21. float mirostat_tau;
  22. float mirostat_eta;
  23. bool penalize_newline;
  24. };
  25. llama_token llama_sample(
  26. struct llama_context *ctx,
  27. struct llama_token_data *candidates,
  28. size_t n_candidates,
  29. const llama_token *last_tokens,
  30. size_t n_last_tokens,
  31. struct llama_sample_options *opts)
  32. {
  33. llama_token_data_array candidates_p = {
  34. candidates,
  35. n_candidates,
  36. false,
  37. };
  38. struct llama_token_data newline = candidates_p.data[llama_token_nl()];
  39. llama_sample_repetition_penalty(
  40. ctx, &candidates_p,
  41. last_tokens, n_last_tokens,
  42. opts->repeat_penalty);
  43. llama_sample_frequency_and_presence_penalties(
  44. ctx, &candidates_p,
  45. last_tokens, n_last_tokens,
  46. opts->frequency_penalty, opts->presence_penalty);
  47. if (!opts->penalize_newline) {
  48. candidates_p.data[llama_token_nl()] = newline;
  49. }
  50. if (opts->temperature <= 0) {
  51. return llama_sample_token_greedy(ctx, &candidates_p);
  52. }
  53. if (opts->mirostat == 1) {
  54. int mirostat_m = 100;
  55. float mirostat_mu = 2.0f * opts->mirostat_tau;
  56. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  57. return llama_sample_token_mirostat(
  58. ctx, &candidates_p,
  59. opts->mirostat_tau, opts->mirostat_eta,
  60. mirostat_m, &mirostat_mu);
  61. } else if (opts->mirostat == 2) {
  62. float mirostat_mu = 2.0f * opts->mirostat_tau;
  63. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  64. return llama_sample_token_mirostat_v2(
  65. ctx, &candidates_p,
  66. opts->mirostat_tau, opts->mirostat_eta,
  67. &mirostat_mu);
  68. } else {
  69. llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
  70. llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
  71. llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
  72. llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
  73. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  74. return llama_sample_token(ctx, &candidates_p);
  75. }
  76. }
  77. */
  78. import "C"
  79. import (
  80. "bytes"
  81. "embed"
  82. "errors"
  83. "fmt"
  84. "io"
  85. "log"
  86. "os"
  87. "strings"
  88. "sync"
  89. "unicode/utf8"
  90. "unsafe"
  91. "github.com/jmorganca/ollama/api"
  92. )
  93. //go:embed ggml-metal.metal
  94. var fs embed.FS
  95. type llama struct {
  96. params *C.struct_llama_context_params
  97. model *C.struct_llama_model
  98. ctx *C.struct_llama_context
  99. last []C.llama_token
  100. embd []C.llama_token
  101. cursor int
  102. mu sync.Mutex
  103. gc bool
  104. api.Options
  105. }
  106. type llamaHyperparameters struct {
  107. // NumVocab is the size of the model's vocabulary.
  108. NumVocab uint32
  109. // NumEmbd is the size of the model's embedding layer.
  110. NumEmbd uint32
  111. NumMult uint32
  112. NumHead uint32
  113. // NumLayer is the number of layers in the model.
  114. NumLayer uint32
  115. NumRot uint32
  116. // FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
  117. FileType
  118. }
  119. func newLlama(model string, opts api.Options) (*llama, error) {
  120. if _, err := os.Stat(model); err != nil {
  121. return nil, err
  122. }
  123. llm := llama{Options: opts}
  124. C.llama_backend_init(C.bool(llm.UseNUMA))
  125. params := C.llama_context_default_params()
  126. params.seed = C.uint(llm.Seed)
  127. params.n_ctx = C.int(llm.NumCtx)
  128. params.n_batch = C.int(llm.NumBatch)
  129. params.n_gqa = C.int(llm.NumGQA)
  130. params.n_gpu_layers = C.int(llm.NumGPU)
  131. params.main_gpu = C.int(llm.MainGPU)
  132. params.low_vram = C.bool(llm.LowVRAM)
  133. params.f16_kv = C.bool(llm.F16KV)
  134. params.logits_all = C.bool(llm.LogitsAll)
  135. params.vocab_only = C.bool(llm.VocabOnly)
  136. params.use_mmap = C.bool(llm.UseMMap)
  137. params.use_mlock = C.bool(llm.UseMLock)
  138. params.embedding = C.bool(llm.EmbeddingOnly)
  139. params.rope_freq_base = C.float(llm.RopeFrequencyBase)
  140. params.rope_freq_scale = C.float(llm.RopeFrequencyScale)
  141. llm.params = &params
  142. cModel := C.CString(model)
  143. defer C.free(unsafe.Pointer(cModel))
  144. llm.model = C.llama_load_model_from_file(cModel, params)
  145. if llm.model == nil {
  146. return nil, errors.New("failed to load model")
  147. }
  148. llm.ctx = C.llama_new_context_with_model(llm.model, params)
  149. if llm.ctx == nil {
  150. return nil, errors.New("failed to create context")
  151. }
  152. // warm up the model
  153. bos := []C.llama_token{C.llama_token_bos()}
  154. C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
  155. C.llama_reset_timings(llm.ctx)
  156. return &llm, nil
  157. }
  158. func (llm *llama) Close() {
  159. llm.gc = true
  160. llm.mu.Lock()
  161. defer llm.mu.Unlock()
  162. defer C.llama_free_model(llm.model)
  163. defer C.llama_free(llm.ctx)
  164. C.llama_print_timings(llm.ctx)
  165. }
  166. func (llm *llama) SetOptions(opts api.Options) {
  167. llm.Options = opts
  168. }
  169. var errNeedMoreData = errors.New("need more data")
  170. func (llm *llama) Predict(ctx []int, prompt string, fn func(api.GenerateResponse)) error {
  171. C.llama_reset_timings(llm.ctx)
  172. llm.marshalPrompt(ctx, prompt)
  173. C.llama_set_rng_seed(llm.ctx, C.uint(llm.Seed))
  174. var b bytes.Buffer
  175. for {
  176. token, err := llm.next()
  177. if llm.gc {
  178. return nil
  179. } else if errors.Is(err, io.EOF) {
  180. break
  181. } else if err != nil {
  182. return err
  183. }
  184. b.WriteString(llm.Decode(int(token)))
  185. if err := llm.checkStopConditions(b); err != nil {
  186. if errors.Is(err, io.EOF) {
  187. break
  188. } else if errors.Is(err, errNeedMoreData) {
  189. continue
  190. }
  191. return err
  192. }
  193. if utf8.Valid(b.Bytes()) || b.Len() >= utf8.UTFMax {
  194. fn(api.GenerateResponse{Response: b.String()})
  195. b.Reset()
  196. }
  197. }
  198. embd := make([]int, len(llm.embd))
  199. for i := range llm.embd {
  200. embd[i] = int(llm.embd[i])
  201. }
  202. timings := C.llama_get_timings(llm.ctx)
  203. fn(api.GenerateResponse{
  204. Done: true,
  205. Context: embd,
  206. SampleCount: int(timings.n_sample),
  207. SampleDuration: parseDurationMs(float64(timings.t_sample_ms)),
  208. PromptEvalCount: int(timings.n_p_eval),
  209. PromptEvalDuration: parseDurationMs(float64(timings.t_p_eval_ms)),
  210. EvalCount: int(timings.n_eval),
  211. EvalDuration: parseDurationMs(float64(timings.t_eval_ms)),
  212. })
  213. return nil
  214. }
  215. func (llm *llama) checkStopConditions(b bytes.Buffer) error {
  216. for _, stopCondition := range llm.Stop {
  217. if stopCondition == strings.TrimSpace(b.String()) {
  218. return io.EOF
  219. } else if strings.HasPrefix(stopCondition, strings.TrimSpace(b.String())) {
  220. return errNeedMoreData
  221. }
  222. }
  223. return nil
  224. }
  225. func (llm *llama) marshalPrompt(ctx []int, prompt string) []C.llama_token {
  226. tokens := append(ctx, llm.Encode(prompt)...)
  227. if llm.NumKeep < 0 {
  228. llm.NumKeep = len(tokens)
  229. }
  230. cTokens := make([]C.llama_token, len(tokens))
  231. for i := range tokens {
  232. cTokens[i] = C.llama_token(tokens[i])
  233. }
  234. // min(llm.NumCtx - 4, llm.NumKeep)
  235. if llm.NumCtx-4 < llm.NumKeep {
  236. llm.NumKeep = llm.NumCtx - 4
  237. }
  238. if len(tokens) >= llm.NumCtx {
  239. // truncate input
  240. numLeft := (llm.NumCtx - llm.NumKeep) / 2
  241. truncated := cTokens[:llm.NumKeep]
  242. erasedBlocks := (len(cTokens) - llm.NumKeep - numLeft - 1) / numLeft
  243. truncated = append(truncated, cTokens[llm.NumKeep+erasedBlocks*numLeft:]...)
  244. copy(llm.last, cTokens[len(cTokens)-llm.NumCtx:])
  245. cTokens = truncated
  246. log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated))
  247. } else {
  248. llm.last = make([]C.llama_token, llm.NumCtx-len(cTokens))
  249. llm.last = append(llm.last, cTokens...)
  250. }
  251. var i int
  252. for i = 0; i < len(llm.embd) && i < len(cTokens) && llm.embd[i] == cTokens[i]; i++ {
  253. // noop
  254. }
  255. llm.embd = cTokens
  256. if i == len(cTokens) {
  257. // evaluate at least one token to generate logits
  258. i--
  259. }
  260. llm.cursor = i
  261. log.Printf("prompt: num_past=%d cached=%v eval=%v", i, len(llm.embd[:i]), len(llm.embd[i:]))
  262. return cTokens
  263. }
  264. func (llm *llama) Encode(prompt string) []int {
  265. cPrompt := C.CString(prompt)
  266. defer C.free(unsafe.Pointer(cPrompt))
  267. cTokens := make([]C.llama_token, len(prompt)+1)
  268. if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(cTokens), C.int(len(cTokens)), true); n > 0 {
  269. tokens := make([]int, n)
  270. for i := range cTokens[:n] {
  271. tokens[i] = int(cTokens[i])
  272. }
  273. return tokens
  274. }
  275. return nil
  276. }
  277. func (llm *llama) Decode(tokens ...int) string {
  278. var sb strings.Builder
  279. for _, token := range tokens {
  280. sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, C.llama_token(token))))
  281. }
  282. return sb.String()
  283. }
  284. func (llm *llama) next() (C.llama_token, error) {
  285. llm.mu.Lock()
  286. defer llm.mu.Unlock()
  287. if len(llm.embd) >= llm.NumCtx {
  288. numLeft := (llm.NumCtx - llm.NumKeep) / 2
  289. truncated := llm.embd[:llm.NumKeep]
  290. truncated = append(truncated, llm.embd[len(llm.embd)-numLeft:]...)
  291. llm.embd = truncated
  292. llm.cursor = llm.NumKeep
  293. log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d cursor=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated), llm.cursor)
  294. }
  295. for {
  296. if llm.gc {
  297. return 0, io.EOF
  298. }
  299. if llm.cursor >= len(llm.embd) {
  300. break
  301. }
  302. numEval := len(llm.embd) - llm.cursor
  303. if numEval > llm.NumBatch {
  304. numEval = llm.NumBatch
  305. }
  306. if retval := C.llama_eval(llm.ctx, unsafe.SliceData(llm.embd[llm.cursor:]), C.int(numEval), C.int(llm.cursor), C.int(llm.NumThread)); retval != 0 {
  307. return 0, fmt.Errorf("llama_eval: %d", retval)
  308. }
  309. llm.cursor += numEval
  310. }
  311. var sampleOpts C.struct_llama_sample_options
  312. sampleOpts.repeat_penalty = C.float(llm.RepeatPenalty)
  313. sampleOpts.frequency_penalty = C.float(llm.FrequencyPenalty)
  314. sampleOpts.presence_penalty = C.float(llm.PresencePenalty)
  315. sampleOpts.temperature = C.float(llm.Temperature)
  316. sampleOpts.top_k = C.int(llm.TopK)
  317. sampleOpts.top_p = C.float(llm.TopP)
  318. sampleOpts.tfs_z = C.float(llm.TFSZ)
  319. sampleOpts.typical_p = C.float(llm.TypicalP)
  320. sampleOpts.mirostat = C.int(llm.Mirostat)
  321. sampleOpts.mirostat_tau = C.float(llm.MirostatTau)
  322. sampleOpts.mirostat_eta = C.float(llm.MirostatEta)
  323. sampleOpts.penalize_newline = C.bool(llm.PenalizeNewline)
  324. numVocab := C.llama_n_vocab(llm.ctx)
  325. logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
  326. // TODO: logit bias
  327. candidates := make([]C.llama_token_data, numVocab)
  328. for i := range logits {
  329. candidates[i] = C.llama_token_data{
  330. id: C.int(i),
  331. logit: logits[i],
  332. p: 0,
  333. }
  334. }
  335. repeatLastN := llm.RepeatLastN
  336. if len(llm.last) < repeatLastN {
  337. repeatLastN = len(llm.last)
  338. }
  339. if llm.NumCtx < repeatLastN {
  340. repeatLastN = llm.NumCtx
  341. }
  342. lastN := llm.last[len(llm.last)-repeatLastN:]
  343. token := C.llama_sample(
  344. llm.ctx,
  345. unsafe.SliceData(candidates), C.size_t(len(candidates)),
  346. unsafe.SliceData(lastN), C.size_t(len(lastN)),
  347. &sampleOpts,
  348. )
  349. llm.last = append(llm.last, token)
  350. llm.embd = append(llm.embd, token)
  351. if token == C.llama_token_eos() {
  352. return 0, io.EOF
  353. }
  354. return token, nil
  355. }
  356. func (llm *llama) Embedding(input string) ([]float64, error) {
  357. if !llm.EmbeddingOnly {
  358. return nil, errors.New("llama: embedding not enabled")
  359. }
  360. tokens := llm.Encode(input)
  361. if tokens == nil {
  362. return nil, errors.New("llama: tokenize embedding")
  363. }
  364. cTokens := make([]C.llama_token, len(tokens))
  365. for i := range tokens {
  366. cTokens[i] = C.llama_token(tokens[i])
  367. }
  368. retval := C.llama_eval(llm.ctx, unsafe.SliceData(cTokens), C.int(len(tokens)), 0, C.int(llm.NumThread))
  369. if retval != 0 {
  370. return nil, errors.New("llama: eval")
  371. }
  372. n := C.llama_n_embd(llm.ctx)
  373. if n <= 0 {
  374. return nil, errors.New("llama: no embeddings generated")
  375. }
  376. cEmbeddings := unsafe.Slice(C.llama_get_embeddings(llm.ctx), n)
  377. embeddings := make([]float64, len(cEmbeddings))
  378. for i, v := range cEmbeddings {
  379. embeddings[i] = float64(v)
  380. }
  381. return embeddings, nil
  382. }