123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520 |
- //go:build linux || windows
- package gpu
- /*
- #cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
- #cgo windows LDFLAGS: -lpthread
- #include "gpu_info.h"
- */
- import "C"
- import (
- "fmt"
- "log/slog"
- "os"
- "path/filepath"
- "runtime"
- "strconv"
- "strings"
- "sync"
- "unsafe"
- "github.com/ollama/ollama/envconfig"
- "github.com/ollama/ollama/format"
- )
- type handles struct {
- deviceCount int
- cudart *C.cudart_handle_t
- nvcuda *C.nvcuda_handle_t
- oneapi *C.oneapi_handle_t
- }
- const (
- cudaMinimumMemory = 457 * format.MebiByte
- rocmMinimumMemory = 457 * format.MebiByte
- )
- var (
- gpuMutex sync.Mutex
- bootstrapped bool
- cpuCapability CPUCapability
- cpus []CPUInfo
- cudaGPUs []CudaGPUInfo
- nvcudaLibPath string
- cudartLibPath string
- oneapiLibPath string
- rocmGPUs []RocmGPUInfo
- oneapiGPUs []OneapiGPUInfo
- )
- // With our current CUDA compile flags, older than 5.0 will not work properly
- var CudaComputeMin = [2]C.int{5, 0}
- var RocmComputeMin = 9
- // TODO find a better way to detect iGPU instead of minimum memory
- const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
- var CudartLinuxGlobs = []string{
- "/usr/local/cuda/lib64/libcudart.so*",
- "/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
- "/usr/lib/x86_64-linux-gnu/libcudart.so*",
- "/usr/lib/wsl/lib/libcudart.so*",
- "/usr/lib/wsl/drivers/*/libcudart.so*",
- "/opt/cuda/lib64/libcudart.so*",
- "/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
- "/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
- "/usr/lib/aarch64-linux-gnu/libcudart.so*",
- "/usr/local/cuda/lib*/libcudart.so*",
- "/usr/lib*/libcudart.so*",
- "/usr/local/lib*/libcudart.so*",
- }
- var CudartWindowsGlobs = []string{
- "c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
- }
- var NvcudaLinuxGlobs = []string{
- "/usr/local/cuda*/targets/*/lib/libcuda.so*",
- "/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
- "/usr/lib/*-linux-gnu/libcuda.so*",
- "/usr/lib/wsl/lib/libcuda.so*",
- "/usr/lib/wsl/drivers/*/libcuda.so*",
- "/opt/cuda/lib*/libcuda.so*",
- "/usr/local/cuda/lib*/libcuda.so*",
- "/usr/lib*/libcuda.so*",
- "/usr/local/lib*/libcuda.so*",
- }
- var NvcudaWindowsGlobs = []string{
- "c:\\windows\\system*\\nvcuda.dll",
- }
- var OneapiWindowsGlobs = []string{
- "c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
- }
- var OneapiLinuxGlobs = []string{
- "/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
- "/usr/lib*/libze_intel_gpu.so*",
- }
- // Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
- // Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
- var CudaTegra string = os.Getenv("JETSON_JETPACK")
- // Note: gpuMutex must already be held
- func initCudaHandles() *handles {
- // TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
- gpuHandles := &handles{}
- // Short Circuit if we already know which library to use
- if nvcudaLibPath != "" {
- gpuHandles.deviceCount, gpuHandles.nvcuda, _ = LoadNVCUDAMgmt([]string{nvcudaLibPath})
- return gpuHandles
- }
- if cudartLibPath != "" {
- gpuHandles.deviceCount, gpuHandles.cudart, _ = LoadCUDARTMgmt([]string{cudartLibPath})
- return gpuHandles
- }
- slog.Debug("searching for GPU discovery libraries for NVIDIA")
- var cudartMgmtName string
- var cudartMgmtPatterns []string
- var nvcudaMgmtName string
- var nvcudaMgmtPatterns []string
- var oneapiMgmtName string
- var oneapiMgmtPatterns []string
- tmpDir, _ := PayloadsDir()
- switch runtime.GOOS {
- case "windows":
- cudartMgmtName = "cudart64_*.dll"
- localAppData := os.Getenv("LOCALAPPDATA")
- cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)}
- cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...)
- // Aligned with driver, we can't carry as payloads
- nvcudaMgmtName = "nvcuda.dll"
- nvcudaMgmtPatterns = NvcudaWindowsGlobs
- oneapiMgmtName = "ze_intel_gpu64.dll"
- oneapiMgmtPatterns = OneapiWindowsGlobs
- case "linux":
- cudartMgmtName = "libcudart.so*"
- if tmpDir != "" {
- // TODO - add "payloads" for subprocess
- cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)}
- }
- cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
- // Aligned with driver, we can't carry as payloads
- nvcudaMgmtName = "libcuda.so*"
- nvcudaMgmtPatterns = NvcudaLinuxGlobs
- oneapiMgmtName = "libze_intel_gpu.so"
- oneapiMgmtPatterns = OneapiLinuxGlobs
- default:
- return gpuHandles
- }
- nvcudaLibPaths := FindGPULibs(nvcudaMgmtName, nvcudaMgmtPatterns)
- if len(nvcudaLibPaths) > 0 {
- deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
- if nvcuda != nil {
- slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
- gpuHandles.nvcuda = nvcuda
- gpuHandles.deviceCount = deviceCount
- nvcudaLibPath = libPath
- return gpuHandles
- }
- }
- cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns)
- if len(cudartLibPaths) > 0 {
- deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
- if cudart != nil {
- slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
- gpuHandles.cudart = cudart
- gpuHandles.deviceCount = deviceCount
- cudartLibPath = libPath
- return gpuHandles
- }
- }
- oneapiLibPaths := FindGPULibs(oneapiMgmtName, oneapiMgmtPatterns)
- if len(oneapiLibPaths) > 0 {
- deviceCount, oneapi, libPath := LoadOneapiMgmt(oneapiLibPaths)
- if oneapi != nil {
- slog.Debug("detected Intel GPUs", "library", libPath, "count", deviceCount)
- gpuHandles.oneapi = oneapi
- gpuHandles.deviceCount = deviceCount
- oneapiLibPath = libPath
- return gpuHandles
- }
- }
- return gpuHandles
- }
- func GetGPUInfo() GpuInfoList {
- // TODO - consider exploring lspci (and equivalent on windows) to check for
- // GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
- gpuMutex.Lock()
- defer gpuMutex.Unlock()
- needRefresh := true
- var gpuHandles *handles
- defer func() {
- if gpuHandles == nil {
- return
- }
- if gpuHandles.cudart != nil {
- C.cudart_release(*gpuHandles.cudart)
- }
- if gpuHandles.nvcuda != nil {
- C.nvcuda_release(*gpuHandles.nvcuda)
- }
- }()
- if !bootstrapped {
- slog.Debug("Detecting GPUs")
- needRefresh = false
- cpuCapability = getCPUCapability()
- var memInfo C.mem_info_t
- C.cpu_check_ram(&memInfo)
- if memInfo.err != nil {
- slog.Info("error looking up CPU memory", "error", C.GoString(memInfo.err))
- C.free(unsafe.Pointer(memInfo.err))
- return []GpuInfo{}
- }
- cpuInfo := CPUInfo{
- GpuInfo: GpuInfo{
- Library: "cpu",
- Variant: cpuCapability.ToVariant(),
- },
- }
- cpuInfo.TotalMemory = uint64(memInfo.total)
- cpuInfo.FreeMemory = uint64(memInfo.free)
- cpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
- cpus = []CPUInfo{cpuInfo}
- // Fallback to CPU mode if we're lacking required vector extensions on x86
- if cpuCapability < GPURunnerCPUCapability && runtime.GOARCH == "amd64" {
- slog.Warn("CPU does not have minimum vector extensions, GPU inference disabled", "required", GPURunnerCPUCapability.ToString(), "detected", cpuCapability.ToString())
- bootstrapped = true
- // No need to do any GPU discovery, since we can't run on them
- return GpuInfoList{cpus[0].GpuInfo}
- }
- // On windows we bundle the nvidia library one level above the runner dir
- depPath := ""
- if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
- depPath = filepath.Dir(envconfig.RunnersDir)
- }
- // Load ALL libraries
- gpuHandles = initCudaHandles()
- // TODO needs a refactoring pass to init oneapi handles
- // NVIDIA
- for i := range gpuHandles.deviceCount {
- if gpuHandles.cudart != nil || gpuHandles.nvcuda != nil {
- gpuInfo := CudaGPUInfo{
- GpuInfo: GpuInfo{
- Library: "cuda",
- },
- index: i,
- }
- var driverMajor int
- var driverMinor int
- if gpuHandles.cudart != nil {
- C.cudart_bootstrap(*gpuHandles.cudart, C.int(i), &memInfo)
- } else {
- C.nvcuda_bootstrap(*gpuHandles.nvcuda, C.int(i), &memInfo)
- driverMajor = int(gpuHandles.nvcuda.driver_major)
- driverMinor = int(gpuHandles.nvcuda.driver_minor)
- }
- if memInfo.err != nil {
- slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
- C.free(unsafe.Pointer(memInfo.err))
- continue
- }
- if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
- slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
- continue
- }
- gpuInfo.TotalMemory = uint64(memInfo.total)
- gpuInfo.FreeMemory = uint64(memInfo.free)
- gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
- gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
- gpuInfo.MinimumMemory = cudaMinimumMemory
- gpuInfo.DependencyPath = depPath
- gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
- gpuInfo.DriverMajor = int(driverMajor)
- gpuInfo.DriverMinor = int(driverMinor)
- // TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
- cudaGPUs = append(cudaGPUs, gpuInfo)
- }
- if gpuHandles.oneapi != nil {
- gpuInfo := OneapiGPUInfo{
- GpuInfo: GpuInfo{
- Library: "oneapi",
- },
- index: i,
- }
- // TODO - split bootstrapping from updating free memory
- C.oneapi_check_vram(*gpuHandles.oneapi, &memInfo)
- var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
- memInfo.free = C.uint64_t(totalFreeMem)
- gpuInfo.TotalMemory = uint64(memInfo.total)
- gpuInfo.FreeMemory = uint64(memInfo.free)
- gpuInfo.ID = strconv.Itoa(i)
- oneapiGPUs = append(oneapiGPUs, gpuInfo)
- }
- }
- rocmGPUs = AMDGetGPUInfo()
- bootstrapped = true
- }
- // For detected GPUs, load library if not loaded
- // Refresh free memory usage
- if needRefresh {
- // TODO - CPU system memory tracking/refresh
- var memInfo C.mem_info_t
- if gpuHandles == nil && len(cudaGPUs) > 0 {
- gpuHandles = initCudaHandles()
- }
- for i, gpu := range cudaGPUs {
- if gpuHandles.cudart != nil {
- C.cudart_bootstrap(*gpuHandles.cudart, C.int(gpu.index), &memInfo)
- } else {
- C.nvcuda_get_free(*gpuHandles.nvcuda, C.int(gpu.index), &memInfo.free)
- }
- if memInfo.err != nil {
- slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
- C.free(unsafe.Pointer(memInfo.err))
- continue
- }
- if memInfo.free == 0 {
- slog.Warn("error looking up nvidia GPU memory")
- continue
- }
- slog.Debug("updating cuda free memory", "gpu", gpu.ID, "name", gpu.Name, "before", format.HumanBytes2(gpu.FreeMemory), "now", format.HumanBytes2(uint64(memInfo.free)))
- cudaGPUs[i].FreeMemory = uint64(memInfo.free)
- }
- err := RocmGPUInfoList(rocmGPUs).RefreshFreeMemory()
- if err != nil {
- slog.Debug("problem refreshing ROCm free memory", "error", err)
- }
- }
- resp := []GpuInfo{}
- for _, gpu := range cudaGPUs {
- resp = append(resp, gpu.GpuInfo)
- }
- for _, gpu := range rocmGPUs {
- resp = append(resp, gpu.GpuInfo)
- }
- if len(resp) == 0 {
- resp = append(resp, cpus[0].GpuInfo)
- }
- return resp
- }
- func GetCPUMem() (memInfo, error) {
- var ret memInfo
- var info C.mem_info_t
- C.cpu_check_ram(&info)
- if info.err != nil {
- defer C.free(unsafe.Pointer(info.err))
- return ret, fmt.Errorf(C.GoString(info.err))
- }
- ret.FreeMemory = uint64(info.free)
- ret.TotalMemory = uint64(info.total)
- return ret, nil
- }
- func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
- // Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
- var ldPaths []string
- var patterns []string
- gpuLibPaths := []string{}
- slog.Debug("Searching for GPU library", "name", baseLibName)
- switch runtime.GOOS {
- case "windows":
- ldPaths = strings.Split(os.Getenv("PATH"), ";")
- case "linux":
- ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
- default:
- return gpuLibPaths
- }
- // Start with whatever we find in the PATH/LD_LIBRARY_PATH
- for _, ldPath := range ldPaths {
- d, err := filepath.Abs(ldPath)
- if err != nil {
- continue
- }
- patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
- }
- patterns = append(patterns, defaultPatterns...)
- slog.Debug("gpu library search", "globs", patterns)
- for _, pattern := range patterns {
- // Nvidia PhysX known to return bogus results
- if strings.Contains(pattern, "PhysX") {
- slog.Debug("skipping PhysX cuda library path", "path", pattern)
- continue
- }
- // Ignore glob discovery errors
- matches, _ := filepath.Glob(pattern)
- for _, match := range matches {
- // Resolve any links so we don't try the same lib multiple times
- // and weed out any dups across globs
- libPath := match
- tmp := match
- var err error
- for ; err == nil; tmp, err = os.Readlink(libPath) {
- if !filepath.IsAbs(tmp) {
- tmp = filepath.Join(filepath.Dir(libPath), tmp)
- }
- libPath = tmp
- }
- new := true
- for _, cmp := range gpuLibPaths {
- if cmp == libPath {
- new = false
- break
- }
- }
- if new {
- gpuLibPaths = append(gpuLibPaths, libPath)
- }
- }
- }
- slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
- return gpuLibPaths
- }
- func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
- var resp C.cudart_init_resp_t
- resp.ch.verbose = getVerboseState()
- for _, libPath := range cudartLibPaths {
- lib := C.CString(libPath)
- defer C.free(unsafe.Pointer(lib))
- C.cudart_init(lib, &resp)
- if resp.err != nil {
- slog.Debug("Unable to load cudart", "library", libPath, "error", C.GoString(resp.err))
- C.free(unsafe.Pointer(resp.err))
- } else {
- return int(resp.num_devices), &resp.ch, libPath
- }
- }
- return 0, nil, ""
- }
- func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
- var resp C.nvcuda_init_resp_t
- resp.ch.verbose = getVerboseState()
- for _, libPath := range nvcudaLibPaths {
- lib := C.CString(libPath)
- defer C.free(unsafe.Pointer(lib))
- C.nvcuda_init(lib, &resp)
- if resp.err != nil {
- slog.Debug("Unable to load nvcuda", "library", libPath, "error", C.GoString(resp.err))
- C.free(unsafe.Pointer(resp.err))
- } else {
- return int(resp.num_devices), &resp.ch, libPath
- }
- }
- return 0, nil, ""
- }
- func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
- var resp C.oneapi_init_resp_t
- resp.oh.verbose = getVerboseState()
- for _, libPath := range oneapiLibPaths {
- lib := C.CString(libPath)
- defer C.free(unsafe.Pointer(lib))
- C.oneapi_init(lib, &resp)
- if resp.err != nil {
- slog.Debug("Unable to load oneAPI management library", "library", libPath, "error", C.GoString(resp.err))
- C.free(unsafe.Pointer(resp.err))
- } else {
- return int(resp.num_devices), &resp.oh, libPath
- }
- }
- return 0, nil, ""
- }
- func getVerboseState() C.uint16_t {
- if envconfig.Debug {
- return C.uint16_t(1)
- }
- return C.uint16_t(0)
- }
- // Given the list of GPUs this instantiation is targeted for,
- // figure out the visible devices environment variable
- //
- // If different libraries are detected, the first one is what we use
- func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
- if len(l) == 0 {
- return "", ""
- }
- switch l[0].Library {
- case "cuda":
- return cudaGetVisibleDevicesEnv(l)
- case "rocm":
- return rocmGetVisibleDevicesEnv(l)
- case "oneapi":
- return oneapiGetVisibleDevicesEnv(l)
- default:
- slog.Debug("no filter required for library " + l[0].Library)
- return "", ""
- }
- }
|