12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308 |
- // MIT License
- // Copyright (c) 2023 Georgi Gerganov
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #include "common.h"
- #include "llama.h"
- #include "grammar-parser.h"
- #include "utils.hpp"
- #include "../llava/clip.h"
- #include "../llava/llava.h"
- #include "stb_image.h"
- #ifndef NDEBUG
- // crash the server in debug mode, otherwise send an http 500 error
- #define CPPHTTPLIB_NO_EXCEPTIONS 1
- #endif
- // increase max payload length to allow use of larger context size
- #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
- #include "httplib.h"
- #include "json.hpp"
- #if defined(_WIN32)
- #include <windows.h>
- #include <errhandlingapi.h>
- #endif
- #include <algorithm>
- #include <cstddef>
- #include <thread>
- #include <chrono>
- #include <condition_variable>
- #include <atomic>
- #include <signal.h>
- using json = nlohmann::json;
- struct server_params {
- std::string hostname = "127.0.0.1";
- std::vector<std::string> api_keys;
- std::string public_path = "examples/server/public";
- int32_t port = 8080;
- int32_t read_timeout = 600;
- int32_t write_timeout = 600;
- bool slots_endpoint = true;
- bool metrics_endpoint = false;
- int n_threads_http = -1;
- };
- bool server_verbose = false;
- bool server_log_json = false;
- enum stop_type {
- STOP_FULL,
- STOP_PARTIAL,
- };
- // TODO: can become bool if we can't find use of more states
- enum slot_state {
- IDLE,
- PROCESSING,
- };
- enum slot_command {
- NONE,
- LOAD_PROMPT,
- RELEASE,
- };
- struct slot_params {
- bool stream = true;
- bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
- uint32_t seed = -1; // RNG seed
- int32_t n_keep = 0; // number of tokens to keep from initial prompt
- int32_t n_predict = -1; // new tokens to predict
- std::vector<std::string> antiprompt;
- json input_prefix;
- json input_suffix;
- };
- struct slot_image {
- int32_t id;
- bool request_encode_image = false;
- float * image_embedding = nullptr;
- int32_t image_tokens = 0;
- clip_image_u8 * img_data;
- std::string prefix_prompt; // before of this image
- };
- struct server_slot {
- int id;
- int task_id = -1;
- struct slot_params params;
- slot_state state = IDLE;
- slot_command command = NONE;
- // used to determine the slot that has been used the longest
- int64_t t_last_used = -1;
- // generation props
- int32_t n_ctx = 0; // context size per slot
- int32_t n_past = 0;
- int32_t n_decoded = 0;
- int32_t n_remaining = -1;
- int32_t i_batch = -1;
- int32_t n_predict = -1;
- int32_t n_prompt_tokens = 0;
- int32_t n_prompt_tokens_processed = 0;
- json prompt;
- std::string generated_text;
- llama_token sampled;
- std::vector<llama_token> cache_tokens;
- std::vector<completion_token_output> generated_token_probs;
- bool embedding = false;
- bool has_next_token = true;
- bool truncated = false;
- bool stopped_eos = false;
- bool stopped_word = false;
- bool stopped_limit = false;
- std::string stopping_word;
- // sampling
- struct llama_sampling_params sparams;
- llama_sampling_context *ctx_sampling = nullptr;
- int32_t ga_i = 0; // group-attention state
- int32_t ga_n = 1; // group-attention factor
- int32_t ga_w = 512; // group-attention width
- int32_t n_past_se = 0; // self-extend
- // multimodal
- std::vector<slot_image> images;
- // stats
- size_t n_sent_text = 0; // number of sent text character
- size_t n_sent_token_probs = 0;
- int64_t t_start_process_prompt;
- int64_t t_start_genereration;
- double t_prompt_processing; // ms
- double t_token_generation; // ms
- float *cross_attn_state = nullptr;
- // multitasks
- int multitask_id = -1;
- void reset() {
- n_prompt_tokens = 0;
- generated_text = "";
- truncated = false;
- stopped_eos = false;
- stopped_word = false;
- stopped_limit = false;
- stopping_word = "";
- n_past = 0;
- n_sent_text = 0;
- n_sent_token_probs = 0;
- ga_i = 0;
- n_past_se = 0;
- generated_token_probs.clear();
- for (slot_image & img : images) {
- free(img.image_embedding);
- if (img.img_data) {
- clip_image_u8_free(img.img_data);
- }
- img.prefix_prompt = "";
- }
- if (cross_attn_state) {
- free(cross_attn_state);
- cross_attn_state = nullptr;
- }
- images.clear();
- }
- bool has_budget(gpt_params &global_params) {
- if (params.n_predict == -1 && global_params.n_predict == -1) {
- return true; // limitless
- }
- n_remaining = -1;
- if (params.n_predict != -1) {
- n_remaining = params.n_predict - n_decoded;
- } else if (global_params.n_predict != -1) {
- n_remaining = global_params.n_predict - n_decoded;
- }
- return n_remaining > 0; // no budget
- }
- bool available() const {
- return state == IDLE && command == NONE;
- }
- bool is_processing() const {
- return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
- }
- void add_token_string(const completion_token_output &token) {
- if (command == RELEASE) {
- return;
- }
- cache_tokens.push_back(token.tok);
- generated_token_probs.push_back(token);
- }
- void release() {
- if (state == PROCESSING)
- {
- t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
- command = RELEASE;
- }
- }
- json get_formated_timings() {
- return json
- {
- {"prompt_n", n_prompt_tokens_processed},
- {"prompt_ms", t_prompt_processing},
- {"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
- {"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
- {"predicted_n", n_decoded},
- {"predicted_ms", t_token_generation},
- {"predicted_per_token_ms", t_token_generation / n_decoded},
- {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
- };
- }
- void print_timings() const {
- char buffer[512];
- double t_token = t_prompt_processing / n_prompt_tokens_processed;
- double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
- snprintf(buffer, sizeof(buffer), "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
- t_prompt_processing, n_prompt_tokens_processed,
- t_token, n_tokens_second);
- LOG_DEBUG(buffer, {
- {"slot_id", id},
- {"task_id", task_id},
- {"t_prompt_processing", t_prompt_processing},
- {"n_prompt_tokens_processed", n_prompt_tokens_processed},
- {"t_token", t_token},
- {"n_tokens_second", n_tokens_second},
- });
- t_token = t_token_generation / n_decoded;
- n_tokens_second = 1e3 / t_token_generation * n_decoded;
- snprintf(buffer, sizeof(buffer), "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
- t_token_generation, n_decoded,
- t_token, n_tokens_second);
- LOG_DEBUG(buffer, {
- {"slot_id", id},
- {"task_id", task_id},
- {"t_token_generation", t_token_generation},
- {"n_decoded", n_decoded},
- {"t_token", t_token},
- {"n_tokens_second", n_tokens_second},
- });
- snprintf(buffer, sizeof(buffer), " total time = %10.2f ms", t_prompt_processing + t_token_generation);
- LOG_DEBUG(buffer, {
- {"slot_id", id},
- {"task_id", task_id},
- {"t_prompt_processing", t_prompt_processing},
- {"t_token_generation", t_token_generation},
- {"t_total", t_prompt_processing + t_token_generation},
- });
- }
- };
- struct server_metrics {
- uint64_t n_prompt_tokens_processed_total = 0;
- uint64_t n_tokens_predicted_total = 0;
- uint64_t n_prompt_tokens_processed = 0;
- uint64_t t_prompt_processing = 0;
- uint64_t n_tokens_predicted = 0;
- uint64_t t_tokens_generation = 0;
- void on_prompt_eval(const server_slot &slot) {
- n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
- n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
- t_prompt_processing += slot.t_prompt_processing;
- }
- void on_prediction(const server_slot &slot) {
- n_tokens_predicted_total += slot.n_decoded;
- n_tokens_predicted += slot.n_decoded;
- t_tokens_generation += slot.t_token_generation;
- }
- void reset_bucket() {
- n_prompt_tokens_processed = 0;
- t_prompt_processing = 0;
- n_tokens_predicted = 0;
- t_tokens_generation = 0;
- }
- };
- struct llama_server_context
- {
- llama_model *model = nullptr;
- float modelProgress = 0.0;
- llama_context *ctx = nullptr;
- clip_ctx *clp_ctx = nullptr;
- gpt_params params;
- llama_batch batch;
- bool multimodal = false;
- bool clean_kv_cache = true;
- bool all_slots_are_idle = false;
- bool add_bos_token = true;
- int32_t n_ctx; // total context for all clients / slots
- // system prompt
- bool system_need_update = false;
- std::string system_prompt;
- std::vector<llama_token> system_tokens;
- std::string name_user; // this should be the antiprompt
- std::string name_assistant;
- // slots / clients
- std::vector<server_slot> slots;
- llama_server_queue queue_tasks;
- llama_server_response queue_results;
- server_metrics metrics;
- ~llama_server_context()
- {
- if (clp_ctx)
- {
- LOG_DEBUG("freeing clip model", {});
- clip_free(clp_ctx);
- clp_ctx = nullptr;
- }
- if (ctx)
- {
- llama_free(ctx);
- ctx = nullptr;
- }
- if (model)
- {
- llama_free_model(model);
- model = nullptr;
- }
- }
- bool load_model(const gpt_params ¶ms_)
- {
- params = params_;
- if (!params.mmproj.empty()) {
- multimodal = true;
- LOG_DEBUG("Multi Modal Mode Enabled", {});
- clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
- if(clp_ctx == nullptr) {
- LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
- return false;
- }
- if (params.n_ctx < 2048) { // request larger context for the image embedding
- params.n_ctx = 2048;
- }
- }
- auto init_result = llama_init_from_gpt_params(params);
- model = init_result.model;
- ctx = init_result.context;
- if (model == nullptr)
- {
- LOG_ERROR("unable to load model", {{"model", params.model}});
- return false;
- }
- if (multimodal) {
- const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
- const int n_embd_llm = llama_n_embd(model);
- if (n_embd_clip != n_embd_llm) {
- LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
- llama_free(ctx);
- llama_free_model(model);
- return false;
- }
- }
- n_ctx = llama_n_ctx(ctx);
- add_bos_token = llama_add_bos_token(model);
- return true;
- }
- void initialize() {
- // create slots
- all_slots_are_idle = true;
- const int32_t n_ctx_slot = n_ctx / params.n_parallel;
- LOG_DEBUG("initializing slots", {{"n_slots", params.n_parallel}});
- for (int i = 0; i < params.n_parallel; i++)
- {
- server_slot slot;
- slot.id = i;
- slot.n_ctx = n_ctx_slot;
- slot.n_predict = params.n_predict;
- LOG_DEBUG("new slot", {
- {"slot_id", slot.id},
- {"n_ctx_slot", slot.n_ctx}
- });
- const int ga_n = params.grp_attn_n;
- const int ga_w = params.grp_attn_w;
- if (ga_n != 1) {
- GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
- GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
- //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
- //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
- LOG_DEBUG("slot self-extend", {
- {"slot_id", slot.id},
- {"ga_n", ga_n},
- {"ga_w", ga_w}
- });
- }
- slot.ga_i = 0;
- slot.ga_n = ga_n;
- slot.ga_w = ga_w;
- slot.reset();
- slots.push_back(slot);
- }
- batch = llama_batch_init(n_ctx, 0, params.n_parallel);
- }
- std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
- {
- // TODO: currently, we tokenize using special tokens by default
- // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
- // but it's better compared to completely ignoring ChatML and other chat templates
- const bool TMP_FORCE_SPECIAL = true;
- // If `add_bos` is true, we only add BOS, when json_prompt is a string,
- // or the first element of the json_prompt array is a string.
- std::vector<llama_token> prompt_tokens;
- if (json_prompt.is_array())
- {
- bool first = true;
- for (const auto& p : json_prompt)
- {
- if (p.is_string())
- {
- auto s = p.template get<std::string>();
- std::vector<llama_token> p;
- if (first)
- {
- p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
- first = false;
- }
- else
- {
- p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
- }
- prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
- }
- else
- {
- if (first)
- {
- first = false;
- }
- prompt_tokens.push_back(p.template get<llama_token>());
- }
- }
- }
- else
- {
- auto s = json_prompt.template get<std::string>();
- prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
- }
- return prompt_tokens;
- }
- server_slot* get_slot(int id) {
- int64_t t_last = ggml_time_us();
- server_slot *last_used = nullptr;
- for (server_slot & slot : slots)
- {
- if (slot.id == id && slot.available())
- {
- return &slot;
- }
- if (slot.available() && slot.t_last_used < t_last)
- {
- last_used = &slot;
- t_last = slot.t_last_used;
- }
- }
- return last_used;
- }
- bool launch_slot_with_data(server_slot* &slot, json data) {
- slot_params default_params;
- llama_sampling_params default_sparams;
- slot->params.stream = json_value(data, "stream", false);
- slot->params.cache_prompt = json_value(data, "cache_prompt", false);
- slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
- slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
- slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
- slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
- slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
- slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
- slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
- slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
- slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
- slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
- slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
- slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
- slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
- slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
- slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
- slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
- slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
- slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
- slot->sparams.seed = json_value(data, "seed", default_params.seed);
- slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
- slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
- slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
- if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
- // Might be better to reject the request with a 400 ?
- LOG_WARNING("Max tokens to predict exceeds server configuration", {
- {"params.n_predict", slot->params.n_predict},
- {"slot.n_predict", slot->n_predict},
- });
- slot->params.n_predict = slot->n_predict;
- }
- if (data.count("input_suffix") != 0)
- {
- slot->params.input_suffix = data["input_suffix"];
- }
- else
- {
- slot->params.input_suffix = "";
- }
- if (data.count("prompt") != 0)
- {
- slot->prompt = data["prompt"];
- }
- else
- {
- slot->prompt = "";
- }
- slot->sparams.penalty_prompt_tokens.clear();
- slot->sparams.use_penalty_prompt_tokens = false;
- const auto &penalty_prompt = data.find("penalty_prompt");
- if (penalty_prompt != data.end())
- {
- if (penalty_prompt->is_string())
- {
- const auto penalty_prompt_string = penalty_prompt->get<std::string>();
- auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
- slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
- if (slot->params.n_predict > 0)
- {
- slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
- }
- slot->sparams.use_penalty_prompt_tokens = true;
- }
- else if (penalty_prompt->is_array())
- {
- const auto n_tokens = penalty_prompt->size();
- slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
- const int n_vocab = llama_n_vocab(model);
- for (const auto &penalty_token : *penalty_prompt)
- {
- if (penalty_token.is_number_integer())
- {
- const auto tok = penalty_token.get<llama_token>();
- if (tok >= 0 && tok < n_vocab)
- {
- slot->sparams.penalty_prompt_tokens.push_back(tok);
- }
- }
- }
- slot->sparams.use_penalty_prompt_tokens = true;
- }
- }
- slot->sparams.logit_bias.clear();
- if (json_value(data, "ignore_eos", false))
- {
- slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
- }
- const auto &logit_bias = data.find("logit_bias");
- if (logit_bias != data.end() && logit_bias->is_array())
- {
- const int n_vocab = llama_n_vocab(model);
- for (const auto &el : *logit_bias)
- {
- if (el.is_array() && el.size() == 2)
- {
- float bias;
- if (el[1].is_number())
- {
- bias = el[1].get<float>();
- }
- else if (el[1].is_boolean() && !el[1].get<bool>())
- {
- bias = -INFINITY;
- }
- else
- {
- continue;
- }
- if (el[0].is_number_integer())
- {
- llama_token tok = el[0].get<llama_token>();
- if (tok >= 0 && tok < n_vocab)
- {
- slot->sparams.logit_bias[tok] = bias;
- }
- }
- else if (el[0].is_string())
- {
- auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
- for (auto tok : toks)
- {
- slot->sparams.logit_bias[tok] = bias;
- }
- }
- }
- }
- }
- slot->params.antiprompt.clear();
- const auto &stop = data.find("stop");
- if (stop != data.end() && stop->is_array())
- {
- for (const auto &word : *stop)
- {
- if (!word.empty())
- {
- slot->params.antiprompt.push_back(word);
- }
- }
- }
- const auto &samplers_sequence = data.find("samplers");
- if (samplers_sequence != data.end() && samplers_sequence->is_array())
- {
- std::vector<std::string> sampler_names;
- for (const auto &sampler_name : *samplers_sequence)
- {
- if (sampler_name.is_string())
- {
- sampler_names.emplace_back(sampler_name);
- }
- }
- slot->sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
- }
- else
- {
- slot->sparams.samplers_sequence = default_sparams.samplers_sequence;
- }
- // Check for mllama architecture, which processes images differently than llava
- char arch_str[256];
- llama_model_meta_val_str(model, "general.architecture", arch_str, 256);
- bool is_mllama = strcmp(arch_str, "mllama") == 0;
- if (multimodal)
- {
- const auto &images_data = data.find("image_data");
- if (images_data != data.end() && images_data->is_array())
- {
- for (const auto &img : *images_data)
- {
- const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
- if (is_mllama) {
- LOG_INFO("MLLAMA architecture detected, processing first image", {{"slot_id", slot->id}});
- struct clip_image_f32 *img = clip_image_f32_init();
- clip_image_load_from_data(image_buffer.data(), image_buffer.size(), 560, 560, 3, 4, img);
- const int n = clip_embd_nbytes(clp_ctx);
- printf("%s: nbytes %d\n", __func__, n);
- slot->cross_attn_state = (float *)malloc(n);
- printf("%s: nbytes %d image_embd: %p\n", __func__, n, slot->cross_attn_state);
- clip_image_encode(clp_ctx, 1, img, slot->cross_attn_state);
- llama_set_cross_attn_state(ctx, slot->cross_attn_state);
- break;
- }
- slot_image img_sl;
- img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
- img_sl.img_data = clip_image_u8_init();
- if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
- {
- LOG_ERROR("failed to load image", {
- {"slot_id", slot->id},
- {"img_sl_id", img_sl.id}
- });
- return false;
- }
- LOG_VERBOSE("image loaded", {
- {"slot_id", slot->id},
- {"img_sl_id", img_sl.id}
- });
- img_sl.request_encode_image = true;
- slot->images.push_back(img_sl);
- }
- // process prompt
- // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
- if (slot->images.size() > 0 && !slot->prompt.is_array())
- {
- std::string prompt = slot->prompt.get<std::string>();
- size_t pos = 0, begin_prefix = 0;
- std::string pattern = "[img-";
- while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
- size_t end_prefix = pos;
- pos += pattern.length();
- size_t end_pos = prompt.find(']', pos);
- if (end_pos != std::string::npos)
- {
- std::string image_id = prompt.substr(pos, end_pos - pos);
- try
- {
- int img_id = std::stoi(image_id);
- bool found = false;
- for (slot_image &img : slot->images)
- {
- if (img.id == img_id) {
- found = true;
- img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
- begin_prefix = end_pos + 1;
- break;
- }
- }
- if (!found) {
- LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
- slot->images.clear();
- return false;
- }
- } catch (const std::invalid_argument& e) {
- LOG_TEE("Invalid image number id in prompt\n");
- slot->images.clear();
- return false;
- }
- }
- }
- slot->prompt = "";
- slot->params.input_suffix = prompt.substr(begin_prefix);
- slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
- }
- } else {
- llama_set_cross_attn_state(ctx, nullptr);
- }
- }
- if (slot->ctx_sampling != nullptr)
- {
- llama_sampling_free(slot->ctx_sampling);
- }
- slot->ctx_sampling = llama_sampling_init(slot->sparams);
- slot->command = LOAD_PROMPT;
- all_slots_are_idle = false;
- LOG_DEBUG("slot is processing task", {
- {"slot_id", slot->id},
- {"task_id", slot->task_id},
- });
- return true;
- }
- void kv_cache_clear() {
- // clear the entire KV cache
- llama_kv_cache_clear(ctx);
- clean_kv_cache = false;
- }
- void system_prompt_update() {
- kv_cache_clear();
- system_tokens.clear();
- if (!system_prompt.empty()) {
- system_tokens = ::llama_tokenize(ctx, system_prompt, true);
- llama_batch_clear(batch);
- for (int i = 0; i < (int)system_tokens.size(); ++i)
- {
- llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
- }
- for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
- {
- const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i));
- llama_batch batch_view = {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- 0, 0, 0, // unused
- };
- if (llama_decode(ctx, batch_view) != 0)
- {
- LOG_TEE("%s: llama_decode() failed\n", __func__);
- return;
- }
- }
- // assign the system KV cache to all parallel sequences
- for (int32_t i = 1; i < params.n_parallel; ++i)
- {
- llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
- }
- }
- LOG_TEE("system prompt updated\n");
- system_need_update = false;
- }
- void system_prompt_notify() {
- // release all slots
- for (server_slot &slot : slots)
- {
- slot.release();
- }
- system_need_update = true;
- }
- static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
- const stop_type type, server_slot &slot)
- {
- size_t stop_pos = std::string::npos;
- for (const std::string &word : slot.params.antiprompt)
- {
- size_t pos;
- if (type == STOP_FULL)
- {
- const size_t tmp = word.size() + last_token_size;
- const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
- pos = text.find(word, from_pos);
- }
- else
- {
- pos = find_partial_stop_string(word, text);
- }
- if (pos != std::string::npos &&
- (stop_pos == std::string::npos || pos < stop_pos))
- {
- if (type == STOP_FULL)
- {
- slot.stopped_word = true;
- slot.stopping_word = word;
- slot.has_next_token = false;
- }
- stop_pos = pos;
- }
- }
- return stop_pos;
- }
- bool process_token(completion_token_output &result, server_slot &slot) {
- // remember which tokens were sampled - used for repetition penalties during sampling
- const std::string token_str = llama_token_to_piece(ctx, result.tok);
- slot.sampled = result.tok;
- // search stop word and delete it
- if (!llama_token_is_eog(model, result.tok))
- slot.generated_text += token_str;
- slot.has_next_token = true;
- if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
- {
- // we can change penalty_prompt_tokens because it is always created from scratch each request
- slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
- }
- // check if there is incomplete UTF-8 character at the end
- bool incomplete = false;
- for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
- {
- unsigned char c = slot.generated_text[slot.generated_text.size() - i];
- if ((c & 0xC0) == 0x80)
- {
- // continuation byte: 10xxxxxx
- continue;
- }
- if ((c & 0xE0) == 0xC0)
- {
- // 2-byte character: 110xxxxx ...
- incomplete = i < 2;
- }
- else if ((c & 0xF0) == 0xE0)
- {
- // 3-byte character: 1110xxxx ...
- incomplete = i < 3;
- }
- else if ((c & 0xF8) == 0xF0)
- {
- // 4-byte character: 11110xxx ...
- incomplete = i < 4;
- }
- // else 1-byte character or invalid byte
- break;
- }
- if (!incomplete)
- {
- size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
- if (!llama_token_is_eog(model, result.tok)) {
- const std::string str_test = slot.generated_text.substr(pos);
- bool is_stop_full = false;
- size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
- if (stop_pos != std::string::npos)
- {
- is_stop_full = true;
- slot.generated_text.erase(
- slot.generated_text.begin() + pos + stop_pos,
- slot.generated_text.end());
- pos = std::min(slot.n_sent_text, slot.generated_text.size());
- }
- else
- {
- is_stop_full = false;
- stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
- }
- // check if there is any token to predict
- if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
- {
- // no send the stop word in the response
- result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
- slot.n_sent_text += result.text_to_send.size();
- // add the token to slot queue and cache
- }
- } else {
- result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
- slot.n_sent_text += result.text_to_send.size();
- }
- if (slot.params.stream)
- {
- send_partial_response(slot, result);
- }
- }
- slot.add_token_string(result);
- if (incomplete)
- {
- slot.has_next_token = true;
- }
- // check the limits
- if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params))
- {
- slot.stopped_limit = true;
- slot.has_next_token = false;
- }
- if (!slot.cache_tokens.empty() && llama_token_is_eog(model, result.tok))
- {
- slot.stopped_eos = true;
- slot.has_next_token = false;
- LOG_VERBOSE("eos token found", {});
- }
- LOG_VERBOSE("next token", {
- {"token", result.tok},
- {"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
- {"has_next_token", slot.has_next_token},
- {"n_remain", slot.n_remaining},
- {"num_tokens_predicted", slot.n_decoded},
- {"stopped_eos", slot.stopped_eos},
- {"stopped_word", slot.stopped_word},
- {"stopped_limit", slot.stopped_limit},
- {"stopping_word", slot.stopping_word},
- });
- return slot.has_next_token; // continue
- }
- bool process_images(server_slot &slot) const
- {
- for (slot_image &img : slot.images)
- {
- if (!img.request_encode_image)
- {
- continue;
- }
- if (!llava_image_embed_make_with_clip_img(clp_ctx, params.cpuparams.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
- LOG_TEE("Error processing the given image");
- return false;
- }
- img.request_encode_image = false;
- }
- return slot.images.size() > 0;
- }
- void send_error(task_server& task, const std::string &error)
- {
- LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
- task_result res;
- res.id = task.id;
- res.multitask_id = task.multitask_id;
- res.stop = false;
- res.error = true;
- res.result_json = { { "content", error } };
- queue_results.send(res);
- }
- json get_formated_generation(server_slot &slot)
- {
- const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
- const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
- eos_bias->second < 0.0f && std::isinf(eos_bias->second);
- std::vector<std::string> samplers_sequence;
- for (const auto &sampler_type : slot.sparams.samplers_sequence)
- {
- samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
- }
- return json {
- {"n_ctx", slot.n_ctx},
- {"n_predict", slot.n_predict},
- {"model", params.model_alias},
- {"seed", slot.params.seed},
- {"temperature", slot.sparams.temp},
- {"dynatemp_range", slot.sparams.dynatemp_range},
- {"dynatemp_exponent", slot.sparams.dynatemp_exponent},
- {"top_k", slot.sparams.top_k},
- {"top_p", slot.sparams.top_p},
- {"min_p", slot.sparams.min_p},
- {"tfs_z", slot.sparams.tfs_z},
- {"typical_p", slot.sparams.typical_p},
- {"repeat_last_n", slot.sparams.penalty_last_n},
- {"repeat_penalty", slot.sparams.penalty_repeat},
- {"presence_penalty", slot.sparams.penalty_present},
- {"frequency_penalty", slot.sparams.penalty_freq},
- {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
- {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
- {"mirostat", slot.sparams.mirostat},
- {"mirostat_tau", slot.sparams.mirostat_tau},
- {"mirostat_eta", slot.sparams.mirostat_eta},
- {"penalize_nl", slot.sparams.penalize_nl},
- {"stop", slot.params.antiprompt},
- {"n_predict", slot.params.n_predict},
- {"n_keep", params.n_keep},
- {"ignore_eos", ignore_eos},
- {"stream", slot.params.stream},
- {"logit_bias", slot.sparams.logit_bias},
- {"n_probs", slot.sparams.n_probs},
- {"min_keep", slot.sparams.min_keep},
- {"grammar", slot.sparams.grammar},
- {"samplers", samplers_sequence}
- };
- }
- void send_partial_response(server_slot &slot, completion_token_output tkn)
- {
- task_result res;
- res.id = slot.task_id;
- res.multitask_id = slot.multitask_id;
- res.error = false;
- res.stop = false;
- res.result_json = json
- {
- {"stop", false},
- {"slot_id", slot.id},
- {"multimodal", multimodal}
- };
- res.result_json["content"] = tkn.text_to_send;
- if (slot.sparams.n_probs > 0)
- {
- std::vector<completion_token_output> probs_output = {};
- const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
- size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
- size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
- if (probs_pos < probs_stop_pos)
- {
- probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
- }
- slot.n_sent_token_probs = probs_stop_pos;
- res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
- }
- queue_results.send(res);
- }
- void send_final_response(server_slot &slot)
- {
- task_result res;
- res.id = slot.task_id;
- res.multitask_id = slot.multitask_id;
- res.error = false;
- res.stop = true;
- res.result_json = json
- {
- {"content", !slot.params.stream ? slot.generated_text : ""},
- {"slot_id", slot.id},
- {"stop", true},
- {"model", params.model_alias},
- {"tokens_predicted", slot.n_decoded},
- {"tokens_evaluated", slot.n_prompt_tokens},
- {"truncated", slot.truncated},
- {"stopped_eos", slot.stopped_eos},
- {"stopped_word", slot.stopped_word},
- {"stopped_limit", slot.stopped_limit},
- {"stopping_word", slot.stopping_word},
- {"tokens_cached", slot.n_past},
- {"timings", slot.get_formated_timings()}
- };
- if (slot.sparams.n_probs > 0)
- {
- std::vector<completion_token_output> probs = {};
- if (!slot.params.stream && slot.stopped_word)
- {
- const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
- probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
- }
- else
- {
- probs = std::vector<completion_token_output>(
- slot.generated_token_probs.begin(),
- slot.generated_token_probs.end());
- }
- res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
- }
- queue_results.send(res);
- }
- void send_embedding(server_slot & slot, const llama_batch & batch)
- {
- task_result res;
- res.id = slot.task_id;
- res.multitask_id = slot.multitask_id;
- res.error = false;
- res.stop = true;
- const int n_embd = llama_n_embd(model);
- if (!params.embedding)
- {
- LOG_WARNING("embedding disabled", {{"params.embedding", params.embedding}});
- res.result_json = json
- {
- {"embedding", std::vector<float>(n_embd, 0.0f)},
- };
- }
- else
- {
- for (int i = 0; i < batch.n_tokens; ++i) {
- if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
- continue;
- }
- const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
- if (embd == NULL) {
- embd = llama_get_embeddings_ith(ctx, i);
- if (embd == NULL) {
- LOG_ERROR("failed to get embeddings for token", {{"token", batch.token[i]}, {"seq_id", batch.seq_id[i][0]}});
- res.result_json = json
- {
- {"embedding", std::vector<float>(n_embd, 0.0f)},
- };
- continue;
- }
- }
- res.result_json = json
- {
- {"embedding", std::vector<float>(embd, embd + n_embd)},
- };
- }
- }
- queue_results.send(res);
- }
- void request_completion(int task_id, json data, bool embedding, int multitask_id)
- {
- task_server task;
- task.id = task_id;
- task.target_id = 0;
- task.data = std::move(data);
- task.embedding_mode = embedding;
- task.type = TASK_TYPE_COMPLETION;
- task.multitask_id = multitask_id;
- // when a completion task's prompt array is not a singleton, we split it into multiple requests
- // otherwise, it's a single-prompt task, we actually queue it
- // if there's numbers in the prompt array it will be treated as an array of tokens
- if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
- bool numbers = false;
- for (const auto& e : task.data.at("prompt")) {
- if (e.is_number()) {
- numbers = true;
- break;
- }
- }
- // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
- // it will completely stall the server. I don't know where the bug for this is.
- //
- // if there are numbers, it needs to be treated like a single prompt,
- // queue_tasks handles a mix of strings and numbers just fine.
- if (numbers) {
- queue_tasks.post(task);
- } else {
- split_multiprompt_task(task_id, task);
- }
- } else {
- // an empty prompt can make slot become buggy
- if (task.data.contains("prompt") && task.data["prompt"].is_string() && task.data["prompt"].get<std::string>().empty()) {
- task.data["prompt"] = " "; // add a space so that we have one token
- }
- queue_tasks.post(task);
- }
- }
- // for multiple images processing
- bool ingest_images(server_slot &slot, int n_batch)
- {
- int image_idx = 0;
- while (image_idx < (int) slot.images.size())
- {
- slot_image &img = slot.images[image_idx];
- // process prefix prompt
- for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
- {
- const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
- llama_batch batch_view = {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- 0, 0, 0, // unused
- };
- if (llama_decode(ctx, batch_view))
- {
- LOG_TEE("%s : failed to eval\n", __func__);
- return false;
- }
- }
- // process image with llm
- for (int i = 0; i < img.image_tokens; i += n_batch)
- {
- int n_eval = img.image_tokens - i;
- if (n_eval > n_batch)
- {
- n_eval = n_batch;
- }
- const int n_embd = llama_n_embd(model);
- llama_batch batch_img = {
- n_eval,
- nullptr,
- (img.image_embedding + i * n_embd),
- nullptr,
- nullptr,
- nullptr,
- nullptr,
- slot.n_past,
- 1, 0
- };
- if (llama_decode(ctx, batch_img))
- {
- LOG_TEE("%s : failed to eval image\n", __func__);
- return false;
- }
- slot.n_past += n_eval;
- }
- image_idx++;
- llama_batch_clear(batch);
- // append prefix of next image
- const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
- slot.params.input_suffix : // no more images, then process suffix prompt
- (json)(slot.images[image_idx].prefix_prompt);
- std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
- for (int i = 0; i < (int) append_tokens.size(); ++i)
- {
- llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
- slot.n_past += 1;
- }
- }
- return true;
- }
- void request_cancel(int task_id)
- {
- task_server task;
- task.type = TASK_TYPE_CANCEL;
- task.target_id = task_id;
- queue_tasks.post(task);
- }
- void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
- {
- int prompt_count = multiprompt_task.data.at("prompt").size();
- if (prompt_count <= 1) {
- send_error(multiprompt_task, "error while handling multiple prompts");
- return;
- }
- // generate all the ID for subtask
- std::vector<int> subtask_ids(prompt_count);
- for (int i = 0; i < prompt_count; i++)
- {
- subtask_ids[i] = queue_tasks.get_new_id();
- }
- // queue up the multitask so we can track its subtask progression
- queue_tasks.add_multitask(multitask_id, subtask_ids);
- // add subtasks
- for (int i = 0; i < prompt_count; i++)
- {
- json subtask_data = multiprompt_task.data;
- subtask_data["prompt"] = subtask_data["prompt"][i];
- // subtasks inherit everything else (embedding mode, etc.)
- request_completion(subtask_ids[i], subtask_data, multiprompt_task.embedding_mode, multitask_id);
- }
- }
- std::string common_prefix(const std::string& str1, const std::string& str2) {
- auto mismatch_pair = std::mismatch(str1.begin(), str1.end(), str2.begin());
- return std::string(str1.begin(), mismatch_pair.first);
- }
- // Find the slot that has the greatest common prefix
- server_slot *prefix_slot(const json &prompt) {
- if (!prompt.is_string()) {
- return nullptr;
- }
- std::string prompt_str = prompt.get<std::string>();
- server_slot *slot = nullptr;
- size_t longest = 0;
- for (server_slot &s : slots) {
- if (s.available() && s.prompt.is_string()) {
- std::string s_prompt = s.prompt.get<std::string>();
- std::string prefix = common_prefix(s_prompt, prompt_str);
- if (prefix.size() > longest) {
- slot = &s;
- longest = prefix.size();
- }
- }
- }
- if (!slot) {
- return get_slot(-1);
- }
- LOG_DEBUG("slot with common prefix found", {{
- "slot_id", slot->id,
- "characters", longest
- }});
- return slot;
- }
- void process_single_task(task_server& task)
- {
- switch (task.type)
- {
- case TASK_TYPE_COMPLETION: {
- server_slot *slot = nullptr;
- if (task.embedding_mode) {
- // Embedding seq_id (aka slot id) must always be <= token length, so always use slot 0
- slot = slots[0].available() ? &slots[0] : nullptr;
- } else {
- slot = prefix_slot(task.data["prompt"]);
- }
- if (slot == nullptr)
- {
- // if no slot is available, we defer this task for processing later
- LOG_VERBOSE("no slot is available", {{"task_id", task.id}});
- queue_tasks.defer(task);
- break;
- }
- slot->reset();
- slot->embedding = task.embedding_mode;
- slot->task_id = task.id;
- slot->multitask_id = task.multitask_id;
- if (!launch_slot_with_data(slot, task.data))
- {
- // send error result
- send_error(task, "internal_error");
- break;
- }
- } break;
- case TASK_TYPE_CANCEL: { // release slot linked with the task id
- for (auto & slot : slots)
- {
- if (slot.task_id == task.target_id)
- {
- slot.reset();
- slot.release();
- break;
- }
- }
- } break;
- case TASK_TYPE_NEXT_RESPONSE: {
- // do nothing
- } break;
- case TASK_TYPE_METRICS: {
- json slots_data = json::array();
- int n_idle_slots = 0;
- int n_processing_slots = 0;
- for (server_slot &slot: slots) {
- json slot_data = get_formated_generation(slot);
- slot_data["id"] = slot.id;
- slot_data["task_id"] = slot.task_id;
- slot_data["state"] = slot.state;
- slot_data["prompt"] = slot.prompt;
- slot_data["next_token"] = {
- {"has_next_token", slot.has_next_token},
- {"n_remain", slot.n_remaining},
- {"num_tokens_predicted", slot.n_decoded},
- {"stopped_eos", slot.stopped_eos},
- {"stopped_word", slot.stopped_word},
- {"stopped_limit", slot.stopped_limit},
- {"stopping_word", slot.stopping_word},
- };
- if (slot_data["state"] == IDLE) {
- n_idle_slots++;
- } else {
- n_processing_slots++;
- }
- slots_data.push_back(slot_data);
- }
- LOG_DEBUG("slot data", {
- {"task_id", task.id},
- {"n_idle_slots", n_idle_slots},
- {"n_processing_slots", n_processing_slots}
- });
- LOG_VERBOSE("slot data", {
- {"task_id", task.id},
- {"n_idle_slots", n_idle_slots},
- {"n_processing_slots", n_processing_slots},
- {"slots", slots_data}
- });
- task_result res;
- res.id = task.id;
- res.multitask_id = task.multitask_id;
- res.stop = true;
- res.error = false;
- res.result_json = {
- { "idle", n_idle_slots },
- { "processing", n_processing_slots },
- { "deferred", queue_tasks.queue_tasks_deferred.size() },
- { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
- { "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
- { "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
- { "t_prompt_processing", metrics.t_prompt_processing},
- { "n_tokens_predicted", metrics.n_tokens_predicted},
- { "t_tokens_generation", metrics.t_tokens_generation},
- { "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
- { "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
- { "slots", slots_data },
- };
- metrics.reset_bucket();
- queue_results.send(res);
- } break;
- }
- }
- void on_finish_multitask(task_multi& multitask)
- {
- // all subtasks done == multitask is done
- task_result result;
- result.id = multitask.id;
- result.stop = true;
- result.error = false;
- // collect json results into one json result
- std::vector<json> result_jsons;
- for (auto& subres : multitask.results)
- {
- result_jsons.push_back(subres.result_json);
- result.error = result.error && subres.error;
- }
- result.result_json = json{ { "results", result_jsons } };
- queue_results.send(result);
- }
- bool update_slots() {
- if (system_need_update)
- {
- LOG_DEBUG("updating system prompt", {});
- system_prompt_update();
- }
- llama_batch_clear(batch);
- if (all_slots_are_idle)
- {
- if (system_prompt.empty() && clean_kv_cache)
- {
- LOG_DEBUG("all slots are idle and system prompt is empty, clear the KV cache", {});
- kv_cache_clear();
- }
- return true;
- }
- LOG_VERBOSE("posting NEXT_RESPONSE", {});
- task_server task;
- task.type = TASK_TYPE_NEXT_RESPONSE;
- task.target_id = -1;
- queue_tasks.post(task);
- for (server_slot &slot : slots)
- {
- if (slot.ga_n == 1)
- {
- if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
- {
- // Shift context
- const int n_keep = slot.params.n_keep + add_bos_token;
- const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
- const int n_discard = n_left / 2;
- LOG_DEBUG("slot context shift", {
- {"slot_id", slot.id},
- {"task_id", slot.task_id},
- {"n_keep", n_keep},
- {"n_left", n_left},
- {"n_discard", n_discard},
- {"n_ctx", n_ctx},
- {"n_past", slot.n_past},
- {"n_system_tokens", system_tokens.size()},
- {"n_cache_tokens", slot.cache_tokens.size()}
- });
- llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
- llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
- for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++)
- {
- slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
- }
- slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
- slot.n_past -= n_discard;
- slot.truncated = true;
- }
- }
- }
- // decode any currently ongoing sequences
- LOG_VERBOSE("decoding ongoing sequences", {});
- for (auto & slot : slots)
- {
- // release the slot
- if (slot.command == RELEASE)
- {
- slot.state = IDLE;
- slot.command = NONE;
- slot.t_last_used = ggml_time_us();
- LOG_DEBUG("slot released", {
- {"slot_id", slot.id},
- {"task_id", slot.task_id},
- {"n_ctx", n_ctx},
- {"n_past", slot.n_past},
- {"n_system_tokens", system_tokens.size()},
- {"n_cache_tokens", slot.cache_tokens.size()},
- {"truncated", slot.truncated}
- });
- queue_tasks.notify_slot_changed();
- continue;
- }
- if (slot.state == IDLE)
- {
- continue;
- }
- slot.i_batch = batch.n_tokens;
- const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
- // TODO: we always have to take into account the "system_tokens"
- // this is not great and needs to be improved somehow
- llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
- slot.n_past += 1;
- }
- // process in chunks of params.n_batch
- int32_t n_batch = params.n_batch;
- // assign workload to the slots
- if (params.cont_batching || batch.n_tokens == 0)
- {
- for (auto & slot : slots)
- {
- const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
- // empty prompt passed -> release the slot and send empty response
- if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt)
- {
- slot.release();
- slot.print_timings();
- send_final_response(slot);
- continue;
- }
- // need process the prompt
- if (slot.state == IDLE && slot.command == LOAD_PROMPT)
- {
- slot.state = PROCESSING;
- slot.command = NONE;
- std::vector<llama_token> prompt_tokens;
- slot.t_start_process_prompt = ggml_time_us();
- slot.t_start_genereration = 0;
- prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
- slot.n_prompt_tokens = prompt_tokens.size();
- if (slot.params.n_keep < 0)
- {
- slot.params.n_keep = slot.n_prompt_tokens;
- }
- slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
- // if input prompt is too big, truncate it, if group attention self-extend is disabled
- if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx)
- {
- const int n_left = slot.n_ctx - slot.params.n_keep;
- const int n_shift = n_left / 2;
- const int n_erase = slot.n_prompt_tokens - slot.params.n_keep - n_shift;
- std::vector<llama_token> new_tokens(
- prompt_tokens.begin(),
- prompt_tokens.begin() + slot.params.n_keep);
- new_tokens.insert(
- new_tokens.end(),
- prompt_tokens.begin() + slot.params.n_keep + n_erase,
- prompt_tokens.end());
- LOG_INFO("input truncated", {
- {"n_ctx", slot.n_ctx},
- {"n_keep", slot.params.n_keep},
- {"n_left", n_left},
- {"n_shift", n_shift},
- {"n_erase", n_erase},
- });
- slot.truncated = true;
- prompt_tokens = new_tokens;
- slot.n_prompt_tokens = prompt_tokens.size();
- GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
- }
- if (!slot.params.cache_prompt)
- {
- llama_sampling_reset(slot.ctx_sampling);
- slot.n_past = 0;
- slot.n_past_se = 0;
- slot.ga_i = 0;
- slot.n_prompt_tokens_processed = slot.n_prompt_tokens;
- }
- else
- {
- // push the prompt into the sampling context (do not apply grammar)
- for (auto &token : prompt_tokens)
- {
- llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
- }
- slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
- // the last token of the cache is not in the KV cache until the next call to llama_decode
- // (it was sampled, pushed into the "cache_tokens", but not yet put in the context)
- if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size())
- {
- slot.n_past -= 1;
- }
- slot.n_prompt_tokens_processed = slot.n_prompt_tokens;
- if (slot.ga_n != 1)
- {
- int ga_i = 0;
- int32_t ga_n = slot.ga_n;
- int32_t ga_w = slot.ga_w;
- int32_t slot_npast = 0;
- for (int k = 0; k < slot.n_past; ++k)
- {
- while (slot_npast >= ga_i + ga_w) {
- const int bd = (ga_w/ga_n)*(ga_n - 1);
- slot_npast -= bd;
- ga_i += ga_w/ga_n;
- }
- slot_npast++;
- }
- slot.n_past_se = slot_npast;
- slot.ga_i = ga_i;
- }
- LOG_DEBUG("slot progression", {
- { "slot_id", slot.id },
- { "task_id", slot.task_id },
- { "n_past", slot.n_past },
- { "n_past_se", slot.n_past_se },
- { "ga_i", slot.ga_i },
- { "n_prompt_tokens_processed", slot.n_prompt_tokens_processed }
- });
- }
- slot.cache_tokens = prompt_tokens;
- if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0)
- {
- // we have to evaluate at least 1 token to generate logits.
- LOG_DEBUG("we have to evaluate at least 1 token to generate logits", {
- { "slot_id", slot.id },
- { "task_id", slot.task_id }
- });
- slot.n_past--;
- if (slot.ga_i > 0)
- {
- slot.n_past_se--;
- }
- }
- int p0 = (int) system_tokens.size() + slot.n_past;
- LOG_DEBUG("kv cache rm [p0, end)", {
- { "slot_id", slot.id },
- { "task_id", slot.task_id },
- { "p0", p0 }
- });
- llama_kv_cache_seq_rm(ctx, slot.id, p0, -1);
- LOG_VERBOSE("prompt ingested", {
- {"n_past", slot.n_past},
- {"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
- {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
- });
- const bool has_images = process_images(slot);
- // process the prefix of first image
- std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
- int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
- int32_t ga_i = slot.ga_i;
- int32_t ga_n = slot.ga_n;
- int32_t ga_w = slot.ga_w;
- for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
- {
- if (slot.ga_n != 1)
- {
- while (slot_npast >= ga_i + ga_w) {
- const int bd = (ga_w/ga_n)*(ga_n - 1);
- slot_npast -= bd;
- ga_i += ga_w/ga_n;
- }
- }
- llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id }, false);
- slot_npast++;
- }
- if (has_images && !ingest_images(slot, n_batch))
- {
- LOG_ERROR("failed processing images", {
- {"slot_id", slot.id},
- {"task_id", slot.task_id},
- });
- // FIXME @phymbert: to be properly tested
- // early returning without changing the slot state will block the slot for ever
- // no one at the moment is checking the return value
- return false;
- }
- // extract the logits only for the last token
- if (batch.n_tokens > 0)
- {
- batch.logits[batch.n_tokens - 1] = true;
- }
- slot.n_decoded = 0;
- slot.i_batch = batch.n_tokens - 1;
- }
- }
- }
- if (batch.n_tokens == 0)
- {
- all_slots_are_idle = true;
- return true;
- }
- for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
- {
- const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
- for (auto & slot : slots)
- {
- if (slot.ga_n != 1)
- {
- // context extension via Self-Extend
- while (slot.n_past_se >= slot.ga_i + slot.ga_w)
- {
- const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
- const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
- const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
- LOG_TEE("\n");
- LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
- LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
- LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
- llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
- llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
- llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
- slot.n_past_se -= bd;
- slot.ga_i += slot.ga_w / slot.ga_n;
- LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
- }
- slot.n_past_se += n_tokens;
- }
- }
- llama_batch batch_view =
- {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- 0, 0, 0, // unused
- };
- const int ret = llama_decode(ctx, batch_view);
- if (ret != 0)
- {
- if (n_batch == 1 || ret < 0)
- {
- // if you get here, it means the KV cache is full - try increasing it via the context size
- LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
- return false;
- }
- LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
- // retry with half the batch size to try to find a free slot in the KV cache
- n_batch /= 2;
- i -= n_batch;
- continue;
- }
- for (auto & slot : slots)
- {
- if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
- {
- continue;
- }
- // prompt evaluated for embedding
- if (slot.embedding)
- {
- send_embedding(slot, batch_view);
- slot.release();
- slot.i_batch = -1;
- continue;
- }
- completion_token_output result;
- const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
- llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
- slot.n_decoded += 1;
- if (slot.n_decoded == 1)
- {
- slot.t_start_genereration = ggml_time_us();
- slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
- metrics.on_prompt_eval(slot);
- }
- llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
- result.tok = id;
- const int32_t n_probs = slot.sparams.n_probs;
- if (slot.sparams.temp <= 0 && n_probs > 0)
- {
- // for llama_sample_token_greedy we need to sort candidates
- llama_sample_softmax(ctx, &cur_p);
- }
- for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
- {
- result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
- }
- if (!process_token(result, slot))
- {
- slot.release();
- slot.print_timings();
- send_final_response(slot);
- metrics.on_prediction(slot);
- }
- slot.i_batch = -1;
- }
- }
- LOG_VERBOSE("slots updated", {});
- return true;
- }
- json model_meta() {
- return json{
- {"vocab_type", llama_vocab_type(model)},
- {"n_vocab", llama_n_vocab(model)},
- {"n_ctx_train", llama_n_ctx_train(model)},
- {"n_embd", llama_n_embd(model)},
- {"n_params", llama_model_n_params(model)},
- {"size", llama_model_size(model)},
- };
- }
- };
- static void server_print_usage(const char *argv0, const gpt_params ¶ms,
- const server_params &sparams)
- {
- printf("usage: %s [options]\n", argv0);
- printf("\n");
- printf("options:\n");
- printf(" -h, --help show this help message and exit\n");
- printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
- printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.cpuparams.n_threads);
- printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
- printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
- printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
- printf(" --rope-scaling {none,linear,yarn}\n");
- printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
- printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
- printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
- printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
- printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
- printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
- printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
- printf(" --pooling {none,mean,cls}\n");
- printf(" pooling type for embeddings, use model default if unspecified\n");
- printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
- printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
- printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
- if (llama_supports_mlock())
- {
- printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
- }
- if (llama_supports_mmap())
- {
- printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
- }
- printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
- printf(" - distribute: spread execution evenly over all nodes\n");
- printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
- printf(" - numactl: use the CPU map provided my numactl\n");
- if (llama_supports_gpu_offload()) {
- printf(" -ngl N, --n-gpu-layers N\n");
- printf(" number of layers to store in VRAM\n");
- printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
- printf(" how to split the model across multiple GPUs, one of:\n");
- printf(" - none: use one GPU only\n");
- printf(" - layer (default): split layers and KV across GPUs\n");
- printf(" - row: split rows across GPUs\n");
- printf(" -ts SPLIT --tensor-split SPLIT\n");
- printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
- printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
- printf(" or for intermediate results and KV (with split-mode = row)\n");
- }
- printf(" -m FNAME, --model FNAME\n");
- printf(" model path (default: %s)\n", params.model.c_str());
- printf(" -a ALIAS, --alias ALIAS\n");
- printf(" set an alias for the model, will be added as `model` field in completion response\n");
- printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
- printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
- printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
- printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
- printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
- printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
- printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
- printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
- printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
- printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
- printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
- printf(" -fa, --flash-attn enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled");
- printf(" -spf FNAME, --system-prompt-file FNAME\n");
- printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
- printf(" -ctk TYPE, --cache-type-k TYPE\n");
- printf(" KV cache data type for K (default: f16)\n");
- printf(" -ctv TYPE, --cache-type-v TYPE\n");
- printf(" KV cache data type for V (default: f16)\n");
- printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
- printf(" --log-format log output format: json or text (default: json)\n");
- printf(" --log-disable disables logging to a file.\n");
- printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
- printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
- printf("\n");
- printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
- printf(" --override-kv KEY=TYPE:VALUE\n");
- printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
- printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
- printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
- printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
- printf(" --chat-template JINJA_TEMPLATE\n");
- printf(" set custom jinja chat template (default: template taken from model's metadata)\n");
- printf(" Note: only commonly used templates are accepted, since we don't have jinja parser\n");
- printf("\n");
- }
- static void server_params_parse(int argc, char **argv, server_params &sparams, gpt_params ¶ms)
- {
- gpt_params default_params;
- server_params default_sparams;
- std::string arg;
- bool invalid_param = false;
- for (int i = 1; i < argc; i++)
- {
- arg = argv[i];
- if (arg == "--port")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.port = std::stoi(argv[i]);
- }
- else if (arg == "--host")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.hostname = argv[i];
- }
- else if (arg == "--path")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.public_path = argv[i];
- }
- else if (arg == "--api-key")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.api_keys.emplace_back(argv[i]);
- }
- else if (arg == "--api-key-file")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- std::ifstream key_file(argv[i]);
- if (!key_file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- break;
- }
- std::string key;
- while (std::getline(key_file, key)) {
- if (key.size() > 0) {
- sparams.api_keys.push_back(key);
- }
- }
- key_file.close();
- }
- else if (arg == "--timeout" || arg == "-to")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.read_timeout = std::stoi(argv[i]);
- sparams.write_timeout = std::stoi(argv[i]);
- }
- else if (arg == "-m" || arg == "--model")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.model = argv[i];
- }
- else if (arg == "-a" || arg == "--alias")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.model_alias = argv[i];
- }
- else if (arg == "-h" || arg == "--help")
- {
- server_print_usage(argv[0], default_params, default_sparams);
- exit(0);
- }
- else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_ctx = std::stoi(argv[i]);
- }
- else if (arg == "--rope-scaling")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- std::string value(argv[i]);
- /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
- else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
- else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
- else { invalid_param = true; break; }
- }
- else if (arg == "--rope-freq-base")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.rope_freq_base = std::stof(argv[i]);
- }
- else if (arg == "--rope-freq-scale")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.rope_freq_scale = std::stof(argv[i]);
- }
- else if (arg == "--yarn-ext-factor")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.yarn_ext_factor = std::stof(argv[i]);
- }
- else if (arg == "--yarn-attn-factor")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.yarn_attn_factor = std::stof(argv[i]);
- }
- else if (arg == "--yarn-beta-fast")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.yarn_beta_fast = std::stof(argv[i]);
- }
- else if (arg == "--yarn-beta-slow")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.yarn_beta_slow = std::stof(argv[i]);
- }
- else if (arg == "--pooling")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- std::string value(argv[i]);
- /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
- else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
- else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
- else { invalid_param = true; break; }
- }
- else if (arg == "--threads" || arg == "-t")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.cpuparams.n_threads = std::stoi(argv[i]);
- }
- else if (arg == "--grp-attn-n" || arg == "-gan")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.grp_attn_n = std::stoi(argv[i]);
- }
- else if (arg == "--grp-attn-w" || arg == "-gaw")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.grp_attn_w = std::stoi(argv[i]);
- }
- else if (arg == "--threads-batch" || arg == "-tb")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.cpuparams_batch.n_threads = std::stoi(argv[i]);
- }
- else if (arg == "--threads-http")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.n_threads_http = std::stoi(argv[i]);
- }
- else if (arg == "-b" || arg == "--batch-size")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_batch = std::stoi(argv[i]);
- }
- else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- if (llama_supports_gpu_offload()) {
- params.n_gpu_layers = std::stoi(argv[i]);
- } else {
- LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
- "See main README.md for information on enabling GPU BLAS support",
- {{"n_gpu_layers", params.n_gpu_layers}});
- }
- }
- else if (arg == "--split-mode" || arg == "-sm")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- std::string arg_next = argv[i];
- if (arg_next == "none")
- {
- params.split_mode = LLAMA_SPLIT_MODE_NONE;
- }
- else if (arg_next == "layer")
- {
- params.split_mode = LLAMA_SPLIT_MODE_LAYER;
- }
- else if (arg_next == "row")
- {
- params.split_mode = LLAMA_SPLIT_MODE_ROW;
- }
- else {
- invalid_param = true;
- break;
- }
- #ifndef GGML_USE_CUDA
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA. Setting the split mode has no effect.\n");
- #endif // GGML_USE_CUDA
- }
- else if (arg == "--tensor-split" || arg == "-ts")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- #if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
- std::string arg_next = argv[i];
- // split string by , and /
- const std::regex regex{R"([,/]+)"};
- std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
- std::vector<std::string> split_arg{it, {}};
- GGML_ASSERT(split_arg.size() <= llama_max_devices());
- for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
- {
- if (i_device < split_arg.size())
- {
- params.tensor_split[i_device] = std::stof(split_arg[i_device]);
- }
- else
- {
- params.tensor_split[i_device] = 0.0f;
- }
- }
- #else
- LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a tensor split.\n", {});
- #endif // GGML_USE_CUDA
- }
- else if (arg == "--main-gpu" || arg == "-mg")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- #if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
- params.main_gpu = std::stoi(argv[i]);
- #else
- LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
- #endif
- }
- else if (arg == "--lora")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.lora_adapters.push_back({
- std::string(argv[i]),
- 1.0,
- });
- params.use_mmap = false;
- }
- else if (arg == "--lora-scaled")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- const char * lora_adapter = argv[i];
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.lora_adapters.push_back({
- lora_adapter,
- std::stof(argv[i])
- });
- params.use_mmap = false;
- }
- else if (arg == "-v" || arg == "--verbose")
- {
- server_verbose = true;
- }
- else if (arg == "--mlock")
- {
- params.use_mlock = true;
- }
- else if (arg == "--no-mmap")
- {
- params.use_mmap = false;
- }
- else if (arg == "--numa")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- } else {
- std::string value(argv[i]);
- /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
- else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
- else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
- else { invalid_param = true; break; }
- }
- }
- else if (arg == "--embedding")
- {
- params.embedding = true;
- }
- else if (arg == "-cb" || arg == "--cont-batching")
- {
- params.cont_batching = true;
- }
- else if (arg == "-fa" || arg == "--flash-attn")
- {
- params.flash_attn = true;
- }
- else if (arg == "-np" || arg == "--parallel")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_parallel = std::stoi(argv[i]);
- }
- else if (arg == "-n" || arg == "--n-predict")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_predict = std::stoi(argv[i]);
- }
- else if (arg == "-ctk" || arg == "--cache-type-k") {
- params.cache_type_k = argv[++i];
- }
- else if (arg == "-ctv" || arg == "--cache-type-v") {
- params.cache_type_v = argv[++i];
- }
- else if(arg == "--mmproj")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.mmproj = argv[i];
- }
- else if (arg == "--log-format")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- if (std::strcmp(argv[i], "json") == 0)
- {
- server_log_json = true;
- }
- else if (std::strcmp(argv[i], "text") == 0)
- {
- server_log_json = false;
- }
- else
- {
- invalid_param = true;
- break;
- }
- }
- else if (arg == "--log-disable")
- {
- log_set_target(stdout);
- LOG_DEBUG("logging to file is disabled.", {});
- }
- else if (arg == "--slots-endpoint-disable")
- {
- sparams.slots_endpoint = false;
- }
- else if (arg == "--metrics")
- {
- sparams.metrics_endpoint = true;
- }
- else if (arg == "--chat-template")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- if (!verify_custom_template(argv[i])) {
- fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
- fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
- invalid_param = true;
- break;
- }
- }
- else if (arg == "--override-kv")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- char * sep = strchr(argv[i], '=');
- if (sep == nullptr || sep - argv[i] >= 128) {
- fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
- invalid_param = true;
- break;
- }
- struct llama_model_kv_override kvo;
- std::strncpy(kvo.key, argv[i], sep - argv[i]);
- kvo.key[sep - argv[i]] = 0;
- sep++;
- if (strncmp(sep, "int:", 4) == 0) {
- sep += 4;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
- kvo.val_i64 = std::atol(sep);
- } else if (strncmp(sep, "float:", 6) == 0) {
- sep += 6;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
- kvo.val_f64 = std::atof(sep);
- } else if (strncmp(sep, "bool:", 5) == 0) {
- sep += 5;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
- if (std::strcmp(sep, "true") == 0) {
- kvo.val_bool = true;
- } else if (std::strcmp(sep, "false") == 0) {
- kvo.val_bool = false;
- } else {
- fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
- invalid_param = true;
- break;
- }
- } else {
- fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
- invalid_param = true;
- break;
- }
- params.kv_overrides.push_back(kvo);
- }
- else
- {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- server_print_usage(argv[0], default_params, default_sparams);
- exit(1);
- }
- }
- if (!params.kv_overrides.empty()) {
- params.kv_overrides.emplace_back();
- params.kv_overrides.back().key[0] = 0;
- }
- postprocess_cpu_params(params.cpuparams, nullptr);
- postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams);
- postprocess_cpu_params(params.draft_cpuparams, ¶ms.cpuparams);
- postprocess_cpu_params(params.draft_cpuparams_batch, ¶ms.cpuparams_batch);
- if (invalid_param)
- {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- server_print_usage(argv[0], default_params, default_sparams);
- exit(1);
- }
- }
- /* llama.cpp completion api semantics */
- static json format_partial_response(
- llama_server_context &llama, server_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
- ) {
- json res = json
- {
- {"content", content },
- {"stop", false},
- {"slot_id", slot->id },
- {"multimodal", llama.multimodal }
- };
- if (slot->sparams.n_probs > 0)
- {
- res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
- }
- return res;
- }
- static json format_tokenizer_response(const std::vector<llama_token> &tokens)
- {
- return json {
- {"tokens", tokens}
- };
- }
- static json format_detokenized_response(std::string content)
- {
- return json {
- {"content", content}
- };
- }
- static void log_server_request(const httplib::Request &req, const httplib::Response &res)
- {
- // skip GH copilot requests when using default port
- if (req.path == "/health" || req.path == "/v1/health" || req.path == "/v1/completions")
- {
- return;
- }
- LOG_DEBUG("request", {
- {"remote_addr", req.remote_addr},
- {"remote_port", req.remote_port},
- {"status", res.status},
- {"method", req.method},
- {"path", req.path},
- {"params", req.params},
- });
- LOG_VERBOSE("request", {
- {"request", req.body},
- {"response", res.body},
- });
- }
- static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, server_slot *slot)
- {
- auto & gtps = slot->generated_token_probs;
- auto translator = token_translator{llama.ctx};
- auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
- const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
- if (slot->generated_text.capacity() < slot->generated_text.size() + len)
- {
- slot->generated_text.reserve(slot->generated_text.size() + len);
- }
- for (const completion_token_output & cto : gtps)
- {
- slot->generated_text += translator(cto);
- }
- }
- std::function<void(int)> shutdown_handler;
- std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
- inline void signal_handler(int signal) {
- if (is_terminating.test_and_set()) {
- // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
- // this is for better developer experience, we can remove when the server is stable enough
- fprintf(stderr, "Received second interrupt, terminating immediately.\n");
- exit(1);
- }
- shutdown_handler(signal);
- }
- static bool update_load_progress(float progress, void *data)
- {
- ((llama_server_context*)data)->modelProgress = progress;
- return true;
- }
- #if defined(_WIN32)
- char* wchar_to_char(const wchar_t* wstr) {
- if (wstr == nullptr) return nullptr;
- // Determine the number of bytes needed for the UTF-8 string
- int bytes = WideCharToMultiByte(CP_UTF8, 0, wstr, -1, nullptr, 0, nullptr, nullptr);
- char* str = new char[bytes];
- // Convert the wide-character string to a UTF-8 string
- WideCharToMultiByte(CP_UTF8, 0, wstr, -1, str, bytes, nullptr, nullptr);
- return str;
- }
- int wmain(int argc, wchar_t **wargv) {
- char** argv = new char*[argc];
- for (int i = 0; i < argc; ++i) {
- argv[i] = wchar_to_char(wargv[i]);
- }
- // Adjust error mode to avoid error dialog after we start.
- SetErrorMode(SEM_FAILCRITICALERRORS);
- #else
- int main(int argc, char **argv) {
- #endif
- #if SERVER_VERBOSE != 1
- log_disable();
- #endif
- // own arguments required by this example
- gpt_params params;
- server_params sparams;
- // struct that contains llama context and inference
- llama_server_context llama;
- server_params_parse(argc, argv, sparams, params);
- if (params.model_alias == "unknown")
- {
- params.model_alias = params.model;
- }
- llama_backend_init();
- llama_numa_init(params.numa);
- LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
- {"commit", LLAMA_COMMIT}});
- LOG_INFO("system info", {
- {"n_threads", params.cpuparams.n_threads},
- {"n_threads_batch", params.cpuparams_batch.n_threads},
- {"total_threads", std::thread::hardware_concurrency()},
- {"system_info", llama_print_system_info()},
- });
- httplib::Server svr;
- std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
- svr.set_default_headers({{"Server", "llama.cpp"}});
- // CORS preflight
- svr.Options(R"(.*)", [](const httplib::Request &req, httplib::Response &res) {
- res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
- res.set_header("Access-Control-Allow-Credentials", "true");
- res.set_header("Access-Control-Allow-Methods", "POST");
- res.set_header("Access-Control-Allow-Headers", "*");
- });
- svr.Get("/health", [&](const httplib::Request& req, httplib::Response& res) {
- server_state current_state = state.load();
- switch(current_state) {
- case SERVER_STATE_READY: {
- // request slots data using task queue
- task_server task;
- task.id = llama.queue_tasks.get_new_id();
- task.type = TASK_TYPE_METRICS;
- task.target_id = -1;
- llama.queue_results.add_waiting_task_id(task.id);
- llama.queue_tasks.post(task);
- // get the result
- task_result result = llama.queue_results.recv(task.id);
- llama.queue_results.remove_waiting_task_id(task.id);
- int n_idle_slots = result.result_json["idle"];
- int n_processing_slots = result.result_json["processing"];
- json health = {
- {"status", "ok"},
- {"slots_idle", n_idle_slots},
- {"slots_processing", n_processing_slots}};
- res.status = 200; // HTTP OK
- if (sparams.slots_endpoint && req.has_param("include_slots")) {
- health["slots"] = result.result_json["slots"];
- }
- if (n_idle_slots == 0) {
- health["status"] = "no slot available";
- if (req.has_param("fail_on_no_slot")) {
- res.status = 503; // HTTP Service Unavailable
- }
- }
- res.set_content(health.dump(), "application/json");
- break;
- }
- case SERVER_STATE_LOADING_MODEL:
- char buf[128];
- snprintf(&buf[0], 128, R"({"status": "loading model", "progress": %0.2f})", llama.modelProgress);
- res.set_content(buf, "application/json");
- res.status = 503; // HTTP Service Unavailable
- break;
- case SERVER_STATE_ERROR:
- res.set_content(R"({"status": "error", "error": "Model failed to load"})", "application/json");
- res.status = 500; // HTTP Internal Server Error
- break;
- }
- });
- if (sparams.slots_endpoint) {
- svr.Get("/slots", [&](const httplib::Request&, httplib::Response& res) {
- // request slots data using task queue
- task_server task;
- task.id = llama.queue_tasks.get_new_id();
- task.type = TASK_TYPE_METRICS;
- task.target_id = -1;
- llama.queue_results.add_waiting_task_id(task.id);
- llama.queue_tasks.post(task);
- // get the result
- task_result result = llama.queue_results.recv(task.id);
- llama.queue_results.remove_waiting_task_id(task.id);
- res.set_content(result.result_json["slots"].dump(), "application/json");
- res.status = 200; // HTTP OK
- });
- }
- if (sparams.metrics_endpoint) {
- svr.Get("/metrics", [&](const httplib::Request&, httplib::Response& res) {
- // request slots data using task queue
- task_server task;
- task.id = llama.queue_tasks.get_new_id();
- task.type = TASK_TYPE_METRICS;
- task.target_id = -1;
- llama.queue_results.add_waiting_task_id(task.id);
- llama.queue_tasks.post(task);
- // get the result
- task_result result = llama.queue_results.recv(task.id);
- llama.queue_results.remove_waiting_task_id(task.id);
- json data = result.result_json;
- uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"];
- uint64_t t_prompt_processing = data["t_prompt_processing"];
- uint64_t n_tokens_predicted = data["n_tokens_predicted"];
- uint64_t t_tokens_generation = data["t_tokens_generation"];
- int32_t kv_cache_used_cells = data["kv_cache_used_cells"];
- // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
- json all_metrics_def = json {
- {"counter", {{
- {"name", "prompt_tokens_total"},
- {"help", "Number of prompt tokens processed."},
- {"value", data["n_prompt_tokens_processed_total"]}
- }, {
- {"name", "tokens_predicted_total"},
- {"help", "Number of generation tokens processed."},
- {"value", data["n_tokens_predicted_total"]}
- }}},
- {"gauge", {{
- {"name", "prompt_tokens_seconds"},
- {"help", "Average prompt throughput in tokens/s."},
- {"value", n_prompt_tokens_processed ? 1e3 / t_prompt_processing * n_prompt_tokens_processed : 0}
- },{
- {"name", "predicted_tokens_seconds"},
- {"help", "Average generation throughput in tokens/s."},
- {"value", n_tokens_predicted ? 1e3 / t_tokens_generation * n_tokens_predicted : 0}
- },{
- {"name", "kv_cache_usage_ratio"},
- {"help", "KV-cache usage. 1 means 100 percent usage."},
- {"value", 1. * kv_cache_used_cells / params.n_ctx}
- },{
- {"name", "kv_cache_tokens"},
- {"help", "KV-cache tokens."},
- {"value", data["kv_cache_tokens_count"]}
- },{
- {"name", "requests_processing"},
- {"help", "Number of request processing."},
- {"value", data["processing"]}
- },{
- {"name", "requests_deferred"},
- {"help", "Number of request deferred."},
- {"value", data["deferred"]}
- }}}
- };
- std::stringstream prometheus;
- for (const auto& el : all_metrics_def.items()) {
- const auto& type = el.key();
- const auto& metrics_def = el.value();
- for (const auto& metric_def : metrics_def) {
- std::string name = metric_def["name"];
- std::string help = metric_def["help"];
- auto value = json_value(metric_def, "value", 0);
- prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
- << "# TYPE llamacpp:" << name << " " << type << "\n"
- << "llamacpp:" << name << " " << value << "\n";
- }
- }
- res.set_content(prometheus.str(), "text/plain; version=0.0.4");
- res.status = 200; // HTTP OK
- });
- }
- svr.set_logger(log_server_request);
- svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
- {
- const char fmt[] = "500 Internal Server Error\n%s";
- char buf[BUFSIZ];
- try
- {
- std::rethrow_exception(std::move(ep));
- }
- catch (std::exception &e)
- {
- snprintf(buf, sizeof(buf), fmt, e.what());
- }
- catch (...)
- {
- snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
- }
- res.set_content(buf, "text/plain; charset=utf-8");
- res.status = 500;
- });
- svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
- {
- if (res.status == 401)
- {
- res.set_content("Unauthorized", "text/plain; charset=utf-8");
- }
- if (res.status == 400)
- {
- res.set_content("Invalid request", "text/plain; charset=utf-8");
- }
- else if (res.status == 404)
- {
- res.set_content("File Not Found", "text/plain; charset=utf-8");
- res.status = 404;
- }
- });
- // set timeouts and change hostname and port
- svr.set_read_timeout (sparams.read_timeout);
- svr.set_write_timeout(sparams.write_timeout);
- if (!svr.bind_to_port(sparams.hostname, sparams.port))
- {
- fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
- return 1;
- }
- // Set the base directory for serving static files
- svr.set_base_dir(sparams.public_path);
- std::unordered_map<std::string, std::string> log_data;
- log_data["hostname"] = sparams.hostname;
- log_data["port"] = std::to_string(sparams.port);
- if (sparams.api_keys.size() == 1) {
- log_data["api_key"] = "api_key: ****" + sparams.api_keys[0].substr(sparams.api_keys[0].length() - 4);
- } else if (sparams.api_keys.size() > 1) {
- log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
- }
- if (sparams.n_threads_http < 1) {
- // +2 threads for monitoring endpoints
- sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
- }
- log_data["n_threads_http"] = std::to_string(sparams.n_threads_http);
- svr.new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
- LOG_INFO("HTTP server listening", log_data);
- // run the HTTP server in a thread - see comment below
- std::thread t([&]()
- {
- if (!svr.listen_after_bind())
- {
- state.store(SERVER_STATE_ERROR);
- return 1;
- }
- return 0;
- });
- // load the model
- params.progress_callback = update_load_progress;
- params.progress_callback_user_data = (void*)&llama;
- if (!llama.load_model(params))
- {
- state.store(SERVER_STATE_ERROR);
- return 1;
- } else {
- llama.initialize();
- state.store(SERVER_STATE_READY);
- LOG_INFO("model loaded", {});
- }
- const auto model_meta = llama.model_meta();
- // Middleware for API key validation
- auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
- // If API key is not set, skip validation
- if (sparams.api_keys.empty()) {
- return true;
- }
- // Check for API key in the header
- auto auth_header = req.get_header_value("Authorization");
- std::string prefix = "Bearer ";
- if (auth_header.substr(0, prefix.size()) == prefix) {
- std::string received_api_key = auth_header.substr(prefix.size());
- if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) {
- return true; // API key is valid
- }
- }
- // API key is invalid or not provided
- res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
- res.status = 401; // Unauthorized
- LOG_WARNING("Unauthorized: Invalid API Key", {});
- return false;
- };
- // this is only called if no index.html is found in the public --path
- svr.Get("/", [](const httplib::Request &, httplib::Response &res)
- {
- res.set_content("server running", "text/plain; charset=utf-8");
- res.status = 200; // Unauthorized
- return true;
- });
- svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
- {
- res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
- if (!validate_api_key(req, res)) {
- return;
- }
- json data = json::parse(req.body);
- const int task_id = llama.queue_tasks.get_new_id();
- llama.queue_results.add_waiting_task_id(task_id);
- llama.request_completion(task_id, data, false, -1);
- if (!json_value(data, "stream", false)) {
- std::string completion_text;
- task_result result = llama.queue_results.recv(task_id);
- if (!result.error && result.stop) {
- res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
- }
- else
- {
- res.status = 404;
- res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
- }
- llama.queue_results.remove_waiting_task_id(task_id);
- } else {
- const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink)
- {
- while (true)
- {
- task_result result = llama.queue_results.recv(task_id);
- if (!result.error) {
- const std::string str =
- "data: " +
- result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n";
- LOG_VERBOSE("data stream", {
- { "to_send", str }
- });
- if (!sink.write(str.c_str(), str.size()))
- {
- llama.queue_results.remove_waiting_task_id(task_id);
- return false;
- }
- if (result.stop) {
- break;
- }
- } else {
- const std::string str =
- "error: " +
- result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n";
- LOG_VERBOSE("data stream", {
- { "to_send", str }
- });
- if (!sink.write(str.c_str(), str.size()))
- {
- llama.queue_results.remove_waiting_task_id(task_id);
- return false;
- }
- break;
- }
- }
- llama.queue_results.remove_waiting_task_id(task_id);
- sink.done();
- return true;
- };
- auto on_complete = [task_id, &llama] (bool)
- {
- // cancel
- llama.request_cancel(task_id);
- llama.queue_results.remove_waiting_task_id(task_id);
- };
- res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
- }
- });
- svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
- {
- res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
- const json body = json::parse(req.body);
- std::vector<llama_token> tokens;
- if (body.count("content") != 0)
- {
- tokens = llama.tokenize(body["content"], false);
- }
- const json data = format_tokenizer_response(tokens);
- return res.set_content(data.dump(), "application/json; charset=utf-8");
- });
- svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
- {
- res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
- const json body = json::parse(req.body);
- std::string content;
- if (body.count("tokens") != 0)
- {
- const std::vector<llama_token> tokens = body["tokens"];
- content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
- }
- const json data = format_detokenized_response(content);
- return res.set_content(data.dump(), "application/json; charset=utf-8");
- });
- svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
- {
- res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
- const json body = json::parse(req.body);
- json prompt;
- if (body.count("content") != 0)
- {
- prompt = body["content"];
- }
- else
- {
- prompt = "";
- }
- // create and queue the task
- const int task_id = llama.queue_tasks.get_new_id();
- llama.queue_results.add_waiting_task_id(task_id);
- llama.request_completion(task_id, {{"prompt", prompt}}, true, -1);
- // get the result
- task_result result = llama.queue_results.recv(task_id);
- llama.queue_results.remove_waiting_task_id(task_id);
- // send the result
- return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
- });
- // GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
- // "Bus error: 10" - this is on macOS, it does not crash on Linux
- //std::thread t2([&]()
- /*{
- bool running = true;
- while (running)
- {
- running = llama.update_slots();
- }
- }*/
- //);
- llama.queue_tasks.on_new_task(std::bind(
- &llama_server_context::process_single_task, &llama, std::placeholders::_1));
- llama.queue_tasks.on_finish_multitask(std::bind(
- &llama_server_context::on_finish_multitask, &llama, std::placeholders::_1));
- llama.queue_tasks.on_run_slots(std::bind(
- &llama_server_context::update_slots, &llama));
- llama.queue_results.on_multitask_update(std::bind(
- &llama_server_queue::update_multitask,
- &llama.queue_tasks,
- std::placeholders::_1,
- std::placeholders::_2,
- std::placeholders::_3
- ));
- shutdown_handler = [&](int) {
- llama.queue_tasks.terminate();
- };
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- struct sigaction sigint_action;
- sigint_action.sa_handler = signal_handler;
- sigemptyset (&sigint_action.sa_mask);
- sigint_action.sa_flags = 0;
- sigaction(SIGINT, &sigint_action, NULL);
- #elif defined (_WIN32)
- auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
- return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
- };
- SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
- for (int i = 0; i < argc; ++i) {
- delete[] argv[i];
- }
- delete[] argv;
- #endif
- llama.queue_tasks.start_loop();
- svr.stop();
- t.join();
- llama_backend_free();
- return 0;
- }
|