ggml.go 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. package ggml
  2. // #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
  3. // #include <stdlib.h>
  4. // #include <stdint.h>
  5. // #include "ggml.h"
  6. // #include "ggml-cpu.h"
  7. // #include "ggml-backend.h"
  8. import "C"
  9. import (
  10. "bytes"
  11. "encoding/binary"
  12. "fmt"
  13. "io"
  14. "log/slog"
  15. "os"
  16. "path/filepath"
  17. "runtime"
  18. "strings"
  19. "sync"
  20. "unsafe"
  21. "github.com/ollama/ollama/format"
  22. "github.com/ollama/ollama/fs/ggml"
  23. "github.com/ollama/ollama/ml"
  24. "golang.org/x/sync/errgroup"
  25. _ "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
  26. )
  27. type device struct {
  28. d *C.struct_ggml_backend_device
  29. }
  30. func (d device) name() string {
  31. return C.GoString(C.ggml_backend_dev_name(d.d))
  32. }
  33. func (d device) kind() string {
  34. switch C.ggml_backend_dev_type(d.d) {
  35. case C.GGML_BACKEND_DEVICE_TYPE_CPU:
  36. return "cpu"
  37. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  38. return "gpu"
  39. case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  40. return "accel"
  41. default:
  42. return "unknown"
  43. }
  44. }
  45. func (d device) memory() (total uint64, free uint64) {
  46. C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
  47. return
  48. }
  49. func (d device) LogValue() slog.Value {
  50. free, total := d.memory()
  51. return slog.GroupValue(
  52. slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
  53. slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
  54. slog.String("kind", d.kind()),
  55. slog.String("free", format.HumanBytes2(free)),
  56. slog.String("total", format.HumanBytes2(total)),
  57. )
  58. }
  59. var devices = sync.OnceValue(func() []device {
  60. var lib struct{ name, pattern, defaultValue string }
  61. if runtime.GOOS == "windows" {
  62. lib.name = "PATH"
  63. lib.pattern = "ggml-*.dll"
  64. lib.defaultValue = "."
  65. } else if runtime.GOOS == "linux" {
  66. lib.name = "LD_LIBRARY_PATH"
  67. lib.pattern = "libggml-*.so"
  68. lib.defaultValue = "/usr/local/lib:/usr/lib"
  69. }
  70. if lib.name != "" {
  71. paths, ok := os.LookupEnv(lib.name)
  72. if !ok {
  73. paths = lib.defaultValue
  74. }
  75. for _, path := range filepath.SplitList(paths) {
  76. matches, err := filepath.Glob(filepath.Join(path, lib.pattern))
  77. if err != nil {
  78. slog.Error("failed to glob", "path", path, "error", err)
  79. continue
  80. }
  81. for _, match := range matches {
  82. if base := filepath.Base(match); strings.HasPrefix(base, "ggml-base") ||
  83. strings.HasPrefix(base, "libggml-base") {
  84. continue
  85. }
  86. func() {
  87. cmatch := C.CString(match)
  88. defer C.free(unsafe.Pointer(cmatch))
  89. C.ggml_backend_load(cmatch)
  90. }()
  91. }
  92. }
  93. }
  94. s := make([]device, C.ggml_backend_dev_count())
  95. for i := range s {
  96. s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
  97. }
  98. return s
  99. })
  100. type Backend struct {
  101. meta *ggml.GGML
  102. cpus, gpus []Context
  103. tensors map[string]*Context
  104. }
  105. func New(r *os.File) (ml.Backend, error) {
  106. meta, n, err := ggml.Decode(r, -1)
  107. if err != nil {
  108. return nil, err
  109. }
  110. slog.Info(
  111. "",
  112. "architecture", meta.KV().Architecture(),
  113. "file_type", meta.KV().FileType(),
  114. "name", meta.KV().String("general.name"),
  115. "description", meta.KV().String("general.description"),
  116. "num_tensors", len(meta.Tensors().Items()),
  117. "num_key_values", len(meta.KV()),
  118. )
  119. var cpus, gpus []Context
  120. for _, d := range devices() {
  121. switch C.ggml_backend_dev_type(d.d) {
  122. case C.GGML_BACKEND_DEVICE_TYPE_CPU,
  123. C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  124. slog.Info("cpu", "device", d)
  125. cpus = append(cpus, Context{
  126. ctx: C.ggml_init(C.struct_ggml_init_params{
  127. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  128. no_alloc: true,
  129. }),
  130. backend: C.ggml_backend_dev_init(d.d, nil),
  131. })
  132. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  133. slog.Info("gpu", "device", d)
  134. gpus = append(gpus, Context{
  135. ctx: C.ggml_init(C.struct_ggml_init_params{
  136. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  137. no_alloc: true,
  138. }),
  139. backend: C.ggml_backend_dev_init(d.d, nil),
  140. })
  141. }
  142. }
  143. ctxFunc := func(s []Context) (*Context, error) {
  144. for _, e := range s {
  145. return &e, nil
  146. }
  147. return nil, fmt.Errorf("no devices available")
  148. }
  149. tensors := make(map[*ggml.Tensor]*Context, len(meta.Tensors().Items()))
  150. for _, t := range meta.Tensors().Items() {
  151. c, err := ctxFunc(append(gpus, cpus...))
  152. if err != nil {
  153. return nil, err
  154. }
  155. func() {
  156. tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
  157. cname := C.CString(t.Name)
  158. defer C.free(unsafe.Pointer(cname))
  159. C.ggml_set_name(tt, cname)
  160. tensors[t] = c
  161. }()
  162. }
  163. for _, b := range append(gpus, cpus...) {
  164. C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
  165. }
  166. sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
  167. var g errgroup.Group
  168. for t, c := range tensors {
  169. g.Go(func() error {
  170. var b bytes.Buffer
  171. n, err := io.Copy(&b, io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())))
  172. if err != nil {
  173. return err
  174. }
  175. if n != int64(t.Size()) {
  176. return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
  177. }
  178. cname := C.CString(t.Name)
  179. defer C.free(unsafe.Pointer(cname))
  180. tt := C.ggml_get_tensor(c.ctx, cname)
  181. cbytes := C.CBytes(b.Bytes())
  182. defer C.free(cbytes)
  183. C.ggml_backend_tensor_set(tt, cbytes, 0, C.size_t(n))
  184. return nil
  185. })
  186. }
  187. if err := g.Wait(); err != nil {
  188. return nil, err
  189. }
  190. return &Backend{
  191. meta: meta,
  192. cpus: cpus,
  193. gpus: gpus,
  194. }, nil
  195. }
  196. func init() {
  197. ml.RegisterBackend("ggml", New)
  198. }
  199. func (b *Backend) Config() ml.Config {
  200. return b.meta.KV()
  201. }
  202. func (b *Backend) Get(name string) ml.Tensor {
  203. cname := C.CString(name)
  204. defer C.free(unsafe.Pointer(cname))
  205. for _, c := range append(b.gpus, b.cpus...) {
  206. if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
  207. return &Tensor{t: t}
  208. }
  209. }
  210. return nil
  211. }
  212. func (b *Backend) NewContext() ml.Context {
  213. nodes := max(8192, len(b.meta.Tensors().Items())*5)
  214. bts := make([]byte, C.size_t(nodes)*C.ggml_tensor_overhead()+C.ggml_graph_overhead_custom(C.size_t(nodes), false))
  215. c := C.ggml_init(C.struct_ggml_init_params{
  216. mem_buffer: unsafe.Pointer(&bts[0]),
  217. mem_size: C.size_t(len(bts)),
  218. no_alloc: true,
  219. })
  220. backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
  221. bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
  222. for i, c := range append(b.gpus, b.cpus...) {
  223. backends[i] = c.backend
  224. bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
  225. }
  226. return &Context{
  227. ctx: c,
  228. backend: backends[0],
  229. nodes: nodes,
  230. sched: C.ggml_backend_sched_new(
  231. (*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
  232. (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
  233. C.int(len(backends)),
  234. C.size_t(nodes),
  235. true,
  236. ),
  237. }
  238. }
  239. type Context struct {
  240. ctx *C.struct_ggml_context
  241. backend *C.struct_ggml_backend
  242. sched *C.struct_ggml_backend_sched
  243. graph *C.struct_ggml_cgraph
  244. nodes int
  245. }
  246. func (c *Context) Forward(t ml.Tensor) {
  247. if c.graph == nil {
  248. c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
  249. }
  250. C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
  251. }
  252. func (c *Context) Compute(t ml.Tensor) ml.Tensor {
  253. c.Forward(t)
  254. C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
  255. backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t)
  256. t.(*Tensor).data = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
  257. C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).data[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
  258. return t
  259. }
  260. func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
  261. if len(shape) < 1 || len(shape) > 4 {
  262. panic("unsupported number of dimensions")
  263. }
  264. for _, dim := range shape {
  265. if dim < 1 {
  266. panic("invalid shape")
  267. }
  268. }
  269. var t *C.struct_ggml_tensor
  270. switch dtype {
  271. case ml.DTypeF32:
  272. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
  273. case ml.DTypeI32:
  274. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
  275. default:
  276. panic("unsupported dtype")
  277. }
  278. b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
  279. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  280. C.ggml_set_zero(t)
  281. return &Tensor{t: t}
  282. }
  283. func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
  284. n := len(s)
  285. for _, v := range shape {
  286. n /= v
  287. }
  288. if n != 1 {
  289. return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
  290. }
  291. t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
  292. b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
  293. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  294. C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
  295. return &Tensor{t: t}, nil
  296. }
  297. func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
  298. return fromSlice(c, s, shape, C.GGML_TYPE_F32)
  299. }
  300. func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
  301. return fromSlice(c, s, shape, C.GGML_TYPE_I32)
  302. }
  303. func (c *Context) Close() error {
  304. C.ggml_backend_sched_free(c.sched)
  305. C.ggml_free(c.ctx)
  306. return nil
  307. }
  308. type Tensor struct {
  309. t *C.struct_ggml_tensor
  310. data []byte
  311. }
  312. func (t *Tensor) LogValue() slog.Value {
  313. return slog.GroupValue(
  314. slog.String("name", C.GoString(C.ggml_get_name(t.t))),
  315. slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
  316. slog.Any("shape", t.Shape()),
  317. )
  318. }
  319. func (t *Tensor) Dim(n int) int64 {
  320. return int64(t.t.ne[n])
  321. }
  322. func (t *Tensor) Stride(n int) int64 {
  323. return int64(t.t.nb[n])
  324. }
  325. func (t *Tensor) Shape() []int64 {
  326. shape := make([]int64, C.ggml_n_dims(t.t))
  327. for i := range shape {
  328. shape[i] = t.Dim(i)
  329. }
  330. return shape
  331. }
  332. func (t *Tensor) Bytes() []byte {
  333. if bts := C.ggml_get_data(t.t); bts != nil {
  334. return C.GoBytes(bts, C.int(C.ggml_nbytes(t.t)))
  335. }
  336. return nil
  337. }
  338. func (t *Tensor) Floats() (f32s []float32) {
  339. if t.data != nil {
  340. f32s = make([]float32, C.ggml_nelements(t.t))
  341. _ = binary.Read(bytes.NewReader(t.data), binary.LittleEndian, f32s)
  342. }
  343. return
  344. }
  345. func (t *Tensor) DType() ml.DType {
  346. switch t.t._type {
  347. case C.GGML_TYPE_F32:
  348. return ml.DTypeF32
  349. case C.GGML_TYPE_I32:
  350. return ml.DTypeI32
  351. default:
  352. return ml.DTypeOther
  353. }
  354. }
  355. func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  356. return &Tensor{
  357. t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  358. }
  359. }
  360. func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
  361. if len(s) > 0 {
  362. return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
  363. }
  364. return t
  365. }
  366. func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
  367. return &Tensor{
  368. t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
  369. }
  370. }
  371. func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
  372. return &Tensor{
  373. t: C.ggml_cont(ctx.(*Context).ctx, t.t),
  374. }
  375. }
  376. func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  377. return &Tensor{
  378. t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  379. }
  380. }
  381. func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  382. return &Tensor{
  383. t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  384. }
  385. }
  386. func (t *Tensor) Norm(ctx ml.Context, eps float32) ml.Tensor {
  387. return &Tensor{
  388. t: C.ggml_norm(ctx.(*Context).ctx, t.t, (C.float)(eps)),
  389. }
  390. }
  391. func (t *Tensor) RMSNorm(ctx ml.Context, eps float32) ml.Tensor {
  392. return &Tensor{
  393. t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps)),
  394. }
  395. }
  396. func (t *Tensor) Pad(ctx ml.Context, shape ...int64) ml.Tensor {
  397. if len(shape) != 4 {
  398. panic("expected 4 dimensions")
  399. }
  400. return &Tensor{
  401. t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  402. }
  403. }
  404. func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
  405. if len(shape) != 4 {
  406. panic("expected 4 dimensions")
  407. }
  408. return &Tensor{
  409. t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  410. }
  411. }
  412. func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  413. return &Tensor{
  414. t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  415. }
  416. }
  417. func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  418. return &Tensor{
  419. t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  420. }
  421. }
  422. func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor {
  423. switch len(shape) {
  424. case 1:
  425. return &Tensor{
  426. t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
  427. }
  428. case 2:
  429. return &Tensor{
  430. t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
  431. }
  432. case 3:
  433. return &Tensor{
  434. t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
  435. }
  436. case 4:
  437. return &Tensor{
  438. t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
  439. }
  440. default:
  441. panic("unsupported number of dimensions")
  442. }
  443. }
  444. func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
  445. return &Tensor{
  446. t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
  447. }
  448. }
  449. func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
  450. return &Tensor{
  451. t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
  452. }
  453. }
  454. func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
  455. return &Tensor{
  456. t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
  457. }
  458. }
  459. func (t *Tensor) Unpad(ctx ml.Context, shape ...int64) ml.Tensor {
  460. if len(shape) != 4 {
  461. panic("expected 4 dimensions")
  462. }
  463. return &Tensor{
  464. t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  465. }
  466. }
  467. func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
  468. switch len(shape) {
  469. case 1:
  470. return &Tensor{
  471. t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
  472. }
  473. case 3:
  474. return &Tensor{
  475. t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
  476. C.int64_t(shape[0]), C.int64_t(shape[2]),
  477. C.size_t(shape[1]),
  478. C.size_t(offset)),
  479. }
  480. case 5:
  481. return &Tensor{
  482. t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
  483. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
  484. C.size_t(shape[1]), C.size_t(shape[3]),
  485. C.size_t(offset)),
  486. }
  487. case 7:
  488. return &Tensor{
  489. t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
  490. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
  491. C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
  492. C.size_t(offset)),
  493. }
  494. default:
  495. panic("unsupported number of dimensions")
  496. }
  497. }
  498. const (
  499. ropeTypeNorm C.int = iota
  500. )
  501. func (t *Tensor) Rope(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
  502. return &Tensor{
  503. t: C.ggml_rope_ext(
  504. ctx.(*Context).ctx, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
  505. C.int(ropeDim),
  506. 131072, // YaRN n_ctx_train
  507. ropeTypeNorm, // ROPE_TYPE_NORM
  508. C.float(ropeBase),
  509. C.float(ropeScale),
  510. 0., // YaRN ext_factor
  511. 1., // YaRN attn_factor
  512. 32., // YaRN beta_fast
  513. 1., // YaRN beta_slow
  514. ),
  515. }
  516. }
  517. func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
  518. return &Tensor{
  519. t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
  520. }
  521. }
  522. func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
  523. return &Tensor{
  524. t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
  525. }
  526. }
  527. func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
  528. return &Tensor{
  529. t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
  530. }
  531. }