123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- /**
- * llama.cpp - commit ba1cb19cdd0d92e012e0f6e009e0620f854b6afd - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "common.cuh"
- #include "count-equal.cuh"
- #include <cstdint>
- template <typename T>
- static __global__ void count_equal(const T * __restrict__ x, const T * __restrict__ y, int64_t * __restrict__ dst, const int64_t dk, const int64_t k) {
- const int64_t i0 = (int64_t) blockIdx.x*dk;
- const int64_t i1 = min(i0 + dk, k);
- int nequal = 0;
- for (int64_t i = i0 + threadIdx.x; i < i1; i += WARP_SIZE) {
- const T xi = x[i];
- const T yi = y[i];
- nequal += xi == yi;
- }
- nequal = warp_reduce_sum(nequal);
- if (threadIdx.x != 0) {
- return;
- }
- atomicAdd((int *) dst, nequal);
- }
- void ggml_cuda_count_equal(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(src0->type == src1->type);
- GGML_ASSERT( dst->type == GGML_TYPE_I64);
- GGML_ASSERT(ggml_are_same_shape(src0, src1));
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_contiguous(dst));
- int64_t * dst_d = (int64_t *) dst->data;
- cudaStream_t stream = ctx.stream();
- const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
- const int64_t ne = ggml_nelements(src0);
- GGML_ASSERT(ne < (1 << 30) && "atomicAdd implementation only supports int");
- const int64_t dne = GGML_PAD((ne + 4*nsm - 1) / (4*nsm), CUDA_COUNT_EQUAL_CHUNK_SIZE);
- CUDA_CHECK(cudaMemsetAsync(dst_d, 0, ggml_nbytes(dst), stream));
- const dim3 blocks_dim(WARP_SIZE, 1, 1);
- const dim3 blocks_num(std::min((int64_t)4*nsm, (ne + CUDA_COUNT_EQUAL_CHUNK_SIZE - 1)/CUDA_COUNT_EQUAL_CHUNK_SIZE), 1, 1);
- switch (src0->type) {
- case GGML_TYPE_I32: {
- const int * src0_d = (const int *) src0->data;
- const int * src1_d = (const int *) src1->data;
- count_equal<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, src1_d, dst_d, dne, ne);
- } break;
- default:
- GGML_ASSERT(false);
- break;
- }
- }
|