ggml.go 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. package llm
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "strings"
  8. "github.com/ollama/ollama/util/bufioutil"
  9. )
  10. type GGML struct {
  11. container
  12. model
  13. }
  14. type model interface {
  15. KV() KV
  16. Tensors() Tensors
  17. }
  18. type KV map[string]any
  19. func (kv KV) u64(key string) uint64 {
  20. switch v := kv[key].(type) {
  21. case uint64:
  22. return v
  23. case uint32:
  24. return uint64(v)
  25. case float64:
  26. return uint64(v)
  27. default:
  28. return 0
  29. }
  30. }
  31. func (kv KV) Architecture() string {
  32. if s, ok := kv["general.architecture"].(string); ok {
  33. return s
  34. }
  35. return "unknown"
  36. }
  37. func (kv KV) ParameterCount() uint64 {
  38. return kv.u64("general.parameter_count")
  39. }
  40. func (kv KV) FileType() fileType {
  41. if u64 := kv.u64("general.file_type"); u64 > 0 {
  42. return fileType(uint32(u64))
  43. }
  44. return fileTypeUnknown
  45. }
  46. func (kv KV) BlockCount() uint64 {
  47. return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
  48. }
  49. func (kv KV) HeadCount() uint64 {
  50. return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
  51. }
  52. func (kv KV) HeadCountKV() uint64 {
  53. if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
  54. return headCountKV
  55. }
  56. return 1
  57. }
  58. func (kv KV) EmbeddingHeadCount() uint64 {
  59. if heads := kv.HeadCount(); heads > 0 {
  60. return kv.EmbeddingLength() / kv.HeadCount()
  61. }
  62. return 0
  63. }
  64. func (kv KV) EmbeddingHeadCountK() uint64 {
  65. if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
  66. return k
  67. }
  68. return kv.EmbeddingHeadCount()
  69. }
  70. func (kv KV) EmbeddingHeadCountV() uint64 {
  71. if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
  72. return v
  73. }
  74. return kv.EmbeddingHeadCount()
  75. }
  76. func (kv KV) GQA() uint64 {
  77. return kv.HeadCount() / kv.HeadCountKV()
  78. }
  79. func (kv KV) EmbeddingLength() uint64 {
  80. return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
  81. }
  82. func (kv KV) ContextLength() uint64 {
  83. return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
  84. }
  85. func (kv KV) ChatTemplate() string {
  86. s, _ := kv["tokenizer.chat_template"].(string)
  87. return s
  88. }
  89. type Tensors []*Tensor
  90. func (ts Tensors) Layers() map[string]Layer {
  91. layers := make(map[string]Layer)
  92. for _, t := range ts {
  93. parts := strings.Split(t.Name, ".")
  94. if parts[0] == "blk" {
  95. // join first and second part, e.g. blk.%d
  96. parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
  97. }
  98. if _, ok := layers[parts[0]]; !ok {
  99. layers[parts[0]] = make(Layer)
  100. }
  101. layers[parts[0]][strings.Join(parts[1:], ".")] = t
  102. }
  103. return layers
  104. }
  105. type Layer map[string]*Tensor
  106. func (l Layer) size() (size uint64) {
  107. for _, t := range l {
  108. size += t.Size()
  109. }
  110. return size
  111. }
  112. type Tensor struct {
  113. Name string `json:"name"`
  114. Kind uint32 `json:"kind"`
  115. Offset uint64 `json:"-"`
  116. // Shape is the number of elements in each dimension
  117. Shape []uint64 `json:"shape"`
  118. io.WriterTo `json:"-"`
  119. }
  120. func (t Tensor) blockSize() uint64 {
  121. switch t.Kind {
  122. case 0, // F32
  123. 1, // F16
  124. 24, // I8
  125. 25, // I16
  126. 26, // I32
  127. 27, // I64
  128. 28, // F64
  129. 30: // BF16
  130. return 1
  131. case 2, // Q4_0
  132. 3, // Q4_1
  133. 4, // Q5_0
  134. 5, // Q5_1
  135. 6, // Q8_0
  136. 7, // Q8_1
  137. 8, // IQ4_NL
  138. 9, // IQ4_NL
  139. 20, // IQ4_NL
  140. 31, // Q4_0_4_4
  141. 32, // Q4_0_4_8
  142. 33: // Q4_0_8_8
  143. return 32
  144. default: // All others
  145. return 256
  146. }
  147. }
  148. func (t Tensor) typeSize() uint64 {
  149. blockSize := t.blockSize()
  150. switch t.Kind {
  151. case 0, // FP32
  152. 26: // I32
  153. return 4
  154. case 1, // FP16
  155. 25, // I16
  156. 30: // BF16
  157. return 2
  158. case 2, // Q4_0
  159. 31, // Q4_0_4_4
  160. 32, // Q4_0_4_8
  161. 33: // Q4_0_8_8
  162. return 2 + blockSize/2
  163. case 3: // Q4_1
  164. return 2 + 2 + blockSize/2
  165. case 6: // Q5_0
  166. return 2 + 4 + blockSize/2
  167. case 7: // Q5_1
  168. return 2 + 2 + 4 + blockSize/2
  169. case 8: // Q8_0
  170. return 2 + blockSize
  171. case 9: // Q8_1
  172. return 4 + 4 + blockSize
  173. case 10: // Q2_K
  174. return blockSize/16 + blockSize/4 + 2 + 2
  175. case 11: // Q3_K
  176. return blockSize/8 + blockSize/4 + 12 + 2
  177. case 12: // Q4_K
  178. return 2 + 2 + 12 + blockSize/2
  179. case 13: // Q5_K
  180. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  181. case 14: // Q6_K
  182. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  183. case 15: // Q8_K
  184. return 2 + blockSize + 2*blockSize/16
  185. case 16: // IQ2_XXS
  186. return 2 + 2*blockSize/8
  187. case 17: // IQ2_XS
  188. return 2 + 2*blockSize/8 + blockSize/32
  189. case 18: // IQ3_XXS
  190. return 2 + blockSize/4 + blockSize/8
  191. case 19: // IQ1_S
  192. return 2 + blockSize/8 + blockSize/16
  193. case 20: // IQ4_NL
  194. return 2 + blockSize/2
  195. case 21: // IQ3_S
  196. return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
  197. case 22: // IQ2_S
  198. return 2 + blockSize/4 + blockSize/16
  199. case 23: // IQ4_XS
  200. return 2 + 2 + blockSize/2 + blockSize/64
  201. case 24: // I8
  202. return 1
  203. case 27: // I64
  204. return 8
  205. case 28: // F64
  206. return 8
  207. case 29: // IQ1_M
  208. return blockSize/8 + blockSize/16 + blockSize/32
  209. default:
  210. return 0
  211. }
  212. }
  213. func (t Tensor) parameters() uint64 {
  214. var count uint64 = 1
  215. for _, n := range t.Shape {
  216. count *= n
  217. }
  218. return count
  219. }
  220. func (t Tensor) Size() uint64 {
  221. return t.parameters() * t.typeSize() / t.blockSize()
  222. }
  223. type container interface {
  224. Name() string
  225. Decode(io.ReadSeeker) (model, error)
  226. }
  227. const (
  228. // Magic constant for `ggml` files (unversioned).
  229. FILE_MAGIC_GGML = 0x67676d6c
  230. // Magic constant for `ggml` files (versioned, ggmf).
  231. FILE_MAGIC_GGMF = 0x67676d66
  232. // Magic constant for `ggml` files (versioned, ggjt).
  233. FILE_MAGIC_GGJT = 0x67676a74
  234. // Magic constant for `ggla` files (LoRA adapter).
  235. FILE_MAGIC_GGLA = 0x67676C61
  236. // Magic constant for `gguf` files (versioned, gguf)
  237. FILE_MAGIC_GGUF_LE = 0x46554747
  238. FILE_MAGIC_GGUF_BE = 0x47475546
  239. )
  240. var ErrUnsupportedFormat = errors.New("unsupported model format")
  241. func DetectGGMLType(b []byte) string {
  242. switch binary.LittleEndian.Uint32(b[:4]) {
  243. case FILE_MAGIC_GGML:
  244. return "ggml"
  245. case FILE_MAGIC_GGMF:
  246. return "ggmf"
  247. case FILE_MAGIC_GGJT:
  248. return "ggjt"
  249. case FILE_MAGIC_GGLA:
  250. return "ggla"
  251. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  252. return "gguf"
  253. default:
  254. return ""
  255. }
  256. }
  257. // DecodeGGML decodes a GGML model from the given reader.
  258. //
  259. // It collects array values for arrays with a size less than or equal to
  260. // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
  261. // the maxArraySize is negative, all arrays are collected.
  262. func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
  263. if maxArraySize == 0 {
  264. maxArraySize = 1024
  265. }
  266. rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
  267. var magic uint32
  268. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  269. return nil, 0, err
  270. }
  271. var c container
  272. switch magic {
  273. case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
  274. return nil, 0, ErrUnsupportedFormat
  275. case FILE_MAGIC_GGLA:
  276. c = &containerGGLA{}
  277. case FILE_MAGIC_GGUF_LE:
  278. c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
  279. case FILE_MAGIC_GGUF_BE:
  280. c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
  281. default:
  282. return nil, 0, errors.New("invalid file magic")
  283. }
  284. model, err := c.Decode(rs)
  285. if err != nil {
  286. return nil, 0, err
  287. }
  288. offset, err := rs.Seek(0, io.SeekCurrent)
  289. if err != nil {
  290. return nil, 0, err
  291. }
  292. // final model type
  293. return &GGML{
  294. container: c,
  295. model: model,
  296. }, offset, nil
  297. }
  298. func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
  299. embedding := llm.KV().EmbeddingLength()
  300. heads := llm.KV().HeadCount()
  301. headsKV := llm.KV().HeadCountKV()
  302. vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
  303. embeddingHeads := llm.KV().EmbeddingHeadCount()
  304. embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
  305. layers := llm.Tensors().Layers()
  306. switch llm.KV().Architecture() {
  307. case "llama":
  308. fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
  309. partialOffload = 4 * batch * embedding
  310. partialOffload += max(
  311. // 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
  312. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
  313. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  314. )
  315. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  316. // mixtral 8x22b
  317. ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
  318. partialOffload = max(
  319. 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
  320. 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
  321. )
  322. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  323. // mixtral 8x7b
  324. ffnGateWeight1 := ffnGateWeight.Shape[1]
  325. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  326. partialOffload = max(
  327. 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  328. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  329. )
  330. }
  331. case "gemma", "gemma2":
  332. fullOffload = max(
  333. 4*batch*(embedding+vocab),
  334. 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
  335. )
  336. partialOffload = max(
  337. 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
  338. 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
  339. 4*embeddingHeadsK*context*8+
  340. embedding*embeddingHeadsK*heads*9/16,
  341. )
  342. case "command-r":
  343. fullOffload = max(
  344. 4*batch*(embedding+vocab),
  345. 4*batch*(2+4*embedding+context*(1+heads)),
  346. )
  347. partialOffload = max(
  348. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  349. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  350. )
  351. case "qwen2":
  352. fullOffload = max(
  353. 4*batch*(embedding+vocab),
  354. 4*batch*(1+2*embedding+context+context*heads),
  355. )
  356. partialOffload = max(
  357. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  358. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  359. )
  360. case "phi2":
  361. fullOffload = max(
  362. 4*batch*(embedding+vocab),
  363. 4*batch*(1+4*embedding+context+context*heads),
  364. )
  365. partialOffload = max(
  366. 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
  367. 4*batch*(2+3*embedding+context+context*heads),
  368. )
  369. case "stablelm":
  370. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  371. partialOffload = max(
  372. 4*batch*(vocab+2*embedding),
  373. fullOffload,
  374. )
  375. case "deepseek2":
  376. fullOffload = max(
  377. 4*batch*(3*embedding+vocab),
  378. 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
  379. )
  380. partialOffload = max(
  381. 4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
  382. 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
  383. )
  384. case "chatglm":
  385. fullOffload = 4 * batch * (embedding + vocab)
  386. partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
  387. if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
  388. fullOffload = max(
  389. fullOffload,
  390. 4*batch*(2+
  391. 2*embedding+
  392. context+
  393. context*heads+
  394. embeddingHeadsK*heads+
  395. qkvBias.Shape[0]),
  396. )
  397. partialOffload = max(
  398. partialOffload,
  399. 4*batch*(1+
  400. 2*embedding+
  401. embeddingHeadsK*heads+
  402. context+
  403. context*heads)+
  404. 4*embeddingHeadsK*context+
  405. 4*context*embeddingHeadsK+
  406. 4*qkvBias.Shape[0],
  407. )
  408. }
  409. }
  410. return
  411. }