common.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. /**
  2. * llama.cpp - commit 1e6f6554aa11fa10160a5fda689e736c3c34169f - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. // Various helper functions and utilities
  27. #pragma once
  28. #include "llama.h"
  29. #include "sampling.h"
  30. #define LOG_NO_FILE_LINE_FUNCTION
  31. #include "log.h"
  32. #include <cmath>
  33. #include <string>
  34. #include <vector>
  35. #include <random>
  36. #include <thread>
  37. #include <unordered_map>
  38. #include <tuple>
  39. #ifdef _WIN32
  40. #define DIRECTORY_SEPARATOR '\\'
  41. #else
  42. #define DIRECTORY_SEPARATOR '/'
  43. #endif // _WIN32
  44. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  45. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  46. #define print_build_info() do { \
  47. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  48. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  49. } while(0)
  50. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  51. struct llama_lora_adapter_info {
  52. std::string path;
  53. float scale;
  54. };
  55. struct llama_lora_adapter_container : llama_lora_adapter_info {
  56. struct llama_lora_adapter * adapter;
  57. };
  58. // build info
  59. extern int LLAMA_BUILD_NUMBER;
  60. extern char const * LLAMA_COMMIT;
  61. extern char const * LLAMA_COMPILER;
  62. extern char const * LLAMA_BUILD_TARGET;
  63. struct llama_control_vector_load_info;
  64. //
  65. // CPU utils
  66. //
  67. int32_t cpu_get_num_physical_cores();
  68. int32_t cpu_get_num_math();
  69. //
  70. // CLI argument parsing
  71. //
  72. // dimensionality reduction methods, used by cvector-generator
  73. enum dimre_method {
  74. DIMRE_METHOD_PCA,
  75. DIMRE_METHOD_MEAN,
  76. };
  77. struct gpt_params {
  78. uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
  79. int32_t n_threads = cpu_get_num_math();
  80. int32_t n_threads_draft = -1;
  81. int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
  82. int32_t n_threads_batch_draft = -1;
  83. int32_t n_predict = -1; // new tokens to predict
  84. int32_t n_ctx = 0; // context size
  85. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  86. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  87. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  88. int32_t n_draft = 5; // number of tokens to draft during speculative decoding
  89. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  90. int32_t n_parallel = 1; // number of parallel sequences to decode
  91. int32_t n_sequences = 1; // number of sequences to decode
  92. float p_split = 0.1f; // speculative decoding split probability
  93. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  94. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  95. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  96. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  97. int32_t grp_attn_n = 1; // group-attention factor
  98. int32_t grp_attn_w = 512; // group-attention width
  99. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  100. float rope_freq_base = 0.0f; // RoPE base frequency
  101. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  102. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  103. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  104. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  105. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  106. int32_t yarn_orig_ctx = 0; // YaRN original context length
  107. float defrag_thold = -1.0f; // KV cache defragmentation threshold
  108. ggml_backend_sched_eval_callback cb_eval = nullptr;
  109. void * cb_eval_user_data = nullptr;
  110. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  111. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  112. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  113. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  114. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  115. // // sampling parameters
  116. struct llama_sampling_params sparams;
  117. std::string model = ""; // model path
  118. std::string model_draft = ""; // draft model for speculative decoding
  119. std::string model_alias = "unknown"; // model alias
  120. std::string model_url = ""; // model url to download
  121. std::string hf_token = ""; // HF token
  122. std::string hf_repo = ""; // HF repo
  123. std::string hf_file = ""; // HF file
  124. std::string prompt = "";
  125. std::string prompt_file = ""; // store the external prompt file name
  126. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  127. std::string input_prefix = ""; // string to prefix user inputs with
  128. std::string input_suffix = ""; // string to suffix user inputs with
  129. std::string logdir = ""; // directory in which to save YAML log files
  130. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
  131. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
  132. std::string logits_file = ""; // file for saving *all* logits
  133. std::string rpc_servers = ""; // comma separated list of RPC servers
  134. std::vector<std::string> in_files; // all input files
  135. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  136. std::vector<llama_model_kv_override> kv_overrides;
  137. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
  138. std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
  139. std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
  140. int32_t verbosity = 0;
  141. int32_t control_vector_layer_start = -1; // layer range for control vector
  142. int32_t control_vector_layer_end = -1; // layer range for control vector
  143. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  144. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  145. // (which is more convenient to use for plotting)
  146. //
  147. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  148. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  149. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  150. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  151. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  152. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  153. bool kl_divergence = false; // compute KL divergence
  154. bool usage = false; // print usage
  155. bool use_color = false; // use color to distinguish generations and inputs
  156. bool special = false; // enable special token output
  157. bool interactive = false; // interactive mode
  158. bool interactive_first = false; // wait for user input immediately
  159. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  160. bool prompt_cache_all = false; // save user input and generations to prompt cache
  161. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  162. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  163. bool multiline_input = false; // reverse the usage of `\`
  164. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  165. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  166. bool flash_attn = false; // flash attention
  167. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  168. bool ignore_eos = false; // ignore generated EOS tokens
  169. bool logits_all = false; // return logits for all tokens in the batch
  170. bool use_mmap = true; // use mmap for faster loads
  171. bool use_mlock = false; // use mlock to keep model in memory
  172. bool verbose_prompt = false; // print prompt tokens before generation
  173. bool display_prompt = true; // print prompt before generation
  174. bool infill = false; // use infill mode
  175. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  176. bool no_kv_offload = false; // disable KV offloading
  177. bool warmup = true; // warmup run
  178. bool check_tensors = false; // validate tensor data
  179. std::string cache_type_k = "f16"; // KV cache data type for the K
  180. std::string cache_type_v = "f16"; // KV cache data type for the V
  181. // multimodal models (see examples/llava)
  182. std::string mmproj = ""; // path to multimodal projector
  183. std::vector<std::string> image; // path to image file(s)
  184. // embedding
  185. bool embedding = false; // get only sentence embedding
  186. int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  187. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  188. std::string embd_sep = "\n"; // separator of embendings
  189. // server params
  190. int32_t port = 8080; // server listens on this network port
  191. int32_t timeout_read = 600; // http read timeout in seconds
  192. int32_t timeout_write = timeout_read; // http write timeout in seconds
  193. int32_t n_threads_http = -1; // number of threads to process HTTP requests
  194. std::string hostname = "127.0.0.1";
  195. std::string public_path = "";
  196. std::string chat_template = "";
  197. std::string system_prompt = "";
  198. bool enable_chat_template = true;
  199. std::vector<std::string> api_keys;
  200. std::string ssl_file_key = "";
  201. std::string ssl_file_cert = "";
  202. bool endpoint_slots = true;
  203. bool endpoint_metrics = false;
  204. bool log_json = false;
  205. std::string slot_save_path;
  206. float slot_prompt_similarity = 0.5f;
  207. // batched-bench params
  208. bool is_pp_shared = false;
  209. std::vector<int32_t> n_pp;
  210. std::vector<int32_t> n_tg;
  211. std::vector<int32_t> n_pl;
  212. // retrieval params
  213. std::vector<std::string> context_files; // context files to embed
  214. int32_t chunk_size = 64; // chunk size for context embedding
  215. std::string chunk_separator = "\n"; // chunk separator for context embedding
  216. // passkey params
  217. int32_t n_junk = 250; // number of times to repeat the junk text
  218. int32_t i_pos = -1; // position of the passkey in the junk text
  219. // imatrix params
  220. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  221. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  222. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  223. int32_t i_chunk = 0; // start processing from this chunk
  224. bool process_output = false; // collect data for the output tensor
  225. bool compute_ppl = true; // whether to compute perplexity
  226. // cvector-generator params
  227. int n_pca_batch = 100;
  228. int n_pca_iterations = 1000;
  229. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  230. std::string cvector_outfile = "control_vector.gguf";
  231. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  232. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  233. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  234. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  235. };
  236. void gpt_params_handle_hf_token(gpt_params & params);
  237. void gpt_params_handle_model_default(gpt_params & params);
  238. bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
  239. bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
  240. bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
  241. void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
  242. std::string gpt_params_get_system_info(const gpt_params & params);
  243. //
  244. // String utils
  245. //
  246. std::vector<std::string> string_split(std::string input, char separator);
  247. std::string string_strip(const std::string & str);
  248. std::string string_get_sortable_timestamp();
  249. template<class T>
  250. static std::vector<T> string_split(const std::string & str, char delim) {
  251. std::vector<T> values;
  252. std::istringstream str_stream(str);
  253. std::string token;
  254. while (std::getline(str_stream, token, delim)) {
  255. T value;
  256. std::istringstream token_stream(token);
  257. token_stream >> value;
  258. values.push_back(value);
  259. }
  260. return values;
  261. }
  262. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  263. void string_process_escapes(std::string & input);
  264. //
  265. // Filesystem utils
  266. //
  267. bool fs_validate_filename(const std::string & filename);
  268. bool fs_create_directory_with_parents(const std::string & path);
  269. std::string fs_get_cache_directory();
  270. std::string fs_get_cache_file(const std::string & filename);
  271. //
  272. // Model utils
  273. //
  274. struct llama_init_result {
  275. struct llama_model * model = nullptr;
  276. struct llama_context * context = nullptr;
  277. std::vector<llama_lora_adapter_container> lora_adapters;
  278. };
  279. struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
  280. struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
  281. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
  282. struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  283. struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  284. // clear LoRA adapters from context, then apply new list of adapters
  285. void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
  286. // Batch utils
  287. void llama_batch_clear(struct llama_batch & batch);
  288. void llama_batch_add(
  289. struct llama_batch & batch,
  290. llama_token id,
  291. llama_pos pos,
  292. const std::vector<llama_seq_id> & seq_ids,
  293. bool logits);
  294. //
  295. // Vocab utils
  296. //
  297. // tokenizes a string into a vector of tokens
  298. // should work similar to Python's `tokenizer.encode`
  299. std::vector<llama_token> llama_tokenize(
  300. const struct llama_context * ctx,
  301. const std::string & text,
  302. bool add_special,
  303. bool parse_special = false);
  304. std::vector<llama_token> llama_tokenize(
  305. const struct llama_model * model,
  306. const std::string & text,
  307. bool add_special,
  308. bool parse_special = false);
  309. // tokenizes a token into a piece, optionally renders special/control tokens
  310. // should work similar to Python's `tokenizer.id_to_piece`
  311. std::string llama_token_to_piece(
  312. const struct llama_context * ctx,
  313. llama_token token,
  314. bool special = true);
  315. // detokenizes a vector of tokens into a string
  316. // should work similar to Python's `tokenizer.decode`
  317. // optionally renders special/control tokens
  318. std::string llama_detokenize(
  319. llama_context * ctx,
  320. const std::vector<llama_token> & tokens,
  321. bool special = true);
  322. // Uses the value from the model metadata if possible, otherwise
  323. // defaults to true when model type is SPM, otherwise false.
  324. bool llama_should_add_bos_token(const llama_model * model);
  325. //
  326. // Chat template utils
  327. //
  328. // same with llama_chat_message, but uses std::string
  329. struct llama_chat_msg {
  330. std::string role;
  331. std::string content;
  332. };
  333. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  334. bool llama_chat_verify_template(const std::string & tmpl);
  335. // CPP wrapper for llama_chat_apply_template
  336. // If the built-in template is not supported, we default to chatml
  337. // If the custom "tmpl" is not supported, we throw an error
  338. std::string llama_chat_apply_template(const struct llama_model * model,
  339. const std::string & tmpl,
  340. const std::vector<llama_chat_msg> & chat,
  341. bool add_ass);
  342. // Format single message, while taking into account the position of that message in chat history
  343. std::string llama_chat_format_single(const struct llama_model * model,
  344. const std::string & tmpl,
  345. const std::vector<llama_chat_msg> & past_msg,
  346. const llama_chat_msg & new_msg,
  347. bool add_ass);
  348. // Returns an example of formatted chat
  349. std::string llama_chat_format_example(const struct llama_model * model,
  350. const std::string & tmpl);
  351. //
  352. // KV cache utils
  353. //
  354. // Dump the KV cache view with the number of sequences per cell.
  355. void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  356. // Dump the KV cache view showing individual sequences in each cell (long output).
  357. void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  358. //
  359. // Embedding utils
  360. //
  361. void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
  362. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  363. //
  364. // Control vector utils
  365. //
  366. struct llama_control_vector_data {
  367. int n_embd;
  368. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  369. std::vector<float> data;
  370. };
  371. struct llama_control_vector_load_info {
  372. float strength;
  373. std::string fname;
  374. };
  375. // Load control vectors, scale each by strength, and add them together.
  376. // On error, returns {-1, empty}
  377. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
  378. //
  379. // Split utils
  380. //
  381. static const char * const LLM_KV_SPLIT_NO = "split.no";
  382. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  383. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  384. //
  385. // YAML utils
  386. //
  387. void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
  388. void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
  389. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
  390. void yaml_dump_non_result_info(
  391. FILE * stream, const gpt_params & params, const llama_context * lctx,
  392. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);