ggml-backend.c 76 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  11. // backend buffer type
  12. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  13. return buft->iface.get_name(buft);
  14. }
  15. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  16. return buft->iface.alloc_buffer(buft, size);
  17. }
  18. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  19. return buft->iface.get_alignment(buft);
  20. }
  21. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  22. // get_max_size is optional, defaults to SIZE_MAX
  23. if (buft->iface.get_max_size) {
  24. return buft->iface.get_max_size(buft);
  25. }
  26. return SIZE_MAX;
  27. }
  28. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  29. // get_alloc_size is optional, defaults to ggml_nbytes
  30. if (buft->iface.get_alloc_size) {
  31. size_t size = buft->iface.get_alloc_size(buft, tensor);
  32. assert(size >= ggml_nbytes(tensor));
  33. return size;
  34. }
  35. return ggml_nbytes(tensor);
  36. }
  37. bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  38. return buft->iface.supports_backend(buft, backend);
  39. }
  40. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  41. if (buft->iface.is_host) {
  42. return buft->iface.is_host(buft);
  43. }
  44. return false;
  45. }
  46. // backend buffer
  47. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  48. ggml_backend_buffer_type_t buft,
  49. struct ggml_backend_buffer_i iface,
  50. ggml_backend_buffer_context_t context,
  51. size_t size) {
  52. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  53. (*buffer) = (struct ggml_backend_buffer) {
  54. /* .interface = */ iface,
  55. /* .buft = */ buft,
  56. /* .context = */ context,
  57. /* .size = */ size,
  58. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  59. };
  60. return buffer;
  61. }
  62. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  63. return buffer->iface.get_name(buffer);
  64. }
  65. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  66. if (buffer == NULL) {
  67. return;
  68. }
  69. if (buffer->iface.free_buffer != NULL) {
  70. buffer->iface.free_buffer(buffer);
  71. }
  72. // TODO: this needs to be freed in cuda and hipblas backends because
  73. // the cuda backend implementation compiled with msvc
  74. #if !defined(GGML_USE_CUDA) && !defined(GGML_USE_HIPBLAS)
  75. free(buffer);
  76. #endif
  77. }
  78. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  79. return buffer->size;
  80. }
  81. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  82. void * base = buffer->iface.get_base(buffer);
  83. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  84. return base;
  85. }
  86. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  87. // init_tensor is optional
  88. if (buffer->iface.init_tensor) {
  89. buffer->iface.init_tensor(buffer, tensor);
  90. }
  91. }
  92. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  93. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  94. }
  95. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  96. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  97. }
  98. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  99. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  100. }
  101. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  102. buffer->iface.clear(buffer, value);
  103. }
  104. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  105. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  106. }
  107. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  108. buffer->usage = usage;
  109. // FIXME: add a generic callback to the buffer interface
  110. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  111. ggml_backend_multi_buffer_set_usage(buffer, usage);
  112. }
  113. }
  114. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  115. return buffer->buft;
  116. }
  117. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  118. if (buffer->iface.reset) {
  119. buffer->iface.reset(buffer);
  120. }
  121. }
  122. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  123. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  124. if (dst_buf->iface.cpy_tensor) {
  125. return src->buffer->iface.cpy_tensor(dst_buf, src, dst);
  126. }
  127. return false;
  128. }
  129. // backend
  130. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  131. if (backend == NULL) {
  132. return NULL;
  133. }
  134. return backend->guid;
  135. }
  136. const char * ggml_backend_name(ggml_backend_t backend) {
  137. if (backend == NULL) {
  138. return "NULL";
  139. }
  140. return backend->iface.get_name(backend);
  141. }
  142. void ggml_backend_free(ggml_backend_t backend) {
  143. if (backend == NULL) {
  144. return;
  145. }
  146. backend->iface.free(backend);
  147. }
  148. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  149. return backend->iface.get_default_buffer_type(backend);
  150. }
  151. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  152. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  153. }
  154. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  155. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  156. }
  157. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  158. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  159. }
  160. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  161. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  162. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  163. if (backend->iface.set_tensor_async == NULL) {
  164. ggml_backend_tensor_set(tensor, data, offset, size);
  165. } else {
  166. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  167. }
  168. }
  169. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  170. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  171. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  172. if (backend->iface.get_tensor_async == NULL) {
  173. ggml_backend_tensor_get(tensor, data, offset, size);
  174. } else {
  175. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  176. }
  177. }
  178. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  179. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  180. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  181. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  182. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  183. if (!size) {
  184. return;
  185. }
  186. buf->iface.set_tensor(buf, tensor, data, offset, size);
  187. }
  188. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  189. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  190. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  191. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  192. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  193. if (!size) {
  194. return;
  195. }
  196. buf->iface.get_tensor(buf, tensor, data, offset, size);
  197. }
  198. void ggml_backend_synchronize(ggml_backend_t backend) {
  199. if (backend->iface.synchronize == NULL) {
  200. return;
  201. }
  202. backend->iface.synchronize(backend);
  203. }
  204. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  205. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  206. return backend->iface.graph_plan_create(backend, cgraph);
  207. }
  208. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  209. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  210. backend->iface.graph_plan_free(backend, plan);
  211. }
  212. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  213. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  214. return backend->iface.graph_plan_compute(backend, plan);
  215. }
  216. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  217. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  218. ggml_backend_synchronize(backend);
  219. return err;
  220. }
  221. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  222. return backend->iface.graph_compute(backend, cgraph);
  223. }
  224. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  225. return backend->iface.supports_op(backend, op);
  226. }
  227. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  228. if (backend->iface.offload_op != NULL) {
  229. return backend->iface.offload_op(backend, op);
  230. }
  231. return false;
  232. }
  233. // backend copy
  234. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  235. if (a->type != b->type) {
  236. return false;
  237. }
  238. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  239. if (a->ne[i] != b->ne[i]) {
  240. return false;
  241. }
  242. if (a->nb[i] != b->nb[i]) {
  243. return false;
  244. }
  245. }
  246. return true;
  247. }
  248. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  249. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  250. if (src == dst) {
  251. return;
  252. }
  253. if (ggml_backend_buffer_is_host(src->buffer)) {
  254. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  255. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  256. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  257. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  258. #ifndef NDEBUG
  259. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  260. #endif
  261. size_t nbytes = ggml_nbytes(src);
  262. void * data = malloc(nbytes);
  263. ggml_backend_tensor_get(src, data, 0, nbytes);
  264. ggml_backend_tensor_set(dst, data, 0, nbytes);
  265. free(data);
  266. }
  267. }
  268. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  269. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  270. if (src == dst) {
  271. return;
  272. }
  273. if (backend_dst->iface.cpy_tensor_async != NULL) {
  274. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  275. return;
  276. }
  277. }
  278. // an async copy would normally happen after all the queued operations on both backends are completed
  279. // sync src, set_async dst
  280. if (ggml_backend_buffer_is_host(src->buffer)) {
  281. ggml_backend_synchronize(backend_src);
  282. ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
  283. } else {
  284. ggml_backend_synchronize(backend_src);
  285. ggml_backend_tensor_copy(src, dst);
  286. ggml_backend_synchronize(backend_dst);
  287. }
  288. }
  289. // events
  290. ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
  291. if (backend->iface.event_new == NULL) {
  292. return NULL;
  293. }
  294. return backend->iface.event_new(backend);
  295. }
  296. void ggml_backend_event_free(ggml_backend_event_t event) {
  297. if (event == NULL) {
  298. return;
  299. }
  300. event->backend->iface.event_free(event);
  301. }
  302. void ggml_backend_event_record(ggml_backend_event_t event) {
  303. GGML_ASSERT(event->backend->iface.event_record != NULL);
  304. event->backend->iface.event_record(event);
  305. }
  306. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  307. GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
  308. event->backend->iface.event_synchronize(event);
  309. }
  310. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  311. GGML_ASSERT(backend->iface.event_wait != NULL);
  312. backend->iface.event_wait(backend, event);
  313. }
  314. // backend registry
  315. #define GGML_REG_MAX_BACKENDS 16
  316. struct ggml_backend_reg {
  317. char name[128];
  318. ggml_backend_init_fn init_fn;
  319. ggml_backend_buffer_type_t default_buffer_type;
  320. void * user_data;
  321. };
  322. static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
  323. static size_t ggml_backend_registry_count = 0;
  324. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  325. GGML_CALL static void ggml_backend_registry_init(void) {
  326. static bool initialized = false;
  327. if (initialized) {
  328. return;
  329. }
  330. initialized = true;
  331. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  332. // add forward decls here to avoid including the backend headers
  333. #ifdef GGML_USE_CUDA
  334. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  335. ggml_backend_cuda_reg_devices();
  336. #endif
  337. #ifdef GGML_USE_SYCL
  338. extern void ggml_backend_sycl_reg_devices(void);
  339. ggml_backend_sycl_reg_devices();
  340. #endif
  341. #ifdef GGML_USE_METAL
  342. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  343. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  344. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  345. #endif
  346. #ifdef GGML_USE_VULKAN
  347. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  348. ggml_backend_vk_reg_devices();
  349. #endif
  350. #ifdef GGML_USE_KOMPUTE
  351. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  352. ggml_backend_kompute_reg_devices();
  353. #endif
  354. }
  355. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  356. GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
  357. size_t id = ggml_backend_registry_count;
  358. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  359. /* .name = */ {0},
  360. /* .fn = */ init_fn,
  361. /* .default_buffer_type = */ default_buffer_type,
  362. /* .user_data = */ user_data,
  363. };
  364. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  365. #ifndef NDEBUG
  366. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  367. #endif
  368. ggml_backend_registry_count++;
  369. }
  370. size_t ggml_backend_reg_get_count(void) {
  371. ggml_backend_registry_init();
  372. return ggml_backend_registry_count;
  373. }
  374. size_t ggml_backend_reg_find_by_name(const char * name) {
  375. ggml_backend_registry_init();
  376. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  377. // TODO: case insensitive in a portable way
  378. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  379. return i;
  380. }
  381. }
  382. // not found
  383. return SIZE_MAX;
  384. }
  385. // init from backend:params string
  386. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  387. ggml_backend_registry_init();
  388. const char * params = strchr(backend_str, ':');
  389. char backend_name[128];
  390. if (params == NULL) {
  391. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  392. params = "";
  393. } else {
  394. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  395. params++;
  396. }
  397. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  398. if (backend_i == SIZE_MAX) {
  399. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  400. return NULL;
  401. }
  402. return ggml_backend_reg_init_backend(backend_i, params);
  403. }
  404. const char * ggml_backend_reg_get_name(size_t i) {
  405. ggml_backend_registry_init();
  406. GGML_ASSERT(i < ggml_backend_registry_count);
  407. return ggml_backend_registry[i].name;
  408. }
  409. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  410. ggml_backend_registry_init();
  411. GGML_ASSERT(i < ggml_backend_registry_count);
  412. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  413. }
  414. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  415. ggml_backend_registry_init();
  416. GGML_ASSERT(i < ggml_backend_registry_count);
  417. return ggml_backend_registry[i].default_buffer_type;
  418. }
  419. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  420. ggml_backend_registry_init();
  421. GGML_ASSERT(i < ggml_backend_registry_count);
  422. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  423. }
  424. // backend CPU
  425. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  426. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  427. return "CPU";
  428. GGML_UNUSED(buffer);
  429. }
  430. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  431. uintptr_t data = (uintptr_t)buffer->context;
  432. // align the buffer
  433. if (data % TENSOR_ALIGNMENT != 0) {
  434. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  435. }
  436. return (void *)data;
  437. }
  438. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  439. free(buffer->context);
  440. }
  441. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  442. memcpy((char *)tensor->data + offset, data, size);
  443. GGML_UNUSED(buffer);
  444. }
  445. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  446. memcpy(data, (const char *)tensor->data + offset, size);
  447. GGML_UNUSED(buffer);
  448. }
  449. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  450. if (ggml_backend_buffer_is_host(src->buffer)) {
  451. memcpy(dst->data, src->data, ggml_nbytes(src));
  452. return true;
  453. }
  454. return false;
  455. GGML_UNUSED(buffer);
  456. }
  457. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  458. memset(buffer->context, value, buffer->size);
  459. }
  460. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  461. /* .get_name = */ ggml_backend_cpu_buffer_name,
  462. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  463. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  464. /* .init_tensor = */ NULL, // no initialization required
  465. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  466. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  467. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  468. /* .clear = */ ggml_backend_cpu_buffer_clear,
  469. /* .reset = */ NULL,
  470. };
  471. // for buffers from ptr, free is not called
  472. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  473. /* .get_name = */ ggml_backend_cpu_buffer_name,
  474. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  475. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  476. /* .init_tensor = */ NULL, // no initialization required
  477. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  478. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  479. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  480. /* .clear = */ ggml_backend_cpu_buffer_clear,
  481. /* .reset = */ NULL,
  482. };
  483. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  484. return "CPU";
  485. GGML_UNUSED(buft);
  486. }
  487. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  488. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  489. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  490. if (data == NULL) {
  491. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  492. return NULL;
  493. }
  494. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  495. }
  496. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  497. return TENSOR_ALIGNMENT;
  498. GGML_UNUSED(buft);
  499. }
  500. GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  501. return ggml_backend_is_cpu(backend);
  502. GGML_UNUSED(buft);
  503. }
  504. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  505. return true;
  506. GGML_UNUSED(buft);
  507. }
  508. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  509. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  510. /* .iface = */ {
  511. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  512. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  513. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  514. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  515. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  516. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  517. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  518. },
  519. /* .context = */ NULL,
  520. };
  521. return &ggml_backend_cpu_buffer_type;
  522. }
  523. #ifdef GGML_USE_CPU_HBM
  524. // buffer type HBM
  525. #include <hbwmalloc.h>
  526. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  527. return "CPU_HBM";
  528. GGML_UNUSED(buft);
  529. }
  530. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  531. return "CPU_HBM";
  532. GGML_UNUSED(buf);
  533. }
  534. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  535. hbw_free(buffer->context);
  536. }
  537. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  538. //void * ptr = hbw_malloc(size);
  539. void * ptr;
  540. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  541. if (result != 0) {
  542. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  543. return NULL;
  544. }
  545. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  546. buffer->buft = buft;
  547. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  548. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  549. return buffer;
  550. }
  551. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  552. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  553. /* .iface = */ {
  554. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  555. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  556. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  557. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  558. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  559. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  560. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  561. },
  562. /* .context = */ NULL,
  563. };
  564. return &ggml_backend_cpu_buffer_type_hbm;
  565. }
  566. #endif
  567. struct ggml_backend_cpu_context {
  568. int n_threads;
  569. void * work_data;
  570. size_t work_size;
  571. ggml_abort_callback abort_callback;
  572. void * abort_callback_data;
  573. };
  574. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  575. return "CPU";
  576. GGML_UNUSED(backend);
  577. }
  578. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  579. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  580. free(cpu_ctx->work_data);
  581. free(cpu_ctx);
  582. free(backend);
  583. }
  584. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  585. return ggml_backend_cpu_buffer_type();
  586. GGML_UNUSED(backend);
  587. }
  588. struct ggml_backend_plan_cpu {
  589. struct ggml_cplan cplan;
  590. struct ggml_cgraph cgraph;
  591. };
  592. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  593. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  594. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  595. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  596. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  597. if (cpu_plan->cplan.work_size > 0) {
  598. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  599. if (cpu_plan->cplan.work_data == NULL) {
  600. free(cpu_plan);
  601. return NULL;
  602. }
  603. }
  604. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  605. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  606. return cpu_plan;
  607. }
  608. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  609. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  610. free(cpu_plan->cplan.work_data);
  611. free(cpu_plan);
  612. GGML_UNUSED(backend);
  613. }
  614. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  615. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  616. return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  617. GGML_UNUSED(backend);
  618. }
  619. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  620. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  621. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  622. if (cpu_ctx->work_size < cplan.work_size) {
  623. free(cpu_ctx->work_data);
  624. cpu_ctx->work_data = malloc(cplan.work_size);
  625. if (cpu_ctx->work_data == NULL) {
  626. cpu_ctx->work_size = 0;
  627. return GGML_STATUS_ALLOC_FAILED;
  628. }
  629. cpu_ctx->work_size = cplan.work_size;
  630. }
  631. cplan.work_data = cpu_ctx->work_data;
  632. cplan.abort_callback = cpu_ctx->abort_callback;
  633. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  634. return ggml_graph_compute(cgraph, &cplan);
  635. }
  636. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  637. switch (op->op) {
  638. case GGML_OP_CPY:
  639. return
  640. op->type != GGML_TYPE_IQ2_XXS &&
  641. op->type != GGML_TYPE_IQ2_XS &&
  642. op->type != GGML_TYPE_IQ1_S &&
  643. op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
  644. case GGML_OP_MUL_MAT:
  645. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  646. default:
  647. return true;
  648. }
  649. GGML_UNUSED(backend);
  650. }
  651. static struct ggml_backend_i cpu_backend_i = {
  652. /* .get_name = */ ggml_backend_cpu_name,
  653. /* .free = */ ggml_backend_cpu_free,
  654. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  655. /* .set_tensor_async = */ NULL,
  656. /* .get_tensor_async = */ NULL,
  657. /* .cpy_tensor_async = */ NULL,
  658. /* .synchronize = */ NULL,
  659. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  660. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  661. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  662. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  663. /* .supports_op = */ ggml_backend_cpu_supports_op,
  664. /* .offload_op = */ NULL,
  665. /* .event_new = */ NULL,
  666. /* .event_free = */ NULL,
  667. /* .event_record = */ NULL,
  668. /* .event_wait = */ NULL,
  669. /* .event_synchronize = */ NULL,
  670. };
  671. static ggml_guid_t ggml_backend_cpu_guid(void) {
  672. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  673. return &guid;
  674. }
  675. ggml_backend_t ggml_backend_cpu_init(void) {
  676. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  677. if (ctx == NULL) {
  678. return NULL;
  679. }
  680. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  681. ctx->work_data = NULL;
  682. ctx->work_size = 0;
  683. ctx->abort_callback = NULL;
  684. ctx->abort_callback_data = NULL;
  685. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  686. if (cpu_backend == NULL) {
  687. free(ctx);
  688. return NULL;
  689. }
  690. *cpu_backend = (struct ggml_backend) {
  691. /* .guid = */ ggml_backend_cpu_guid(),
  692. /* .interface = */ cpu_backend_i,
  693. /* .context = */ ctx
  694. };
  695. return cpu_backend;
  696. }
  697. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  698. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  699. }
  700. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  701. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  702. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  703. ctx->n_threads = n_threads;
  704. }
  705. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  706. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  707. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  708. ctx->abort_callback = abort_callback;
  709. ctx->abort_callback_data = abort_callback_data;
  710. }
  711. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  712. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  713. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  714. }
  715. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  716. return ggml_backend_cpu_init();
  717. GGML_UNUSED(params);
  718. GGML_UNUSED(user_data);
  719. }
  720. // multi-buffer buffer
  721. struct ggml_backend_multi_buffer_context {
  722. ggml_backend_buffer_t * buffers;
  723. size_t n_buffers;
  724. };
  725. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  726. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  727. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  728. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  729. }
  730. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  731. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  732. for (size_t i = 0; i < ctx->n_buffers; i++) {
  733. ggml_backend_buffer_free(ctx->buffers[i]);
  734. }
  735. free(ctx->buffers);
  736. free(ctx);
  737. }
  738. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  739. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  740. for (size_t i = 0; i < ctx->n_buffers; i++) {
  741. ggml_backend_buffer_clear(ctx->buffers[i], value);
  742. }
  743. }
  744. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  745. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  746. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  747. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  748. /* .get_base = */ NULL,
  749. /* .init_tensor = */ NULL,
  750. /* .set_tensor = */ NULL,
  751. /* .get_tensor = */ NULL,
  752. /* .cpy_tensor = */ NULL,
  753. /* .clear = */ ggml_backend_multi_buffer_clear,
  754. /* .reset = */ NULL,
  755. };
  756. return multi_backend_buffer_i;
  757. }
  758. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  759. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  760. ctx->n_buffers = n_buffers;
  761. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  762. GGML_ASSERT(ctx->buffers != NULL);
  763. size_t total_size = 0;
  764. for (size_t i = 0; i < n_buffers; i++) {
  765. ctx->buffers[i] = buffers[i];
  766. total_size += ggml_backend_buffer_get_size(buffers[i]);
  767. }
  768. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  769. }
  770. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  771. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  772. }
  773. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  774. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  775. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  776. for (size_t i = 0; i < ctx->n_buffers; i++) {
  777. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  778. }
  779. }
  780. // creates a copy of the tensor with the same memory layout
  781. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  782. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  783. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  784. dup->nb[i] = tensor->nb[i];
  785. }
  786. return dup;
  787. }
  788. static bool ggml_is_view_op(enum ggml_op op) {
  789. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  790. }
  791. // scheduler
  792. #ifndef GGML_SCHED_MAX_BACKENDS
  793. #define GGML_SCHED_MAX_BACKENDS 16
  794. #endif
  795. #ifndef GGML_SCHED_MAX_SPLITS
  796. #define GGML_SCHED_MAX_SPLITS 2048
  797. #endif
  798. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  799. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  800. #endif
  801. #ifndef GGML_SCHED_MAX_COPIES
  802. #define GGML_SCHED_MAX_COPIES 4
  803. #endif
  804. struct ggml_backend_sched_split {
  805. int backend_id;
  806. int i_start;
  807. int i_end;
  808. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  809. int n_inputs;
  810. // graph view of this split
  811. struct ggml_cgraph graph;
  812. };
  813. struct ggml_backend_sched {
  814. bool is_reset; // true if the scheduler has been reset since the last graph split
  815. bool is_alloc;
  816. int n_backends;
  817. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  818. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  819. ggml_gallocr_t galloc;
  820. // hash keys of the nodes in the graph
  821. struct ggml_hash_set hash_set;
  822. // hash values
  823. int * tensor_backend_id;
  824. struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  825. int * node_backend_ids; // [graph_size]
  826. int * leaf_backend_ids; // [graph_size]
  827. // copy of the graph with modified inputs
  828. struct ggml_cgraph * graph;
  829. // graph splits
  830. struct ggml_backend_sched_split * splits;
  831. int n_splits;
  832. int splits_capacity;
  833. // pipeline parallelism support
  834. int n_copies;
  835. int cur_copy;
  836. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  837. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  838. int n_graph_inputs;
  839. struct ggml_context * ctx;
  840. ggml_backend_sched_eval_callback callback_eval;
  841. void * callback_eval_user_data;
  842. // align context_buffer to GGML_MEM_ALIGN
  843. #ifdef _MSC_VER
  844. __declspec(align(GGML_MEM_ALIGN))
  845. #else
  846. __attribute__((aligned(GGML_MEM_ALIGN)))
  847. #endif
  848. char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  849. };
  850. #define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
  851. #define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
  852. // returns the priority of the backend, lower id is higher priority
  853. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  854. for (int i = 0; i < sched->n_backends; i++) {
  855. if (sched->backends[i] == backend) {
  856. return i;
  857. }
  858. }
  859. return -1;
  860. }
  861. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
  862. ggml_backend_buffer_t buffer = tensor->buffer;
  863. if (buffer == NULL) {
  864. return -1;
  865. }
  866. // find highest prio backend that supports the buffer type
  867. for (int i = 0; i < sched->n_backends; i++) {
  868. if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
  869. return i;
  870. }
  871. }
  872. fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
  873. __func__, ggml_backend_buffer_name(buffer), tensor->name);
  874. GGML_ASSERT(false);
  875. return -1;
  876. }
  877. #if 0
  878. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  879. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  880. #define GET_CAUSE(node) causes[hash_id(node)]
  881. #else
  882. #define SET_CAUSE(node, ...)
  883. #define GET_CAUSE(node) ""
  884. #endif
  885. // returns the backend that should be used for the node based on the current locations
  886. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  887. // TODO: use supports_op to check if the backend supports the op
  888. // assign pre-allocated nodes to their backend
  889. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
  890. if (cur_backend_id != -1) {
  891. SET_CAUSE(tensor, "1.dst");
  892. return cur_backend_id;
  893. }
  894. // view_src
  895. if (tensor->view_src != NULL) {
  896. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
  897. if (cur_backend_id != -1) {
  898. SET_CAUSE(tensor, "1.vsrc");
  899. return cur_backend_id;
  900. }
  901. }
  902. // graph input
  903. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  904. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  905. SET_CAUSE(tensor, "1.inp");
  906. return cur_backend_id;
  907. }
  908. // assign nodes that use weights to the backend of the weights
  909. // operations with weights are preferably run on the same backend as the weights
  910. for (int i = 0; i < GGML_MAX_SRC; i++) {
  911. const struct ggml_tensor * src = tensor->src[i];
  912. if (src == NULL) {
  913. continue;
  914. }
  915. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  916. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
  917. // check if a backend with higher prio wants to offload the op
  918. if (src_backend_id == sched->n_backends - 1) {
  919. for (int b = 0; b < src_backend_id; b++) {
  920. if (ggml_backend_offload_op(sched->backends[b], tensor)) {
  921. SET_CAUSE(tensor, "1.off");
  922. return b;
  923. }
  924. }
  925. }
  926. SET_CAUSE(tensor, "1.wgt%d", i);
  927. return src_backend_id;
  928. }
  929. }
  930. return -1;
  931. }
  932. static char * fmt_size(size_t size) {
  933. static char buffer[128];
  934. if (size >= 1024*1024) {
  935. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  936. } else {
  937. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  938. }
  939. return buffer;
  940. }
  941. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  942. int cur_split = 0;
  943. for (int i = 0; i < graph->n_nodes; i++) {
  944. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  945. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  946. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  947. sched->splits[cur_split].n_inputs);
  948. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  949. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  950. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  951. }
  952. fprintf(stderr, "\n");
  953. cur_split++;
  954. }
  955. struct ggml_tensor * node = graph->nodes[i];
  956. if (ggml_is_view_op(node->op)) {
  957. continue;
  958. }
  959. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  960. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  961. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  962. for (int j = 0; j < GGML_MAX_SRC; j++) {
  963. struct ggml_tensor * src = node->src[j];
  964. if (src == NULL) {
  965. continue;
  966. }
  967. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  968. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  969. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  970. }
  971. fprintf(stderr, "\n");
  972. }
  973. }
  974. //#define DEBUG_PASS1
  975. //#define DEBUG_PASS2
  976. //#define DEBUG_PASS3
  977. //#define DEBUG_PASS4
  978. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  979. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  980. // reset splits
  981. sched->n_splits = 0;
  982. sched->n_graph_inputs = 0;
  983. sched->is_reset = false;
  984. struct ggml_init_params params = {
  985. /* .mem_size = */ sizeof(sched->context_buffer),
  986. /* .mem_buffer = */ sched->context_buffer,
  987. /* .no_alloc = */ true
  988. };
  989. ggml_free(sched->ctx);
  990. sched->ctx = ggml_init(params);
  991. if (sched->ctx == NULL) {
  992. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  993. GGML_ASSERT(false);
  994. }
  995. // pass 1: assign backends to ops with pre-allocated inputs
  996. for (int i = 0; i < graph->n_leafs; i++) {
  997. struct ggml_tensor * leaf = graph->leafs[i];
  998. int * leaf_backend_id = &tensor_backend_id(leaf);
  999. if (*leaf_backend_id != -1) {
  1000. // do not overwrite user assignments
  1001. continue;
  1002. }
  1003. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  1004. }
  1005. for (int i = 0; i < graph->n_nodes; i++) {
  1006. struct ggml_tensor * node = graph->nodes[i];
  1007. int * node_backend_id = &tensor_backend_id(node);
  1008. if (*node_backend_id != -1) {
  1009. // do not overwrite user assignments
  1010. continue;
  1011. }
  1012. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  1013. // src
  1014. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1015. struct ggml_tensor * src = node->src[j];
  1016. if (src == NULL) {
  1017. continue;
  1018. }
  1019. int * src_backend_id = &tensor_backend_id(src);
  1020. if (*src_backend_id == -1) {
  1021. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  1022. }
  1023. }
  1024. }
  1025. #ifdef DEBUG_PASS1
  1026. fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1027. #endif
  1028. // pass 2: expand current backend assignments
  1029. // assign the same backend to adjacent nodes
  1030. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  1031. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  1032. // pass 2.2 expand gpu down
  1033. {
  1034. int cur_backend_id = -1;
  1035. for (int i = 0; i < graph->n_nodes; i++) {
  1036. struct ggml_tensor * node = graph->nodes[i];
  1037. if (ggml_is_view_op(node->op)) {
  1038. continue;
  1039. }
  1040. int * node_backend_id = &tensor_backend_id(node);
  1041. if (*node_backend_id != -1) {
  1042. if (*node_backend_id == sched->n_backends - 1) {
  1043. // skip cpu (lowest prio backend)
  1044. cur_backend_id = -1;
  1045. } else {
  1046. cur_backend_id = *node_backend_id;
  1047. }
  1048. } else {
  1049. *node_backend_id = cur_backend_id;
  1050. SET_CAUSE(node, "2.2");
  1051. }
  1052. }
  1053. }
  1054. // pass 2.1 expand gpu up
  1055. {
  1056. int cur_backend_id = -1;
  1057. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1058. struct ggml_tensor * node = graph->nodes[i];
  1059. if (ggml_is_view_op(node->op)) {
  1060. continue;
  1061. }
  1062. int * node_backend_id = &tensor_backend_id(node);
  1063. if (*node_backend_id != -1) {
  1064. if (*node_backend_id == sched->n_backends - 1) {
  1065. // skip cpu (lowest prio backend)
  1066. cur_backend_id = -1;
  1067. } else {
  1068. cur_backend_id = *node_backend_id;
  1069. }
  1070. } else {
  1071. *node_backend_id = cur_backend_id;
  1072. SET_CAUSE(node, "2.1");
  1073. }
  1074. }
  1075. }
  1076. // pass 2.4 expand rest down
  1077. {
  1078. int cur_backend_id = -1;
  1079. for (int i = 0; i < graph->n_nodes; i++) {
  1080. struct ggml_tensor * node = graph->nodes[i];
  1081. if (ggml_is_view_op(node->op)) {
  1082. continue;
  1083. }
  1084. int * node_backend_id = &tensor_backend_id(node);
  1085. if (*node_backend_id != -1) {
  1086. cur_backend_id = *node_backend_id;
  1087. } else {
  1088. *node_backend_id = cur_backend_id;
  1089. SET_CAUSE(node, "2.4");
  1090. }
  1091. }
  1092. }
  1093. // pass 2.3 expand rest up
  1094. {
  1095. int cur_backend_id = -1;
  1096. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1097. struct ggml_tensor * node = graph->nodes[i];
  1098. if (ggml_is_view_op(node->op)) {
  1099. continue;
  1100. }
  1101. int * node_backend_id = &tensor_backend_id(node);
  1102. if (*node_backend_id != -1) {
  1103. cur_backend_id = *node_backend_id;
  1104. } else {
  1105. *node_backend_id = cur_backend_id;
  1106. SET_CAUSE(node, "2.3");
  1107. }
  1108. }
  1109. }
  1110. #ifdef DEBUG_PASS2
  1111. fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1112. #endif
  1113. // pass 3: assign backends to remaining src from dst and view_src
  1114. for (int i = 0; i < graph->n_nodes; i++) {
  1115. struct ggml_tensor * node = graph->nodes[i];
  1116. int * cur_backend_id = &tensor_backend_id(node);
  1117. if (node->view_src != NULL && *cur_backend_id == -1) {
  1118. *cur_backend_id = tensor_backend_id(node->view_src);
  1119. SET_CAUSE(node, "3.vsrc");
  1120. }
  1121. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1122. struct ggml_tensor * src = node->src[j];
  1123. if (src == NULL) {
  1124. continue;
  1125. }
  1126. int * src_backend_id = &tensor_backend_id(src);
  1127. if (*src_backend_id == -1) {
  1128. if (src->view_src != NULL) {
  1129. // views are always on the same backend as the source
  1130. *src_backend_id = tensor_backend_id(src->view_src);
  1131. SET_CAUSE(src, "3.vsrc");
  1132. } else {
  1133. *src_backend_id = *cur_backend_id;
  1134. SET_CAUSE(src, "3.cur");
  1135. }
  1136. }
  1137. }
  1138. }
  1139. #ifdef DEBUG_PASS3
  1140. fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1141. #endif
  1142. // pass 4: split graph, find tensors that need to be copied
  1143. {
  1144. int i_split = 0;
  1145. struct ggml_backend_sched_split * split = &sched->splits[0];
  1146. // find the backend of the first split, skipping view ops
  1147. for (int i = 0; i < graph->n_nodes; i++) {
  1148. struct ggml_tensor * node = graph->nodes[i];
  1149. if (!ggml_is_view_op(node->op)) {
  1150. split->backend_id = tensor_backend_id(node);
  1151. break;
  1152. }
  1153. }
  1154. split->i_start = 0;
  1155. split->n_inputs = 0;
  1156. memset(split->inputs, 0, sizeof(split->inputs)); //HACK
  1157. int cur_backend_id = split->backend_id;
  1158. for (int i = 0; i < graph->n_nodes; i++) {
  1159. struct ggml_tensor * node = graph->nodes[i];
  1160. if (ggml_is_view_op(node->op)) {
  1161. continue;
  1162. }
  1163. const int node_backend_id = tensor_backend_id(node);
  1164. GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
  1165. // check if we should start a new split based on the sources of the current node
  1166. bool need_new_split = false;
  1167. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  1168. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1169. struct ggml_tensor * src = node->src[j];
  1170. if (src == NULL) {
  1171. continue;
  1172. }
  1173. // check if a weight is on a different backend
  1174. // by starting a new split, the memory of the previously offloaded weights can be reused
  1175. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1176. int src_backend_id = tensor_backend_id(src);
  1177. if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
  1178. need_new_split = true;
  1179. break;
  1180. }
  1181. }
  1182. // check if the split has too many inputs
  1183. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1184. const size_t id = hash_id(src);
  1185. int src_backend_id = sched->tensor_backend_id[id];
  1186. if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
  1187. //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
  1188. need_new_split = true;
  1189. break;
  1190. }
  1191. }
  1192. }
  1193. }
  1194. if (node_backend_id != cur_backend_id || need_new_split) {
  1195. split->i_end = i;
  1196. i_split++;
  1197. if (i_split >= sched->splits_capacity) {
  1198. sched->splits_capacity *= 2;
  1199. sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1200. GGML_ASSERT(sched->splits != NULL);
  1201. }
  1202. GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
  1203. split = &sched->splits[i_split];
  1204. split->backend_id = node_backend_id;
  1205. split->i_start = i;
  1206. split->n_inputs = 0;
  1207. cur_backend_id = node_backend_id;
  1208. }
  1209. // find inputs that are not on the same backend
  1210. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1211. struct ggml_tensor * src = node->src[j];
  1212. if (src == NULL) {
  1213. continue;
  1214. }
  1215. const int src_backend_id = tensor_backend_id(src);
  1216. assert(src_backend_id != -1); // all inputs should be assigned by now
  1217. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1218. size_t id = hash_id(src);
  1219. if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
  1220. ggml_backend_t backend = sched->backends[src_backend_id];
  1221. for (int c = 0; c < sched->n_copies; c++) {
  1222. struct ggml_tensor * tensor_copy;
  1223. if (c == sched->cur_copy) {
  1224. tensor_copy = src; // use the original tensor as the current copy
  1225. } else {
  1226. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1227. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1228. }
  1229. if (sched->n_copies > 1) {
  1230. ggml_set_input(tensor_copy);
  1231. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1232. }
  1233. sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
  1234. SET_CAUSE(tensor_copy, "4.cpy");
  1235. }
  1236. int n_graph_inputs = sched->n_graph_inputs++;
  1237. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1238. sched->graph_inputs[n_graph_inputs] = src;
  1239. }
  1240. }
  1241. if (src_backend_id != node_backend_id) {
  1242. // create a copy of the input in the split's backend
  1243. const size_t id = hash_id(src);
  1244. if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
  1245. ggml_backend_t backend = sched->backends[cur_backend_id];
  1246. for (int c = 0; c < sched->n_copies; c++) {
  1247. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1248. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1249. if (sched->n_copies > 1) {
  1250. ggml_set_input(tensor_copy);
  1251. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1252. }
  1253. sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
  1254. SET_CAUSE(tensor_copy, "4.cpy");
  1255. }
  1256. int n_inputs = split->n_inputs++;
  1257. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1258. split->inputs[n_inputs] = src;
  1259. }
  1260. node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
  1261. }
  1262. }
  1263. }
  1264. split->i_end = graph->n_nodes;
  1265. sched->n_splits = i_split + 1;
  1266. }
  1267. #ifdef DEBUG_PASS4
  1268. fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1269. #endif
  1270. // create copies of the graph for each split
  1271. // TODO: avoid this copy
  1272. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
  1273. for (int i = 0; i < sched->n_splits; i++) {
  1274. struct ggml_backend_sched_split * split = &sched->splits[i];
  1275. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1276. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1277. for (int j = 0; j < split->n_inputs; j++) {
  1278. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1279. struct ggml_tensor * input = split->inputs[j];
  1280. const size_t input_id = hash_id(input);
  1281. struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
  1282. // add a dependency to the input source so that it is not freed before the copy is done
  1283. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1284. input_dep->src[0] = input;
  1285. sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
  1286. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1287. // add a dependency to the input copy so that it is allocated at the start of the split
  1288. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1289. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1290. }
  1291. for (int j = split->i_start; j < split->i_end; j++) {
  1292. assert(graph_copy->size > graph_copy->n_nodes);
  1293. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1294. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1295. }
  1296. }
  1297. if (sched->n_copies > 1) {
  1298. // add input copies as leafs so that they are allocated first
  1299. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1300. struct ggml_tensor * input = sched->graph_inputs[i];
  1301. size_t id = hash_id(input);
  1302. int backend_id = tensor_backend_id(input);
  1303. for (int c = 0; c < sched->n_copies; c++) {
  1304. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1305. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1306. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1307. }
  1308. }
  1309. for (int i = 0; i < sched->n_splits; i++) {
  1310. struct ggml_backend_sched_split * split = &sched->splits[i];
  1311. int backend_id = split->backend_id;
  1312. for (int j = 0; j < split->n_inputs; j++) {
  1313. struct ggml_tensor * input = split->inputs[j];
  1314. size_t id = hash_id(input);
  1315. for (int c = 0; c < sched->n_copies; c++) {
  1316. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1317. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1318. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1319. }
  1320. }
  1321. }
  1322. }
  1323. // add leafs from the original graph
  1324. for (int i = 0; i < graph->n_leafs; i++) {
  1325. struct ggml_tensor * leaf = graph->leafs[i];
  1326. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1327. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1328. }
  1329. sched->graph = graph_copy;
  1330. }
  1331. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1332. // allocate graph
  1333. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1334. // the re-allocation may cause the split inputs to be moved to a different address
  1335. ggml_backend_sched_synchronize(sched);
  1336. #ifndef NDEBUG
  1337. fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
  1338. #endif
  1339. ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1340. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1341. fprintf(stderr, "%s: failed to allocate graph\n", __func__);
  1342. return false;
  1343. }
  1344. }
  1345. return true;
  1346. }
  1347. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1348. struct ggml_backend_sched_split * splits = sched->splits;
  1349. for (int i = 0; i < sched->n_splits; i++) {
  1350. struct ggml_backend_sched_split * split = &splits[i];
  1351. int split_backend_id = split->backend_id;
  1352. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1353. // copy the input tensors to the split backend
  1354. for (int j = 0; j < split->n_inputs; j++) {
  1355. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1356. struct ggml_tensor * input = split->inputs[j];
  1357. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
  1358. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1359. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1360. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1361. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1362. } else {
  1363. ggml_backend_synchronize(split_backend);
  1364. }
  1365. ggml_backend_tensor_copy(input, input_cpy);
  1366. } else {
  1367. // wait for the split backend to finish using the input before overwriting it
  1368. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1369. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1370. } else {
  1371. ggml_backend_synchronize(split_backend);
  1372. }
  1373. ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
  1374. }
  1375. }
  1376. if (!sched->callback_eval) {
  1377. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1378. if (ec != GGML_STATUS_SUCCESS) {
  1379. return ec;
  1380. }
  1381. } else {
  1382. // similar to ggml_backend_compare_graph_backend
  1383. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1384. struct ggml_tensor * t = split->graph.nodes[j0];
  1385. // check if the user needs data from this node
  1386. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1387. int j1 = j0;
  1388. // determine the range [j0, j1] of nodes that can be computed together
  1389. while (!need && j1 < split->graph.n_nodes - 1) {
  1390. t = split->graph.nodes[++j1];
  1391. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1392. }
  1393. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1394. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1395. if (ec != GGML_STATUS_SUCCESS) {
  1396. return ec;
  1397. }
  1398. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1399. ggml_backend_synchronize(split_backend);
  1400. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1401. break;
  1402. }
  1403. j0 = j1;
  1404. }
  1405. }
  1406. // record the event of this copy
  1407. if (split->n_inputs > 0) {
  1408. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1409. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
  1410. }
  1411. }
  1412. }
  1413. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1414. return GGML_STATUS_SUCCESS;
  1415. }
  1416. ggml_backend_sched_t ggml_backend_sched_new(
  1417. ggml_backend_t * backends,
  1418. ggml_backend_buffer_type_t * bufts,
  1419. int n_backends,
  1420. size_t graph_size,
  1421. bool parallel) {
  1422. GGML_ASSERT(n_backends > 0);
  1423. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1424. GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
  1425. struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
  1426. // initialize hash table
  1427. sched->hash_set = ggml_hash_set_new(graph_size);
  1428. sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
  1429. sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
  1430. const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1431. sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1432. sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1433. sched->n_backends = n_backends;
  1434. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1435. const int initial_splits_capacity = 16;
  1436. sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1437. sched->splits_capacity = initial_splits_capacity;
  1438. for (int b = 0; b < n_backends; b++) {
  1439. sched->backends[b] = backends[b];
  1440. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1441. GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
  1442. if (sched->n_copies > 1) {
  1443. for (int c = 0; c < sched->n_copies; c++) {
  1444. sched->events[b][c] = ggml_backend_event_new(backends[b]);
  1445. }
  1446. }
  1447. }
  1448. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1449. ggml_backend_sched_reset(sched);
  1450. return sched;
  1451. }
  1452. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1453. if (sched == NULL) {
  1454. return;
  1455. }
  1456. for (int b = 0; b < sched->n_backends; b++) {
  1457. for (int c = 0; c < sched->n_copies; c++) {
  1458. ggml_backend_event_free(sched->events[b][c]);
  1459. }
  1460. }
  1461. ggml_gallocr_free(sched->galloc);
  1462. ggml_free(sched->ctx);
  1463. free(sched->splits);
  1464. free(sched->hash_set.keys);
  1465. free(sched->tensor_backend_id);
  1466. free(sched->tensor_copies);
  1467. free(sched->node_backend_ids);
  1468. free(sched->leaf_backend_ids);
  1469. free(sched);
  1470. }
  1471. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1472. // reset state for the next run
  1473. if (!sched->is_reset) {
  1474. size_t hash_size = sched->hash_set.size;
  1475. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
  1476. memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
  1477. memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
  1478. sched->is_reset = true;
  1479. }
  1480. sched->is_alloc = false;
  1481. }
  1482. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1483. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
  1484. ggml_backend_sched_split_graph(sched, measure_graph);
  1485. // TODO: extract this to a separate function
  1486. if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1487. return false;
  1488. }
  1489. ggml_backend_sched_reset(sched);
  1490. ggml_backend_sched_synchronize(sched);
  1491. return true;
  1492. }
  1493. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1494. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
  1495. ggml_backend_sched_split_graph(sched, graph);
  1496. if (!ggml_backend_sched_alloc_splits(sched)) {
  1497. return false;
  1498. }
  1499. sched->is_alloc = true;
  1500. return true;
  1501. }
  1502. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1503. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1504. ggml_backend_sched_synchronize(sched);
  1505. return err;
  1506. }
  1507. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1508. if (!sched->is_reset && !sched->is_alloc) {
  1509. ggml_backend_sched_reset(sched);
  1510. }
  1511. if (!sched->is_alloc) {
  1512. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1513. return GGML_STATUS_ALLOC_FAILED;
  1514. }
  1515. }
  1516. return ggml_backend_sched_compute_splits(sched);
  1517. }
  1518. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1519. for (int i = 0; i < sched->n_backends; i++) {
  1520. ggml_backend_synchronize(sched->backends[i]);
  1521. }
  1522. }
  1523. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1524. sched->callback_eval = callback;
  1525. sched->callback_eval_user_data = user_data;
  1526. }
  1527. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1528. return sched->n_splits;
  1529. }
  1530. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1531. return sched->n_copies;
  1532. }
  1533. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1534. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1535. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1536. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1537. }
  1538. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1539. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1540. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1541. tensor_backend_id(node) = backend_index;
  1542. }
  1543. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1544. int backend_index = tensor_backend_id(node);
  1545. if (backend_index == -1) {
  1546. return NULL;
  1547. }
  1548. return sched->backends[backend_index];
  1549. }
  1550. // utils
  1551. void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  1552. GGML_ASSERT(tensor->buffer == NULL);
  1553. GGML_ASSERT(tensor->view_src != NULL);
  1554. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1555. GGML_ASSERT(tensor->view_src->data != NULL);
  1556. tensor->buffer = buffer;
  1557. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1558. ggml_backend_buffer_init_tensor(buffer, tensor);
  1559. }
  1560. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1561. GGML_ASSERT(tensor->buffer == NULL);
  1562. GGML_ASSERT(tensor->data == NULL);
  1563. GGML_ASSERT(tensor->view_src == NULL);
  1564. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1565. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1566. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1567. tensor->buffer = buffer;
  1568. tensor->data = addr;
  1569. ggml_backend_buffer_init_tensor(buffer, tensor);
  1570. }
  1571. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1572. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1573. GGML_ASSERT(src != NULL);
  1574. GGML_ASSERT(src->data && "graph must be allocated");
  1575. size_t id = ggml_hash_insert(hash_set, src);
  1576. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  1577. return node_copies[ggml_hash_find(hash_set, src)];
  1578. }
  1579. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1580. if (src->view_src != NULL) {
  1581. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1582. dst->view_offs = src->view_offs;
  1583. }
  1584. dst->op = src->op;
  1585. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1586. ggml_set_name(dst, src->name);
  1587. // copy src
  1588. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1589. struct ggml_tensor * s = src->src[i];
  1590. if (s == NULL) {
  1591. continue;
  1592. }
  1593. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1594. }
  1595. node_copies[id] = dst;
  1596. return dst;
  1597. }
  1598. static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1599. size_t id = ggml_hash_find(hash_set, src);
  1600. if (node_init[id]) {
  1601. return;
  1602. }
  1603. node_init[id] = true;
  1604. struct ggml_tensor * dst = node_copies[id];
  1605. if (dst->view_src != NULL) {
  1606. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1607. ggml_backend_view_init(dst->view_src->buffer, dst);
  1608. }
  1609. else {
  1610. ggml_backend_tensor_copy(src, dst);
  1611. }
  1612. // init src
  1613. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1614. struct ggml_tensor * s = src->src[i];
  1615. if (s == NULL) {
  1616. continue;
  1617. }
  1618. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1619. }
  1620. }
  1621. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1622. struct ggml_hash_set hash_set = {
  1623. /* .size = */ graph->visited_hash_table.size,
  1624. /* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
  1625. };
  1626. struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1627. bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
  1628. struct ggml_init_params params = {
  1629. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1630. /* .mem_buffer = */ NULL,
  1631. /* .no_alloc = */ true
  1632. };
  1633. struct ggml_context * ctx_allocated = ggml_init(params);
  1634. struct ggml_context * ctx_unallocated = ggml_init(params);
  1635. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1636. fprintf(stderr, "failed to allocate context for graph copy\n");
  1637. free(hash_set.keys);
  1638. free(node_copies);
  1639. free(node_init);
  1640. ggml_free(ctx_allocated);
  1641. ggml_free(ctx_unallocated);
  1642. return (struct ggml_backend_graph_copy) {
  1643. /* .buffer = */ NULL,
  1644. /* .ctx_allocated = */ NULL,
  1645. /* .ctx_unallocated = */ NULL,
  1646. /* .graph = */ NULL,
  1647. };
  1648. }
  1649. // dup nodes
  1650. for (int i = 0; i < graph->n_nodes; i++) {
  1651. struct ggml_tensor * node = graph->nodes[i];
  1652. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1653. }
  1654. // allocate nodes
  1655. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1656. if (buffer == NULL) {
  1657. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1658. free(hash_set.keys);
  1659. free(node_copies);
  1660. free(node_init);
  1661. ggml_free(ctx_allocated);
  1662. ggml_free(ctx_unallocated);
  1663. return (struct ggml_backend_graph_copy) {
  1664. /* .buffer = */ NULL,
  1665. /* .ctx_allocated = */ NULL,
  1666. /* .ctx_unallocated = */ NULL,
  1667. /* .graph = */ NULL,
  1668. };
  1669. }
  1670. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1671. // copy data and init views
  1672. for (int i = 0; i < graph->n_nodes; i++) {
  1673. struct ggml_tensor * node = graph->nodes[i];
  1674. graph_copy_init_tensor(hash_set, node_copies, node_init, node);
  1675. }
  1676. // build graph copy
  1677. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1678. for (int i = 0; i < graph->n_nodes; i++) {
  1679. struct ggml_tensor * node = graph->nodes[i];
  1680. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1681. graph_copy->nodes[i] = node_copy;
  1682. }
  1683. graph_copy->n_nodes = graph->n_nodes;
  1684. free(hash_set.keys);
  1685. free(node_copies);
  1686. free(node_init);
  1687. return (struct ggml_backend_graph_copy) {
  1688. /* .buffer = */ buffer,
  1689. /* .ctx_allocated = */ ctx_allocated,
  1690. /* .ctx_unallocated = */ ctx_unallocated,
  1691. /* .graph = */ graph_copy,
  1692. };
  1693. }
  1694. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1695. ggml_backend_buffer_free(copy.buffer);
  1696. ggml_free(copy.ctx_allocated);
  1697. ggml_free(copy.ctx_unallocated);
  1698. }
  1699. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1700. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1701. if (copy.buffer == NULL) {
  1702. return false;
  1703. }
  1704. struct ggml_cgraph * g1 = graph;
  1705. struct ggml_cgraph * g2 = copy.graph;
  1706. assert(g1->n_nodes == g2->n_nodes);
  1707. for (int i = 0; i < g1->n_nodes; i++) {
  1708. //printf("eval %d/%d\n", i, g1->n_nodes);
  1709. struct ggml_tensor * t1 = g1->nodes[i];
  1710. struct ggml_tensor * t2 = g2->nodes[i];
  1711. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1712. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1713. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1714. ggml_backend_graph_compute(backend1, &g1v);
  1715. ggml_backend_graph_compute(backend2, &g2v);
  1716. if (ggml_is_view_op(t1->op)) {
  1717. continue;
  1718. }
  1719. // compare results, calculate rms etc
  1720. if (!callback(i, t1, t2, user_data)) {
  1721. break;
  1722. }
  1723. }
  1724. ggml_backend_graph_copy_free(copy);
  1725. return true;
  1726. }