ggml-cuda.cu 117 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042
  1. #include "ggml-cuda.h"
  2. #include "ggml.h"
  3. #include "ggml-backend-impl.h"
  4. #include "ggml-cuda/common.cuh"
  5. #include "ggml-cuda/acc.cuh"
  6. #include "ggml-cuda/arange.cuh"
  7. #include "ggml-cuda/argsort.cuh"
  8. #include "ggml-cuda/binbcast.cuh"
  9. #include "ggml-cuda/clamp.cuh"
  10. #include "ggml-cuda/concat.cuh"
  11. #include "ggml-cuda/convert.cuh"
  12. #include "ggml-cuda/cpy.cuh"
  13. #include "ggml-cuda/diagmask.cuh"
  14. #include "ggml-cuda/dmmv.cuh"
  15. #include "ggml-cuda/fattn.cuh"
  16. #include "ggml-cuda/getrows.cuh"
  17. #include "ggml-cuda/im2col.cuh"
  18. #include "ggml-cuda/mmq.cuh"
  19. #include "ggml-cuda/mmvq.cuh"
  20. #include "ggml-cuda/norm.cuh"
  21. #include "ggml-cuda/pad.cuh"
  22. #include "ggml-cuda/pool2d.cuh"
  23. #include "ggml-cuda/quantize.cuh"
  24. #include "ggml-cuda/rope.cuh"
  25. #include "ggml-cuda/scale.cuh"
  26. #include "ggml-cuda/softmax.cuh"
  27. #include "ggml-cuda/sumrows.cuh"
  28. #include "ggml-cuda/tsembd.cuh"
  29. #include "ggml-cuda/unary.cuh"
  30. #include "ggml-cuda/upscale.cuh"
  31. #include <algorithm>
  32. #include <array>
  33. #include <atomic>
  34. #include <cinttypes>
  35. #include <cstddef>
  36. #include <cstdint>
  37. #include <float.h>
  38. #include <limits>
  39. #include <map>
  40. #include <memory>
  41. #include <mutex>
  42. #include <stdint.h>
  43. #include <stdio.h>
  44. #include <string>
  45. #include <vector>
  46. static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
  47. [[noreturn]]
  48. void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
  49. int id = -1; // in case cudaGetDevice fails
  50. cudaGetDevice(&id);
  51. fprintf(stderr, "CUDA error: %s\n", msg);
  52. fprintf(stderr, " current device: %d, in function %s at %s:%d\n", id, func, file, line);
  53. fprintf(stderr, " %s\n", stmt);
  54. // abort with GGML_ASSERT to get a stack trace
  55. GGML_ASSERT(!"CUDA error");
  56. }
  57. // this is faster on Windows
  58. // probably because the Windows CUDA libraries forget to make this check before invoking the drivers
  59. void ggml_cuda_set_device(int device) {
  60. int current_device;
  61. CUDA_CHECK(cudaGetDevice(&current_device));
  62. if (device == current_device) {
  63. return;
  64. }
  65. CUDA_CHECK(cudaSetDevice(device));
  66. }
  67. int ggml_cuda_get_device() {
  68. int id;
  69. CUDA_CHECK(cudaGetDevice(&id));
  70. return id;
  71. }
  72. static ggml_cuda_device_info ggml_cuda_init() {
  73. #ifdef __HIP_PLATFORM_AMD__
  74. // Workaround for a rocBLAS bug when using multiple graphics cards:
  75. // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
  76. rocblas_initialize();
  77. CUDA_CHECK(cudaDeviceSynchronize());
  78. #endif
  79. ggml_cuda_device_info info = {};
  80. cudaError_t err = cudaGetDeviceCount(&info.device_count);
  81. if (err != cudaSuccess) {
  82. fprintf(stderr, "%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
  83. return info;
  84. }
  85. GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
  86. int64_t total_vram = 0;
  87. #if defined(GGML_CUDA_FORCE_MMQ)
  88. fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
  89. #else
  90. fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
  91. #endif
  92. #if defined(CUDA_USE_TENSOR_CORES)
  93. fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
  94. #else
  95. fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
  96. #endif
  97. fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
  98. for (int id = 0; id < info.device_count; ++id) {
  99. int device_vmm = 0;
  100. #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
  101. CUdevice device;
  102. CU_CHECK(cuDeviceGet(&device, id));
  103. CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
  104. if (device_vmm) {
  105. CUmemAllocationProp alloc_prop = {};
  106. alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
  107. alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
  108. alloc_prop.location.id = id;
  109. CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
  110. }
  111. #endif // !defined(GGML_USE_HIPBLAS)
  112. info.devices[id].vmm = !!device_vmm;
  113. cudaDeviceProp prop;
  114. CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
  115. fprintf(stderr, " Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
  116. info.default_tensor_split[id] = total_vram;
  117. total_vram += prop.totalGlobalMem;
  118. #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  119. info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
  120. #else
  121. info.devices[id].cc = 100*prop.major + 10*prop.minor;
  122. #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  123. info.devices[id].smpb = prop.sharedMemPerBlock;
  124. info.devices[id].nsm = prop.multiProcessorCount;
  125. }
  126. for (int id = 0; id < info.device_count; ++id) {
  127. info.default_tensor_split[id] /= total_vram;
  128. }
  129. // configure logging to stdout
  130. // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
  131. return info;
  132. }
  133. const ggml_cuda_device_info & ggml_cuda_info() {
  134. static ggml_cuda_device_info info = ggml_cuda_init();
  135. return info;
  136. }
  137. // #define DEBUG_CUDA_MALLOC
  138. // buffer pool for cuda (legacy)
  139. struct ggml_cuda_pool_leg : public ggml_cuda_pool {
  140. static const int MAX_BUFFERS = 256;
  141. int device;
  142. struct ggml_cuda_buffer {
  143. void * ptr = nullptr;
  144. size_t size = 0;
  145. };
  146. ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
  147. size_t pool_size = 0;
  148. explicit ggml_cuda_pool_leg(int device) :
  149. device(device) {
  150. }
  151. ~ggml_cuda_pool_leg() {
  152. ggml_cuda_set_device(device);
  153. for (int i = 0; i < MAX_BUFFERS; ++i) {
  154. ggml_cuda_buffer & b = buffer_pool[i];
  155. if (b.ptr != nullptr) {
  156. CUDA_CHECK(cudaFree(b.ptr));
  157. pool_size -= b.size;
  158. }
  159. }
  160. GGML_ASSERT(pool_size == 0);
  161. }
  162. void * alloc(size_t size, size_t * actual_size) override {
  163. #ifdef DEBUG_CUDA_MALLOC
  164. int nnz = 0;
  165. size_t max_size = 0;
  166. #endif
  167. size_t best_diff = 1ull << 36;
  168. int ibest = -1;
  169. for (int i = 0; i < MAX_BUFFERS; ++i) {
  170. ggml_cuda_buffer& b = buffer_pool[i];
  171. if (b.ptr != nullptr) {
  172. #ifdef DEBUG_CUDA_MALLOC
  173. ++nnz;
  174. if (b.size > max_size) max_size = b.size;
  175. #endif
  176. if (b.size >= size) {
  177. size_t diff = b.size - size;
  178. if (diff < best_diff) {
  179. best_diff = diff;
  180. ibest = i;
  181. if (!best_diff) {
  182. void * ptr = b.ptr;
  183. *actual_size = b.size;
  184. b.ptr = nullptr;
  185. b.size = 0;
  186. return ptr;
  187. }
  188. }
  189. }
  190. }
  191. }
  192. if (ibest >= 0) {
  193. ggml_cuda_buffer& b = buffer_pool[ibest];
  194. void * ptr = b.ptr;
  195. *actual_size = b.size;
  196. b.ptr = nullptr;
  197. b.size = 0;
  198. return ptr;
  199. }
  200. void * ptr;
  201. size_t look_ahead_size = (size_t) (1.05 * size);
  202. look_ahead_size = 256 * ((look_ahead_size + 255)/256);
  203. ggml_cuda_set_device(device);
  204. CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
  205. *actual_size = look_ahead_size;
  206. pool_size += look_ahead_size;
  207. #ifdef DEBUG_CUDA_MALLOC
  208. fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
  209. (uint32_t)(max_size/1024/1024), (uint32_t)(pool_size/1024/1024), (uint32_t)(size/1024/1024));
  210. #endif
  211. return ptr;
  212. }
  213. void free(void * ptr, size_t size) override {
  214. for (int i = 0; i < MAX_BUFFERS; ++i) {
  215. ggml_cuda_buffer& b = buffer_pool[i];
  216. if (b.ptr == nullptr) {
  217. b.ptr = ptr;
  218. b.size = size;
  219. return;
  220. }
  221. }
  222. fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
  223. ggml_cuda_set_device(device);
  224. CUDA_CHECK(cudaFree(ptr));
  225. pool_size -= size;
  226. }
  227. };
  228. // pool with virtual memory
  229. #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
  230. struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
  231. static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
  232. int device;
  233. CUdeviceptr pool_addr = 0;
  234. size_t pool_used = 0;
  235. size_t pool_size = 0;
  236. size_t granularity;
  237. explicit ggml_cuda_pool_vmm(int device) :
  238. device(device),
  239. granularity(ggml_cuda_info().devices[device].vmm_granularity) {
  240. }
  241. ~ggml_cuda_pool_vmm() {
  242. if (pool_addr != 0) {
  243. CU_CHECK(cuMemUnmap(pool_addr, pool_size));
  244. CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
  245. }
  246. }
  247. void * alloc(size_t size, size_t * actual_size) override {
  248. // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
  249. const size_t alignment = 128;
  250. size = alignment * ((size + alignment - 1) / alignment);
  251. size_t avail = pool_size - pool_used;
  252. if (size > avail) {
  253. // round up to the next multiple of the granularity
  254. size_t reserve_size = size - avail;
  255. reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
  256. GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
  257. // allocate more physical memory
  258. CUmemAllocationProp prop = {};
  259. prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
  260. prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
  261. prop.location.id = device;
  262. CUmemGenericAllocationHandle handle;
  263. CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
  264. // reserve virtual address space (if not already reserved)
  265. if (pool_addr == 0) {
  266. CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
  267. }
  268. // map at the end of the pool
  269. CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
  270. // the memory allocation handle is no longer needed after mapping
  271. CU_CHECK(cuMemRelease(handle));
  272. // set access
  273. CUmemAccessDesc access = {};
  274. access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
  275. access.location.id = device;
  276. access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
  277. CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
  278. // add to the pool
  279. pool_size += reserve_size;
  280. //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
  281. // device, (unsigned long long) (pool_size/1024/1024),
  282. // (unsigned long long) (reserve_size/1024/1024));
  283. }
  284. GGML_ASSERT(pool_addr != 0);
  285. void * ptr = (void *) (pool_addr + pool_used);
  286. *actual_size = size;
  287. pool_used += size;
  288. #ifdef DEBUG_CUDA_MALLOC
  289. printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
  290. #endif
  291. return ptr;
  292. }
  293. void free(void * ptr, size_t size) override {
  294. #ifdef DEBUG_CUDA_MALLOC
  295. printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
  296. #endif
  297. pool_used -= size;
  298. // all deallocations must be in reverse order of the allocations
  299. GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
  300. }
  301. };
  302. #endif // !defined(GGML_USE_HIPBLAS)
  303. std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
  304. #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
  305. if (ggml_cuda_info().devices[device].vmm) {
  306. return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
  307. }
  308. #endif
  309. return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
  310. }
  311. // cuda buffer
  312. struct ggml_backend_cuda_buffer_context {
  313. int device;
  314. void * dev_ptr = nullptr;
  315. std::string name;
  316. ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
  317. device(device), dev_ptr(dev_ptr),
  318. name(GGML_CUDA_NAME + std::to_string(device)) {
  319. }
  320. ~ggml_backend_cuda_buffer_context() {
  321. CUDA_CHECK(cudaFree(dev_ptr));
  322. }
  323. };
  324. GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
  325. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  326. return ctx->name.c_str();
  327. }
  328. GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
  329. return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
  330. }
  331. GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  332. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  333. delete ctx;
  334. }
  335. GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
  336. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  337. return ctx->dev_ptr;
  338. }
  339. GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  340. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  341. if (tensor->view_src != NULL) {
  342. assert(tensor->view_src->buffer->buft == buffer->buft);
  343. return;
  344. }
  345. if (ggml_is_quantized(tensor->type)) {
  346. // initialize padding to 0 to avoid possible NaN values
  347. size_t original_size = ggml_nbytes(tensor);
  348. size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
  349. if (padded_size > original_size && tensor->view_src == nullptr) {
  350. ggml_cuda_set_device(ctx->device);
  351. CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
  352. }
  353. }
  354. }
  355. GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  356. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  357. ggml_cuda_set_device(ctx->device);
  358. CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
  359. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  360. }
  361. GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  362. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  363. ggml_cuda_set_device(ctx->device);
  364. CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
  365. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  366. }
  367. GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  368. if (ggml_backend_buffer_is_cuda(src->buffer)) {
  369. ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
  370. ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
  371. if (src_ctx->device == dst_ctx->device) {
  372. CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
  373. } else {
  374. #ifdef GGML_CUDA_NO_PEER_COPY
  375. return false;
  376. #else
  377. CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
  378. #endif
  379. }
  380. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  381. return true;
  382. }
  383. return false;
  384. GGML_UNUSED(buffer);
  385. }
  386. GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  387. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  388. ggml_cuda_set_device(ctx->device);
  389. CUDA_CHECK(cudaDeviceSynchronize());
  390. CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
  391. CUDA_CHECK(cudaDeviceSynchronize());
  392. }
  393. static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
  394. /* .get_name = */ ggml_backend_cuda_buffer_get_name,
  395. /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
  396. /* .get_base = */ ggml_backend_cuda_buffer_get_base,
  397. /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
  398. /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
  399. /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
  400. /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
  401. /* .clear = */ ggml_backend_cuda_buffer_clear,
  402. /* .reset = */ NULL,
  403. };
  404. // cuda buffer type
  405. struct ggml_backend_cuda_buffer_type_context {
  406. int device;
  407. std::string name;
  408. };
  409. GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
  410. ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
  411. return ctx->name.c_str();
  412. }
  413. GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  414. ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
  415. ggml_cuda_set_device(buft_ctx->device);
  416. size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
  417. void * dev_ptr;
  418. cudaError_t err = cudaMalloc(&dev_ptr, size);
  419. if (err != cudaSuccess) {
  420. fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err));
  421. return nullptr;
  422. }
  423. ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
  424. return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
  425. }
  426. GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  427. return 128;
  428. GGML_UNUSED(buft);
  429. }
  430. GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  431. size_t size = ggml_nbytes(tensor);
  432. int64_t ne0 = tensor->ne[0];
  433. if (ggml_is_quantized(tensor->type)) {
  434. if (ne0 % MATRIX_ROW_PADDING != 0) {
  435. size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  436. }
  437. }
  438. return size;
  439. GGML_UNUSED(buft);
  440. }
  441. GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  442. if (!ggml_backend_is_cuda(backend)) {
  443. return false;
  444. }
  445. ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
  446. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  447. return buft_ctx->device == cuda_ctx->device;
  448. }
  449. static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
  450. /* .get_name = */ ggml_backend_cuda_buffer_type_name,
  451. /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
  452. /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
  453. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  454. /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
  455. /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
  456. /* .is_host = */ NULL,
  457. };
  458. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
  459. static std::mutex mutex;
  460. std::lock_guard<std::mutex> lock(mutex);
  461. if (device >= ggml_backend_cuda_get_device_count()) {
  462. return nullptr;
  463. }
  464. static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
  465. static bool ggml_backend_cuda_buffer_type_initialized = false;
  466. if (!ggml_backend_cuda_buffer_type_initialized) {
  467. for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
  468. ggml_backend_cuda_buffer_types[i] = {
  469. /* .iface = */ ggml_backend_cuda_buffer_type_interface,
  470. /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
  471. };
  472. }
  473. ggml_backend_cuda_buffer_type_initialized = true;
  474. }
  475. return &ggml_backend_cuda_buffer_types[device];
  476. }
  477. // cuda split buffer
  478. static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
  479. int64_t min_compute_capability = INT_MAX;
  480. int64_t max_compute_capability = INT_MIN;
  481. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  482. if (tensor_split[id] < (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
  483. if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
  484. min_compute_capability = ggml_cuda_info().devices[id].cc;
  485. }
  486. if (max_compute_capability < ggml_cuda_info().devices[id].cc) {
  487. max_compute_capability = ggml_cuda_info().devices[id].cc;
  488. }
  489. }
  490. }
  491. #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  492. switch(type) {
  493. case GGML_TYPE_Q4_0:
  494. case GGML_TYPE_Q4_1:
  495. case GGML_TYPE_Q5_0:
  496. case GGML_TYPE_Q5_1:
  497. case GGML_TYPE_Q8_0:
  498. return max_compute_capability >= CC_RDNA2 ? 128 : 64;
  499. case GGML_TYPE_F16:
  500. case GGML_TYPE_F32:
  501. return 1;
  502. case GGML_TYPE_Q2_K:
  503. return max_compute_capability >= CC_RDNA2 ? 128 : 32;
  504. case GGML_TYPE_Q3_K:
  505. return min_compute_capability < CC_RDNA2 ? 128 : 64;
  506. case GGML_TYPE_Q4_K:
  507. case GGML_TYPE_Q5_K:
  508. case GGML_TYPE_Q6_K:
  509. case GGML_TYPE_IQ2_XXS:
  510. case GGML_TYPE_IQ2_XS:
  511. case GGML_TYPE_IQ2_S:
  512. case GGML_TYPE_IQ3_XXS:
  513. case GGML_TYPE_IQ1_S:
  514. case GGML_TYPE_IQ1_M:
  515. case GGML_TYPE_IQ4_NL:
  516. case GGML_TYPE_IQ4_XS:
  517. case GGML_TYPE_IQ3_S:
  518. return max_compute_capability >= CC_RDNA2 ? 128 : 64;
  519. default:
  520. GGML_ASSERT(false);
  521. }
  522. #else
  523. switch(type) {
  524. case GGML_TYPE_Q4_0:
  525. case GGML_TYPE_Q4_1:
  526. return max_compute_capability >= CC_VOLTA ? 128 : 64;
  527. case GGML_TYPE_Q5_0:
  528. case GGML_TYPE_Q5_1:
  529. case GGML_TYPE_Q8_0:
  530. return 64;
  531. case GGML_TYPE_F16:
  532. case GGML_TYPE_F32:
  533. return 1;
  534. case GGML_TYPE_Q2_K:
  535. case GGML_TYPE_Q3_K:
  536. case GGML_TYPE_Q4_K:
  537. case GGML_TYPE_Q5_K:
  538. case GGML_TYPE_IQ2_XXS:
  539. case GGML_TYPE_IQ2_XS:
  540. case GGML_TYPE_IQ2_S:
  541. case GGML_TYPE_IQ3_XXS:
  542. case GGML_TYPE_IQ1_S:
  543. case GGML_TYPE_IQ1_M:
  544. case GGML_TYPE_IQ4_NL:
  545. case GGML_TYPE_IQ4_XS:
  546. case GGML_TYPE_IQ3_S:
  547. return max_compute_capability >= CC_VOLTA ? 128 : 64;
  548. case GGML_TYPE_Q6_K:
  549. return 64;
  550. default:
  551. GGML_ASSERT(false);
  552. }
  553. #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  554. }
  555. static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
  556. const int64_t nrows = ggml_nrows(tensor);
  557. const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
  558. *row_low = id == 0 ? 0 : nrows*tensor_split[id];
  559. *row_low -= *row_low % rounding;
  560. if (id == ggml_backend_cuda_get_device_count() - 1) {
  561. *row_high = nrows;
  562. } else {
  563. *row_high = nrows*tensor_split[id + 1];
  564. *row_high -= *row_high % rounding;
  565. }
  566. }
  567. static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  568. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  569. return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
  570. }
  571. struct ggml_backend_cuda_split_buffer_type_context {
  572. std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
  573. };
  574. struct ggml_backend_cuda_split_buffer_context {
  575. ~ggml_backend_cuda_split_buffer_context() {
  576. for (ggml_tensor_extra_gpu * extra : tensor_extras) {
  577. for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
  578. for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
  579. if (extra->events[id][is] != nullptr) {
  580. CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
  581. }
  582. }
  583. if (extra->data_device[id] != nullptr) {
  584. CUDA_CHECK(cudaFree(extra->data_device[id]));
  585. }
  586. }
  587. delete extra;
  588. }
  589. }
  590. std::vector<ggml_tensor_extra_gpu *> tensor_extras;
  591. };
  592. GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
  593. return GGML_CUDA_NAME "_Split";
  594. GGML_UNUSED(buffer);
  595. }
  596. static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
  597. return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
  598. GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
  599. }
  600. GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  601. ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
  602. delete ctx;
  603. }
  604. GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
  605. // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
  606. return (void *)0x1000;
  607. GGML_UNUSED(buffer);
  608. }
  609. GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  610. GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
  611. ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
  612. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
  613. const int64_t ne0 = tensor->ne[0];
  614. ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
  615. ctx->tensor_extras.push_back(extra);
  616. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  617. int64_t row_low, row_high;
  618. get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
  619. int64_t nrows_split = row_high - row_low;
  620. if (nrows_split == 0) {
  621. continue;
  622. }
  623. size_t size = ggml_nbytes_split(tensor, nrows_split);
  624. const size_t original_size = size;
  625. // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
  626. if (ne0 % MATRIX_ROW_PADDING != 0) {
  627. size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  628. }
  629. // FIXME: do not crash if cudaMalloc fails
  630. // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
  631. ggml_cuda_set_device(id);
  632. char * buf;
  633. CUDA_CHECK(cudaMalloc(&buf, size));
  634. // set padding to 0 to avoid possible NaN values
  635. if (size > original_size) {
  636. CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
  637. }
  638. extra->data_device[id] = buf;
  639. for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
  640. CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
  641. }
  642. }
  643. tensor->extra = extra;
  644. }
  645. GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  646. // split tensors must always be set in their entirety at once
  647. GGML_ASSERT(offset == 0);
  648. GGML_ASSERT(size == ggml_nbytes(tensor));
  649. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
  650. const int64_t ne0 = tensor->ne[0];
  651. const size_t nb1 = tensor->nb[1];
  652. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
  653. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  654. int64_t row_low, row_high;
  655. get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
  656. int64_t nrows_split = row_high - row_low;
  657. if (nrows_split == 0) {
  658. continue;
  659. }
  660. const size_t offset_split = row_low*nb1;
  661. size_t size = ggml_nbytes_split(tensor, nrows_split);
  662. const size_t original_size = size;
  663. // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
  664. if (ne0 % MATRIX_ROW_PADDING != 0) {
  665. size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  666. }
  667. const char * buf_host = (const char *)data + offset_split;
  668. CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
  669. }
  670. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  671. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  672. }
  673. }
  674. GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  675. // split tensors must always be set in their entirety at once
  676. GGML_ASSERT(offset == 0);
  677. GGML_ASSERT(size == ggml_nbytes(tensor));
  678. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
  679. const int64_t ne0 = tensor->ne[0];
  680. const size_t nb1 = tensor->nb[1];
  681. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
  682. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  683. int64_t row_low, row_high;
  684. get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
  685. int64_t nrows_split = row_high - row_low;
  686. if (nrows_split == 0) {
  687. continue;
  688. }
  689. const size_t offset_split = row_low*nb1;
  690. size_t size = ggml_nbytes_split(tensor, nrows_split);
  691. const size_t original_size = size;
  692. // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
  693. if (ne0 % MATRIX_ROW_PADDING != 0) {
  694. size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  695. }
  696. char * buf_host = (char *)data + offset_split;
  697. CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
  698. }
  699. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  700. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  701. }
  702. }
  703. GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  704. GGML_UNUSED(buffer);
  705. GGML_UNUSED(value);
  706. }
  707. static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
  708. /* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
  709. /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
  710. /* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
  711. /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
  712. /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
  713. /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
  714. /* .cpy_tensor = */ NULL,
  715. /* .clear = */ ggml_backend_cuda_split_buffer_clear,
  716. /* .reset = */ NULL,
  717. };
  718. // cuda split buffer type
  719. GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
  720. return GGML_CUDA_NAME "_Split";
  721. GGML_UNUSED(buft);
  722. }
  723. GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  724. // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
  725. // instead, we allocate them for each tensor separately in init_tensor
  726. // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
  727. // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
  728. ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
  729. return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
  730. }
  731. GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  732. return 128;
  733. GGML_UNUSED(buft);
  734. }
  735. GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  736. ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
  737. size_t total_size = 0;
  738. const int64_t ne0 = tensor->ne[0];
  739. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  740. int64_t row_low, row_high;
  741. get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
  742. int64_t nrows_split = row_high - row_low;
  743. if (nrows_split == 0) {
  744. continue;
  745. }
  746. total_size += ggml_nbytes_split(tensor, nrows_split);
  747. // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
  748. if (ne0 % MATRIX_ROW_PADDING != 0) {
  749. total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  750. }
  751. }
  752. return total_size;
  753. }
  754. GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  755. return ggml_backend_is_cuda(backend);
  756. GGML_UNUSED(buft);
  757. }
  758. GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  759. return false;
  760. GGML_UNUSED(buft);
  761. }
  762. static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
  763. /* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
  764. /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
  765. /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
  766. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  767. /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
  768. /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
  769. /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
  770. };
  771. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
  772. static std::mutex mutex;
  773. std::lock_guard<std::mutex> lock(mutex);
  774. static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
  775. std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
  776. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
  777. if (all_zero) {
  778. tensor_split_arr = ggml_cuda_info().default_tensor_split;
  779. } else {
  780. float split_sum = 0.0f;
  781. for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
  782. tensor_split_arr[i] = split_sum;
  783. split_sum += tensor_split[i];
  784. }
  785. for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
  786. tensor_split_arr[i] /= split_sum;
  787. }
  788. }
  789. auto it = buft_map.find(tensor_split_arr);
  790. if (it != buft_map.end()) {
  791. return &it->second;
  792. }
  793. struct ggml_backend_buffer_type buft {
  794. /* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
  795. /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
  796. };
  797. auto result = buft_map.emplace(tensor_split_arr, buft);
  798. return &result.first->second;
  799. }
  800. // host buffer type
  801. GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
  802. return GGML_CUDA_NAME "_Host";
  803. GGML_UNUSED(buft);
  804. }
  805. GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
  806. return GGML_CUDA_NAME "_Host";
  807. GGML_UNUSED(buffer);
  808. }
  809. GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  810. CUDA_CHECK(cudaFreeHost(buffer->context));
  811. }
  812. static void * ggml_cuda_host_malloc(size_t size) {
  813. if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
  814. return nullptr;
  815. }
  816. void * ptr = nullptr;
  817. cudaError_t err = cudaMallocHost((void **) &ptr, size);
  818. if (err != cudaSuccess) {
  819. // clear the error
  820. cudaGetLastError();
  821. fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
  822. size/1024.0/1024.0, cudaGetErrorString(err));
  823. return nullptr;
  824. }
  825. return ptr;
  826. }
  827. GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  828. void * ptr = ggml_cuda_host_malloc(size);
  829. if (ptr == nullptr) {
  830. // fallback to cpu buffer
  831. return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
  832. }
  833. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  834. buffer->buft = buft;
  835. buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
  836. buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
  837. return buffer;
  838. }
  839. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
  840. static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
  841. /* .iface = */ {
  842. /* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
  843. /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
  844. /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
  845. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  846. /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
  847. /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
  848. /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
  849. },
  850. /* .context = */ nullptr,
  851. };
  852. return &ggml_backend_cuda_buffer_type_host;
  853. }
  854. //static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
  855. // return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
  856. //}
  857. /// kernels
  858. typedef void (*ggml_cuda_op_mul_mat_t)(
  859. ggml_backend_cuda_context & ctx,
  860. const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
  861. const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
  862. const int64_t src1_padded_row_size, cudaStream_t stream);
  863. #ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
  864. #define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
  865. #endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
  866. #define MUL_MAT_SRC1_COL_STRIDE 128
  867. static __global__ void mul_mat_p021_f16_f32(
  868. const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
  869. const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
  870. const half * x = (const half *) vx;
  871. const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
  872. const int channel = blockDim.z*blockIdx.z + threadIdx.z;
  873. const int channel_x = channel / (nchannels_y / nchannels_x);
  874. const int nrows_y = ncols_x;
  875. const int nrows_dst = nrows_x;
  876. const int row_dst = row_x;
  877. float tmp = 0.0f;
  878. for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
  879. const int col_x = col_x0 + threadIdx.x;
  880. if (col_x >= ncols_x) {
  881. break;
  882. }
  883. // x is transposed and permuted
  884. const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
  885. const float xi = __half2float(x[ix]);
  886. const int row_y = col_x;
  887. // y is not transposed but permuted
  888. const int iy = channel*nrows_y + row_y;
  889. tmp += xi * y[iy];
  890. }
  891. // dst is not transposed and not permuted
  892. const int idst = channel*nrows_dst + row_dst;
  893. // sum up partial sums and write back result
  894. tmp = warp_reduce_sum(tmp);
  895. if (threadIdx.x == 0) {
  896. dst[idst] = tmp;
  897. }
  898. }
  899. static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
  900. const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
  901. const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
  902. const half * x = (const half *) vx;
  903. const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
  904. const int channel = blockDim.z*blockIdx.z + threadIdx.z;
  905. const int channel_x = channel / channel_x_divisor;
  906. const int nrows_y = ncols_x;
  907. const int nrows_dst = nrows_x;
  908. const int row_dst = row_x;
  909. const int idst = channel*nrows_dst + row_dst;
  910. float tmp = 0.0f;
  911. for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
  912. const int col_x = col_x0 + threadIdx.x;
  913. if (col_x >= ncols_x) {
  914. break;
  915. }
  916. const int row_y = col_x;
  917. const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
  918. const int iy = channel*nrows_y + row_y;
  919. const float xi = __half2float(x[ix]);
  920. tmp += xi * y[iy];
  921. }
  922. // sum up partial sums and write back result
  923. tmp = warp_reduce_sum(tmp);
  924. if (threadIdx.x == 0) {
  925. dst[idst] = tmp;
  926. }
  927. }
  928. static void ggml_mul_mat_p021_f16_f32_cuda(
  929. const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
  930. const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
  931. const dim3 block_nums(1, nrows_x, nchannels_y);
  932. const dim3 block_dims(WARP_SIZE, 1, 1);
  933. mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
  934. }
  935. static void ggml_mul_mat_vec_nc_f16_f32_cuda(
  936. const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
  937. const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
  938. const dim3 block_nums(1, nrows_x, nchannels_y);
  939. const dim3 block_dims(WARP_SIZE, 1, 1);
  940. mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
  941. (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
  942. }
  943. static cudaError_t ggml_cuda_cpy_tensor_2d(
  944. void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
  945. GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
  946. char * src_ptr = (char *) src->data;
  947. char * dst_ptr = (char *) dst;
  948. const int64_t ne0 = src->ne[0];
  949. const int64_t nb0 = src->nb[0];
  950. const int64_t nb1 = src->nb[1];
  951. const int64_t nb2 = src->nb[2];
  952. const int64_t nb3 = src->nb[3];
  953. const enum ggml_type type = src->type;
  954. const int64_t ts = ggml_type_size(type);
  955. const int64_t bs = ggml_blck_size(type);
  956. int64_t i1_diff = i1_high - i1_low;
  957. const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
  958. if (nb0 == ts && nb1 == ts*ne0/bs) {
  959. return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
  960. } else if (nb0 == ts) {
  961. return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
  962. } else {
  963. for (int64_t i1 = 0; i1 < i1_diff; i1++) {
  964. const void * rx = (const void *) ((const char *) x + i1*nb1);
  965. void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
  966. // pretend the row is a matrix with cols=1
  967. cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
  968. if (r != cudaSuccess) {
  969. return r;
  970. }
  971. }
  972. return cudaSuccess;
  973. }
  974. }
  975. static void ggml_cuda_op_mul_mat_cublas(
  976. ggml_backend_cuda_context & ctx,
  977. const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
  978. const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
  979. const int64_t src1_padded_row_size, cudaStream_t stream) {
  980. GGML_ASSERT(src0_dd_i != nullptr);
  981. GGML_ASSERT(src1_ddf_i != nullptr);
  982. GGML_ASSERT(dst_dd_i != nullptr);
  983. const int64_t ne00 = src0->ne[0];
  984. const int64_t ne10 = src1->ne[0];
  985. const int64_t ne0 = dst->ne[0];
  986. const int64_t row_diff = row_high - row_low;
  987. int id = ggml_cuda_get_device();
  988. // the main device has a larger memory buffer to hold the results from all GPUs
  989. // ldc == nrows of the matrix that cuBLAS writes into
  990. int64_t ldc = id == ctx.device ? ne0 : row_diff;
  991. const int compute_capability = ggml_cuda_info().devices[id].cc;
  992. if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
  993. // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
  994. ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
  995. if (src0->type != GGML_TYPE_F16) {
  996. const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
  997. GGML_ASSERT(to_fp16_cuda != nullptr);
  998. size_t ne = row_diff*ne00;
  999. src0_as_f16.alloc(ne);
  1000. to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
  1001. }
  1002. const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
  1003. ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
  1004. if (src1->type != GGML_TYPE_F16) {
  1005. const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
  1006. GGML_ASSERT(to_fp16_cuda != nullptr);
  1007. size_t ne = src1_ncols*ne10;
  1008. src1_as_f16.alloc(ne);
  1009. to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
  1010. }
  1011. const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
  1012. ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
  1013. const half alpha_f16 = 1.0f;
  1014. const half beta_f16 = 0.0f;
  1015. CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
  1016. CUBLAS_CHECK(
  1017. cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
  1018. row_diff, src1_ncols, ne10,
  1019. &alpha_f16, src0_ptr, CUDA_R_16F, ne00,
  1020. src1_ptr, CUDA_R_16F, ne10,
  1021. &beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
  1022. CUBLAS_COMPUTE_16F,
  1023. CUBLAS_GEMM_DEFAULT_TENSOR_OP));
  1024. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
  1025. to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
  1026. } else {
  1027. ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
  1028. ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
  1029. if (src0->type != GGML_TYPE_F32) {
  1030. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
  1031. GGML_ASSERT(to_fp32_cuda != nullptr);
  1032. src0_ddq_as_f32.alloc(row_diff*ne00);
  1033. to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
  1034. }
  1035. if (src1->type != GGML_TYPE_F32) {
  1036. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
  1037. GGML_ASSERT(to_fp32_cuda != nullptr);
  1038. src1_ddq_as_f32.alloc(src1_ncols*ne10);
  1039. to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
  1040. }
  1041. const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
  1042. const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
  1043. const float alpha = 1.0f;
  1044. const float beta = 0.0f;
  1045. CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
  1046. CUBLAS_CHECK(
  1047. cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
  1048. row_diff, src1_ncols, ne10,
  1049. &alpha, src0_ddf_i, ne00,
  1050. src1_ddf1_i, ne10,
  1051. &beta, dst_dd_i, ldc));
  1052. }
  1053. GGML_UNUSED(dst);
  1054. GGML_UNUSED(src1_ddq_i);
  1055. GGML_UNUSED(src1_padded_row_size);
  1056. }
  1057. static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
  1058. static bool peer_access_enabled = false;
  1059. const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
  1060. if (peer_access_enabled == enable_peer_access) {
  1061. return;
  1062. }
  1063. #ifdef NDEBUG
  1064. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1065. ggml_cuda_set_device(id);
  1066. CUDA_CHECK(cudaDeviceSynchronize());
  1067. }
  1068. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1069. ggml_cuda_set_device(id);
  1070. for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
  1071. if (id == id_other) {
  1072. continue;
  1073. }
  1074. if (id != main_device && id_other != main_device) {
  1075. continue;
  1076. }
  1077. int can_access_peer;
  1078. CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
  1079. if (can_access_peer) {
  1080. if (enable_peer_access) {
  1081. cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
  1082. if (err != cudaErrorPeerAccessAlreadyEnabled) {
  1083. CUDA_CHECK(err);
  1084. }
  1085. } else {
  1086. cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
  1087. if (err != cudaErrorPeerAccessNotEnabled) {
  1088. CUDA_CHECK(err);
  1089. }
  1090. }
  1091. }
  1092. }
  1093. }
  1094. ggml_cuda_set_device(main_device);
  1095. #endif // NDEBUG
  1096. peer_access_enabled = enable_peer_access;
  1097. GGML_UNUSED(main_device);
  1098. }
  1099. static void ggml_cuda_op_mul_mat(
  1100. ggml_backend_cuda_context & ctx,
  1101. const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
  1102. const bool convert_src1_to_q8_1) {
  1103. const int64_t ne00 = src0->ne[0];
  1104. const int64_t ne01 = src0->ne[1];
  1105. const int64_t ne02 = src0->ne[2];
  1106. const int64_t ne03 = src0->ne[3];
  1107. const int64_t ne10 = src1->ne[0];
  1108. const int64_t ne11 = src1->ne[1];
  1109. const int64_t ne12 = src1->ne[2];
  1110. const int64_t ne13 = src1->ne[3];
  1111. const int64_t nrows1 = ggml_nrows(src1);
  1112. GGML_ASSERT(ne03 == ne13);
  1113. const int64_t ne0 = dst->ne[0];
  1114. const int64_t ne1 = dst->ne[1];
  1115. const int64_t nb2 = dst->nb[2];
  1116. const int64_t nb3 = dst->nb[3];
  1117. GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
  1118. GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
  1119. ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
  1120. ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
  1121. GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
  1122. GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
  1123. const int64_t i02_divisor = ne12 / ne02;
  1124. const size_t src0_ts = ggml_type_size(src0->type);
  1125. const size_t src0_bs = ggml_blck_size(src0->type);
  1126. const size_t q8_1_ts = sizeof(block_q8_1);
  1127. const size_t q8_1_bs = QK8_1;
  1128. const bool src0_is_contiguous = ggml_is_contiguous(src0);
  1129. const bool src1_is_contiguous = ggml_is_contiguous(src1);
  1130. const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
  1131. const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
  1132. GGML_ASSERT(!(split && ne02 > 1));
  1133. GGML_ASSERT(!(split && ne03 > 1));
  1134. GGML_ASSERT(!(split && ne02 < ne12));
  1135. ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;
  1136. std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
  1137. if (split) {
  1138. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
  1139. tensor_split = buft_ctx->tensor_split;
  1140. }
  1141. struct dev_data {
  1142. ggml_cuda_pool_alloc<char> src0_dd_alloc;
  1143. ggml_cuda_pool_alloc<float> src1_ddf_alloc;
  1144. ggml_cuda_pool_alloc<char> src1_ddq_alloc;
  1145. ggml_cuda_pool_alloc<float> dst_dd_alloc;
  1146. char * src0_dd = nullptr;
  1147. float * src1_ddf = nullptr; // float
  1148. char * src1_ddq = nullptr; // q8_1
  1149. float * dst_dd = nullptr;
  1150. int64_t row_low;
  1151. int64_t row_high;
  1152. };
  1153. dev_data dev[GGML_CUDA_MAX_DEVICES];
  1154. int used_devices = 0;
  1155. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1156. // by default, use all rows
  1157. dev[id].row_low = 0;
  1158. dev[id].row_high = ne01;
  1159. // for multi GPU, get the row boundaries from tensor split
  1160. // and round to mul_mat_q tile sizes
  1161. if (split) {
  1162. const int64_t rounding = get_row_rounding(src0->type, tensor_split);
  1163. if (id != 0) {
  1164. dev[id].row_low = ne01*tensor_split[id];
  1165. if (dev[id].row_low < ne01) {
  1166. dev[id].row_low -= dev[id].row_low % rounding;
  1167. }
  1168. }
  1169. if (id != ggml_backend_cuda_get_device_count() - 1) {
  1170. dev[id].row_high = ne01*tensor_split[id + 1];
  1171. if (dev[id].row_high < ne01) {
  1172. dev[id].row_high -= dev[id].row_high % rounding;
  1173. }
  1174. }
  1175. }
  1176. }
  1177. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1178. if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
  1179. continue;
  1180. }
  1181. used_devices++;
  1182. const bool src1_on_device = id == src1_ctx->device;
  1183. const bool dst_on_device = id == dst_ctx->device;
  1184. ggml_cuda_set_device(id);
  1185. cudaStream_t stream = ctx.stream(id, 0);
  1186. if (src0_is_contiguous) {
  1187. dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
  1188. } else {
  1189. dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0));
  1190. }
  1191. if (src1_on_device && src1_is_contiguous) {
  1192. dev[id].src1_ddf = (float *) src1->data;
  1193. } else {
  1194. dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
  1195. }
  1196. if (convert_src1_to_q8_1) {
  1197. dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
  1198. if (src1_on_device && src1_is_contiguous) {
  1199. quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
  1200. CUDA_CHECK(cudaGetLastError());
  1201. }
  1202. }
  1203. if (dst_on_device) {
  1204. dev[id].dst_dd = (float *) dst->data;
  1205. } else {
  1206. const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
  1207. dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
  1208. }
  1209. }
  1210. // if multiple devices are used they need to wait for the main device
  1211. // here an event is recorded that signals that the main device has finished calculating the input data
  1212. if (split && used_devices > 1) {
  1213. ggml_cuda_set_device(ctx.device);
  1214. CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
  1215. }
  1216. const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
  1217. for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
  1218. const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
  1219. const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
  1220. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1221. if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
  1222. continue;
  1223. }
  1224. const bool src1_on_device = id == src1_ctx->device;
  1225. const bool dst_on_device = id == dst_ctx->device;
  1226. const int64_t row_diff = dev[id].row_high - dev[id].row_low;
  1227. ggml_cuda_set_device(id);
  1228. cudaStream_t stream = ctx.stream(id, is);
  1229. // wait for main GPU data if necessary
  1230. if (split && (id != ctx.device || is != 0)) {
  1231. CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
  1232. }
  1233. for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
  1234. const int64_t i03 = i0 / ne12;
  1235. const int64_t i02 = i0 % ne12;
  1236. const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
  1237. // for split tensors the data begins at i0 == i0_offset_low
  1238. char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
  1239. float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
  1240. char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset;
  1241. float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
  1242. // the main device memory buffer can be on VRAM scratch, with space for all partial results
  1243. // in that case an offset on dst_ddf_i is needed
  1244. if (id == ctx.device) {
  1245. dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
  1246. }
  1247. // copy src0, src1 to device if necessary
  1248. if (src1_is_contiguous) {
  1249. if (id != ctx.device) {
  1250. if (convert_src1_to_q8_1) {
  1251. char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
  1252. CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, ctx.device,
  1253. src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
  1254. } else {
  1255. float * src1_ddf_i_source = (float *) src1->data;
  1256. src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
  1257. CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
  1258. src1_ncols*ne10*sizeof(float), stream));
  1259. }
  1260. }
  1261. } else if (src1_on_device && !src1_is_contiguous) {
  1262. CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
  1263. src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
  1264. } else {
  1265. GGML_ASSERT(false);
  1266. }
  1267. if (convert_src1_to_q8_1 && !src1_is_contiguous) {
  1268. quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
  1269. CUDA_CHECK(cudaGetLastError());
  1270. }
  1271. if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
  1272. CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
  1273. }
  1274. // do the computation
  1275. op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
  1276. dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
  1277. CUDA_CHECK(cudaGetLastError());
  1278. // copy dst to host or other device if necessary
  1279. if (!dst_on_device) {
  1280. void * dst_off_device = dst->data;
  1281. if (split) {
  1282. // src0 = weight matrix is saved as a transposed matrix for better memory layout.
  1283. // dst is NOT transposed.
  1284. // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
  1285. // Instead they need to be copied to the correct slice in ne0 = dst row index.
  1286. // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
  1287. float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
  1288. GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
  1289. dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
  1290. #if !defined(GGML_USE_HIPBLAS)
  1291. // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
  1292. cudaMemcpy3DPeerParms p = {};
  1293. p.dstDevice = ctx.device;
  1294. p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols);
  1295. p.srcDevice = id;
  1296. p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
  1297. p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
  1298. CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
  1299. #else
  1300. // HIP does not support cudaMemcpy3DPeerAsync or vmm pools
  1301. CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
  1302. dst_dd_i, row_diff*sizeof(float),
  1303. row_diff*sizeof(float), src1_ncols,
  1304. cudaMemcpyDeviceToDevice, stream));
  1305. #endif
  1306. } else {
  1307. float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
  1308. GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
  1309. dhf_dst_i += src1_col_0*ne0;
  1310. CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
  1311. }
  1312. }
  1313. // add event for the main device to wait on until other device is done
  1314. if (split && (id != ctx.device || is != 0)) {
  1315. CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
  1316. }
  1317. }
  1318. }
  1319. }
  1320. // main device waits for all other devices to be finished
  1321. if (split && ggml_backend_cuda_get_device_count() > 1) {
  1322. int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
  1323. is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;
  1324. ggml_cuda_set_device(ctx.device);
  1325. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1326. if (dev[id].row_low == dev[id].row_high) {
  1327. continue;
  1328. }
  1329. for (int64_t is = 0; is < is_max; ++is) {
  1330. CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
  1331. }
  1332. }
  1333. }
  1334. }
  1335. static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1336. GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
  1337. GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
  1338. GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
  1339. GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
  1340. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1341. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1342. const int64_t ne00 = src0->ne[0];
  1343. const int64_t ne01 = src0->ne[1];
  1344. const int64_t ne02 = src0->ne[2];
  1345. const int64_t ne12 = src1->ne[2];
  1346. cudaStream_t main_stream = ctx.stream();
  1347. void * src0_ddq = src0->data;
  1348. float * src1_ddf = (float *) src1->data;
  1349. float * dst_ddf = (float *) dst->data;
  1350. ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
  1351. }
  1352. static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1353. GGML_ASSERT(!ggml_is_transposed(src0));
  1354. GGML_ASSERT(!ggml_is_transposed(src1));
  1355. GGML_ASSERT(!ggml_is_permuted(src0));
  1356. GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
  1357. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1358. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1359. const int64_t ne00 = src0->ne[0];
  1360. const int64_t ne01 = src0->ne[1];
  1361. const int64_t ne02 = src0->ne[2];
  1362. const int64_t nb01 = src0->nb[1];
  1363. const int64_t nb02 = src0->nb[2];
  1364. const int64_t ne12 = src1->ne[2];
  1365. cudaStream_t main_stream = ctx.stream();
  1366. void * src0_ddq = src0->data;
  1367. float * src1_ddf = (float *) src1->data;
  1368. float * dst_ddf = (float *) dst->data;
  1369. const int64_t row_stride_x = nb01 / sizeof(half);
  1370. const int64_t channel_stride_x = nb02 / sizeof(half);
  1371. ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
  1372. }
  1373. static __global__ void k_compute_batched_ptrs(
  1374. const half * src0_as_f16, const half * src1_as_f16, char * dst,
  1375. const void ** ptrs_src, void ** ptrs_dst,
  1376. int64_t ne12, int64_t ne13,
  1377. int64_t ne23,
  1378. size_t nb02, size_t nb03,
  1379. size_t nb12, size_t nb13,
  1380. size_t nbd2, size_t nbd3,
  1381. int64_t r2, int64_t r3) {
  1382. int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
  1383. int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
  1384. if (i13 >= ne13 || i12 >= ne12) {
  1385. return;
  1386. }
  1387. int64_t i03 = i13 / r3;
  1388. int64_t i02 = i12 / r2;
  1389. ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
  1390. ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
  1391. ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
  1392. }
  1393. static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1394. GGML_ASSERT(!ggml_is_transposed(src0));
  1395. GGML_ASSERT(!ggml_is_transposed(src1));
  1396. GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
  1397. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1398. GGML_TENSOR_BINARY_OP_LOCALS
  1399. const int64_t ne_dst = ggml_nelements(dst);
  1400. cudaStream_t main_stream = ctx.stream();
  1401. CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
  1402. void * src0_ddq = src0->data;
  1403. half * src0_f16 = (half *) src0_ddq;
  1404. float * src1_ddf = (float *) src1->data;
  1405. float * dst_ddf = (float *) dst->data;
  1406. // convert src1 to fp16
  1407. ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
  1408. if (src1->type != GGML_TYPE_F16) {
  1409. const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
  1410. const int64_t ne_src1 = ggml_nelements(src1);
  1411. src1_f16_alloc.alloc(ne_src1);
  1412. GGML_ASSERT(to_fp16_cuda != nullptr);
  1413. to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
  1414. }
  1415. half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
  1416. ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
  1417. char * dst_t;
  1418. cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
  1419. cudaDataType_t cu_data_type = CUDA_R_16F;
  1420. // dst strides
  1421. size_t nbd2 = dst->nb[2];
  1422. size_t nbd3 = dst->nb[3];
  1423. const half alpha_f16 = 1.0f;
  1424. const half beta_f16 = 0.0f;
  1425. const float alpha_f32 = 1.0f;
  1426. const float beta_f32 = 0.0f;
  1427. const void * alpha = &alpha_f16;
  1428. const void * beta = &beta_f16;
  1429. if (dst->op_params[0] == GGML_PREC_DEFAULT) {
  1430. dst_t = (char *) dst_f16.alloc(ne_dst);
  1431. nbd2 /= sizeof(float) / sizeof(half);
  1432. nbd3 /= sizeof(float) / sizeof(half);
  1433. } else {
  1434. dst_t = (char *) dst_ddf;
  1435. cu_compute_type = CUBLAS_COMPUTE_32F;
  1436. cu_data_type = CUDA_R_32F;
  1437. alpha = &alpha_f32;
  1438. beta = &beta_f32;
  1439. }
  1440. GGML_ASSERT(ne12 % ne02 == 0);
  1441. GGML_ASSERT(ne13 % ne03 == 0);
  1442. // broadcast factors
  1443. const int64_t r2 = ne12/ne02;
  1444. const int64_t r3 = ne13/ne03;
  1445. #if 0
  1446. // use cublasGemmEx
  1447. {
  1448. for (int i13 = 0; i13 < ne13; ++i13) {
  1449. for (int i12 = 0; i12 < ne12; ++i12) {
  1450. int i03 = i13 / r3;
  1451. int i02 = i12 / r2;
  1452. CUBLAS_CHECK(
  1453. cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
  1454. ne01, ne11, ne10,
  1455. alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
  1456. (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
  1457. beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
  1458. cu_compute_type,
  1459. CUBLAS_GEMM_DEFAULT_TENSOR_OP));
  1460. }
  1461. }
  1462. }
  1463. #else
  1464. if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
  1465. // there is no broadcast and src0, src1 are contiguous across dims 2, 3
  1466. // use cublasGemmStridedBatchedEx
  1467. CUBLAS_CHECK(
  1468. cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
  1469. ne01, ne11, ne10,
  1470. alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
  1471. (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
  1472. beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
  1473. ne12*ne13,
  1474. cu_compute_type,
  1475. CUBLAS_GEMM_DEFAULT_TENSOR_OP));
  1476. } else {
  1477. // use cublasGemmBatchedEx
  1478. const int ne23 = ne12*ne13;
  1479. ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
  1480. ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
  1481. dim3 block_dims(ne13, ne12);
  1482. k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
  1483. src0_f16, src1_f16, dst_t,
  1484. ptrs_src.get(), ptrs_dst.get(),
  1485. ne12, ne13,
  1486. ne23,
  1487. nb02, nb03,
  1488. src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
  1489. src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
  1490. nbd2, nbd3,
  1491. r2, r3);
  1492. CUDA_CHECK(cudaGetLastError());
  1493. CUBLAS_CHECK(
  1494. cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
  1495. ne01, ne11, ne10,
  1496. alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
  1497. (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
  1498. beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
  1499. ne23,
  1500. cu_compute_type,
  1501. CUBLAS_GEMM_DEFAULT_TENSOR_OP));
  1502. }
  1503. #endif
  1504. if (dst->op_params[0] == GGML_PREC_DEFAULT) {
  1505. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
  1506. to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
  1507. }
  1508. }
  1509. static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1510. const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
  1511. int64_t min_compute_capability = INT_MAX;
  1512. bool any_pascal_with_slow_fp16 = false;
  1513. if (split) {
  1514. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
  1515. auto & tensor_split = buft_ctx->tensor_split;
  1516. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1517. // skip devices that are not going to do any work:
  1518. if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
  1519. continue;
  1520. }
  1521. if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
  1522. min_compute_capability = ggml_cuda_info().devices[id].cc;
  1523. }
  1524. if (ggml_cuda_info().devices[id].cc == 610) {
  1525. any_pascal_with_slow_fp16 = true;
  1526. }
  1527. }
  1528. } else {
  1529. min_compute_capability = ggml_cuda_info().devices[ctx.device].cc;
  1530. any_pascal_with_slow_fp16 = ggml_cuda_info().devices[ctx.device].cc == 610;
  1531. }
  1532. // check data types and tensor shapes for custom matrix multiplication kernels:
  1533. bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
  1534. && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
  1535. && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
  1536. bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
  1537. && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
  1538. && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
  1539. bool use_mul_mat_q = ggml_cuda_supports_mmq(src0->type)
  1540. && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
  1541. #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  1542. const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
  1543. #ifdef CUDA_USE_TENSOR_CORES
  1544. use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
  1545. #endif // CUDA_USE_TENSOR_CORES
  1546. #else
  1547. // fp16 performance is good on Volta or newer and on P100 (compute capability 6.0)
  1548. const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16;
  1549. // mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1
  1550. use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A;
  1551. use_mul_mat_q = use_mul_mat_q && min_compute_capability >= MIN_CC_DP4A;
  1552. #ifdef CUDA_USE_TENSOR_CORES
  1553. // when tensor cores are available, use them for large batch size
  1554. // ref: https://github.com/ggerganov/llama.cpp/pull/3776
  1555. use_mul_mat_q = use_mul_mat_q && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
  1556. #endif // CUDA_USE_TENSOR_CORES
  1557. #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  1558. // if mmvq is available it's a better choice than dmmv:
  1559. #ifndef GGML_CUDA_FORCE_DMMV
  1560. use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
  1561. #endif // GGML_CUDA_FORCE_DMMV
  1562. // debug helpers
  1563. //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
  1564. //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
  1565. //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
  1566. //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
  1567. //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
  1568. //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
  1569. if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
  1570. // KQ single-batch
  1571. ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
  1572. } else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
  1573. // KQV single-batch
  1574. ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
  1575. } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || fp16_performance_good) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
  1576. // KQ + KQV multi-batch
  1577. ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
  1578. } else if (use_dequantize_mul_mat_vec) {
  1579. ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
  1580. } else if (use_mul_mat_vec_q) {
  1581. ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
  1582. } else if (use_mul_mat_q) {
  1583. ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
  1584. } else {
  1585. ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
  1586. }
  1587. }
  1588. struct mmid_row_mapping {
  1589. int32_t i1;
  1590. int32_t i2;
  1591. };
  1592. static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
  1593. int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
  1594. const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
  1595. int64_t ne11, int64_t ne10,
  1596. size_t nb11, size_t nb12) {
  1597. int32_t iid1 = blockIdx.x;
  1598. int32_t id = blockIdx.y;
  1599. const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
  1600. if (row_id_i != i02) {
  1601. return;
  1602. }
  1603. const int64_t i11 = id % ne11;
  1604. const int64_t i12 = iid1;
  1605. __shared__ int src1_row;
  1606. if (threadIdx.x == 0) {
  1607. src1_row = atomicAdd(cur_src1_row, 1);
  1608. row_mapping[src1_row] = {id, iid1};
  1609. }
  1610. __syncthreads();
  1611. const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
  1612. float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
  1613. for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
  1614. src1_row_contiguous[i] = src1_row_original[i];
  1615. }
  1616. }
  1617. static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
  1618. const mmid_row_mapping * __restrict__ row_mapping,
  1619. int64_t ne0,
  1620. size_t nb1, size_t nb2) {
  1621. int32_t i = blockIdx.x;
  1622. const int32_t i1 = row_mapping[i].i1;
  1623. const int32_t i2 = row_mapping[i].i2;
  1624. const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
  1625. float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
  1626. for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
  1627. dst_row_original[j] = dst_row_contiguous[j];
  1628. }
  1629. }
  1630. static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
  1631. const ggml_tensor * src0 = dst->src[0];
  1632. const ggml_tensor * src1 = dst->src[1];
  1633. const ggml_tensor * ids = dst->src[2];
  1634. GGML_TENSOR_BINARY_OP_LOCALS
  1635. GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");
  1636. cudaStream_t stream = ctx.stream();
  1637. const int64_t n_as = ne02;
  1638. const int64_t n_ids = ids->ne[0];
  1639. std::vector<char> ids_host(ggml_nbytes(ids));
  1640. const char * ids_dev = (const char *) ids->data;
  1641. CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
  1642. CUDA_CHECK(cudaStreamSynchronize(stream));
  1643. ggml_tensor src0_row = *src0;
  1644. ggml_tensor src1_row = *src1;
  1645. ggml_tensor dst_row = *dst;
  1646. char * src0_original = (char *) src0->data;
  1647. char * src1_original = (char *) src1->data;
  1648. char * dst_original = (char *) dst->data;
  1649. src0_row.ne[2] = 1;
  1650. src0_row.ne[3] = 1;
  1651. src0_row.nb[3] = nb02;
  1652. src1_row.ne[1] = 1;
  1653. src1_row.ne[2] = 1;
  1654. src1_row.ne[3] = 1;
  1655. src1_row.nb[2] = nb11;
  1656. src1_row.nb[3] = nb11;
  1657. dst_row.ne[1] = 1;
  1658. dst_row.ne[2] = 1;
  1659. dst_row.ne[3] = 1;
  1660. dst_row.nb[2] = nb1;
  1661. dst_row.nb[3] = nb1;
  1662. if (ne12 == 1) {
  1663. for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
  1664. for (int64_t id = 0; id < n_ids; id++) {
  1665. const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
  1666. GGML_ASSERT(i02 >= 0 && i02 < n_as);
  1667. const int64_t i11 = id % ne11;
  1668. const int64_t i12 = iid1;
  1669. const int64_t i1 = id;
  1670. const int64_t i2 = i12;
  1671. src0_row.data = src0_original + i02*nb02;
  1672. src1_row.data = src1_original + i11*nb11 + i12*nb12;
  1673. dst_row.data = dst_original + i1*nb1 + i2*nb2;
  1674. ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
  1675. }
  1676. }
  1677. } else {
  1678. ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
  1679. ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
  1680. src1_row.data = src1_contiguous.get();
  1681. dst_row.data = dst_contiguous.get();
  1682. for (int64_t i02 = 0; i02 < n_as; i02++) {
  1683. int64_t num_src1_rows = 0;
  1684. for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
  1685. for (int64_t id = 0; id < n_ids; id++) {
  1686. const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
  1687. GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
  1688. if (row_id_i != i02) {
  1689. continue;
  1690. }
  1691. num_src1_rows++;
  1692. }
  1693. }
  1694. if (num_src1_rows == 0) {
  1695. continue;
  1696. }
  1697. ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
  1698. ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
  1699. CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));
  1700. {
  1701. dim3 block_dims(std::min((unsigned int)ne10, 768u));
  1702. dim3 grid_dims(ids->ne[1], n_ids);
  1703. k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
  1704. src1_original, src1_contiguous.get(),
  1705. dev_cur_src1_row.get(), dev_row_mapping.get(),
  1706. ids_dev, i02, ids->nb[1], ids->nb[0],
  1707. ne11, ne10,
  1708. nb11, nb12);
  1709. CUDA_CHECK(cudaGetLastError());
  1710. }
  1711. src0_row.data = src0_original + i02*nb02;
  1712. GGML_ASSERT(nb11 == sizeof(float)*ne10);
  1713. GGML_ASSERT(nb1 == sizeof(float)*ne0);
  1714. src1_row.ne[1] = num_src1_rows;
  1715. src1_row.nb[1] = nb11;
  1716. src1_row.nb[2] = num_src1_rows*nb11;
  1717. src1_row.nb[3] = num_src1_rows*nb11;
  1718. dst_row.ne[1] = num_src1_rows;
  1719. dst_row.nb[1] = nb1;
  1720. dst_row.nb[2] = num_src1_rows*nb1;
  1721. dst_row.nb[3] = num_src1_rows*nb1;
  1722. ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
  1723. {
  1724. dim3 block_dims(std::min((unsigned int)ne0, 768u));
  1725. dim3 grid_dims(num_src1_rows);
  1726. k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
  1727. dst_original, dst_contiguous.get(),
  1728. dev_row_mapping.get(),
  1729. ne0,
  1730. nb1, nb2);
  1731. CUDA_CHECK(cudaGetLastError());
  1732. }
  1733. }
  1734. }
  1735. }
  1736. static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
  1737. // why is this here instead of mul_mat?
  1738. if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) {
  1739. ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
  1740. }
  1741. switch (dst->op) {
  1742. case GGML_OP_REPEAT:
  1743. ggml_cuda_op_repeat(ctx, dst);
  1744. break;
  1745. case GGML_OP_GET_ROWS:
  1746. ggml_cuda_op_get_rows(ctx, dst);
  1747. break;
  1748. case GGML_OP_DUP:
  1749. ggml_cuda_dup(ctx, dst);
  1750. break;
  1751. case GGML_OP_CPY:
  1752. ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]);
  1753. break;
  1754. case GGML_OP_CONT:
  1755. ggml_cuda_dup(ctx, dst);
  1756. break;
  1757. case GGML_OP_ADD:
  1758. ggml_cuda_op_add(ctx, dst);
  1759. break;
  1760. case GGML_OP_ACC:
  1761. ggml_cuda_op_acc(ctx, dst);
  1762. break;
  1763. case GGML_OP_MUL:
  1764. ggml_cuda_op_mul(ctx, dst);
  1765. break;
  1766. case GGML_OP_DIV:
  1767. ggml_cuda_op_div(ctx, dst);
  1768. break;
  1769. case GGML_OP_UNARY:
  1770. switch (ggml_get_unary_op(dst)) {
  1771. case GGML_UNARY_OP_GELU:
  1772. ggml_cuda_op_gelu(ctx, dst);
  1773. break;
  1774. case GGML_UNARY_OP_SILU:
  1775. ggml_cuda_op_silu(ctx, dst);
  1776. break;
  1777. case GGML_UNARY_OP_GELU_QUICK:
  1778. ggml_cuda_op_gelu_quick(ctx, dst);
  1779. break;
  1780. case GGML_UNARY_OP_TANH:
  1781. ggml_cuda_op_tanh(ctx, dst);
  1782. break;
  1783. case GGML_UNARY_OP_RELU:
  1784. ggml_cuda_op_relu(ctx, dst);
  1785. break;
  1786. case GGML_UNARY_OP_SIGMOID:
  1787. ggml_cuda_op_sigmoid(ctx, dst);
  1788. break;
  1789. case GGML_UNARY_OP_HARDSIGMOID:
  1790. ggml_cuda_op_hardsigmoid(ctx, dst);
  1791. break;
  1792. case GGML_UNARY_OP_HARDSWISH:
  1793. ggml_cuda_op_hardswish(ctx, dst);
  1794. break;
  1795. default:
  1796. return false;
  1797. }
  1798. break;
  1799. case GGML_OP_NORM:
  1800. ggml_cuda_op_norm(ctx, dst);
  1801. break;
  1802. case GGML_OP_GROUP_NORM:
  1803. ggml_cuda_op_group_norm(ctx, dst);
  1804. break;
  1805. case GGML_OP_CONCAT:
  1806. ggml_cuda_op_concat(ctx, dst);
  1807. break;
  1808. case GGML_OP_UPSCALE:
  1809. ggml_cuda_op_upscale(ctx, dst);
  1810. break;
  1811. case GGML_OP_PAD:
  1812. ggml_cuda_op_pad(ctx, dst);
  1813. break;
  1814. case GGML_OP_ARANGE:
  1815. ggml_cuda_op_arange(ctx, dst);
  1816. break;
  1817. case GGML_OP_TIMESTEP_EMBEDDING:
  1818. ggml_cuda_op_timestep_embedding(ctx, dst);
  1819. break;
  1820. case GGML_OP_LEAKY_RELU:
  1821. ggml_cuda_op_leaky_relu(ctx, dst);
  1822. break;
  1823. case GGML_OP_RMS_NORM:
  1824. ggml_cuda_op_rms_norm(ctx, dst);
  1825. break;
  1826. case GGML_OP_MUL_MAT:
  1827. if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
  1828. fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
  1829. return false;
  1830. } else {
  1831. ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
  1832. }
  1833. break;
  1834. case GGML_OP_MUL_MAT_ID:
  1835. ggml_cuda_mul_mat_id(ctx, dst);
  1836. break;
  1837. case GGML_OP_SCALE:
  1838. ggml_cuda_op_scale(ctx, dst);
  1839. break;
  1840. case GGML_OP_SQR:
  1841. ggml_cuda_op_sqr(ctx, dst);
  1842. break;
  1843. case GGML_OP_CLAMP:
  1844. ggml_cuda_op_clamp(ctx, dst);
  1845. break;
  1846. case GGML_OP_NONE:
  1847. case GGML_OP_RESHAPE:
  1848. case GGML_OP_VIEW:
  1849. case GGML_OP_PERMUTE:
  1850. case GGML_OP_TRANSPOSE:
  1851. break;
  1852. case GGML_OP_DIAG_MASK_INF:
  1853. ggml_cuda_op_diag_mask_inf(ctx, dst);
  1854. break;
  1855. case GGML_OP_SOFT_MAX:
  1856. ggml_cuda_op_soft_max(ctx, dst);
  1857. break;
  1858. case GGML_OP_ROPE:
  1859. ggml_cuda_op_rope(ctx, dst);
  1860. break;
  1861. case GGML_OP_IM2COL:
  1862. ggml_cuda_op_im2col(ctx, dst);
  1863. break;
  1864. case GGML_OP_POOL_2D:
  1865. ggml_cuda_op_pool2d(ctx, dst);
  1866. break;
  1867. case GGML_OP_SUM_ROWS:
  1868. ggml_cuda_op_sum_rows(ctx, dst);
  1869. break;
  1870. case GGML_OP_ARGSORT:
  1871. ggml_cuda_op_argsort(ctx, dst);
  1872. break;
  1873. case GGML_OP_FLASH_ATTN_EXT:
  1874. ggml_cuda_flash_attn_ext(ctx, dst);
  1875. break;
  1876. default:
  1877. return false;
  1878. }
  1879. cudaError_t err = cudaGetLastError();
  1880. if (err != cudaSuccess) {
  1881. fprintf(stderr, "%s: %s failed\n", __func__, ggml_op_desc(dst));
  1882. CUDA_CHECK(err);
  1883. }
  1884. return true;
  1885. }
  1886. ////////////////////////////////////////////////////////////////////////////////
  1887. // backend
  1888. GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
  1889. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1890. return cuda_ctx->name.c_str();
  1891. }
  1892. GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) {
  1893. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1894. delete cuda_ctx;
  1895. delete backend;
  1896. }
  1897. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
  1898. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1899. return ggml_backend_cuda_buffer_type(cuda_ctx->device);
  1900. }
  1901. GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1902. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1903. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  1904. GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
  1905. CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
  1906. }
  1907. GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1908. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1909. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  1910. GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
  1911. CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
  1912. }
  1913. GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
  1914. GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst));
  1915. ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
  1916. ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
  1917. if (!ggml_backend_buffer_is_cuda(src->buffer)) {
  1918. return false;
  1919. }
  1920. if (!ggml_backend_buffer_is_cuda(dst->buffer)) {
  1921. return false;
  1922. }
  1923. // device -> device
  1924. ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
  1925. ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;
  1926. if (backend_src != backend_dst) {
  1927. ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
  1928. ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
  1929. GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device);
  1930. GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device);
  1931. // copy on src stream
  1932. if (cuda_ctx_src->device == cuda_ctx_dst->device) {
  1933. CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
  1934. } else {
  1935. #ifdef GGML_CUDA_NO_PEER_COPY
  1936. return false;
  1937. #else
  1938. CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
  1939. #endif
  1940. }
  1941. // record event on src stream
  1942. if (!cuda_ctx_src->copy_event) {
  1943. ggml_cuda_set_device(cuda_ctx_src->device);
  1944. CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
  1945. }
  1946. CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));
  1947. // wait on dst stream for the copy to complete
  1948. CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
  1949. } else {
  1950. // src and dst are on the same backend
  1951. CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
  1952. }
  1953. return true;
  1954. }
  1955. GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
  1956. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1957. CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
  1958. GGML_UNUSED(backend);
  1959. }
  1960. static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
  1961. graph_node_properties->node_address = node->data;
  1962. graph_node_properties->node_op = node->op;
  1963. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  1964. graph_node_properties->ne[i] = node->ne[i];
  1965. graph_node_properties->nb[i] = node->nb[i];
  1966. }
  1967. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1968. graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
  1969. }
  1970. }
  1971. static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
  1972. if (node->data != graph_node_properties->node_address &&
  1973. node->op != GGML_OP_CPY &&
  1974. node->op != GGML_OP_VIEW) {
  1975. return false;
  1976. }
  1977. if (node->op != graph_node_properties->node_op) {
  1978. return false;
  1979. }
  1980. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  1981. if (node->ne[i] != graph_node_properties->ne[i]) {
  1982. return false;
  1983. }
  1984. if (node->nb[i] != graph_node_properties->nb[i]) {
  1985. return false;
  1986. }
  1987. }
  1988. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1989. if (node->src[i] &&
  1990. node->src[i]->data != graph_node_properties->src_address[i] &&
  1991. node->op != GGML_OP_CPY &&
  1992. node->op != GGML_OP_VIEW
  1993. ) {
  1994. return false;
  1995. }
  1996. }
  1997. return true;
  1998. }
  1999. GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  2000. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  2001. ggml_cuda_set_device(cuda_ctx->device);
  2002. #ifdef USE_CUDA_GRAPH
  2003. static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
  2004. // Objects required for CUDA Graph
  2005. if (cuda_ctx->cuda_graph == nullptr) {
  2006. cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
  2007. }
  2008. bool use_cuda_graph = true;
  2009. bool cuda_graph_update_required = false;
  2010. // pointer to CUDA cpy kernel, which is required to identify
  2011. // kernel parameters which need updated in the graph for each token
  2012. void * ggml_cuda_cpy_fn_ptr = nullptr;
  2013. if (cuda_ctx->cuda_graph->graph == nullptr) {
  2014. if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
  2015. cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
  2016. #ifndef NDEBUG
  2017. fprintf(stderr, "%s: disabling CUDA graphs due to GPU architecture\n", __func__);
  2018. #endif
  2019. }
  2020. }
  2021. // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
  2022. // or previous graph capture failure.
  2023. // Also disable for multi-gpu for now. TO DO investigate
  2024. if (disable_cuda_graphs_due_to_env
  2025. || cuda_ctx->cuda_graph->disable_due_to_gpu_arch
  2026. || cuda_ctx->cuda_graph->disable_due_to_too_many_updates
  2027. || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
  2028. use_cuda_graph = false;
  2029. }
  2030. if (use_cuda_graph) {
  2031. if (cuda_ctx->cuda_graph->instance == nullptr) {
  2032. cuda_graph_update_required = true;
  2033. }
  2034. // Check if the graph size has changed
  2035. if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
  2036. cuda_graph_update_required = true;
  2037. cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
  2038. }
  2039. // Loop over nodes in GGML graph to determine if CUDA graph update is required
  2040. // and store properties to allow this comparison for the next token
  2041. for (int i = 0; i < cgraph->n_nodes; i++) {
  2042. bool has_matching_properties = true;
  2043. if (!cuda_graph_update_required) {
  2044. has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
  2045. }
  2046. if (!has_matching_properties) {
  2047. cuda_graph_update_required = true;
  2048. }
  2049. set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
  2050. }
  2051. // Loop over nodes in GGML graph to obtain info needed for CUDA graph
  2052. cuda_ctx->cuda_graph->updated_kernel_arg.clear();
  2053. for (int i = 0; i < cgraph->n_nodes; i++) {
  2054. ggml_tensor * node = cgraph->nodes[i];
  2055. if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
  2056. use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
  2057. #ifndef NDEBUG
  2058. fprintf(stderr, "%s: disabling CUDA graphs due to split buffer\n", __func__);
  2059. #endif
  2060. }
  2061. if (node->op == GGML_OP_MUL_MAT_ID) {
  2062. use_cuda_graph = false; // This node type is not supported by CUDA graph capture
  2063. #ifndef NDEBUG
  2064. fprintf(stderr, "%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
  2065. #endif
  2066. }
  2067. if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
  2068. // disable CUDA graphs for batch size > 1 for now.
  2069. // Changes in batch size or context size can cause changes to the grid size of some kernels.
  2070. use_cuda_graph = false;
  2071. #ifndef NDEBUG
  2072. fprintf(stderr, "%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
  2073. #endif
  2074. }
  2075. if (node->op == GGML_OP_CPY) {
  2076. // store the copy op parameter which changes with each token.
  2077. cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
  2078. if (ggml_cuda_cpy_fn_ptr == nullptr) {
  2079. // store a pointer to the copy op CUDA kernel to identify it later
  2080. ggml_cuda_cpy_fn_ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
  2081. }
  2082. }
  2083. if (!use_cuda_graph) {
  2084. break;
  2085. }
  2086. }
  2087. // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
  2088. if (use_cuda_graph && cuda_graph_update_required) {
  2089. cuda_ctx->cuda_graph->number_consecutive_updates++;
  2090. } else {
  2091. cuda_ctx->cuda_graph->number_consecutive_updates = 0;
  2092. }
  2093. if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
  2094. cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
  2095. #ifndef NDEBUG
  2096. fprintf(stderr, "%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
  2097. #endif
  2098. }
  2099. }
  2100. if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
  2101. CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
  2102. }
  2103. #else
  2104. bool use_cuda_graph = false;
  2105. bool cuda_graph_update_required = false;
  2106. #endif // USE_CUDA_GRAPH
  2107. bool graph_evaluated_or_captured = false;
  2108. while (!graph_evaluated_or_captured) {
  2109. // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
  2110. // With the use of CUDA graphs, the execution will be performed by the graph launch.
  2111. if (!use_cuda_graph || cuda_graph_update_required) {
  2112. for (int i = 0; i < cgraph->n_nodes; i++) {
  2113. ggml_tensor * node = cgraph->nodes[i];
  2114. if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  2115. continue;
  2116. }
  2117. #ifndef NDEBUG
  2118. assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
  2119. for (int j = 0; j < GGML_MAX_SRC; j++) {
  2120. if (node->src[j] != nullptr) {
  2121. assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
  2122. }
  2123. }
  2124. #endif
  2125. bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
  2126. if (!ok) {
  2127. fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  2128. }
  2129. GGML_ASSERT(ok);
  2130. }
  2131. }
  2132. #ifdef USE_CUDA_GRAPH
  2133. if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
  2134. if (cuda_ctx->cuda_graph->graph != nullptr) {
  2135. CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
  2136. cuda_ctx->cuda_graph->graph = nullptr;
  2137. }
  2138. CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
  2139. #if 0
  2140. if (disable_cuda_graphs_due_to_failed_capture) {
  2141. use_cuda_graph = false;
  2142. cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
  2143. #ifndef NDEBUG
  2144. fprintf(stderr, "%s: disabling CUDA graphs due to failed graph capture\n", __func__);
  2145. #endif
  2146. } else {
  2147. graph_evaluated_or_captured = true; // CUDA graph has been captured
  2148. }
  2149. #endif
  2150. graph_evaluated_or_captured = true; // CUDA graph has been captured
  2151. } else {
  2152. graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
  2153. }
  2154. }
  2155. if (use_cuda_graph) {
  2156. if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
  2157. CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
  2158. }
  2159. // Perform update to graph (if required for this token), and change copy parameter (required for every token)
  2160. if (cuda_graph_update_required) {
  2161. // Extract nodes from graph
  2162. if (cuda_ctx->cuda_graph->num_nodes == 0) {
  2163. // First call with null argument gets number of nodes in graph
  2164. CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
  2165. }
  2166. // Subsequent call with non-null argument gets nodes
  2167. cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
  2168. cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
  2169. if (cuda_ctx->cuda_graph->num_nodes > 0) {
  2170. CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
  2171. // Loop over nodes, and extract kernel parameters from each node
  2172. for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
  2173. cudaGraphNodeType node_type;
  2174. CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
  2175. if (node_type == cudaGraphNodeTypeKernel) {
  2176. cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
  2177. if (stat == cudaErrorInvalidDeviceFunction) {
  2178. // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
  2179. // We don't need to update blas nodes, so clear error and move on.
  2180. cudaGetLastError();
  2181. } else {
  2182. GGML_ASSERT(stat == cudaSuccess);
  2183. }
  2184. }
  2185. }
  2186. }
  2187. }
  2188. // One of the arguments to the copy kernel is updated for each token, hence we need to
  2189. // replace that argument with the updated value in the CUDA graph
  2190. if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
  2191. int k = 0;
  2192. for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
  2193. if (cuda_ctx->cuda_graph->params[i].func == ggml_cuda_cpy_fn_ptr) {
  2194. char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
  2195. cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
  2196. CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
  2197. }
  2198. }
  2199. }
  2200. // Update graph executable
  2201. cudaGraphExecUpdateResultInfo result_info;
  2202. cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
  2203. if (stat == cudaErrorGraphExecUpdateFailure) {
  2204. #ifndef NDEBUG
  2205. fprintf(stderr, "%s: CUDA graph update failed\n", __func__);
  2206. #endif
  2207. // The pre-existing graph exec cannot be updated due to violated constraints
  2208. // so instead clear error and re-instantiate
  2209. cudaGetLastError();
  2210. CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
  2211. cuda_ctx->cuda_graph->instance = nullptr;
  2212. CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
  2213. } else {
  2214. GGML_ASSERT(stat == cudaSuccess);
  2215. }
  2216. // Launch graph
  2217. CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
  2218. #else
  2219. graph_evaluated_or_captured = true;
  2220. #endif // USE_CUDA_GRAPH
  2221. }
  2222. return GGML_STATUS_SUCCESS;
  2223. }
  2224. GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
  2225. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
  2226. switch (op->op) {
  2227. case GGML_OP_UNARY:
  2228. switch (ggml_get_unary_op(op)) {
  2229. case GGML_UNARY_OP_GELU:
  2230. case GGML_UNARY_OP_SILU:
  2231. case GGML_UNARY_OP_RELU:
  2232. case GGML_UNARY_OP_SIGMOID:
  2233. case GGML_UNARY_OP_HARDSIGMOID:
  2234. case GGML_UNARY_OP_HARDSWISH:
  2235. case GGML_UNARY_OP_GELU_QUICK:
  2236. case GGML_UNARY_OP_TANH:
  2237. return true;
  2238. default:
  2239. return false;
  2240. }
  2241. break;
  2242. case GGML_OP_MUL_MAT:
  2243. case GGML_OP_MUL_MAT_ID:
  2244. {
  2245. struct ggml_tensor * a;
  2246. struct ggml_tensor * b;
  2247. if (op->op == GGML_OP_MUL_MAT) {
  2248. a = op->src[0];
  2249. b = op->src[1];
  2250. } else {
  2251. a = op->src[2];
  2252. b = op->src[1];
  2253. }
  2254. if (a->ne[3] != b->ne[3]) {
  2255. return false;
  2256. }
  2257. ggml_type a_type = a->type;
  2258. if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
  2259. a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S ||
  2260. a_type == GGML_TYPE_IQ1_M || a_type == GGML_TYPE_IQ2_S || a_type == GGML_TYPE_IQ4_XS) {
  2261. if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
  2262. return false;
  2263. }
  2264. }
  2265. return true;
  2266. } break;
  2267. case GGML_OP_GET_ROWS:
  2268. {
  2269. switch (op->src[0]->type) {
  2270. case GGML_TYPE_F16:
  2271. case GGML_TYPE_F32:
  2272. case GGML_TYPE_Q4_0:
  2273. case GGML_TYPE_Q4_1:
  2274. case GGML_TYPE_Q5_0:
  2275. case GGML_TYPE_Q5_1:
  2276. case GGML_TYPE_Q8_0:
  2277. return true;
  2278. default:
  2279. return false;
  2280. }
  2281. } break;
  2282. case GGML_OP_CPY:
  2283. {
  2284. ggml_type src0_type = op->src[0]->type;
  2285. ggml_type src1_type = op->src[1]->type;
  2286. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
  2287. return true;
  2288. }
  2289. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
  2290. return true;
  2291. }
  2292. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
  2293. return true;
  2294. }
  2295. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
  2296. return true;
  2297. }
  2298. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
  2299. return true;
  2300. }
  2301. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) {
  2302. return true;
  2303. }
  2304. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) {
  2305. return true;
  2306. }
  2307. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
  2308. return true;
  2309. }
  2310. if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
  2311. return true;
  2312. }
  2313. if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
  2314. return true;
  2315. }
  2316. return false;
  2317. } break;
  2318. case GGML_OP_DUP:
  2319. case GGML_OP_REPEAT:
  2320. case GGML_OP_CONCAT:
  2321. {
  2322. ggml_type src0_type = op->src[0]->type;
  2323. return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
  2324. } break;
  2325. case GGML_OP_NONE:
  2326. case GGML_OP_RESHAPE:
  2327. case GGML_OP_VIEW:
  2328. case GGML_OP_PERMUTE:
  2329. case GGML_OP_TRANSPOSE:
  2330. case GGML_OP_NORM:
  2331. case GGML_OP_ADD:
  2332. case GGML_OP_MUL:
  2333. case GGML_OP_DIV:
  2334. case GGML_OP_RMS_NORM:
  2335. case GGML_OP_SCALE:
  2336. case GGML_OP_SQR:
  2337. case GGML_OP_CLAMP:
  2338. case GGML_OP_CONT:
  2339. case GGML_OP_DIAG_MASK_INF:
  2340. case GGML_OP_SOFT_MAX:
  2341. case GGML_OP_ROPE:
  2342. case GGML_OP_IM2COL:
  2343. case GGML_OP_POOL_2D:
  2344. case GGML_OP_SUM_ROWS:
  2345. case GGML_OP_ARGSORT:
  2346. case GGML_OP_ACC:
  2347. case GGML_OP_GROUP_NORM:
  2348. case GGML_OP_UPSCALE:
  2349. case GGML_OP_PAD:
  2350. case GGML_OP_ARANGE:
  2351. case GGML_OP_TIMESTEP_EMBEDDING:
  2352. case GGML_OP_LEAKY_RELU:
  2353. return true;
  2354. case GGML_OP_FLASH_ATTN_EXT:
  2355. #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  2356. return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128;
  2357. #else
  2358. if (op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128) {
  2359. return true;
  2360. }
  2361. return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA;
  2362. #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  2363. default:
  2364. return false;
  2365. }
  2366. GGML_UNUSED(backend);
  2367. }
  2368. GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
  2369. const int min_batch_size = 32;
  2370. return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
  2371. (op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
  2372. GGML_UNUSED(backend);
  2373. }
  2374. static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
  2375. #ifdef GGML_CUDA_NO_PEER_COPY
  2376. return nullptr;
  2377. #else
  2378. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  2379. ggml_cuda_set_device(cuda_ctx->device);
  2380. cudaEvent_t event;
  2381. CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
  2382. return new ggml_backend_event {
  2383. /* .backend = */ backend,
  2384. /* .context = */ event,
  2385. };
  2386. #endif
  2387. }
  2388. static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
  2389. CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
  2390. delete event;
  2391. }
  2392. static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
  2393. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
  2394. CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
  2395. }
  2396. static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  2397. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  2398. if (ggml_backend_is_cuda(event->backend)) {
  2399. CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
  2400. } else {
  2401. #if 0
  2402. // untested
  2403. auto wait_fn = [](void * user_data) {
  2404. ggml_backend_event_t event = (ggml_backend_event_t)user_data;
  2405. ggml_backend_event_synchronize(event);
  2406. };
  2407. CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
  2408. #endif
  2409. GGML_ASSERT(false);
  2410. }
  2411. }
  2412. static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) {
  2413. CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
  2414. }
  2415. static ggml_backend_i ggml_backend_cuda_interface = {
  2416. /* .get_name = */ ggml_backend_cuda_name,
  2417. /* .free = */ ggml_backend_cuda_free,
  2418. /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
  2419. /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
  2420. /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
  2421. /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
  2422. /* .synchronize = */ ggml_backend_cuda_synchronize,
  2423. /* .graph_plan_create = */ NULL,
  2424. /* .graph_plan_free = */ NULL,
  2425. /* .graph_plan_compute = */ NULL,
  2426. /* .graph_compute = */ ggml_backend_cuda_graph_compute,
  2427. /* .supports_op = */ ggml_backend_cuda_supports_op,
  2428. /* .offload_op = */ ggml_backend_cuda_offload_op,
  2429. /* .event_new = */ ggml_backend_cuda_event_new,
  2430. /* .event_free = */ ggml_backend_cuda_event_free,
  2431. /* .event_record = */ ggml_backend_cuda_event_record,
  2432. /* .event_wait = */ ggml_backend_cuda_event_wait,
  2433. /* .event_synchronize = */ ggml_backend_cuda_event_synchronize,
  2434. };
  2435. static ggml_guid_t ggml_backend_cuda_guid() {
  2436. static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
  2437. return &guid;
  2438. }
  2439. GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
  2440. if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
  2441. fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
  2442. return nullptr;
  2443. }
  2444. ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
  2445. if (ctx == nullptr) {
  2446. fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
  2447. return nullptr;
  2448. }
  2449. ggml_backend_t cuda_backend = new ggml_backend {
  2450. /* .guid = */ ggml_backend_cuda_guid(),
  2451. /* .interface = */ ggml_backend_cuda_interface,
  2452. /* .context = */ ctx
  2453. };
  2454. return cuda_backend;
  2455. }
  2456. GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
  2457. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
  2458. }
  2459. GGML_CALL int ggml_backend_cuda_get_device_count() {
  2460. return ggml_cuda_info().device_count;
  2461. }
  2462. GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
  2463. cudaDeviceProp prop;
  2464. CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
  2465. snprintf(description, description_size, "%s", prop.name);
  2466. }
  2467. GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
  2468. ggml_cuda_set_device(device);
  2469. CUDA_CHECK(cudaMemGetInfo(free, total));
  2470. }
  2471. GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
  2472. if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
  2473. return false;
  2474. }
  2475. #if CUDART_VERSION >= 11100
  2476. cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
  2477. if (err != cudaSuccess) {
  2478. // clear the error
  2479. cudaGetLastError();
  2480. fprintf(stderr, "%s: warning: failed to register %.2f MiB of pinned memory: %s\n", __func__,
  2481. size/1024.0/1024.0, cudaGetErrorString(err));
  2482. return false;
  2483. }
  2484. return true;
  2485. #else
  2486. return false;
  2487. #endif
  2488. }
  2489. GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
  2490. if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
  2491. return;
  2492. }
  2493. cudaError_t err = cudaHostUnregister(buffer);
  2494. if (err != cudaSuccess) {
  2495. // clear the error
  2496. cudaGetLastError();
  2497. }
  2498. }
  2499. // backend registry
  2500. GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
  2501. ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
  2502. return cuda_backend;
  2503. GGML_UNUSED(params);
  2504. }
  2505. extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
  2506. GGML_CALL int ggml_backend_cuda_reg_devices() {
  2507. int device_count = ggml_backend_cuda_get_device_count();
  2508. //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
  2509. for (int i = 0; i < device_count; i++) {
  2510. char name[128];
  2511. snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
  2512. ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
  2513. }
  2514. return device_count;
  2515. }