123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- #include "argsort.cuh"
- template<typename T>
- static inline __device__ void ggml_cuda_swap(T & a, T & b) {
- T tmp = a;
- a = b;
- b = tmp;
- }
- template<ggml_sort_order order>
- static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) {
- // bitonic sort
- int col = threadIdx.x;
- int row = blockIdx.y;
- if (col >= ncols_pad) {
- return;
- }
- const float * x_row = x + row * ncols;
- extern __shared__ int dst_row[];
- // initialize indices
- dst_row[col] = col;
- __syncthreads();
- for (int k = 2; k <= ncols_pad; k *= 2) {
- for (int j = k / 2; j > 0; j /= 2) {
- int ixj = col ^ j;
- if (ixj > col) {
- if ((col & k) == 0) {
- if (dst_row[col] >= ncols ||
- (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
- x_row[dst_row[col]] > x_row[dst_row[ixj]] :
- x_row[dst_row[col]] < x_row[dst_row[ixj]]))
- ) {
- ggml_cuda_swap(dst_row[col], dst_row[ixj]);
- }
- } else {
- if (dst_row[ixj] >= ncols ||
- (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
- x_row[dst_row[col]] < x_row[dst_row[ixj]] :
- x_row[dst_row[col]] > x_row[dst_row[ixj]]))
- ) {
- ggml_cuda_swap(dst_row[col], dst_row[ixj]);
- }
- }
- }
- __syncthreads();
- }
- }
- // copy the result to dst without the padding
- if (col < ncols) {
- dst[row * ncols + col] = dst_row[col];
- }
- }
- static int next_power_of_2(int x) {
- int n = 1;
- while (n < x) {
- n *= 2;
- }
- return n;
- }
- static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
- // bitonic sort requires ncols to be power of 2
- const int ncols_pad = next_power_of_2(ncols);
- const dim3 block_dims(ncols_pad, 1, 1);
- const dim3 block_nums(1, nrows, 1);
- const size_t shared_mem = ncols_pad * sizeof(int);
- GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
- if (order == GGML_SORT_ORDER_ASC) {
- k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
- } else if (order == GGML_SORT_ORDER_DESC) {
- k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
- } else {
- GGML_ASSERT(false);
- }
- }
- void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const float * src0_d = (const float *)src0->data;
- float * dst_d = (float *)dst->data;
- cudaStream_t stream = ctx.stream();
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_is_contiguous(src0));
- const int64_t ncols = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
- argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
- }
|