getrows.cu 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. #include "getrows.cuh"
  2. #include "dequantize.cuh"
  3. template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
  4. static __global__ void k_get_rows(
  5. const void * src0, const int32_t * src1, dst_t * dst,
  6. int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
  7. /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
  8. /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
  9. /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
  10. size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
  11. const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
  12. const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
  13. const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
  14. const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
  15. if (i00 >= ne00) {
  16. return;
  17. }
  18. const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
  19. dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
  20. const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
  21. const int ib = i00/qk; // block index
  22. const int iqs = (i00%qk)/qr; // quant index
  23. const int iybs = i00 - i00%qk; // dst block start index
  24. const int y_offset = qr == 1 ? 1 : qk/2;
  25. // dequantize
  26. dfloat2 v;
  27. dequantize_kernel(src0_row, ib, iqs, v);
  28. dst_row[iybs + iqs + 0] = v.x;
  29. dst_row[iybs + iqs + y_offset] = v.y;
  30. }
  31. template<typename src0_t, typename dst_t>
  32. static __global__ void k_get_rows_float(
  33. const src0_t * src0, const int32_t * src1, dst_t * dst,
  34. int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
  35. /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
  36. /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
  37. /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
  38. size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
  39. const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
  40. const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
  41. const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
  42. const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
  43. if (i00 >= ne00) {
  44. return;
  45. }
  46. const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
  47. dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
  48. const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
  49. dst_row[i00] = src0_row[i00];
  50. }
  51. template<int qk, int qr, dequantize_kernel_t dq>
  52. static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
  53. const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
  54. GGML_TENSOR_BINARY_OP_LOCALS
  55. const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
  56. const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
  57. const dim3 block_nums(block_num_x, ne10, ne11*ne12);
  58. // strides in elements
  59. //const size_t s0 = nb0 / ggml_element_size(dst);
  60. const size_t s1 = nb1 / ggml_element_size(dst);
  61. const size_t s2 = nb2 / ggml_element_size(dst);
  62. const size_t s3 = nb3 / ggml_element_size(dst);
  63. const size_t s10 = nb10 / ggml_element_size(src1);
  64. const size_t s11 = nb11 / ggml_element_size(src1);
  65. const size_t s12 = nb12 / ggml_element_size(src1);
  66. //const size_t s13 = nb13 / ggml_element_size(src1);
  67. GGML_ASSERT(ne00 % 2 == 0);
  68. k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
  69. src0_dd, src1_dd, dst_dd,
  70. ne00, /*ne01, ne02, ne03,*/
  71. /*ne10, ne11,*/ ne12, /*ne13,*/
  72. /* s0,*/ s1, s2, s3,
  73. /* nb00,*/ nb01, nb02, nb03,
  74. s10, s11, s12/*, s13*/);
  75. GGML_UNUSED(dst);
  76. }
  77. template<typename src0_t>
  78. static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
  79. const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
  80. GGML_TENSOR_BINARY_OP_LOCALS
  81. const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
  82. const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
  83. const dim3 block_nums(block_num_x, ne10, ne11*ne12);
  84. // strides in elements
  85. //const size_t s0 = nb0 / ggml_element_size(dst);
  86. const size_t s1 = nb1 / ggml_element_size(dst);
  87. const size_t s2 = nb2 / ggml_element_size(dst);
  88. const size_t s3 = nb3 / ggml_element_size(dst);
  89. const size_t s10 = nb10 / ggml_element_size(src1);
  90. const size_t s11 = nb11 / ggml_element_size(src1);
  91. const size_t s12 = nb12 / ggml_element_size(src1);
  92. //const size_t s13 = nb13 / ggml_element_size(src1);
  93. k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
  94. src0_dd, src1_dd, dst_dd,
  95. ne00, /*ne01, ne02, ne03,*/
  96. /*ne10, ne11,*/ ne12, /*ne13,*/
  97. /* s0,*/ s1, s2, s3,
  98. /* nb00,*/ nb01, nb02, nb03,
  99. s10, s11, s12/*, s13*/);
  100. GGML_UNUSED(dst);
  101. }
  102. void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
  103. const ggml_tensor * src0 = dst->src[0];
  104. const ggml_tensor * src1 = dst->src[1];
  105. const float * src0_d = (const float *)src0->data;
  106. const float * src1_d = (const float *)src1->data;
  107. float * dst_d = (float *)dst->data;
  108. cudaStream_t stream = ctx.stream();
  109. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  110. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  111. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  112. GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
  113. GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
  114. const int32_t * src1_i32 = (const int32_t *) src1_d;
  115. switch (src0->type) {
  116. case GGML_TYPE_F16:
  117. get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
  118. break;
  119. case GGML_TYPE_F32:
  120. get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
  121. break;
  122. case GGML_TYPE_Q4_0:
  123. get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
  124. break;
  125. case GGML_TYPE_Q4_1:
  126. get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
  127. break;
  128. case GGML_TYPE_Q5_0:
  129. get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
  130. break;
  131. case GGML_TYPE_Q5_1:
  132. get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
  133. break;
  134. case GGML_TYPE_Q8_0:
  135. get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
  136. break;
  137. default:
  138. // TODO: k-quants
  139. fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
  140. GGML_ASSERT(false);
  141. break;
  142. }
  143. }