12345678910111213141516171819202122232425262728293031323334353637383940 |
- #include "sumrows.cuh"
- static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
- const int row = blockIdx.x;
- const int col = threadIdx.x;
- float sum = 0.0f;
- for (int i = col; i < ncols; i += blockDim.x) {
- sum += x[row * ncols + i];
- }
- sum = warp_reduce_sum(sum);
- if (col == 0) {
- dst[row] = sum;
- }
- }
- static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- const dim3 block_nums(nrows, 1, 1);
- k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
- }
- void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const float * src0_d = (const float *)src0->data;
- float * dst_d = (float *)dst->data;
- cudaStream_t stream = ctx.stream();
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_is_contiguous(src0));
- const int64_t ncols = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream);
- }
|