12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280 |
- #include "common.cuh"
- static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
- return x32;
- }
- static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
- return x32;
- }
- static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
- }
- static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
- }
- // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
- // MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
- #define VDR_Q4_0_Q8_1_MMVQ 2
- #define VDR_Q4_0_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
- const int * v, const int * u, const float & d4, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- sumi = __dp4a(vi0, u[2*i+0], sumi);
- sumi = __dp4a(vi1, u[2*i+1], sumi);
- }
- const float2 ds8f = __half22float2(ds8);
- // second part effectively subtracts 8 from each quant value
- return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q4_1_Q8_1_MMVQ 2
- #define VDR_Q4_1_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
- const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- sumi = __dp4a(vi0, u[2*i+0], sumi);
- sumi = __dp4a(vi1, u[2*i+1], sumi);
- }
- #ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm4, ds8));
- const float d4d8 = tmp.x;
- const float m4s8 = tmp.y;
- #else
- const float2 dm4f = __half22float2(dm4);
- const float2 ds8f = __half22float2(ds8);
- const float d4d8 = dm4f.x * ds8f.x;
- const float m4s8 = dm4f.y * ds8f.y;
- #endif // GGML_CUDA_F16
- // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
- return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q5_0_Q8_1_MMVQ 2
- #define VDR_Q5_0_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
- const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
- }
- const float2 ds8f = __half22float2(ds8);
- // second part effectively subtracts 16 from each quant value
- return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q5_1_Q8_1_MMVQ 2
- #define VDR_Q5_1_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
- const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
- }
- #ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm5, ds8));
- const float d5d8 = tmp.x;
- const float m5s8 = tmp.y;
- #else
- const float2 dm5f = __half22float2(dm5);
- const float2 ds8f = __half22float2(ds8);
- const float d5d8 = dm5f.x * ds8f.x;
- const float m5s8 = dm5f.y * ds8f.y;
- #endif // GGML_CUDA_F16
- // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
- return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q8_0_Q8_1_MMVQ 2
- #define VDR_Q8_0_Q8_1_MMQ 8
- template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
- const int * v, const int * u, const float & d8_0, const float & d8_1) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = __dp4a(v[i], u[i], sumi);
- }
- return d8_0*d8_1 * sumi;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
- const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = __dp4a(v[i], u[i], sumi);
- }
- #ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm8, ds8));
- const float d8d8 = tmp.x;
- const float m8s8 = tmp.y;
- #else
- const float2 dm8f = __half22float2(dm8);
- const float2 ds8f = __half22float2(ds8);
- const float d8d8 = dm8f.x * ds8f.x;
- const float m8s8 = dm8f.y * ds8f.y;
- #endif // GGML_CUDA_F16
- // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
- return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q2_K_Q8_1_MMVQ 1
- #define VDR_Q2_K_Q8_1_MMQ 2
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
- const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const half2 & dm2, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR2_K; ++i) {
- const int sc = scales[2*i];
- const int vi = (v >> (2*i)) & 0x03030303;
- sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
- }
- const float2 dm2f = __half22float2(dm2);
- return dm2f.x*sumf_d - dm2f.y*sumf_m;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const half2 & dm2, const float & d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi_d = 0;
- int sumi_m = 0;
- #pragma unroll
- for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
- int sumi_d_sc = 0;
- const int sc = scales[i0 / (QI8_1/2)];
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- #pragma unroll
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
- sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
- }
- sumi_d += sumi_d_sc * (sc & 0xF);
- }
- const float2 dm2f = __half22float2(dm2);
- return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q3_K_Q8_1_MMVQ 1
- #define VDR_Q3_K_Q8_1_MMQ 2
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
- const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const int & scale_offset, const float & d3, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- const int isc = scale_offset + 2*i;
- const int isc_low = isc % (QK_K/32);
- const int sc_shift_low = 4 * (isc / (QK_K/32));
- const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
- const int isc_high = isc % (QK_K/64);
- const int sc_shift_high = 2 * (isc / (QK_K/64));
- const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
- const int sc = (sc_low | sc_high) - 32;
- const int vil = (vl >> (2*i)) & 0x03030303;
- const int vih = ((vh >> i) << 2) & 0x04040404;
- const int vi = __vsubss4(vil, vih);
- sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
- return d3 * sumf;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
- const float & d3, const float & d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
- int sumi_sc = 0;
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
- }
- sumi += sumi_sc * scales[i0 / (QI8_1/2)];
- }
- return d3*d8 * sumi;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q4_K_Q8_1_MMVQ 2
- #define VDR_Q4_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR4_K; ++i) {
- const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
- const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
- const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
- const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
- }
- const float2 dm4f = __half22float2(dm4);
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
- #pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
- }
- const float2 ds8f = __half22float2(ds8[i]);
- sumf_d += ds8f.x * (sc[i] * sumi_d);
- sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
- }
- const float2 dm4f = __half22float2(dm4);
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q5_K_Q8_1_MMVQ 2
- #define VDR_Q5_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
- const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
- const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
- const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
- const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
- const int v0i = vl0i | vh0i;
- const int v1i = vl1i | vh1i;
- const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
- const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]);
- }
- const float2 dm5f = __half22float2(dm5);
- return dm5f.x*sumf_d - dm5f.y*sumf_m;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
- #pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
- }
- const float2 ds8f = __half22float2(ds8[i]);
- sumf_d += ds8f.x * (sc[i] * sumi_d);
- sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
- }
- const float2 dm4f = __half22float2(dm4);
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q6_K_Q8_1_MMVQ 1
- #define VDR_Q6_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
- const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
- const float & d, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- const int sc = scales[4*i];
- const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
- const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
- const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
- sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
- return d*sumf;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
- const float & d6, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- #pragma unroll
- for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
- int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
- #pragma unroll
- for (int i = i0; i < i0 + 2; ++i) {
- sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
- sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
- sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
- sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
- }
- sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
- }
- return d6 * sumf_d;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
- int v[VDR_Q4_0_Q8_1_MMVQ];
- int u[2*VDR_Q4_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
- }
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
- }
- static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
- int v[VDR_Q4_1_Q8_1_MMVQ];
- int u[2*VDR_Q4_1_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
- }
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
- }
- static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
- int vl[VDR_Q5_0_Q8_1_MMVQ];
- int vh[VDR_Q5_0_Q8_1_MMVQ];
- int u[2*VDR_Q5_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
- vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
- }
- return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
- }
- static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
- int vl[VDR_Q5_1_Q8_1_MMVQ];
- int vh[VDR_Q5_1_Q8_1_MMVQ];
- int u[2*VDR_Q5_1_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
- vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
- }
- return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
- }
- static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
- int v[VDR_Q8_0_Q8_1_MMVQ];
- int u[VDR_Q8_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
- u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- }
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
- }
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q2_K * bq2_K = (const block_q2_K *) vbq;
- const int bq8_offset = QR2_K * (iqs / QI8_1);
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- const uint8_t * scales = bq2_K->scales + scale_offset;
- const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
- int u[QR2_K];
- float d8[QR2_K];
- #pragma unroll
- for (int i = 0; i < QR2_K; ++ i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
- }
- return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
- }
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q3_K * bq3_K = (const block_q3_K *) vbq;
- const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- const float d = bq3_K->d;
- const int vl = get_int_from_uint8(bq3_K->qs, iqs);
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
- int u[QR3_K];
- float d8[QR3_K];
- #pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
- }
- return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
- }
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #ifndef GGML_QKK_64
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
- int v[2];
- int u[2*QR4_K];
- float d8[QR4_K];
- // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
- const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
- // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
- // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
- // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
- // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
- const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- v[0] = q4[0];
- v[1] = q4[4];
- const uint16_t * scales = (const uint16_t *)bq4_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
- for (int i = 0; i < QR4_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = __low2float(bq8i->ds);
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
- return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
- #else
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- uint16_t aux16[2];
- const uint8_t * s = (const uint8_t *)aux16;
- const uint16_t * a = (const uint16_t *)bq4_K->scales;
- aux16[0] = a[0] & 0x0f0f;
- aux16[1] = (a[0] >> 4) & 0x0f0f;
- const float dall = bq4_K->dm[0];
- const float dmin = bq4_K->dm[1];
- const float d8_1 = __low2float(bq8_1[0].ds);
- const float d8_2 = __low2float(bq8_1[1].ds);
- const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
- const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
- const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
- const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
- const int * q4 = (const int *)bq4_K->qs + (iqs/2);
- const int v1 = q4[0];
- const int v2 = q4[4];
- const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
- const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
- const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
- const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
- sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
- sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
- return dall * sumf_d - dmin * sumf_m;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- #endif
- }
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #ifndef GGML_QKK_64
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- int vl[2];
- int vh[2];
- int u[2*QR5_K];
- float d8[QR5_K];
- const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
- const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
- vl[0] = ql[0];
- vl[1] = ql[4];
- vh[0] = qh[0] >> bq8_offset;
- vh[1] = qh[4] >> bq8_offset;
- const uint16_t * scales = (const uint16_t *)bq5_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
- #pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = __low2float(bq8i->ds);
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
- return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
- #else
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- const int8_t * s = bq5_K->scales;
- const float d = bq5_K->d;
- const float d8_1 = __low2half(bq8_1[0].ds);
- const float d8_2 = __low2half(bq8_1[1].ds);
- const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
- const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
- const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
- const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
- const int * ql = (const int *)bq5_K->qs + (iqs/2);
- const int vl1 = ql[0];
- const int vl2 = ql[4];
- const int step = 4 * (iqs/2); // 0, 4, 8, 12
- const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
- const int in = step%8; // 0, 4, 0, 4
- const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
- const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
- const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
- const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
- const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
- const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
- + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
- return d * sumf_d;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- #endif
- }
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q6_K * bq6_K = (const block_q6_K *) vbq;
- const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
- const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
- const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
- const int vl = get_int_from_uint8(bq6_K->ql, iqs);
- const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
- const int8_t * scales = bq6_K->scales + scale_offset;
- int u[QR6_K];
- float d8[QR6_K];
- #pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
- d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds);
- }
- return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
- }
- static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if QK_K == 256
- const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
- #if QR2_XXS == 8
- const int ib32 = iqs;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const int8_t * q8 = bq8_1[ib32].qs;
- uint32_t aux32 = q2[2] | (q2[3] << 16);
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
- const uint8_t signs = ksigns_iq2xs[aux32 & 127];
- for (int j = 0; j < 8; ++j) {
- sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
- }
- q8 += 8;
- aux32 >>= 7;
- }
- const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.25f;
- return d * sumi;
- #else
- // iqs is 0...15
- const int ib32 = iqs/2;
- const int il = iqs%2;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
- const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
- const uint32_t aux32 = q2[2] | (q2[3] << 16);
- const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * __low2float(bq8_1[ib32].ds) * 0.25f;
- const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
- const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
- const int8_t * q8 = bq8_1[ib32].qs + 16*il;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 8; ++j) {
- sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
- sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
- }
- return d * (sumi1 + sumi2);
- #endif
- #else
- NO_DEVICE_CODE;
- #endif
- }
- static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- #if QK_K == 256
- const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
- const int ib32 = iqs;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- const uint8_t ls1 = bq2->scales[ib32] & 0xf;
- const uint8_t ls2 = bq2->scales[ib32] >> 4;
- int sumi1 = 0;
- for (int l = 0; l < 2; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
- const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
- sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
- sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
- q8 += 8;
- }
- int sumi2 = 0;
- for (int l = 2; l < 4; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
- const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
- sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
- sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
- q8 += 8;
- }
- const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
- return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
- #else
- GGML_UNUSED(ksigns64);
- NO_DEVICE_CODE;
- #endif
- #else
- GGML_UNUSED(ksigns64);
- NO_DEVICE_CODE;
- #endif
- }
- // TODO
- static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- #if QK_K == 256
- const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
- const int ib32 = iqs;
- const int8_t * q8 = bq8_1[ib32].qs;
- const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32;
- const uint8_t ls1 = bq2->scales[ib32] & 0xf;
- const uint8_t ls2 = bq2->scales[ib32] >> 4;
- int sumi1 = 0;
- for (int l = 0; l < 2; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
- const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
- const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
- const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
- const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
- sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
- sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
- q8 += 8;
- }
- int sumi2 = 0;
- for (int l = 2; l < 4; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
- const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
- const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
- const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
- const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
- sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
- sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
- q8 += 8;
- }
- const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
- return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
- #else
- GGML_UNUSED(ksigns64);
- NO_DEVICE_CODE;
- #endif
- #else
- GGML_UNUSED(ksigns64);
- NO_DEVICE_CODE;
- #endif
- }
- static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- #if QK_K == 256
- const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
- const int ib32 = iqs;
- const uint8_t * q3 = bq2->qs + 8*ib32;
- const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- uint32_t aux32 = gas[0] | (gas[1] << 16);
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
- const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
- const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]);
- const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]);
- sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
- sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
- q8 += 8;
- aux32 >>= 7;
- }
- const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f;
- return d * sumi;
- #else
- NO_DEVICE_CODE;
- #endif
- #else
- NO_DEVICE_CODE;
- #endif
- }
- // TODO: don't use lookup table for signs
- static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- #if QK_K == 256
- const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
- const int ib32 = iqs;
- const uint8_t * qs = bq2->qs + 8*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
- const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
- uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
- uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
- const int grid_l = __vsub4(grid1[0] ^ signs0, signs0);
- const int grid_h = __vsub4(grid2[0] ^ signs1, signs1);
- sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
- sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
- q8 += 8;
- }
- const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds);
- return d * sumi;
- #else
- NO_DEVICE_CODE;
- #endif
- #else
- NO_DEVICE_CODE;
- #endif
- }
- static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if QK_K == 256
- const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
- const int ib32 = iqs;
- int sumi = 0;
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const int * q8 = (const int *)bq8_1[ib32].qs;
- for (int l = 0; l < 4; ++l) {
- const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
- int grid0 = grid[0] & 0x0f0f0f0f;
- int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
- sumi = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi));
- }
- #else
- const int8_t * q8 = bq8_1[ib32].qs;
- for (int l = 0; l < 4; ++l) {
- const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
- for (int j = 0; j < 4; ++j) {
- sumi += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4);
- }
- q8 += 8;
- }
- #endif
- const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA;
- const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1);
- const float d = d1q * __low2float (bq8_1[ib32].ds);
- const float m = d1q * __high2float(bq8_1[ib32].ds);
- return d * sumi + m * delta;
- #else
- NO_DEVICE_CODE;
- #endif
- }
- static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if QK_K == 256
- const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
- const int ib32 = iqs;
- int sumi[2] = {0, 0};
- float sumf[2] = {0.f, 0.f};
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const int * q8 = (const int *)bq8_1[ib32].qs;
- for (int l = 0; l < 4; ++l) {
- const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 7) << 8)));
- int grid0 = grid[0] & 0x0f0f0f0f;
- int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
- sumi[l/2] = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi[l/2]));
- const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
- const int sumy = __dp4a(q8[2*l+1], 0x01010101, __dp4a(q8[2*l+0], 0x01010101, 0));
- sumf[l/2] += delta*sumy;
- }
- #else
- const int8_t * q8 = bq8_1[ib32].qs;
- for (int l = 0; l < 4; ++l) {
- const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
- int sumy = 0;
- for (int j = 0; j < 4; ++j) {
- sumi[l/2] += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4);
- sumy += q8[j] + q8[j+4];
- }
- const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
- sumf[l/2] += delta*sumy;
- q8 += 8;
- }
- #endif
- iq1m_scale_t scale;
- const uint16_t * sc = (const uint16_t *)bq1->scales;
- scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
- const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds);
- return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
- #else
- NO_DEVICE_CODE;
- #endif
- }
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values,
- int & val1, int & val2) {
- uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
- aux32 = q4 & 0x0f0f0f0f;
- uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
- uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
- val1 = v1 | (v2 << 16);
- aux32 = (q4 >> 4) & 0x0f0f0f0f;
- v1 = values[q8[0]] | (values[q8[1]] << 8);
- v2 = values[q8[2]] | (values[q8[3]] << 8);
- val2 = v1 | (v2 << 16);
- }
- #endif
- static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_iq4_nl * bq = (const block_iq4_nl *) vbq;
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
- const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;
- const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
- int v1, v2;
- int sumi1 = 0, sumi2 = 0;
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
- const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
- get_int_from_table_16(aux, values, v1, v2);
- sumi1 = __dp4a(v1, q8[l+0], sumi1);
- sumi2 = __dp4a(v2, q8[l+4], sumi2);
- }
- #else
- const uint8_t * q4 = bq->qs + 4*iqs;
- const int8_t * q8 = bq8_1->qs + 4*iqs;
- int sumi1 = 0, sumi2 = 0;
- for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) {
- sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf];
- sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4];
- }
- #endif
- const float d = (float)bq->d * __low2float(bq8_1->ds);
- return d * (sumi1 + sumi2);
- }
- static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if QK_K == 256
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
- const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
- // iqs is 0...7
- const int ib32 = iqs;
- const int32_t * q8 = (const int *)bq8_1[ib32].qs;
- const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
- const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
- const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
- int v1, v2;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 4; ++j) {
- get_int_from_table_16(q4[j], values, v1, v2);
- sumi1 = __dp4a(v1, q8[j+0], sumi1);
- sumi2 = __dp4a(v2, q8[j+4], sumi2);
- }
- return d * (sumi1 + sumi2);
- #else
- NO_DEVICE_CODE;
- #endif
- #else
- return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
- #endif
- }
|