ggml-backend.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  11. // backend buffer type
  12. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  13. return buft->iface.get_name(buft);
  14. }
  15. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  16. return buft->iface.alloc_buffer(buft, size);
  17. }
  18. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  19. return buft->iface.get_alignment(buft);
  20. }
  21. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  22. // get_max_size is optional, defaults to SIZE_MAX
  23. if (buft->iface.get_max_size) {
  24. return buft->iface.get_max_size(buft);
  25. }
  26. return SIZE_MAX;
  27. }
  28. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  29. // get_alloc_size is optional, defaults to ggml_nbytes
  30. if (buft->iface.get_alloc_size) {
  31. size_t size = buft->iface.get_alloc_size(buft, tensor);
  32. assert(size >= ggml_nbytes(tensor));
  33. return size;
  34. }
  35. return ggml_nbytes(tensor);
  36. }
  37. bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  38. return buft->iface.supports_backend(buft, backend);
  39. }
  40. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  41. if (buft->iface.is_host) {
  42. return buft->iface.is_host(buft);
  43. }
  44. return false;
  45. }
  46. // backend buffer
  47. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  48. ggml_backend_buffer_type_t buft,
  49. struct ggml_backend_buffer_i iface,
  50. ggml_backend_buffer_context_t context,
  51. size_t size) {
  52. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  53. (*buffer) = (struct ggml_backend_buffer) {
  54. /* .interface = */ iface,
  55. /* .buft = */ buft,
  56. /* .context = */ context,
  57. /* .size = */ size,
  58. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  59. };
  60. return buffer;
  61. }
  62. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  63. return buffer->iface.get_name(buffer);
  64. }
  65. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  66. if (buffer == NULL) {
  67. return;
  68. }
  69. if (buffer->iface.free_buffer != NULL) {
  70. buffer->iface.free_buffer(buffer);
  71. }
  72. free(buffer);
  73. }
  74. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  75. return buffer->size;
  76. }
  77. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  78. void * base = buffer->iface.get_base(buffer);
  79. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  80. return base;
  81. }
  82. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  83. // init_tensor is optional
  84. if (buffer->iface.init_tensor) {
  85. buffer->iface.init_tensor(buffer, tensor);
  86. }
  87. }
  88. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  89. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  90. }
  91. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  92. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  93. }
  94. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  95. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  96. }
  97. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  98. buffer->iface.clear(buffer, value);
  99. }
  100. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  101. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  102. }
  103. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  104. buffer->usage = usage;
  105. // FIXME: add a generic callback to the buffer interface
  106. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  107. ggml_backend_multi_buffer_set_usage(buffer, usage);
  108. }
  109. }
  110. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  111. return buffer->buft;
  112. }
  113. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  114. if (buffer->iface.reset) {
  115. buffer->iface.reset(buffer);
  116. }
  117. }
  118. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  119. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  120. if (dst_buf->iface.cpy_tensor) {
  121. return src->buffer->iface.cpy_tensor(dst_buf, src, dst);
  122. }
  123. return false;
  124. }
  125. // backend
  126. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  127. if (backend == NULL) {
  128. return NULL;
  129. }
  130. return backend->guid;
  131. }
  132. const char * ggml_backend_name(ggml_backend_t backend) {
  133. if (backend == NULL) {
  134. return "NULL";
  135. }
  136. return backend->iface.get_name(backend);
  137. }
  138. void ggml_backend_free(ggml_backend_t backend) {
  139. if (backend == NULL) {
  140. return;
  141. }
  142. backend->iface.free(backend);
  143. }
  144. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  145. return backend->iface.get_default_buffer_type(backend);
  146. }
  147. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  148. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  149. }
  150. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  151. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  152. }
  153. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  154. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  155. }
  156. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  157. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  158. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  159. if (backend->iface.set_tensor_async == NULL) {
  160. ggml_backend_tensor_set(tensor, data, offset, size);
  161. } else {
  162. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  163. }
  164. }
  165. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  166. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  167. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  168. if (backend->iface.get_tensor_async == NULL) {
  169. ggml_backend_tensor_get(tensor, data, offset, size);
  170. } else {
  171. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  172. }
  173. }
  174. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  175. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  176. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  177. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  178. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  179. if (!size) {
  180. return;
  181. }
  182. buf->iface.set_tensor(buf, tensor, data, offset, size);
  183. }
  184. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  185. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  186. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  187. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  188. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  189. if (!size) {
  190. return;
  191. }
  192. buf->iface.get_tensor(buf, tensor, data, offset, size);
  193. }
  194. void ggml_backend_synchronize(ggml_backend_t backend) {
  195. if (backend->iface.synchronize == NULL) {
  196. return;
  197. }
  198. backend->iface.synchronize(backend);
  199. }
  200. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  201. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  202. return backend->iface.graph_plan_create(backend, cgraph);
  203. }
  204. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  205. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  206. backend->iface.graph_plan_free(backend, plan);
  207. }
  208. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  209. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  210. return backend->iface.graph_plan_compute(backend, plan);
  211. }
  212. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  213. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  214. ggml_backend_synchronize(backend);
  215. return err;
  216. }
  217. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  218. return backend->iface.graph_compute(backend, cgraph);
  219. }
  220. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  221. return backend->iface.supports_op(backend, op);
  222. }
  223. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  224. if (backend->iface.offload_op != NULL) {
  225. return backend->iface.offload_op(backend, op);
  226. }
  227. return false;
  228. }
  229. // backend copy
  230. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  231. if (a->type != b->type) {
  232. return false;
  233. }
  234. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  235. if (a->ne[i] != b->ne[i]) {
  236. return false;
  237. }
  238. if (a->nb[i] != b->nb[i]) {
  239. return false;
  240. }
  241. }
  242. return true;
  243. }
  244. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  245. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  246. if (src == dst) {
  247. return;
  248. }
  249. if (ggml_backend_buffer_is_host(src->buffer)) {
  250. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  251. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  252. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  253. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  254. #ifndef NDEBUG
  255. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  256. #endif
  257. size_t nbytes = ggml_nbytes(src);
  258. void * data = malloc(nbytes);
  259. ggml_backend_tensor_get(src, data, 0, nbytes);
  260. ggml_backend_tensor_set(dst, data, 0, nbytes);
  261. free(data);
  262. }
  263. }
  264. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  265. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  266. if (src == dst) {
  267. return;
  268. }
  269. if (backend_dst->iface.cpy_tensor_async != NULL) {
  270. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  271. return;
  272. }
  273. }
  274. // an async copy would normally happen after all the queued operations on both backends are completed
  275. // sync src, set_async dst
  276. if (ggml_backend_buffer_is_host(src->buffer)) {
  277. ggml_backend_synchronize(backend_src);
  278. ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
  279. } else {
  280. ggml_backend_synchronize(backend_src);
  281. ggml_backend_tensor_copy(src, dst);
  282. ggml_backend_synchronize(backend_dst);
  283. }
  284. }
  285. // events
  286. ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
  287. if (backend->iface.event_new == NULL) {
  288. return NULL;
  289. }
  290. return backend->iface.event_new(backend);
  291. }
  292. void ggml_backend_event_free(ggml_backend_event_t event) {
  293. if (event == NULL) {
  294. return;
  295. }
  296. event->backend->iface.event_free(event);
  297. }
  298. void ggml_backend_event_record(ggml_backend_event_t event) {
  299. GGML_ASSERT(event->backend->iface.event_record != NULL);
  300. event->backend->iface.event_record(event);
  301. }
  302. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  303. GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
  304. event->backend->iface.event_synchronize(event);
  305. }
  306. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  307. GGML_ASSERT(backend->iface.event_wait != NULL);
  308. backend->iface.event_wait(backend, event);
  309. }
  310. // backend registry
  311. #define GGML_REG_MAX_BACKENDS 16
  312. struct ggml_backend_reg {
  313. char name[128];
  314. ggml_backend_init_fn init_fn;
  315. ggml_backend_buffer_type_t default_buffer_type;
  316. void * user_data;
  317. };
  318. static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
  319. static size_t ggml_backend_registry_count = 0;
  320. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  321. GGML_CALL static void ggml_backend_registry_init(void) {
  322. static bool initialized = false;
  323. if (initialized) {
  324. return;
  325. }
  326. initialized = true;
  327. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  328. // add forward decls here to avoid including the backend headers
  329. #ifdef GGML_USE_CUDA
  330. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  331. ggml_backend_cuda_reg_devices();
  332. #endif
  333. #ifdef GGML_USE_SYCL
  334. extern void ggml_backend_sycl_reg_devices(void);
  335. ggml_backend_sycl_reg_devices();
  336. #endif
  337. #ifdef GGML_USE_METAL
  338. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  339. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  340. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  341. #endif
  342. #ifdef GGML_USE_VULKAN
  343. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  344. ggml_backend_vk_reg_devices();
  345. #endif
  346. #ifdef GGML_USE_KOMPUTE
  347. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  348. ggml_backend_kompute_reg_devices();
  349. #endif
  350. }
  351. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  352. GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
  353. size_t id = ggml_backend_registry_count;
  354. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  355. /* .name = */ {0},
  356. /* .fn = */ init_fn,
  357. /* .default_buffer_type = */ default_buffer_type,
  358. /* .user_data = */ user_data,
  359. };
  360. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  361. #ifndef NDEBUG
  362. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  363. #endif
  364. ggml_backend_registry_count++;
  365. }
  366. size_t ggml_backend_reg_get_count(void) {
  367. ggml_backend_registry_init();
  368. return ggml_backend_registry_count;
  369. }
  370. size_t ggml_backend_reg_find_by_name(const char * name) {
  371. ggml_backend_registry_init();
  372. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  373. // TODO: case insensitive in a portable way
  374. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  375. return i;
  376. }
  377. }
  378. // not found
  379. return SIZE_MAX;
  380. }
  381. // init from backend:params string
  382. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  383. ggml_backend_registry_init();
  384. const char * params = strchr(backend_str, ':');
  385. char backend_name[128];
  386. if (params == NULL) {
  387. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  388. params = "";
  389. } else {
  390. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  391. params++;
  392. }
  393. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  394. if (backend_i == SIZE_MAX) {
  395. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  396. return NULL;
  397. }
  398. return ggml_backend_reg_init_backend(backend_i, params);
  399. }
  400. const char * ggml_backend_reg_get_name(size_t i) {
  401. ggml_backend_registry_init();
  402. GGML_ASSERT(i < ggml_backend_registry_count);
  403. return ggml_backend_registry[i].name;
  404. }
  405. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  406. ggml_backend_registry_init();
  407. GGML_ASSERT(i < ggml_backend_registry_count);
  408. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  409. }
  410. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  411. ggml_backend_registry_init();
  412. GGML_ASSERT(i < ggml_backend_registry_count);
  413. return ggml_backend_registry[i].default_buffer_type;
  414. }
  415. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  416. ggml_backend_registry_init();
  417. GGML_ASSERT(i < ggml_backend_registry_count);
  418. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  419. }
  420. // backend CPU
  421. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  422. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  423. return "CPU";
  424. GGML_UNUSED(buffer);
  425. }
  426. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  427. uintptr_t data = (uintptr_t)buffer->context;
  428. // align the buffer
  429. if (data % TENSOR_ALIGNMENT != 0) {
  430. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  431. }
  432. return (void *)data;
  433. }
  434. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  435. free(buffer->context);
  436. }
  437. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  438. memcpy((char *)tensor->data + offset, data, size);
  439. GGML_UNUSED(buffer);
  440. }
  441. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  442. memcpy(data, (const char *)tensor->data + offset, size);
  443. GGML_UNUSED(buffer);
  444. }
  445. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  446. if (ggml_backend_buffer_is_host(src->buffer)) {
  447. memcpy(dst->data, src->data, ggml_nbytes(src));
  448. return true;
  449. }
  450. return false;
  451. GGML_UNUSED(buffer);
  452. }
  453. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  454. memset(buffer->context, value, buffer->size);
  455. }
  456. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  457. /* .get_name = */ ggml_backend_cpu_buffer_name,
  458. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  459. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  460. /* .init_tensor = */ NULL, // no initialization required
  461. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  462. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  463. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  464. /* .clear = */ ggml_backend_cpu_buffer_clear,
  465. /* .reset = */ NULL,
  466. };
  467. // for buffers from ptr, free is not called
  468. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  469. /* .get_name = */ ggml_backend_cpu_buffer_name,
  470. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  471. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  472. /* .init_tensor = */ NULL, // no initialization required
  473. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  474. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  475. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  476. /* .clear = */ ggml_backend_cpu_buffer_clear,
  477. /* .reset = */ NULL,
  478. };
  479. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  480. return "CPU";
  481. GGML_UNUSED(buft);
  482. }
  483. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  484. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  485. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  486. if (data == NULL) {
  487. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  488. return NULL;
  489. }
  490. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  491. }
  492. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  493. return TENSOR_ALIGNMENT;
  494. GGML_UNUSED(buft);
  495. }
  496. GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  497. return ggml_backend_is_cpu(backend);
  498. GGML_UNUSED(buft);
  499. }
  500. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  501. return true;
  502. GGML_UNUSED(buft);
  503. }
  504. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  505. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  506. /* .iface = */ {
  507. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  508. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  509. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  510. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  511. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  512. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  513. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  514. },
  515. /* .context = */ NULL,
  516. };
  517. return &ggml_backend_cpu_buffer_type;
  518. }
  519. #ifdef GGML_USE_CPU_HBM
  520. // buffer type HBM
  521. #include <hbwmalloc.h>
  522. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  523. return "CPU_HBM";
  524. GGML_UNUSED(buft);
  525. }
  526. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  527. return "CPU_HBM";
  528. GGML_UNUSED(buf);
  529. }
  530. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  531. hbw_free(buffer->context);
  532. }
  533. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  534. //void * ptr = hbw_malloc(size);
  535. void * ptr;
  536. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  537. if (result != 0) {
  538. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  539. return NULL;
  540. }
  541. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  542. buffer->buft = buft;
  543. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  544. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  545. return buffer;
  546. }
  547. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  548. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  549. /* .iface = */ {
  550. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  551. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  552. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  553. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  554. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  555. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  556. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  557. },
  558. /* .context = */ NULL,
  559. };
  560. return &ggml_backend_cpu_buffer_type_hbm;
  561. }
  562. #endif
  563. struct ggml_backend_cpu_context {
  564. int n_threads;
  565. void * work_data;
  566. size_t work_size;
  567. ggml_abort_callback abort_callback;
  568. void * abort_callback_data;
  569. };
  570. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  571. return "CPU";
  572. GGML_UNUSED(backend);
  573. }
  574. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  575. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  576. free(cpu_ctx->work_data);
  577. free(cpu_ctx);
  578. free(backend);
  579. }
  580. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  581. return ggml_backend_cpu_buffer_type();
  582. GGML_UNUSED(backend);
  583. }
  584. struct ggml_backend_plan_cpu {
  585. struct ggml_cplan cplan;
  586. struct ggml_cgraph cgraph;
  587. };
  588. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  589. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  590. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  591. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  592. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  593. if (cpu_plan->cplan.work_size > 0) {
  594. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  595. if (cpu_plan->cplan.work_data == NULL) {
  596. free(cpu_plan);
  597. return NULL;
  598. }
  599. }
  600. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  601. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  602. return cpu_plan;
  603. }
  604. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  605. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  606. free(cpu_plan->cplan.work_data);
  607. free(cpu_plan);
  608. GGML_UNUSED(backend);
  609. }
  610. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  611. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  612. return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  613. GGML_UNUSED(backend);
  614. }
  615. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  616. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  617. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  618. if (cpu_ctx->work_size < cplan.work_size) {
  619. free(cpu_ctx->work_data);
  620. cpu_ctx->work_data = malloc(cplan.work_size);
  621. if (cpu_ctx->work_data == NULL) {
  622. cpu_ctx->work_size = 0;
  623. return GGML_STATUS_ALLOC_FAILED;
  624. }
  625. cpu_ctx->work_size = cplan.work_size;
  626. }
  627. cplan.work_data = cpu_ctx->work_data;
  628. cplan.abort_callback = cpu_ctx->abort_callback;
  629. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  630. return ggml_graph_compute(cgraph, &cplan);
  631. }
  632. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  633. switch (op->op) {
  634. case GGML_OP_CPY:
  635. return
  636. op->type != GGML_TYPE_IQ2_XXS &&
  637. op->type != GGML_TYPE_IQ2_XS &&
  638. op->type != GGML_TYPE_IQ1_S &&
  639. op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
  640. case GGML_OP_MUL_MAT:
  641. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  642. default:
  643. return true;
  644. }
  645. GGML_UNUSED(backend);
  646. }
  647. static struct ggml_backend_i cpu_backend_i = {
  648. /* .get_name = */ ggml_backend_cpu_name,
  649. /* .free = */ ggml_backend_cpu_free,
  650. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  651. /* .set_tensor_async = */ NULL,
  652. /* .get_tensor_async = */ NULL,
  653. /* .cpy_tensor_async = */ NULL,
  654. /* .synchronize = */ NULL,
  655. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  656. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  657. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  658. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  659. /* .supports_op = */ ggml_backend_cpu_supports_op,
  660. /* .offload_op = */ NULL,
  661. /* .event_new = */ NULL,
  662. /* .event_free = */ NULL,
  663. /* .event_record = */ NULL,
  664. /* .event_wait = */ NULL,
  665. /* .event_synchronize = */ NULL,
  666. };
  667. static ggml_guid_t ggml_backend_cpu_guid(void) {
  668. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  669. return &guid;
  670. }
  671. ggml_backend_t ggml_backend_cpu_init(void) {
  672. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  673. if (ctx == NULL) {
  674. return NULL;
  675. }
  676. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  677. ctx->work_data = NULL;
  678. ctx->work_size = 0;
  679. ctx->abort_callback = NULL;
  680. ctx->abort_callback_data = NULL;
  681. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  682. if (cpu_backend == NULL) {
  683. free(ctx);
  684. return NULL;
  685. }
  686. *cpu_backend = (struct ggml_backend) {
  687. /* .guid = */ ggml_backend_cpu_guid(),
  688. /* .interface = */ cpu_backend_i,
  689. /* .context = */ ctx
  690. };
  691. return cpu_backend;
  692. }
  693. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  694. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  695. }
  696. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  697. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  698. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  699. ctx->n_threads = n_threads;
  700. }
  701. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  702. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  703. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  704. ctx->abort_callback = abort_callback;
  705. ctx->abort_callback_data = abort_callback_data;
  706. }
  707. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  708. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  709. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  710. }
  711. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  712. return ggml_backend_cpu_init();
  713. GGML_UNUSED(params);
  714. GGML_UNUSED(user_data);
  715. }
  716. // multi-buffer buffer
  717. struct ggml_backend_multi_buffer_context {
  718. ggml_backend_buffer_t * buffers;
  719. size_t n_buffers;
  720. };
  721. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  722. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  723. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  724. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  725. }
  726. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  727. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  728. for (size_t i = 0; i < ctx->n_buffers; i++) {
  729. ggml_backend_buffer_free(ctx->buffers[i]);
  730. }
  731. free(ctx->buffers);
  732. free(ctx);
  733. }
  734. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  735. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  736. for (size_t i = 0; i < ctx->n_buffers; i++) {
  737. ggml_backend_buffer_clear(ctx->buffers[i], value);
  738. }
  739. }
  740. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  741. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  742. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  743. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  744. /* .get_base = */ NULL,
  745. /* .init_tensor = */ NULL,
  746. /* .set_tensor = */ NULL,
  747. /* .get_tensor = */ NULL,
  748. /* .cpy_tensor = */ NULL,
  749. /* .clear = */ ggml_backend_multi_buffer_clear,
  750. /* .reset = */ NULL,
  751. };
  752. return multi_backend_buffer_i;
  753. }
  754. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  755. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  756. ctx->n_buffers = n_buffers;
  757. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  758. GGML_ASSERT(ctx->buffers != NULL);
  759. size_t total_size = 0;
  760. for (size_t i = 0; i < n_buffers; i++) {
  761. ctx->buffers[i] = buffers[i];
  762. total_size += ggml_backend_buffer_get_size(buffers[i]);
  763. }
  764. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  765. }
  766. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  767. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  768. }
  769. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  770. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  771. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  772. for (size_t i = 0; i < ctx->n_buffers; i++) {
  773. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  774. }
  775. }
  776. // creates a copy of the tensor with the same memory layout
  777. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  778. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  779. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  780. dup->nb[i] = tensor->nb[i];
  781. }
  782. return dup;
  783. }
  784. static bool ggml_is_view_op(enum ggml_op op) {
  785. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  786. }
  787. // scheduler
  788. #ifndef GGML_SCHED_MAX_BACKENDS
  789. #define GGML_SCHED_MAX_BACKENDS 16
  790. #endif
  791. #ifndef GGML_SCHED_MAX_SPLITS
  792. #define GGML_SCHED_MAX_SPLITS 2048
  793. #endif
  794. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  795. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  796. #endif
  797. #ifndef GGML_SCHED_MAX_COPIES
  798. #define GGML_SCHED_MAX_COPIES 4
  799. #endif
  800. struct ggml_backend_sched_split {
  801. int backend_id;
  802. int i_start;
  803. int i_end;
  804. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  805. int n_inputs;
  806. // graph view of this split
  807. struct ggml_cgraph graph;
  808. };
  809. struct ggml_backend_sched {
  810. bool is_reset; // true if the scheduler has been reset since the last graph split
  811. bool is_alloc;
  812. int n_backends;
  813. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  814. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  815. ggml_gallocr_t galloc;
  816. // hash keys of the nodes in the graph
  817. struct ggml_hash_set hash_set;
  818. // hash values
  819. int * tensor_backend_id;
  820. struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  821. int * node_backend_ids; // [graph_size]
  822. int * leaf_backend_ids; // [graph_size]
  823. // copy of the graph with modified inputs
  824. struct ggml_cgraph * graph;
  825. // graph splits
  826. struct ggml_backend_sched_split * splits;
  827. int n_splits;
  828. int splits_capacity;
  829. // pipeline parallelism support
  830. int n_copies;
  831. int cur_copy;
  832. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  833. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  834. int n_graph_inputs;
  835. struct ggml_context * ctx;
  836. ggml_backend_sched_eval_callback callback_eval;
  837. void * callback_eval_user_data;
  838. // align context_buffer to GGML_MEM_ALIGN
  839. #ifdef _MSC_VER
  840. __declspec(align(GGML_MEM_ALIGN))
  841. #else
  842. __attribute__((aligned(GGML_MEM_ALIGN)))
  843. #endif
  844. char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  845. };
  846. #define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
  847. #define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
  848. // returns the priority of the backend, lower id is higher priority
  849. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  850. for (int i = 0; i < sched->n_backends; i++) {
  851. if (sched->backends[i] == backend) {
  852. return i;
  853. }
  854. }
  855. return -1;
  856. }
  857. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
  858. ggml_backend_buffer_t buffer = tensor->buffer;
  859. if (buffer == NULL) {
  860. return -1;
  861. }
  862. // find highest prio backend that supports the buffer type
  863. for (int i = 0; i < sched->n_backends; i++) {
  864. if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
  865. return i;
  866. }
  867. }
  868. fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
  869. __func__, ggml_backend_buffer_name(buffer), tensor->name);
  870. GGML_ASSERT(false);
  871. return -1;
  872. }
  873. #if 0
  874. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  875. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  876. #define GET_CAUSE(node) causes[hash_id(node)]
  877. #else
  878. #define SET_CAUSE(node, ...)
  879. #define GET_CAUSE(node) ""
  880. #endif
  881. // returns the backend that should be used for the node based on the current locations
  882. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  883. // TODO: use supports_op to check if the backend supports the op
  884. // assign pre-allocated nodes to their backend
  885. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
  886. if (cur_backend_id != -1) {
  887. SET_CAUSE(tensor, "1.dst");
  888. return cur_backend_id;
  889. }
  890. // view_src
  891. if (tensor->view_src != NULL) {
  892. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
  893. if (cur_backend_id != -1) {
  894. SET_CAUSE(tensor, "1.vsrc");
  895. return cur_backend_id;
  896. }
  897. }
  898. // graph input
  899. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  900. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  901. SET_CAUSE(tensor, "1.inp");
  902. return cur_backend_id;
  903. }
  904. // assign nodes that use weights to the backend of the weights
  905. // operations with weights are preferably run on the same backend as the weights
  906. for (int i = 0; i < GGML_MAX_SRC; i++) {
  907. const struct ggml_tensor * src = tensor->src[i];
  908. if (src == NULL) {
  909. continue;
  910. }
  911. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  912. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
  913. // check if a backend with higher prio wants to offload the op
  914. if (src_backend_id == sched->n_backends - 1) {
  915. for (int b = 0; b < src_backend_id; b++) {
  916. if (ggml_backend_offload_op(sched->backends[b], tensor)) {
  917. SET_CAUSE(tensor, "1.off");
  918. return b;
  919. }
  920. }
  921. }
  922. SET_CAUSE(tensor, "1.wgt%d", i);
  923. return src_backend_id;
  924. }
  925. }
  926. return -1;
  927. }
  928. static char * fmt_size(size_t size) {
  929. static char buffer[128];
  930. if (size >= 1024*1024) {
  931. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  932. } else {
  933. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  934. }
  935. return buffer;
  936. }
  937. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  938. int cur_split = 0;
  939. for (int i = 0; i < graph->n_nodes; i++) {
  940. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  941. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  942. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  943. sched->splits[cur_split].n_inputs);
  944. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  945. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  946. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  947. }
  948. fprintf(stderr, "\n");
  949. cur_split++;
  950. }
  951. struct ggml_tensor * node = graph->nodes[i];
  952. if (ggml_is_view_op(node->op)) {
  953. continue;
  954. }
  955. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  956. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  957. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  958. for (int j = 0; j < GGML_MAX_SRC; j++) {
  959. struct ggml_tensor * src = node->src[j];
  960. if (src == NULL) {
  961. continue;
  962. }
  963. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  964. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  965. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  966. }
  967. fprintf(stderr, "\n");
  968. }
  969. }
  970. //#define DEBUG_PASS1
  971. //#define DEBUG_PASS2
  972. //#define DEBUG_PASS3
  973. //#define DEBUG_PASS4
  974. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  975. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  976. // reset splits
  977. sched->n_splits = 0;
  978. sched->n_graph_inputs = 0;
  979. sched->is_reset = false;
  980. struct ggml_init_params params = {
  981. /* .mem_size = */ sizeof(sched->context_buffer),
  982. /* .mem_buffer = */ sched->context_buffer,
  983. /* .no_alloc = */ true
  984. };
  985. ggml_free(sched->ctx);
  986. sched->ctx = ggml_init(params);
  987. if (sched->ctx == NULL) {
  988. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  989. GGML_ASSERT(false);
  990. }
  991. // pass 1: assign backends to ops with pre-allocated inputs
  992. for (int i = 0; i < graph->n_leafs; i++) {
  993. struct ggml_tensor * leaf = graph->leafs[i];
  994. int * leaf_backend_id = &tensor_backend_id(leaf);
  995. if (*leaf_backend_id != -1) {
  996. // do not overwrite user assignments
  997. continue;
  998. }
  999. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  1000. }
  1001. for (int i = 0; i < graph->n_nodes; i++) {
  1002. struct ggml_tensor * node = graph->nodes[i];
  1003. int * node_backend_id = &tensor_backend_id(node);
  1004. if (*node_backend_id != -1) {
  1005. // do not overwrite user assignments
  1006. continue;
  1007. }
  1008. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  1009. // src
  1010. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1011. struct ggml_tensor * src = node->src[j];
  1012. if (src == NULL) {
  1013. continue;
  1014. }
  1015. int * src_backend_id = &tensor_backend_id(src);
  1016. if (*src_backend_id == -1) {
  1017. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  1018. }
  1019. }
  1020. }
  1021. #ifdef DEBUG_PASS1
  1022. fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1023. #endif
  1024. // pass 2: expand current backend assignments
  1025. // assign the same backend to adjacent nodes
  1026. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  1027. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  1028. // pass 2.2 expand gpu down
  1029. {
  1030. int cur_backend_id = -1;
  1031. for (int i = 0; i < graph->n_nodes; i++) {
  1032. struct ggml_tensor * node = graph->nodes[i];
  1033. if (ggml_is_view_op(node->op)) {
  1034. continue;
  1035. }
  1036. int * node_backend_id = &tensor_backend_id(node);
  1037. if (*node_backend_id != -1) {
  1038. if (*node_backend_id == sched->n_backends - 1) {
  1039. // skip cpu (lowest prio backend)
  1040. cur_backend_id = -1;
  1041. } else {
  1042. cur_backend_id = *node_backend_id;
  1043. }
  1044. } else {
  1045. *node_backend_id = cur_backend_id;
  1046. SET_CAUSE(node, "2.2");
  1047. }
  1048. }
  1049. }
  1050. // pass 2.1 expand gpu up
  1051. {
  1052. int cur_backend_id = -1;
  1053. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1054. struct ggml_tensor * node = graph->nodes[i];
  1055. if (ggml_is_view_op(node->op)) {
  1056. continue;
  1057. }
  1058. int * node_backend_id = &tensor_backend_id(node);
  1059. if (*node_backend_id != -1) {
  1060. if (*node_backend_id == sched->n_backends - 1) {
  1061. // skip cpu (lowest prio backend)
  1062. cur_backend_id = -1;
  1063. } else {
  1064. cur_backend_id = *node_backend_id;
  1065. }
  1066. } else {
  1067. *node_backend_id = cur_backend_id;
  1068. SET_CAUSE(node, "2.1");
  1069. }
  1070. }
  1071. }
  1072. // pass 2.4 expand rest down
  1073. {
  1074. int cur_backend_id = -1;
  1075. for (int i = 0; i < graph->n_nodes; i++) {
  1076. struct ggml_tensor * node = graph->nodes[i];
  1077. if (ggml_is_view_op(node->op)) {
  1078. continue;
  1079. }
  1080. int * node_backend_id = &tensor_backend_id(node);
  1081. if (*node_backend_id != -1) {
  1082. cur_backend_id = *node_backend_id;
  1083. } else {
  1084. *node_backend_id = cur_backend_id;
  1085. SET_CAUSE(node, "2.4");
  1086. }
  1087. }
  1088. }
  1089. // pass 2.3 expand rest up
  1090. {
  1091. int cur_backend_id = -1;
  1092. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1093. struct ggml_tensor * node = graph->nodes[i];
  1094. if (ggml_is_view_op(node->op)) {
  1095. continue;
  1096. }
  1097. int * node_backend_id = &tensor_backend_id(node);
  1098. if (*node_backend_id != -1) {
  1099. cur_backend_id = *node_backend_id;
  1100. } else {
  1101. *node_backend_id = cur_backend_id;
  1102. SET_CAUSE(node, "2.3");
  1103. }
  1104. }
  1105. }
  1106. #ifdef DEBUG_PASS2
  1107. fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1108. #endif
  1109. // pass 3: assign backends to remaining src from dst and view_src
  1110. for (int i = 0; i < graph->n_nodes; i++) {
  1111. struct ggml_tensor * node = graph->nodes[i];
  1112. int * cur_backend_id = &tensor_backend_id(node);
  1113. if (node->view_src != NULL && *cur_backend_id == -1) {
  1114. *cur_backend_id = tensor_backend_id(node->view_src);
  1115. SET_CAUSE(node, "3.vsrc");
  1116. }
  1117. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1118. struct ggml_tensor * src = node->src[j];
  1119. if (src == NULL) {
  1120. continue;
  1121. }
  1122. int * src_backend_id = &tensor_backend_id(src);
  1123. if (*src_backend_id == -1) {
  1124. if (src->view_src != NULL) {
  1125. // views are always on the same backend as the source
  1126. *src_backend_id = tensor_backend_id(src->view_src);
  1127. SET_CAUSE(src, "3.vsrc");
  1128. } else {
  1129. *src_backend_id = *cur_backend_id;
  1130. SET_CAUSE(src, "3.cur");
  1131. }
  1132. }
  1133. }
  1134. }
  1135. #ifdef DEBUG_PASS3
  1136. fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1137. #endif
  1138. // pass 4: split graph, find tensors that need to be copied
  1139. {
  1140. int i_split = 0;
  1141. struct ggml_backend_sched_split * split = &sched->splits[0];
  1142. // find the backend of the first split, skipping view ops
  1143. for (int i = 0; i < graph->n_nodes; i++) {
  1144. struct ggml_tensor * node = graph->nodes[i];
  1145. if (!ggml_is_view_op(node->op)) {
  1146. split->backend_id = tensor_backend_id(node);
  1147. break;
  1148. }
  1149. }
  1150. split->i_start = 0;
  1151. split->n_inputs = 0;
  1152. memset(split->inputs, 0, sizeof(split->inputs)); //HACK
  1153. int cur_backend_id = split->backend_id;
  1154. for (int i = 0; i < graph->n_nodes; i++) {
  1155. struct ggml_tensor * node = graph->nodes[i];
  1156. if (ggml_is_view_op(node->op)) {
  1157. continue;
  1158. }
  1159. const int node_backend_id = tensor_backend_id(node);
  1160. GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
  1161. // check if we should start a new split based on the sources of the current node
  1162. bool need_new_split = false;
  1163. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  1164. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1165. struct ggml_tensor * src = node->src[j];
  1166. if (src == NULL) {
  1167. continue;
  1168. }
  1169. // check if a weight is on a different backend
  1170. // by starting a new split, the memory of the previously offloaded weights can be reused
  1171. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1172. int src_backend_id = tensor_backend_id(src);
  1173. if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
  1174. need_new_split = true;
  1175. break;
  1176. }
  1177. }
  1178. // check if the split has too many inputs
  1179. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1180. const size_t id = hash_id(src);
  1181. int src_backend_id = sched->tensor_backend_id[id];
  1182. if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
  1183. //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
  1184. need_new_split = true;
  1185. break;
  1186. }
  1187. }
  1188. }
  1189. }
  1190. if (node_backend_id != cur_backend_id || need_new_split) {
  1191. split->i_end = i;
  1192. i_split++;
  1193. if (i_split >= sched->splits_capacity) {
  1194. sched->splits_capacity *= 2;
  1195. sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1196. GGML_ASSERT(sched->splits != NULL);
  1197. }
  1198. GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
  1199. split = &sched->splits[i_split];
  1200. split->backend_id = node_backend_id;
  1201. split->i_start = i;
  1202. split->n_inputs = 0;
  1203. cur_backend_id = node_backend_id;
  1204. }
  1205. // find inputs that are not on the same backend
  1206. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1207. struct ggml_tensor * src = node->src[j];
  1208. if (src == NULL) {
  1209. continue;
  1210. }
  1211. const int src_backend_id = tensor_backend_id(src);
  1212. assert(src_backend_id != -1); // all inputs should be assigned by now
  1213. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1214. size_t id = hash_id(src);
  1215. if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
  1216. ggml_backend_t backend = sched->backends[src_backend_id];
  1217. for (int c = 0; c < sched->n_copies; c++) {
  1218. struct ggml_tensor * tensor_copy;
  1219. if (c == sched->cur_copy) {
  1220. tensor_copy = src; // use the original tensor as the current copy
  1221. } else {
  1222. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1223. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1224. }
  1225. if (sched->n_copies > 1) {
  1226. ggml_set_input(tensor_copy);
  1227. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1228. }
  1229. sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
  1230. SET_CAUSE(tensor_copy, "4.cpy");
  1231. }
  1232. int n_graph_inputs = sched->n_graph_inputs++;
  1233. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1234. sched->graph_inputs[n_graph_inputs] = src;
  1235. }
  1236. }
  1237. if (src_backend_id != node_backend_id) {
  1238. // create a copy of the input in the split's backend
  1239. const size_t id = hash_id(src);
  1240. if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
  1241. ggml_backend_t backend = sched->backends[cur_backend_id];
  1242. for (int c = 0; c < sched->n_copies; c++) {
  1243. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1244. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1245. if (sched->n_copies > 1) {
  1246. ggml_set_input(tensor_copy);
  1247. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1248. }
  1249. sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
  1250. SET_CAUSE(tensor_copy, "4.cpy");
  1251. }
  1252. int n_inputs = split->n_inputs++;
  1253. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1254. split->inputs[n_inputs] = src;
  1255. }
  1256. node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
  1257. }
  1258. }
  1259. }
  1260. split->i_end = graph->n_nodes;
  1261. sched->n_splits = i_split + 1;
  1262. }
  1263. #ifdef DEBUG_PASS4
  1264. fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1265. #endif
  1266. // create copies of the graph for each split
  1267. // TODO: avoid this copy
  1268. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
  1269. for (int i = 0; i < sched->n_splits; i++) {
  1270. struct ggml_backend_sched_split * split = &sched->splits[i];
  1271. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1272. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1273. for (int j = 0; j < split->n_inputs; j++) {
  1274. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1275. struct ggml_tensor * input = split->inputs[j];
  1276. const size_t input_id = hash_id(input);
  1277. struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
  1278. // add a dependency to the input source so that it is not freed before the copy is done
  1279. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1280. input_dep->src[0] = input;
  1281. sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
  1282. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1283. // add a dependency to the input copy so that it is allocated at the start of the split
  1284. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1285. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1286. }
  1287. for (int j = split->i_start; j < split->i_end; j++) {
  1288. assert(graph_copy->size > graph_copy->n_nodes);
  1289. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1290. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1291. }
  1292. }
  1293. if (sched->n_copies > 1) {
  1294. // add input copies as leafs so that they are allocated first
  1295. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1296. struct ggml_tensor * input = sched->graph_inputs[i];
  1297. size_t id = hash_id(input);
  1298. int backend_id = tensor_backend_id(input);
  1299. for (int c = 0; c < sched->n_copies; c++) {
  1300. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1301. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1302. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1303. }
  1304. }
  1305. for (int i = 0; i < sched->n_splits; i++) {
  1306. struct ggml_backend_sched_split * split = &sched->splits[i];
  1307. int backend_id = split->backend_id;
  1308. for (int j = 0; j < split->n_inputs; j++) {
  1309. struct ggml_tensor * input = split->inputs[j];
  1310. size_t id = hash_id(input);
  1311. for (int c = 0; c < sched->n_copies; c++) {
  1312. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1313. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1314. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1315. }
  1316. }
  1317. }
  1318. }
  1319. // add leafs from the original graph
  1320. for (int i = 0; i < graph->n_leafs; i++) {
  1321. struct ggml_tensor * leaf = graph->leafs[i];
  1322. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1323. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1324. }
  1325. sched->graph = graph_copy;
  1326. }
  1327. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1328. // allocate graph
  1329. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1330. // the re-allocation may cause the split inputs to be moved to a different address
  1331. ggml_backend_sched_synchronize(sched);
  1332. #ifndef NDEBUG
  1333. fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
  1334. #endif
  1335. ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1336. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1337. fprintf(stderr, "%s: failed to allocate graph\n", __func__);
  1338. return false;
  1339. }
  1340. }
  1341. return true;
  1342. }
  1343. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1344. struct ggml_backend_sched_split * splits = sched->splits;
  1345. for (int i = 0; i < sched->n_splits; i++) {
  1346. struct ggml_backend_sched_split * split = &splits[i];
  1347. int split_backend_id = split->backend_id;
  1348. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1349. // copy the input tensors to the split backend
  1350. for (int j = 0; j < split->n_inputs; j++) {
  1351. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1352. struct ggml_tensor * input = split->inputs[j];
  1353. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
  1354. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1355. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1356. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1357. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1358. } else {
  1359. ggml_backend_synchronize(split_backend);
  1360. }
  1361. ggml_backend_tensor_copy(input, input_cpy);
  1362. } else {
  1363. // wait for the split backend to finish using the input before overwriting it
  1364. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1365. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1366. } else {
  1367. ggml_backend_synchronize(split_backend);
  1368. }
  1369. ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
  1370. }
  1371. }
  1372. if (!sched->callback_eval) {
  1373. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1374. if (ec != GGML_STATUS_SUCCESS) {
  1375. return ec;
  1376. }
  1377. } else {
  1378. // similar to ggml_backend_compare_graph_backend
  1379. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1380. struct ggml_tensor * t = split->graph.nodes[j0];
  1381. // check if the user needs data from this node
  1382. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1383. int j1 = j0;
  1384. // determine the range [j0, j1] of nodes that can be computed together
  1385. while (!need && j1 < split->graph.n_nodes - 1) {
  1386. t = split->graph.nodes[++j1];
  1387. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1388. }
  1389. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1390. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1391. if (ec != GGML_STATUS_SUCCESS) {
  1392. return ec;
  1393. }
  1394. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1395. ggml_backend_synchronize(split_backend);
  1396. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1397. break;
  1398. }
  1399. j0 = j1;
  1400. }
  1401. }
  1402. // record the event of this copy
  1403. if (split->n_inputs > 0) {
  1404. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1405. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
  1406. }
  1407. }
  1408. }
  1409. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1410. return GGML_STATUS_SUCCESS;
  1411. }
  1412. ggml_backend_sched_t ggml_backend_sched_new(
  1413. ggml_backend_t * backends,
  1414. ggml_backend_buffer_type_t * bufts,
  1415. int n_backends,
  1416. size_t graph_size,
  1417. bool parallel) {
  1418. GGML_ASSERT(n_backends > 0);
  1419. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1420. GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
  1421. struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
  1422. // initialize hash table
  1423. sched->hash_set = ggml_hash_set_new(graph_size);
  1424. sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
  1425. sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
  1426. const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1427. sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1428. sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1429. sched->n_backends = n_backends;
  1430. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1431. const int initial_splits_capacity = 16;
  1432. sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1433. sched->splits_capacity = initial_splits_capacity;
  1434. for (int b = 0; b < n_backends; b++) {
  1435. sched->backends[b] = backends[b];
  1436. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1437. GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
  1438. if (sched->n_copies > 1) {
  1439. for (int c = 0; c < sched->n_copies; c++) {
  1440. sched->events[b][c] = ggml_backend_event_new(backends[b]);
  1441. }
  1442. }
  1443. }
  1444. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1445. ggml_backend_sched_reset(sched);
  1446. return sched;
  1447. }
  1448. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1449. if (sched == NULL) {
  1450. return;
  1451. }
  1452. for (int b = 0; b < sched->n_backends; b++) {
  1453. for (int c = 0; c < sched->n_copies; c++) {
  1454. ggml_backend_event_free(sched->events[b][c]);
  1455. }
  1456. }
  1457. ggml_gallocr_free(sched->galloc);
  1458. ggml_free(sched->ctx);
  1459. free(sched->splits);
  1460. free(sched->hash_set.keys);
  1461. free(sched->tensor_backend_id);
  1462. free(sched->tensor_copies);
  1463. free(sched->node_backend_ids);
  1464. free(sched->leaf_backend_ids);
  1465. free(sched);
  1466. }
  1467. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1468. // reset state for the next run
  1469. if (!sched->is_reset) {
  1470. size_t hash_size = sched->hash_set.size;
  1471. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
  1472. memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
  1473. memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
  1474. sched->is_reset = true;
  1475. }
  1476. sched->is_alloc = false;
  1477. }
  1478. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1479. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
  1480. ggml_backend_sched_split_graph(sched, measure_graph);
  1481. // TODO: extract this to a separate function
  1482. if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1483. return false;
  1484. }
  1485. ggml_backend_sched_reset(sched);
  1486. ggml_backend_sched_synchronize(sched);
  1487. return true;
  1488. }
  1489. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1490. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
  1491. ggml_backend_sched_split_graph(sched, graph);
  1492. if (!ggml_backend_sched_alloc_splits(sched)) {
  1493. return false;
  1494. }
  1495. sched->is_alloc = true;
  1496. return true;
  1497. }
  1498. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1499. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1500. ggml_backend_sched_synchronize(sched);
  1501. return err;
  1502. }
  1503. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1504. if (!sched->is_reset && !sched->is_alloc) {
  1505. ggml_backend_sched_reset(sched);
  1506. }
  1507. if (!sched->is_alloc) {
  1508. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1509. return GGML_STATUS_ALLOC_FAILED;
  1510. }
  1511. }
  1512. return ggml_backend_sched_compute_splits(sched);
  1513. }
  1514. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1515. for (int i = 0; i < sched->n_backends; i++) {
  1516. ggml_backend_synchronize(sched->backends[i]);
  1517. }
  1518. }
  1519. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1520. sched->callback_eval = callback;
  1521. sched->callback_eval_user_data = user_data;
  1522. }
  1523. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1524. return sched->n_splits;
  1525. }
  1526. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1527. return sched->n_copies;
  1528. }
  1529. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1530. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1531. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1532. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1533. }
  1534. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1535. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1536. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1537. tensor_backend_id(node) = backend_index;
  1538. }
  1539. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1540. int backend_index = tensor_backend_id(node);
  1541. if (backend_index == -1) {
  1542. return NULL;
  1543. }
  1544. return sched->backends[backend_index];
  1545. }
  1546. // utils
  1547. void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  1548. GGML_ASSERT(tensor->buffer == NULL);
  1549. GGML_ASSERT(tensor->view_src != NULL);
  1550. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1551. GGML_ASSERT(tensor->view_src->data != NULL);
  1552. tensor->buffer = buffer;
  1553. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1554. ggml_backend_buffer_init_tensor(buffer, tensor);
  1555. }
  1556. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1557. GGML_ASSERT(tensor->buffer == NULL);
  1558. GGML_ASSERT(tensor->data == NULL);
  1559. GGML_ASSERT(tensor->view_src == NULL);
  1560. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1561. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1562. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1563. tensor->buffer = buffer;
  1564. tensor->data = addr;
  1565. ggml_backend_buffer_init_tensor(buffer, tensor);
  1566. }
  1567. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1568. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1569. GGML_ASSERT(src != NULL);
  1570. GGML_ASSERT(src->data && "graph must be allocated");
  1571. size_t id = ggml_hash_insert(hash_set, src);
  1572. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  1573. return node_copies[ggml_hash_find(hash_set, src)];
  1574. }
  1575. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1576. if (src->view_src != NULL) {
  1577. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1578. dst->view_offs = src->view_offs;
  1579. }
  1580. dst->op = src->op;
  1581. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1582. ggml_set_name(dst, src->name);
  1583. // copy src
  1584. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1585. struct ggml_tensor * s = src->src[i];
  1586. if (s == NULL) {
  1587. continue;
  1588. }
  1589. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1590. }
  1591. node_copies[id] = dst;
  1592. return dst;
  1593. }
  1594. static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1595. size_t id = ggml_hash_find(hash_set, src);
  1596. if (node_init[id]) {
  1597. return;
  1598. }
  1599. node_init[id] = true;
  1600. struct ggml_tensor * dst = node_copies[id];
  1601. if (dst->view_src != NULL) {
  1602. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1603. ggml_backend_view_init(dst->view_src->buffer, dst);
  1604. }
  1605. else {
  1606. ggml_backend_tensor_copy(src, dst);
  1607. }
  1608. // init src
  1609. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1610. struct ggml_tensor * s = src->src[i];
  1611. if (s == NULL) {
  1612. continue;
  1613. }
  1614. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1615. }
  1616. }
  1617. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1618. struct ggml_hash_set hash_set = {
  1619. /* .size = */ graph->visited_hash_table.size,
  1620. /* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
  1621. };
  1622. struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1623. bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
  1624. struct ggml_init_params params = {
  1625. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1626. /* .mem_buffer = */ NULL,
  1627. /* .no_alloc = */ true
  1628. };
  1629. struct ggml_context * ctx_allocated = ggml_init(params);
  1630. struct ggml_context * ctx_unallocated = ggml_init(params);
  1631. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1632. fprintf(stderr, "failed to allocate context for graph copy\n");
  1633. free(hash_set.keys);
  1634. free(node_copies);
  1635. free(node_init);
  1636. ggml_free(ctx_allocated);
  1637. ggml_free(ctx_unallocated);
  1638. return (struct ggml_backend_graph_copy) {
  1639. /* .buffer = */ NULL,
  1640. /* .ctx_allocated = */ NULL,
  1641. /* .ctx_unallocated = */ NULL,
  1642. /* .graph = */ NULL,
  1643. };
  1644. }
  1645. // dup nodes
  1646. for (int i = 0; i < graph->n_nodes; i++) {
  1647. struct ggml_tensor * node = graph->nodes[i];
  1648. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1649. }
  1650. // allocate nodes
  1651. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1652. if (buffer == NULL) {
  1653. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1654. free(hash_set.keys);
  1655. free(node_copies);
  1656. free(node_init);
  1657. ggml_free(ctx_allocated);
  1658. ggml_free(ctx_unallocated);
  1659. return (struct ggml_backend_graph_copy) {
  1660. /* .buffer = */ NULL,
  1661. /* .ctx_allocated = */ NULL,
  1662. /* .ctx_unallocated = */ NULL,
  1663. /* .graph = */ NULL,
  1664. };
  1665. }
  1666. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1667. // copy data and init views
  1668. for (int i = 0; i < graph->n_nodes; i++) {
  1669. struct ggml_tensor * node = graph->nodes[i];
  1670. graph_copy_init_tensor(hash_set, node_copies, node_init, node);
  1671. }
  1672. // build graph copy
  1673. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1674. for (int i = 0; i < graph->n_nodes; i++) {
  1675. struct ggml_tensor * node = graph->nodes[i];
  1676. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1677. graph_copy->nodes[i] = node_copy;
  1678. }
  1679. graph_copy->n_nodes = graph->n_nodes;
  1680. free(hash_set.keys);
  1681. free(node_copies);
  1682. free(node_init);
  1683. return (struct ggml_backend_graph_copy) {
  1684. /* .buffer = */ buffer,
  1685. /* .ctx_allocated = */ ctx_allocated,
  1686. /* .ctx_unallocated = */ ctx_unallocated,
  1687. /* .graph = */ graph_copy,
  1688. };
  1689. }
  1690. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1691. ggml_backend_buffer_free(copy.buffer);
  1692. ggml_free(copy.ctx_allocated);
  1693. ggml_free(copy.ctx_unallocated);
  1694. }
  1695. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1696. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1697. if (copy.buffer == NULL) {
  1698. return false;
  1699. }
  1700. struct ggml_cgraph * g1 = graph;
  1701. struct ggml_cgraph * g2 = copy.graph;
  1702. assert(g1->n_nodes == g2->n_nodes);
  1703. for (int i = 0; i < g1->n_nodes; i++) {
  1704. //printf("eval %d/%d\n", i, g1->n_nodes);
  1705. struct ggml_tensor * t1 = g1->nodes[i];
  1706. struct ggml_tensor * t2 = g2->nodes[i];
  1707. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1708. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1709. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1710. ggml_backend_graph_compute(backend1, &g1v);
  1711. ggml_backend_graph_compute(backend2, &g2v);
  1712. if (ggml_is_view_op(t1->op)) {
  1713. continue;
  1714. }
  1715. // compare results, calculate rms etc
  1716. if (!callback(i, t1, t2, user_data)) {
  1717. break;
  1718. }
  1719. }
  1720. ggml_backend_graph_copy_free(copy);
  1721. return true;
  1722. }