123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709 |
- package ggml
- /*
- #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
- #include <stdlib.h>
- #include <stdint.h>
- #include "ggml.h"
- #include "ggml-cpu.h"
- #include "ggml-backend.h"
- static struct ggml_backend_feature * getBackendFeatures(void *fp, ggml_backend_reg_t reg) {return ((ggml_backend_get_features_t)(fp))(reg);}
- static struct ggml_backend_feature * getNextBackendFeatures(struct ggml_backend_feature * feature) { return &feature[1];}
- typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
- COMPILER inline get_compiler() {
- #if defined(__clang__)
- return COMP_CLANG;
- #elif defined(__GNUC__)
- return COMP_GCC;
- #else
- return UNKNOWN_COMPILER;
- #endif
- }
- */
- import "C"
- import (
- "fmt"
- "io"
- "log/slog"
- "os"
- "sync"
- "unsafe"
- "github.com/ollama/ollama/format"
- fs "github.com/ollama/ollama/fs/ggml"
- "github.com/ollama/ollama/ml"
- "golang.org/x/sync/errgroup"
- ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
- )
- type device struct {
- d *C.struct_ggml_backend_device
- }
- func (d device) LogValue() slog.Value {
- var free, total uint64
- C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
- kind := "unknown"
- switch C.ggml_backend_dev_type(d.d) {
- case C.GGML_BACKEND_DEVICE_TYPE_CPU:
- kind = "cpu"
- case C.GGML_BACKEND_DEVICE_TYPE_GPU:
- kind = "gpu"
- case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
- kind = "accel"
- }
- return slog.GroupValue(
- slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
- slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
- slog.String("kind", kind),
- slog.String("free", format.HumanBytes2(free)),
- slog.String("total", format.HumanBytes2(total)),
- )
- }
- var devices = sync.OnceValue(func() []device {
- ggml.OnceLoad()
- s := make([]device, C.ggml_backend_dev_count())
- for i := range s {
- s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
- }
- return s
- })
- type Backend struct {
- meta *fs.GGML
- cpus, gpus []Context
- tensors map[string]*Context
- sched *C.struct_ggml_backend_sched
- }
- func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
- meta, n, err := fs.Decode(r, -1)
- if err != nil {
- return nil, err
- }
- slog.Info(
- "",
- "architecture", meta.KV().Architecture(),
- "file_type", meta.KV().FileType(),
- "name", meta.KV().String("general.name"),
- "description", meta.KV().String("general.description"),
- "num_tensors", len(meta.Tensors().Items()),
- "num_key_values", len(meta.KV()),
- )
- var cpus, gpus []Context
- for _, d := range devices() {
- switch C.ggml_backend_dev_type(d.d) {
- case C.GGML_BACKEND_DEVICE_TYPE_CPU,
- C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
- slog.Info("cpu", "device", d)
- cpus = append(cpus, Context{
- ctx: C.ggml_init(C.struct_ggml_init_params{
- mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
- no_alloc: true,
- }),
- backend: C.ggml_backend_dev_init(d.d, nil),
- })
- case C.GGML_BACKEND_DEVICE_TYPE_GPU:
- slog.Info("gpu", "device", d)
- gpus = append(gpus, Context{
- ctx: C.ggml_init(C.struct_ggml_init_params{
- mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
- no_alloc: true,
- }),
- backend: C.ggml_backend_dev_init(d.d, nil),
- })
- }
- }
- ctxFunc := func(s []Context) (*Context, error) {
- for _, e := range s {
- return &e, nil
- }
- return nil, fmt.Errorf("no devices available")
- }
- tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
- for _, t := range meta.Tensors().Items() {
- c, err := ctxFunc(append(gpus, cpus...))
- if err != nil {
- return nil, err
- }
- func() {
- tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
- cname := C.CString(t.Name)
- defer C.free(unsafe.Pointer(cname))
- C.ggml_set_name(tt, cname)
- tensors[t] = c
- }()
- }
- for _, b := range append(gpus, cpus...) {
- C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
- }
- sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
- var g errgroup.Group
- for t, c := range tensors {
- g.Go(func() error {
- bts := make([]byte, t.Size())
- n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
- if err != nil {
- return err
- }
- if n != int(t.Size()) {
- return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
- }
- cname := C.CString(t.Name)
- defer C.free(unsafe.Pointer(cname))
- C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
- return nil
- })
- }
- if err := g.Wait(); err != nil {
- return nil, err
- }
- backends := make([]*C.struct_ggml_backend, len(gpus)+len(cpus))
- bufts := make([]*C.struct_ggml_backend_buffer_type, len(gpus)+len(cpus))
- for i, c := range append(gpus, cpus...) {
- backends[i] = c.backend
- bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
- }
- return &Backend{
- meta: meta,
- cpus: cpus,
- gpus: gpus,
- sched: C.ggml_backend_sched_new(
- (*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
- (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
- C.int(len(backends)),
- C.size_t(max(8192, len(meta.Tensors().Items())*5)),
- true,
- ),
- }, nil
- }
- func init() {
- ml.RegisterBackend("ggml", New)
- }
- func (b *Backend) Config() ml.Config {
- return b.meta.KV()
- }
- func (b *Backend) Get(name string) ml.Tensor {
- cname := C.CString(name)
- defer C.free(unsafe.Pointer(cname))
- for _, c := range append(b.gpus, b.cpus...) {
- if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
- return &Tensor{t: t}
- }
- }
- return nil
- }
- func (b *Backend) NewContext() ml.Context {
- nodes := max(8192, len(b.meta.Tensors().Items())*5)
- c := C.ggml_init(C.struct_ggml_init_params{
- mem_buffer: nil,
- mem_size: C.size_t(nodes)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(nodes), false),
- no_alloc: true,
- })
- backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
- for i, c := range append(b.gpus, b.cpus...) {
- backends[i] = c.backend
- }
- return &Context{
- b: b,
- ctx: c,
- backend: backends[0],
- nodes: nodes,
- }
- }
- func (b *Backend) CacheConfig() ml.CacheConfig {
- return ml.CacheConfig{CachePadding: 32, PermutedV: true}
- }
- type Context struct {
- b *Backend
- ctx *C.struct_ggml_context
- backend *C.struct_ggml_backend
- graph *C.struct_ggml_cgraph
- nodes int
- }
- func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
- if c.graph == nil {
- c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
- }
- for _, tensor := range tensors {
- C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
- }
- return c
- }
- func (c *Context) Compute(tensors ...ml.Tensor) {
- C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
- C.ggml_backend_sched_reset(c.b.sched)
- needSync := true
- sync := func() {
- if needSync {
- C.ggml_backend_sched_synchronize(c.b.sched)
- needSync = false
- }
- }
- for _, t := range tensors {
- if C.ggml_nbytes(t.(*Tensor).t) > 0 {
- t.(*Tensor).sync = sync
- }
- }
- }
- func (c *Context) MaxTensors() int {
- return c.nodes
- }
- func shapeToGGML(shape []int) *C.int64_t {
- sh := make([]C.int64_t, len(shape))
- for i, s := range shape {
- sh[i] = (C.int64_t)(s)
- }
- return &sh[0]
- }
- func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
- if len(shape) < 1 || len(shape) > 4 {
- panic("unsupported number of dimensions")
- }
- for _, dim := range shape {
- if dim < 1 {
- panic("invalid shape")
- }
- }
- var t *C.struct_ggml_tensor
- switch dtype {
- case ml.DTypeF32:
- t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
- case ml.DTypeF16:
- t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
- case ml.DTypeI32:
- t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
- default:
- panic("unsupported dtype")
- }
- b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
- C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
- C.ggml_set_zero(t)
- return &Tensor{t: t}
- }
- func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
- n := len(s)
- if n == 0 {
- var shape C.int64_t = 0
- t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
- return &Tensor{t: t}, nil
- }
- for _, v := range shape {
- n /= v
- }
- if n != 1 {
- return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
- }
- t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
- b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
- C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
- C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
- return &Tensor{t: t}, nil
- }
- func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
- return fromSlice(c, s, shape, C.GGML_TYPE_F32)
- }
- func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
- return fromSlice(c, s, shape, C.GGML_TYPE_I32)
- }
- func (c *Context) Close() {
- if c != nil {
- C.ggml_free(c.ctx)
- }
- }
- type Tensor struct {
- t *C.struct_ggml_tensor
- sync func()
- }
- func (t *Tensor) LogValue() slog.Value {
- return slog.GroupValue(
- slog.String("name", C.GoString(C.ggml_get_name(t.t))),
- slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
- slog.Any("shape", t.Shape()),
- )
- }
- func (t *Tensor) Dim(n int) int {
- return int(t.t.ne[n])
- }
- func (t *Tensor) Stride(n int) int {
- return int(t.t.nb[n])
- }
- func (t *Tensor) Shape() []int {
- shape := make([]int, C.ggml_n_dims(t.t))
- for i := range shape {
- shape[i] = t.Dim(i)
- }
- return shape
- }
- func (t *Tensor) Bytes() (data []byte) {
- if t.sync != nil {
- data = make([]byte, C.ggml_nbytes(t.t))
- t.sync()
- C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
- }
- return
- }
- func (t *Tensor) Floats() (data []float32) {
- if t.sync != nil {
- data = make([]float32, C.ggml_nelements(t.t))
- t.sync()
- C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
- }
- return
- }
- func (t *Tensor) DType() ml.DType {
- switch t.t._type {
- case C.GGML_TYPE_F32:
- return ml.DTypeF32
- case C.GGML_TYPE_F16:
- return ml.DTypeF16
- case C.GGML_TYPE_I32:
- return ml.DTypeI32
- default:
- return ml.DTypeOther
- }
- }
- func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
- return &Tensor{
- t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
- }
- }
- func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
- if len(s) > 0 {
- return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
- }
- return t
- }
- func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
- return &Tensor{
- t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
- }
- }
- func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
- return &Tensor{
- t: C.ggml_cont(ctx.(*Context).ctx, t.t),
- }
- }
- func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
- return &Tensor{
- t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
- }
- }
- func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
- return &Tensor{
- t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
- }
- }
- func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
- mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
- C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
- return &Tensor{
- t: mul,
- }
- }
- func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
- tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
- if b != nil {
- tt = tt.Add(ctx, b)
- }
- return tt
- }
- func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
- return (&Tensor{t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
- }
- func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
- if len(shape) != 4 {
- panic("expected 4 dimensions")
- }
- return &Tensor{
- t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
- }
- }
- func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
- if len(shape) != 4 {
- panic("expected 4 dimensions")
- }
- return &Tensor{
- t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
- }
- }
- func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
- return &Tensor{
- t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
- }
- }
- func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
- return &Tensor{
- t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
- }
- }
- func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
- switch len(shape) {
- case 1:
- return &Tensor{
- t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
- }
- case 2:
- return &Tensor{
- t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
- }
- case 3:
- return &Tensor{
- t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
- }
- case 4:
- return &Tensor{
- t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
- }
- default:
- panic("unsupported number of dimensions")
- }
- }
- func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
- return &Tensor{
- t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
- }
- }
- func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
- return &Tensor{
- t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
- }
- }
- func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
- return &Tensor{
- t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
- }
- }
- func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
- if len(shape) != 4 {
- panic("expected 4 dimensions")
- }
- return &Tensor{
- t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
- }
- }
- func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
- switch len(shape) {
- case 1:
- return &Tensor{
- t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
- }
- case 3:
- return &Tensor{
- t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
- C.int64_t(shape[0]), C.int64_t(shape[2]),
- C.size_t(shape[1]),
- C.size_t(offset)),
- }
- case 5:
- return &Tensor{
- t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
- C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
- C.size_t(shape[1]), C.size_t(shape[3]),
- C.size_t(offset)),
- }
- case 7:
- return &Tensor{
- t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
- C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
- C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
- C.size_t(offset)),
- }
- default:
- panic("unsupported number of dimensions")
- }
- }
- const (
- ropeTypeNorm C.int = iota
- )
- func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
- if ropeFactors == nil {
- ropeFactors = &Tensor{}
- }
- dequant := t.t
- if C.ggml_is_quantized(t.t._type) {
- dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
- }
- return &Tensor{
- t: C.ggml_rope_ext(
- ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
- C.int(ropeDim),
- 131072, // YaRN n_ctx_train
- ropeTypeNorm, // ROPE_TYPE_NORM
- C.float(ropeBase),
- C.float(ropeScale),
- 0., // YaRN ext_factor
- 1., // YaRN attn_factor
- 32., // YaRN beta_fast
- 1., // YaRN beta_slow
- ),
- }
- }
- func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
- return &Tensor{
- t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
- }
- }
- func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
- return &Tensor{
- t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
- }
- }
- func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
- return &Tensor{
- t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
- }
- }
- func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.Tensor, scale float64) ml.Tensor {
- var kqMask *C.struct_ggml_tensor
- if mask != nil {
- kqMask = mask.(*Tensor).t
- }
- query := t.Permute(ctx, 0, 2, 1, 3)
- key = key.Permute(ctx, 0, 2, 1, 3)
- kq := key.MulmatFullPrec(ctx, query)
- kq = &Tensor{
- t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
- }
- kqv := value.Mulmat(ctx, kq)
- return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
- }
- func (b *Backend) SystemInfo() string {
- var compiler string
- switch C.get_compiler() {
- case C.COMP_UNKNOWN:
- compiler = "cgo(unknown_compiler)"
- case C.COMP_GCC:
- compiler = "cgo(gcc)"
- case C.COMP_CLANG:
- compiler = "cgo(clang)"
- }
- var s string
- for i := range C.ggml_backend_reg_count() {
- reg := C.ggml_backend_reg_get(i)
- fName := C.CString("ggml_backend_get_features")
- defer C.free(unsafe.Pointer(fName))
- get_features_fn := C.ggml_backend_reg_get_proc_address(reg, fName)
- if get_features_fn != nil {
- s += C.GoString(C.ggml_backend_reg_name(reg))
- s += " : "
- for features := C.getBackendFeatures(get_features_fn, reg); features.name != nil; features = C.getNextBackendFeatures(features) {
- s += C.GoString(features.name)
- s += " = "
- s += C.GoString(features.value)
- s += " | "
- }
- }
- }
- return s + compiler
- }
|