12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- package nn
- import (
- "fmt"
- "github.com/ollama/ollama/kvcache"
- "github.com/ollama/ollama/ml"
- )
- // Attention implements scaled dot-product attention for transformer models:
- // Attention(Q, K, V) = softmax(QK^T/√d_k)V
- //
- // Parameters:
- // - ctx: Context for tensor operations
- // - query: Query tensor (Q) with shape [d_k, heads, seq_len_q]
- // - key: Key tensor (K) with shape [d_k, kv_heads, seq_len_k], can be nil to read from cache only
- // - value: Value tensor (V) with shape [d_v, kv_heads, seq_len_k], can be nil to read from cache only
- // - scale: Scaling factor, typically 1/√d_k where d_k is the key dimension
- // - cache: KV cache to store key/value and get past history, can be nil to only use provided key/value
- //
- // Returns:
- //
- // Attention output with shape [d_v, heads, seq_len_q]
- func Attention(ctx ml.Context, query, key, value ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor {
- if key != nil && value != nil {
- if query.Dim(0) != key.Dim(0) {
- panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0)))
- }
- if key.Dim(1) != value.Dim(1) {
- panic(fmt.Errorf("kv_heads in attention operation does not match between key(%v) and value(%v)", key.Dim(1), value.Dim(1)))
- }
- if key.Dim(2) != value.Dim(2) {
- panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2)))
- }
- if cache != nil {
- cache.Put(ctx, key, value)
- }
- } else if cache == nil {
- panic("key & value tensors must be provided if cache is nil")
- }
- var mask ml.Tensor
- if cache != nil {
- key, value, mask = cache.Get(ctx)
- }
- // Only use the fast SDPA implementation if we have a cache, since that's what
- // will do any expected backend-specific transformations for us
- if sdpa, ok := query.(ml.ScaledDotProductAttention); ok && cache != nil {
- return sdpa.ScaledDotProductAttention(ctx, key, value, mask, scale)
- } else {
- query = query.Permute(ctx, 0, 2, 1, 3)
- key = key.Permute(ctx, 0, 2, 1, 3)
- value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
- kq := key.MulmatFullPrec(ctx, query)
- kq = kq.Scale(ctx, scale)
- if mask != nil {
- kq = kq.Add(ctx, mask)
- }
- kq = kq.Softmax(ctx)
- kqv := value.Mulmat(ctx, kq)
- return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
- }
- }
|