123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- package mllama
- import (
- "github.com/ollama/ollama/kvcache"
- "github.com/ollama/ollama/ml"
- "github.com/ollama/ollama/ml/nn"
- "github.com/ollama/ollama/model"
- )
- type Model struct {
- model.Base
- model.BytePairEncoding
- *VisionModel `gguf:"v,vision"`
- *TextModel
- Projector *nn.Linear `gguf:"mm.0"`
- ImageProcessor
- }
- const (
- crossAttentionLayer = iota
- selfAttentionLayer
- )
- func New(c ml.Config) (model.Model, error) {
- m := Model{
- BytePairEncoding: model.NewBytePairEncoding(
- c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
- &model.Vocabulary{
- Values: c.Strings("tokenizer.ggml.tokens"),
- Types: c.Uints("tokenizer.ggml.token_type"),
- Merges: c.Strings("tokenizer.ggml.merges"),
- BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
- AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
- EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
- AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
- },
- ),
- ImageProcessor: newImageProcessor(c),
- VisionModel: newVisionModel(c),
- TextModel: newTextModel(c),
- }
- encoderCache := kvcache.NewEncoderCache()
- encoderCache.SetConfig(ml.CacheConfig{})
- m.Cache = kvcache.NewWrapperCache(encoderCache, kvcache.NewCausalCache(m.TextModel.Shift))
- return &m, nil
- }
- func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
- var crossAttentionStates ml.Tensor
- if opts.Images != nil {
- f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(opts.Images[0])
- if err != nil {
- return nil, err
- }
- pixelValues, err := ctx.FromFloatSlice(f32s,
- m.ImageProcessor.imageSize,
- m.ImageProcessor.imageSize,
- m.ImageProcessor.numChannels,
- m.ImageProcessor.maxNumTiles,
- )
- if err != nil {
- return nil, err
- }
- aspectRatio, err := ctx.FromIntSlice([]int32{int32(aspectRatioID)}, 1)
- if err != nil {
- return nil, err
- }
- positions := make([]int32, 1601)
- for i := range positions {
- positions[i] = int32(i)
- }
- positionIDs, err := ctx.FromIntSlice(positions, len(positions))
- if err != nil {
- return nil, err
- }
- crossAttentionStates = m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
- crossAttentionStates = m.Projector.Forward(ctx, crossAttentionStates)
- }
- inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
- if err != nil {
- return nil, err
- }
- positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
- if err != nil {
- return nil, err
- }
- outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
- if err != nil {
- return nil, err
- }
- // TODO: attention mask, cross attention mask
- return m.TextModel.Forward(ctx, inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
- }
- func init() {
- model.Register("mllama", New)
- }
|