llama.go 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. package llama
  2. // #cgo darwin,arm64 CFLAGS: -std=c11 -DNDEBUG -DGGML_USE_METAL -DGGML_METAL_EMBED_LIBRARY -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  3. // #cgo darwin,arm64 CXXFLAGS: -std=c++11 -DNDEBUG -DGGML_USE_METAL -DGGML_METAL_EMBED_LIBRARY -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  4. // #cgo darwin,arm64 LDFLAGS: -ld_classic ${SRCDIR}/ggml-metal.o -framework Foundation -framework Metal -framework MetalKit -framework Accelerate
  5. // #cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
  6. // #cgo darwin,amd64 CXXFLAGS: -std=c++11 -Wno-incompatible-pointer-types-discards-qualifiers
  7. // #cgo darwin,amd64 LDFLAGS: -ld_classic -framework Foundation -framework Accelerate
  8. // #cgo windows LDFLAGS: -lmsvcrt
  9. // #cgo avx CFLAGS: -mavx
  10. // #cgo avx CXXFLAGS: -mavx
  11. // #cgo avx2 CFLAGS: -mavx2 -mfma
  12. // #cgo avx2 CXXFLAGS: -mavx2 -mfma
  13. // #cgo cuda CFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_MULTIPLATFORM -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  14. // #cgo cuda CXXFLAGS: -std=c++11 -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_MULTIPLATFORM -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  15. // #cgo rocm CXXFLAGS: -std=c++11 -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_MULTIPLATFORM -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  16. // #cgo windows,cuda LDFLAGS: -L. -L"C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.3/lib/x64" -lggml-cuda -lcuda -lcudart -lcublas -lcublasLt
  17. // #cgo windows,rocm LDFLAGS: -L. -L"C:/Program Files/AMD/ROCm/5.7/lib" -lggml-hipblas -lhipblas -lamdhip64 -lrocblas
  18. // #include <stdlib.h>
  19. // #include "llama.h"
  20. // #include "clip.h"
  21. // #include "llava.h"
  22. import "C"
  23. import (
  24. "fmt"
  25. "runtime"
  26. "strings"
  27. "unsafe"
  28. "github.com/ollama/ollama/llm"
  29. )
  30. type Token int32
  31. type Pos int32
  32. type SeqId int32
  33. // SystemInfo is an unused example of calling llama.cpp functions using CGo
  34. func PrintSystemInfo() string {
  35. return C.GoString(C.llama_print_system_info())
  36. }
  37. func BackendInit() {
  38. C.llama_backend_init()
  39. }
  40. type ContextParams struct {
  41. c C.struct_llama_context_params
  42. }
  43. func NewContextParams() ContextParams {
  44. params := C.llama_context_default_params()
  45. params.seed = C.uint(1234)
  46. params.n_ctx = C.uint(2048)
  47. params.n_threads = C.uint(runtime.NumCPU())
  48. params.n_threads_batch = params.n_threads
  49. return ContextParams{c: params}
  50. }
  51. type ModelParams struct {
  52. c C.struct_llama_model_params
  53. }
  54. func NewModelParams() ModelParams {
  55. params := C.llama_model_default_params()
  56. params.n_gpu_layers = 999
  57. return ModelParams{c: params}
  58. }
  59. type Context struct {
  60. c *C.struct_llama_context
  61. }
  62. func (c *Context) Decode(batch Batch) error {
  63. // Positive return values does not mean a fatal error, but rather a warning.
  64. // 0 - success
  65. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  66. // < 0 - error
  67. code := int(C.llama_decode(c.c, batch.c))
  68. if code < 0 {
  69. return fmt.Errorf("llama_decode failed with code %d", code)
  70. }
  71. if code > 0 {
  72. return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d\n", code)
  73. }
  74. return nil
  75. }
  76. func (c *Context) GetModel() *Model {
  77. return &Model{c: C.llama_get_model(c.c)}
  78. }
  79. func (c *Context) SampleTokenGreedy(batch Batch) Token {
  80. nv := c.GetModel().NumVocab()
  81. // TODO(jmorganca): split this up into different functions
  82. candidates := (*C.struct_llama_token_data)(C.malloc(C.size_t(nv) * C.size_t(unsafe.Sizeof(C.struct_llama_token_data{}))))
  83. defer C.free(unsafe.Pointer(candidates))
  84. // get most recent logits
  85. logits := C.llama_get_logits_ith(c.c, C.int(batch.NumTokens()-1))
  86. for i := 0; i < int(nv); i++ {
  87. ptr := (*C.struct_llama_token_data)(unsafe.Pointer(uintptr(unsafe.Pointer(candidates)) + uintptr(i)*unsafe.Sizeof(C.struct_llama_token_data{})))
  88. ptr.id = C.int(i)
  89. ptr.logit = unsafe.Slice(logits, nv)[i]
  90. ptr.p = 0.0
  91. }
  92. return Token(C.llama_sample_token_greedy(c.c, &C.llama_token_data_array{
  93. data: candidates,
  94. size: C.size_t(nv),
  95. sorted: C.bool(false),
  96. }))
  97. }
  98. func LoadModelFromFile(modelPath string, params ModelParams) *Model {
  99. return &Model{c: C.llama_load_model_from_file(C.CString(modelPath), params.c)}
  100. }
  101. func NewContextWithModel(model *Model, params ContextParams) *Context {
  102. return &Context{c: C.llama_new_context_with_model(model.c, params.c)}
  103. }
  104. func (m *Model) NumVocab() int {
  105. return int(C.llama_n_vocab(m.c))
  106. }
  107. func (m *Model) TokenIsEog(token Token) bool {
  108. return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
  109. }
  110. type Batch struct {
  111. c C.struct_llama_batch
  112. }
  113. func NewBatch(nTokens int, embd int, maxSeq int) Batch {
  114. return Batch{c: C.llama_batch_init(C.int(nTokens), C.int(embd), C.int(maxSeq))}
  115. }
  116. func (b *Batch) NumTokens() int {
  117. return int(b.c.n_tokens)
  118. }
  119. func (b *Batch) Add(token Token, pos Pos, seqIds []SeqId, logits bool) {
  120. unsafe.Slice(b.c.token, 512)[b.c.n_tokens] = C.llama_token(token)
  121. unsafe.Slice(b.c.pos, 512)[b.c.n_tokens] = C.llama_pos(pos)
  122. unsafe.Slice(b.c.n_seq_id, 512)[b.c.n_tokens] = C.int(len(seqIds))
  123. for i, s := range seqIds {
  124. unsafe.Slice((unsafe.Slice(b.c.seq_id, 512)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
  125. }
  126. if logits {
  127. unsafe.Slice(b.c.logits, 512)[b.c.n_tokens] = 1
  128. }
  129. b.c.n_tokens += 1
  130. }
  131. func (b *Batch) Clear() {
  132. b.c.n_tokens = 0
  133. }
  134. // LLAMA_API struct llama_batch llama_batch_get_one(
  135. //
  136. // llama_token * tokens,
  137. // int32_t n_tokens,
  138. // llama_pos pos_0,
  139. // llama_seq_id seq_id);
  140. func BatchGetOne(tokens []Token, pos0 Pos, seqId SeqId) Batch {
  141. return Batch{c: C.llama_batch_get_one((*C.int)(unsafe.Pointer(&tokens[0])), C.int32_t(len(tokens)), C.int(pos0), C.int(seqId))}
  142. }
  143. type Model struct {
  144. c *C.struct_llama_model
  145. }
  146. func (m *Model) TokenToPiece(token Token) string {
  147. buf := make([]byte, 12)
  148. C.llama_token_to_piece(
  149. m.c,
  150. C.int32_t(token),
  151. (*C.char)(unsafe.Pointer(&buf[0])),
  152. C.int32_t(12),
  153. C.bool(true),
  154. )
  155. return strings.TrimRight(string(buf), "\x00")
  156. }
  157. func (m *Model) Tokenize(text string, maxTokens int, addSpecial bool, parseSpecial bool) ([]Token, error) {
  158. cTokens := make([]C.llama_token, maxTokens)
  159. cText := C.CString(text)
  160. defer C.free(unsafe.Pointer(cText))
  161. result := C.llama_tokenize(
  162. m.c,
  163. cText,
  164. C.int32_t(len(text)),
  165. &cTokens[0],
  166. C.int32_t(maxTokens),
  167. C.bool(addSpecial),
  168. C.bool(parseSpecial),
  169. )
  170. if result < 0 {
  171. return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
  172. }
  173. tokens := make([]Token, result)
  174. for i := 0; i < int(result); i++ {
  175. tokens[i] = Token(cTokens[i])
  176. }
  177. return tokens, nil
  178. }
  179. func Quantize(infile, outfile string, ftype llm.FileType) error {
  180. cinfile := C.CString(infile)
  181. defer C.free(unsafe.Pointer(cinfile))
  182. coutfile := C.CString(outfile)
  183. defer C.free(unsafe.Pointer(coutfile))
  184. params := C.llama_model_quantize_default_params()
  185. params.nthread = -1
  186. params.ftype = ftype.Value()
  187. if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
  188. return fmt.Errorf("llama_model_quantize: %d", rc)
  189. }
  190. return nil
  191. }
  192. type ClipContext struct {
  193. c *C.struct_clip_ctx
  194. }
  195. func NewClipContext(modelPath string) *ClipContext {
  196. mp := C.CString(modelPath)
  197. defer C.free(unsafe.Pointer(mp))
  198. cc := C.clip_model_load(mp, 1)
  199. return &ClipContext{c: cc}
  200. }
  201. type LlavaContext struct {
  202. c *C.struct_llava_context
  203. }
  204. type LlavaImageEmbed struct {
  205. c *C.struct_llava_image_embed
  206. }
  207. func NewLlavaImageEmbed(clipContext *ClipContext, data []byte) *LlavaImageEmbed {
  208. return &LlavaImageEmbed{c: C.llava_image_embed_make_with_bytes(clipContext.c, C.int(runtime.NumCPU()), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))}
  209. }
  210. func LlavaEvalImageEmbed(llamaContext *Context, embed *LlavaImageEmbed, nBatch int, nPast *int) {
  211. C.llava_eval_image_embed(llamaContext.c, embed.c, C.int(nBatch), (*C.int)(unsafe.Pointer(nPast)))
  212. }