sampling.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. /**
  2. * llama.cpp - git 059031b8c40e1f4ba60586842c5b1ed3ddf61842
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define LLAMA_API_INTERNAL
  27. #include "sampling.h"
  28. #include <random>
  29. struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
  30. struct llama_sampling_context * result = new llama_sampling_context();
  31. result->params = params;
  32. result->grammar = nullptr;
  33. // if there is a grammar, parse it
  34. if (!params.grammar.empty()) {
  35. result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
  36. // will be empty (default) if there are parse errors
  37. if (result->parsed_grammar.rules.empty()) {
  38. fprintf(stderr, "%s: failed to parse grammar\n", __func__);
  39. delete result;
  40. return nullptr;
  41. }
  42. // Ensure that there is a "root" node.
  43. if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
  44. fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
  45. delete result;
  46. return nullptr;
  47. }
  48. std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
  49. result->grammar = llama_grammar_init(
  50. grammar_rules.data(),
  51. grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
  52. }
  53. result->prev.resize(params.n_prev);
  54. result->n_valid = 0;
  55. llama_sampling_set_rng_seed(result, params.seed);
  56. return result;
  57. }
  58. void llama_sampling_free(struct llama_sampling_context * ctx) {
  59. if (ctx->grammar != NULL) {
  60. llama_grammar_free(ctx->grammar);
  61. }
  62. delete ctx;
  63. }
  64. void llama_sampling_reset(llama_sampling_context * ctx) {
  65. if (ctx->grammar != NULL) {
  66. llama_grammar_free(ctx->grammar);
  67. ctx->grammar = NULL;
  68. }
  69. if (!ctx->parsed_grammar.rules.empty()) {
  70. std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
  71. ctx->grammar = llama_grammar_init(
  72. grammar_rules.data(),
  73. grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
  74. }
  75. std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
  76. ctx->cur.clear();
  77. ctx->n_valid = 0;
  78. }
  79. void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
  80. if (seed == LLAMA_DEFAULT_SEED) {
  81. seed = std::random_device{}();
  82. }
  83. ctx->rng.seed(seed);
  84. }
  85. void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
  86. if (dst->grammar) {
  87. llama_grammar_free(dst->grammar);
  88. dst->grammar = nullptr;
  89. }
  90. if (src->grammar) {
  91. dst->grammar = llama_grammar_copy(src->grammar);
  92. }
  93. dst->prev = src->prev;
  94. }
  95. llama_token llama_sampling_last(llama_sampling_context * ctx) {
  96. return ctx->prev.back();
  97. }
  98. std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
  99. const int size = ctx_sampling->prev.size();
  100. n = std::min(n, size);
  101. std::string result;
  102. for (int i = size - n; i < size; i++) {
  103. result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
  104. }
  105. return result;
  106. }
  107. std::string llama_sampling_print(const llama_sampling_params & params) {
  108. char result[1024];
  109. snprintf(result, sizeof(result),
  110. "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
  111. "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
  112. "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
  113. params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
  114. params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
  115. params.mirostat, params.mirostat_eta, params.mirostat_tau);
  116. return std::string(result);
  117. }
  118. std::string llama_sampling_order_print(const llama_sampling_params & params) {
  119. std::string result = "CFG -> Penalties ";
  120. if (params.mirostat == 0) {
  121. for (auto sampler_type : params.samplers_sequence) {
  122. const auto sampler_type_name = sampler_type_to_name_string(sampler_type);
  123. if (!sampler_type_name.empty()) {
  124. result += "-> " + sampler_type_name + " ";
  125. }
  126. }
  127. } else {
  128. result += "-> mirostat ";
  129. }
  130. return result;
  131. }
  132. // no reasons to expose this function in header
  133. static void sampler_queue(
  134. struct llama_context * ctx_main,
  135. const llama_sampling_params & params,
  136. llama_token_data_array & cur_p,
  137. size_t min_keep) {
  138. const float temp = params.temp;
  139. const float dynatemp_range = params.dynatemp_range;
  140. const float dynatemp_exponent = params.dynatemp_exponent;
  141. const int32_t top_k = params.top_k;
  142. const float top_p = params.top_p;
  143. const float min_p = params.min_p;
  144. const float tfs_z = params.tfs_z;
  145. const float typical_p = params.typical_p;
  146. const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
  147. for (auto sampler_type : samplers_sequence) {
  148. switch (sampler_type) {
  149. case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
  150. case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
  151. case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
  152. case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
  153. case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
  154. case llama_sampler_type::TEMPERATURE:
  155. if (dynatemp_range > 0) {
  156. float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
  157. float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
  158. llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
  159. } else {
  160. llama_sample_temp(ctx_main, &cur_p, temp);
  161. }
  162. break;
  163. default : break;
  164. }
  165. }
  166. }
  167. static llama_token llama_sampling_sample_impl(
  168. struct llama_sampling_context * ctx_sampling,
  169. struct llama_context * ctx_main,
  170. struct llama_context * ctx_cfg,
  171. const int idx,
  172. bool is_resampling) { // Add a parameter to indicate if we are resampling
  173. const llama_sampling_params & params = ctx_sampling->params;
  174. const float temp = params.temp;
  175. const int mirostat = params.mirostat;
  176. const float mirostat_tau = params.mirostat_tau;
  177. const float mirostat_eta = params.mirostat_eta;
  178. std::vector<float> original_logits;
  179. auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, !is_resampling, &original_logits);
  180. if (!is_resampling) {
  181. GGML_ASSERT(!original_logits.empty());
  182. }
  183. llama_token id = 0;
  184. // Get a pointer to the logits
  185. float * logits = llama_get_logits_ith(ctx_main, idx);
  186. if (temp < 0.0) {
  187. // greedy sampling, with probs
  188. llama_sample_softmax(ctx_main, &cur_p);
  189. id = cur_p.data[0].id;
  190. } else if (temp == 0.0) {
  191. // greedy sampling, no probs
  192. id = llama_sample_token_greedy(ctx_main, &cur_p);
  193. } else {
  194. if (mirostat == 1) {
  195. const int mirostat_m = 100;
  196. llama_sample_temp(ctx_main, &cur_p, temp);
  197. id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
  198. } else if (mirostat == 2) {
  199. llama_sample_temp(ctx_main, &cur_p, temp);
  200. id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
  201. } else {
  202. // temperature sampling
  203. size_t min_keep = std::max(1, params.min_keep);
  204. sampler_queue(ctx_main, params, cur_p, min_keep);
  205. id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
  206. //{
  207. // const int n_top = 10;
  208. // LOG("top %d candidates:\n", n_top);
  209. // for (int i = 0; i < n_top; i++) {
  210. // const llama_token id = cur_p.data[i].id;
  211. // (void)id; // To avoid a warning that id is unused when logging is disabled.
  212. // LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
  213. // }
  214. //}
  215. //LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
  216. }
  217. }
  218. if (ctx_sampling->grammar != NULL && !is_resampling) {
  219. // Create an array with a single token data element for the sampled id
  220. llama_token_data single_token_data = {id, logits[id], 0.0f};
  221. llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
  222. // Apply grammar constraints to the single token
  223. llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
  224. // Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
  225. bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
  226. // If the token is not valid according to the grammar, perform resampling
  227. if (!is_valid) {
  228. LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
  229. // Restore logits from the copy
  230. std::copy(original_logits.begin(), original_logits.end(), logits);
  231. return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, true); // Pass true for is_resampling
  232. }
  233. }
  234. ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size;
  235. return id;
  236. }
  237. static llama_token_data_array llama_sampling_prepare_impl(
  238. struct llama_sampling_context * ctx_sampling,
  239. struct llama_context * ctx_main,
  240. struct llama_context * ctx_cfg,
  241. const int idx,
  242. bool apply_grammar,
  243. std::vector<float> * original_logits) {
  244. const llama_sampling_params & params = ctx_sampling->params;
  245. const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
  246. const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
  247. const float penalty_repeat = params.penalty_repeat;
  248. const float penalty_freq = params.penalty_freq;
  249. const float penalty_present = params.penalty_present;
  250. const bool penalize_nl = params.penalize_nl;
  251. auto & prev = ctx_sampling->prev;
  252. auto & cur = ctx_sampling->cur;
  253. // Get a pointer to the logits
  254. float * logits = llama_get_logits_ith(ctx_main, idx);
  255. if (apply_grammar && original_logits != NULL) {
  256. // Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
  257. *original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
  258. }
  259. // apply params.logit_bias map
  260. for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
  261. logits[it->first] += it->second;
  262. }
  263. if (ctx_cfg) {
  264. float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
  265. llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
  266. }
  267. cur.clear();
  268. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  269. cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  270. }
  271. llama_token_data_array cur_p = { cur.data(), cur.size(), false };
  272. // apply penalties
  273. const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
  274. const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
  275. if (penalty_tokens_used_size) {
  276. const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
  277. llama_sample_repetition_penalties(ctx_main, &cur_p,
  278. penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
  279. penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
  280. if (!penalize_nl) {
  281. for (size_t idx = 0; idx < cur_p.size; idx++) {
  282. if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
  283. cur_p.data[idx].logit = nl_logit;
  284. break;
  285. }
  286. }
  287. }
  288. }
  289. // apply grammar checks before sampling logic
  290. if (apply_grammar && ctx_sampling->grammar != NULL) {
  291. llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
  292. }
  293. return cur_p;
  294. }
  295. llama_token llama_sampling_sample(
  296. struct llama_sampling_context * ctx_sampling,
  297. struct llama_context * ctx_main,
  298. struct llama_context * ctx_cfg,
  299. const int idx) {
  300. // Call the implementation function with is_resampling set to false by default
  301. return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
  302. }
  303. llama_token_data_array llama_sampling_prepare(
  304. struct llama_sampling_context * ctx_sampling,
  305. struct llama_context * ctx_main,
  306. struct llama_context * ctx_cfg,
  307. const int idx,
  308. bool apply_grammar,
  309. std::vector<float> * original_logits) {
  310. return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
  311. }
  312. void llama_sampling_accept(
  313. struct llama_sampling_context * ctx_sampling,
  314. struct llama_context * ctx_main,
  315. llama_token id,
  316. bool apply_grammar) {
  317. ctx_sampling->prev.erase(ctx_sampling->prev.begin());
  318. ctx_sampling->prev.push_back(id);
  319. if (ctx_sampling->grammar != NULL && apply_grammar) {
  320. llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
  321. }
  322. }